高考数学一轮复习理科习题:第五篇 数列(必修5) 第4节 数列求和 Word版含解析
2020版导与练一轮复习理科数学习题:第五篇数列(必修5)第4节数列求和Word版含解析
第4节数列求和应用能力提升庄实瓯申齐华思维【选题明细表】基础巩固(时间:30分钟)I I 3 n1.S n= + + + …+ 等于(B )2n-n 2H + 1-n-2T TI “(A) (B)2n-n+ 1 2I] + 1 - n + 2(C) ' (D)! 2 3 n解析:由S n= + + +…+ ,①1 12 n-1 n得s= + +•••+■ + ,②1 1 “尹计1111 1 n 1 —n + 1 -n-2①-②得,S= + + + …+ - ' = I"-',所以Sn=2. 数列{(-1) n(2n-1)}的前2 018 项和S2 cis 等于(B )(A)-2 016 (B)2 018 (C)-2 015 (D)2 015解析:S2 。
18=-1+3-5+7- …-(2 X 2 017-1)+(2 X 2 018-1)=(-1+3)+(-5+7)+ …+[-(2 X 2 017-1)+(2 X 2 018-1)]=2 X 1009=2 018.故选B.3. 等差数列{a n}的通项公式为a n=2n+1,其前n项和为S,则数列{}的前10项的和为(C )(A)120 (B)70 (C)75 (D)100解析:由a n=2n+1,得a1=3,d=2.n(n- 1)所以S n=3n+ ' X 2=n2+2n.因为,n+2,所以数列r}是以3为首项,1为公差的等差数列.呂10 X 9所以()的前10项和为10X 3+ X仁75.4. 已知函数y=log a(x-1)+3(a>0,a工1)的图象所过定点的横、纵坐标分1别是等差数列{a n}的第二项与第三项,若b n='',数列{b n}的前n项和为T n,则T10等于(B )9 10 12(A) (B) (C)1 (D)解析:对数函数y=log a x的图象过定点(1,0),所以函数y=log a(x-1)+311 1的图象过定点(2,3),则a 2=2,a 3=3,故a n =n,所以b n 二;=「 ,所以1 1 1 I I I toT io =1- ' + '- •:+…+• -「=1-「=「,故选 B.1 1 1 15., + 1+ i+…1 的值为(C )(A ) ' '■3 111311(C ) I-'(化 」+ ) (D ) 化} 〕一 +] 1 1 111解析:因为⑴+ 1尸一 1虫'十加=1® + 2)=7(^-兀+ 2),1 1+ 丨 I +…+' ■' -:■ - 1iiiii 11丨 +「+... + _ )1 3113 I 11/(X 齐 1_相 + 2)=疋,(齐 1+斤 + 2).6. 在2016年至2019年期间,甲每年6月1日都到银行存入m 元的一年 定期储蓄,若年利率为q 保持不变,且每年到期的存款本息自动转为新 的一年定期,到2020年6月1日甲去银行不再存款,而是将所有存款的 本息全部取出,则取回的金额是(D ) 4 _ 5 ____________________________(A)m(1+q)元(B)m(1+q) 元皿[(1十°4一(1 +妙叫(1十町「(1 +妙(C)"元(D)解析:2019年存款的本息和为m(1+q),2018年存款的本息和为m(1+q)2,2017年存款的本息和为m(1+q)3,2016年存款的本息和为m(1+q)4,四年存款的本息和为m(1+q)+m(1+q)2+m(1+q)3+m(1+q)4二771(1 +^)((1+g)^i| 叫(1 十町5 —(i +妙;_ } <■-- 二昇.故选 D.17. 已知函数f(x)=x a的图象过点(4,2),令a n二•「,n € N〔记数列{a n}的前n项和为S n,则S2 018= ______解析:由f(4)=2可得4a=2,| 1解得a=.则f(x)=-.1 1所以an=;! 1 :! !■' : ' :l=+ ] + *'冗=\% + 1 _ 兀厉S2 018=a1+a2+a3+ •…+a2 018=( 辭-\】)+(⑺-碇)+( %* -2)+ …(农01 孔J2 01 了) + ( 019 _ J2 01H)= J2 019 _1.+答案-18. _____________________________________________________ 有穷数列1,1+2,1+2+4,…,1+2+4+…+2n-1所有项的和为 ______________ .l-2n 解析:由题意知所求数列的通项为:=2n-1,故由分组求和法及等比数2(1 -2n)列的求和公式可得和为'-n=2 n+1-2-n.答案:2 n+1-2-n能力提升(时间:15分钟)9. 已知数列{a n}的前n项和为S n,a1=1,当n》2时,a n+2S-1二n,则S2⑷的值为(D ) (A)2 015 (B)2 013 (C)1 008 (D)1 009解析:因为a n+2S-1二n(n > 2),所以a n+1+2S=n+1(n > 1),两式相减得a n+i +a n =1(n 》2). ^又 a i =1, ^所以S 2oi7=a i +(a2+a 3)+….+(a 2 oi6+a 2。
2022版高考数学一轮复习第五章数列第四讲数列求和学案含解析新人教版
(3)当 n≥2 时,
1
=1
1-1 n-1 n+1
.(
√
)
n2-1 2
(4)求数列 21n+2n+3 的前 n 项和可用分组求和.( √ ) [解析] (1)因为数列{an}为等比数列,且公比不等于 1.则其前 n 项和为 Sn=a11-qn=1-Βιβλιοθήκη a1-a1qn=a1-an+1.
1-q 1-q (2)因为 sin21°+sin289°=sin22°+sin288°=sin23°+sin287°=1,所以 sin21°+sin22°+sin23°
na1,q=1,
Sn= a1-anq=__a11-qn__,q≠1.
1-q
1-q
注意等比数列公比 q 的取值情况,要分 q=1,q≠1.
知识点二 分组求和法
一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和
法,分别求和后相加减.如若一个数列的奇数项成等差数列,偶数项成等比数列,则可用分
2.(必修 5P61T4 改编)Sn=12+12+38+…+2nn等于( B )
A.2n-n-1 2n
B.2n+1-n-2 2n
C.2n-n+1 2n
D.2n+1-n+2 2n
[解析] 由 Sn=12+222+233+…+2nn①
得 12Sn=212+223+…+n-2n 1+2nn+1②
①-②得,
第四讲 数列求和
知识梳理·双基自测
知识梳理
知识点一 公式法求和
(1)如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前 n 项和
公式.
(2)等差数列的前
n 项和公式:Sn=na1+an=__na1+nn-1d__=__dn2+
2022届高考数学一轮复习第五章数列第四节数列求和学案含解析新人教版
第四节 数列求和热点命题分析学科核心素养本节是高考的热点,其中等差、等比数列的通项与求和、数列与不等式的综合、以数学文化为背景的数列题是高考命题的热点,多以解答题的形式呈现. 本节通过数列求和以与数列的综合应用提升考生的数学运算和逻辑推理核心素养.授课提示:对应学生用书第108页 知识点 数列前n 项和的求法 1.公式法(1)等差数列的前n 项和公式S n =n a 1+a n2=na 1+n n -12d .(2)等比数列的前n 项和公式 ①当q =1时,S n =na 1; ②当q ≠1时,S n =a 11-q n1-q=a 1-a n q1-q.2.分组转化法把数列的每一项分成两项或几项,使其转化为几个能求和的数列,再求解. 3.裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾假如干项. 4.倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. 5.错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. 6.并项求和法一个数列的前n 项和中,可两两结合求解,如此称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. •温馨提醒• 二级结论1.常见的裂项公式 (1)1n n +1=1n -1n +1.(2)12n -12n +1=12⎝⎛⎭⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n .2.常见数列的求和公式 (1)12+22+32+…+n 2=n n +12n +16.(2)13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n n +122.必明易错1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进展合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项如此后剩多少项.1.在数列{a n }中,a n =1n n +1,假如{a n }的前n 项和为2 0192 020,如此项数n 为( )A .2 016B .2 017C .2 018D .2 019答案:D2.数列:112,214,318,…,⎝ ⎛⎭⎪⎫n +12n ,…,如此其前n 项和关于n 的表达式为________. 答案:n n +12+1-12n 3.数列{a n }的前n 项和为S n 且a n =n ·2n ,如此S n =________. 答案:(n -1)2n +1+24.(易错题)求1+2x +3x 2+…+nx n -1(x ≠0且x ≠1)的和. 解析:设S n =1+2x +3x 2+…+nx n -1,① 如此xS n =x +2x 2+3x 3+…+nx n ,②①-②得:(1-x )S n =1+x +x 2+…+x n -1-nx n =1-x n 1-x -nx n ,所以S n =1-x n 1-x 2-nx n1-x.授课提示:对应学生用书第109页题型一 分组转化法求和 合作探究[例] 等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2). (1)求数列{a n }的通项公式;(2)假如数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . [解析] (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d ,又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n,2a n =2n . 因为b n =a 2n +2a n -1,所以b n=2n-1+2n,所以数列{b n}的前n项和T n=(1+3+5+…+2n-1)+(2+22+23+…+2n)=n1+2n-12+21-2n1-2=n2+2n+1-2.分组转化法求和的常见类型[对点训练](2021·某某质检)等差数列{a n}的前n项和为S n,且满足S4=24,S7=63.(1)求数列{a n}的通项公式;(2)假如b n=2a n+a n,求数列{b n}的前n项和T n.答案:(1)a n=2n+1 (2)T n=83(4n-1)+n2+2n题型二裂项相消法求和合作探究[例] 数列{a n}满足a1=1, a2n+2=a n+1(n∈N*).(1)求证:数列{a2n}是等差数列,并求出{a n}的通项公式;(2)假如b n=2a n+a n+1,求数列{b n}的前n项和.[解析] (1)证明:由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1,所以数列{a 2n }是以1为首项,2为公差的等差数列,所以a 2n =1+(n -1)×2=2n -1, 又由易得a n >0,所以a n =2n -1(n ∈N *).(2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1, 故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.裂项相消法求和的实质和解题关键裂项相消法求和的实质是将数列中的通项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,其解题的关键就是准确裂项和消项.(1)裂项原如此:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止. (2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.[对点训练](2020·高考某某卷)数列{a n },{b n },{}满足a 1=b 1=c 1=1,=a n +1-a n ,+1=b nb n +2,n ∈N *.(1)假如{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值与数列{a n }的通项公式; (2)假如{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+<1+1d,n ∈N *.解析:(1)由b 1+b 2=6b 3,得1+q =6q 2, 解得q =12.由+1=4得=4n -1. 由a n +1-a n=4n -1,得a n =a 1+1+4+…+4n -2=4n -1+23.(2)证明:由+1=b nb n +2,得=b 1b 2c 1b n b n +1=1+d d ⎝⎛⎭⎪⎫1b n -1b n +1,所以c 1+c 2+c 3+…+=1+d d ⎝ ⎛⎭⎪⎫1-1b n +1, 由b 1=1,d >0,得b n +1>0,因此c 1+c 2+c 3+…+<1+1d,n ∈N *. 题型三 错位相减法求和 合作探究[例](2020·高考全国卷Ⅲ)设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜测{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n . [解析](1)a 2=5,a 3a n =2n +1.证明:由可得a n +1-(2n +3)=3[a n -(2n +1)],a n -(2n +1)=3[a n -1-(2n -1)],…,a 2-5=3(a 1-3).因为a 1=3,所以a n =2n +1. (2)由(1)得2n a n =(2n +1)2n ,所以S n =3×2+5×22+7×23+…+(2n +1)×2n .① 从而2S n =3×22+5×23+7×24+…+(2n +1)×2n +1.②①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n +1)×2n +1,所以S n =(2n -1)2n +1+2.运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错位相减;三是注意符号,相减时要注意最后一项的符号.[对点训练](2021·某某市局部区联考)数列{a n }是等差数列,数列{b n }是等比数列,且a 1=1,a 3+a 4=12,b 1=a 2,b 2=a 5.(1)求{a n }和{b n }的通项公式;(2)设=(-1)n a n b n (n ∈N *),求数列{}的前n 项和S n . 解析:(1)设等差数列{a n }的公差为d , 因为a 1=1,a 3+a 4=12, 所以2a 1+5d =12,所以d =2, 所以a n =2n -1.设等比数列{b n }的公比为q ,因为b 1=a 2,b 2=a 5, 所以b 1=a 2=3,b 2=a 5=9, 所以q =3,所以b n =3n .(2)由(1)知,a n =2n -1,b n =3n ,所以=(-1)n ·a n ·b n =(-1)n ·(2n -1)·3n =(2n -1)·(-3)n , 所以S n =1·(-3)+3·(-3)2+5·(-3)3+…+(2n -1)·(-3)n ,①所以-3S n =1·(-3)2+3·(-3)3+…+(2n -3)·(-3)n +(2n -1)·(-3)n +1,② ①-②得,4S n =-3+2·(-3)2+2·(-3)3+…+2·(-3)n -(2n -1)·(-3)n +1 =-3+2·-32[1--3n -1]1+3-(2n -1)·(-3)n +1=32-4n -12·(-3)n +1. 所以S n =38-4n -18·(-3)n +1.数列求和中的核心素养数学运算——数列求和的创新交汇应用[例](2021·某某重点中学联考)设x =1是函数f (x )=a n +1x 3-a n x 2-a n +2x +1(n ∈N *)的极值点,数列{a n }中满足a 1=1,a 2=2,b n =log 2a n +1,假如[x ]表示不超过x 的最大整数,如此⎣⎢⎡⎦⎥⎤2 018b 1b 2+2 018b 2b 3+…+ 2 018b 2 018b 2 019=( ) A .2 017 B .2 018 C .2 019D .2 020解析:由题可知,f ′(x )=3a n +1x 2-2a n x -a n +2,如此f ′(1)=3a n +1-2a n -a n +2=0,即a n +2-3a n +1+2a n =0.a n +2-a n +1=2(a n +1-a n ),a 2-a 1=1,a 3-a 2=2×1=2,a 4-a 3=2×2=22,…,a n -a n -1=2n -2,累加得a n =2n -1,故b n =n .如此2 018b 1b 2+2 018b 2b 3+…+2 018b 2 018b 2 019=2 018×⎝ ⎛⎭⎪⎫11×2+12×3+…+12 018×2 019=2 018×⎝ ⎛⎭⎪⎫1-12 019=2 018-2 0182 019=2 017+12 019,所以⎣⎢⎡⎦⎥⎤2 018b 1b 2+2 018b 2b 3+…+ 2 018b 2 018b 2 019=2 017. 答案:A此题的关键是利用累加法求通项后,利用裂项相消法求和.[题组突破]1.(2021·某某摸底)定义n∑i =1nu i为n 个正数u 1,u 2,u 3,…,u n 的“快乐数〞.假如正项数列{a n }的前n 项的“快乐数〞为13n +1,如此数列⎩⎨⎧⎭⎬⎫36a n +2a n +1+2的前2 019项和为( )A.2 0182 019 B .2 0192 020C.2 0192 018D .2 0191 010答案:B2.(2021·某某期末测试)我国古代数学名著《九章算术》中,有长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n.①第二步:将数列①的各项乘以n ,得到一个新数列a 1,a 2,a 3,…,a n ,如此a 1a 2+a 2a 3+…+a n -1a n =( )A .n 2B .(n -1)2C .n (n -1)D .n (n +1) 答案:C。
高三数学一轮总复习 第五章 数列 5.4 数列求和课件.ppt
12
n
4.一个数列{an},当 n 是奇数时,an=5n+1;当 n 为偶数时,an=22 ,则这 个数列的前 2m 项的和是__________。
解析:当 n 为奇数时,{an}是以 6 为首项,以 10 为公差的等差数列;当 n 为偶 数时,{an}是以 2 为首项,以 2 为公比的等比数列。所以,S2m=S 奇+S 偶=ma1+mm2-1 ×10+a211--22m
7
2 种思路——解决非等差、等比数列求和问题的两种思路 (1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往 通过通项分解或错位相减来完成。 (2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和。
8
3 个注意点——应用“裂项相消法”和“错位相减法”应注意的问题 (1)裂项相消法,分裂通项是否恰好等于相应的两项之差。 (2)在正负项抵消后,是否只剩下第一项和最后一项,或有时前面剩下两项,后 面也剩下两项,未消去的项有前后对称的特点。 (3)在应用错位相减法求和时,若等比数列的公比含有参数,应分 q=1 和 q≠1 两种情况求解。
=6m+5m(m-1)+2(2m-1) =6m+5m2-5m+2m+1-2 =2m+1+5m2+m-2。 答案:2m+1+5m2+m-2
13
5.已知数列{an}的前 n 项和为 Sn 且 an=n·2n,则 Sn=__________。
解析:∵an=n·2n, ∴Sn=1·21+2·22+3·23+…+n·2n。① ∴2Sn=1·22+2·23+…+(n-1)·2n+n·2n+1。② ①-②,得-Sn=2+22+23+…+2n-n·2n+1 =211--22n-n·2n+1=2n+1-2-n·2n+1 =(1-n)2n+1-2。 ∴Sn=(n-1)2n+1+2。 答案:(n-1)2n+1+2
高考理科第一轮复习练习(5.4数列的求和)
课时提升作业(三十三)一、选择题1.(2013·南昌模拟)已知等比数列{a n}公比为q,其前n项和为S n,若S3,S9,S6成等差数列,则q3等于( )(A)-错误!未找到引用源。
(B)1(C)-错误!未找到引用源。
或1 (D)-1或错误!未找到引用源。
2.(2013·长春模拟)在等差数列{a n}中,a9=错误!未找到引用源。
a12+6,则数列{a n}的前11项和S11等于( )(A)24 (B)48 (C)66 (D)1323.已知数列{a n}的通项公式是a n=2n-3(错误!未找到引用源。
)n,则其前20项和为( )(A)380-错误!未找到引用源。
(1-错误!未找到引用源。
) (B)400-错误!未找到引用源。
(1-错误!未找到引用源。
)(C)420-错误!未找到引用源。
(1-错误!未找到引用源。
) (D)440-错误!未找到引用源。
(1-错误!未找到引用源。
)4.(2013·阜阳模拟)已知直线(3m+1)x+(1-m)y-4=0所过定点的横、纵坐标分别是等差数列{a n}的第一项与第二项,若b n=错误!未找到引用源。
,数列{b n}的前n项和为T n,则T10=( ) (A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
5.(2013·太原模拟)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则错误!未找到引用源。
= ( )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
6.数列{a n}的前n项和S n=3n+b(b是常数),若这个数列是等比数列,那么b为( )(A)3 (B)0 (C)-1 (D)17.等差数列{a n}的前n项和为S n,已知a m-1+a m+1-错误!未找到引用源。
=0,S2m-1=38,则m= ( )(A)38 (B)20 (C)10 (D)98.(能力挑战题)数列{a n}的前n项和S n=2n-1,则错误!未找到引用源。
2020版高考数学一轮复习第5章数列5.4数列求和课后作业理
5.4 数列求和[重点保分 两级优选练]A 级一、选择题1.已知等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55,则a n +100+a n -98=( ) A .8n +6 B .4n +1 C .8n +3 D .4n +3答案 A解析 设等差数列{a n }的公差为d ,则S n =na 1+n n -12d ,由S 2=10,S 5=55,可得⎩⎪⎨⎪⎧2a 1+22-12d =10,5a 1+55-12d =55,得⎩⎪⎨⎪⎧a 1=3,d =4,所以a n =a 1+(n -1)d =4n -1,则a n +100+a n -98=2a n +1=8n +6.故选A.2.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A .1B .2C .4D .6答案 B解析 由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d2=1,所以d =2.故选B.3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 5b 5=( )A.23 B.278 C .7 D.214答案 D解析a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=9a 1+a 929b 1+b 92=S 9T 9=7×99+3=214.故选D. 4.已知函数f (n )=⎩⎪⎨⎪⎧n 2,当n 为正奇数时,-n 2,当n 为正偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .102答案 B解析 由题意,得a 1+a 2+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=100.故选B.5.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2018项的和等于( )A .1512B .1513C .1513.5D .2018答案 C解析 因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1k ∈N *,1,n =2k k ∈N *,故数列的前2018项的和S 2018=1009×⎝ ⎛⎭⎪⎫1+12=1513.5.故选C.6.在数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A .(3n-1)2B.12(9n-1) C .9n -1 D.14(3n-1) 答案 B解析 因为a 1+a 2+…+a n =3n-1,所以a 1+a 2+…+a n -1=3n -1-1(n ≥2).则n ≥2时,a n =2×3n -1.当n =1时,a 1=3-1=2,适合上式,所以a n =2×3n -1(n ∈N *).则数列{a 2n }是首项为4,公比为9的等比数列.故选B.7.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2017的值为( )A.20142015 B.20152016 C.20162017D.20172018答案 D解析 直线与x 轴交于⎝ ⎛⎭⎪⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,∴S n =12·2n ·2n +1=1n n +1=1n -1n +1.∴原式=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12017-12018=1-12018=20172018.故选D.8.已知{a n }为等比数列,S n 是它的前n 项和.若a 3a 5=14a 1,且a 4与a 7的等差中项为98,则S 5等于( )A .35B .33C .31D .29答案 C解析 设等比数列{a n }的公比是q ,所以a 3a 5=a 21q 6=14a 1,得a 1q 6=14,即a 7=14.又a 4+a 7=2×98,解得a 4=2,所以q 3=a 7a 4=18,所以q =12,a 1=16,故S 5=a 11-q 51-q =16⎝ ⎛⎭⎪⎫1-1321-12=31.故选C.9.已知等比数列{a n }的前n 项和为S n ,则下列说法中一定成立的是( ) A .若a 3>0,则a 2017<0 B .若a 4>0,则a 2018<0 C .若a 3>0,则S 2017>0 D .若a 4>0,则S 2018>0答案 C解析 等比数列{a n }的公比q ≠0.对于A ,若a 3>0,则a 1q 2>0,所以a 1>0,所以a 2017=a 1q 2016>0,所以A 不成立;对于B ,若a 4>0,则a 1q 3>0,所以a 1q >0,所以a 2018=a 1q2017>0,所以B 不成立;对于C ,若a 3>0,则a 1=a 3q 2>0,所以当q =1时,S 2017>0,当q ≠1时,S 2017=a 11-q 20171-q>0(1-q 与1-q2017同号),所以C 一定成立,易知D 不一定成立.故选C.10.在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a 2n 的等比中项,那么a 1+a 222+a 332+a 442+…+a 1001002的值是( )A.10099 B.101100 C.100101D.99100答案 C解析 由题意,可得a 2n +1=2a n a n +1+14-a 2n⇒(2a n +1+a n a n +1+1)(2a n +1-a n a n +1-1)=0⇒a n +1=12-a n ⇒a n +1-1=a n -12-a n ⇒1a n +1-1=1a n -1-1,∴1a n -1=112-1-(n -1)=-n -1⇒a n =n n +1⇒a nn2=1n n +1=1n -1n +1,∴a 1+a 222+…+a 1001002=1-12+12-13+…+1100-1101=100101.故选C.二、填空题11.S n =1+11+111+…+11…1n 个=________.答案10n +1-9n -1081解析 ∵a n =19(10n-1),∴S n =1+11+111+…+11…1n 个=19[(10-1)+(102-1)+…+(10n-1)] =19[(10+102+ (10))-n ] =19⎣⎢⎡⎦⎥⎤1010n-19-n =10n +1-9n -1081. 12.数列{a n }满足:a 1=43,且a n +1=4n +1a n 3a n +n (n ∈N *),则1a 1+2a 2+3a 3+…+2018a 2018=________.答案 201723+13×42018解析 由题意可知n +1a n +1=34+14·n a n ⇒n +1a n +1-1=14⎝ ⎛⎭⎪⎫n a n -1,又1a 1-1=-14,所以数列⎩⎨⎧⎭⎬⎫n a n -1是以-14为首项,以14为公比的等比数列,所以n a n =1-14n ,所以1a 1+2a 2+3a 3+…+n a n =n -14⎝ ⎛⎭⎪⎫1-14n 1-14=n -13+13·14n ,则1a 1+2a 2+3a 3+…+2018a 2018=2018-13+13×142018=201723+13×42018. 13.设f (x )=12x +2,利用课本中推导等差数列前n 项和的公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.答案 3 2解析 ∵6+(-5)=1,∴f (-5),f (-4),…,f (5),f (6)共有11+1=12项. 由f (-5),f (6);f (-4),f (5);…;f (0),f (1)共有6对,且该数列为等差数列. 又f (0)+f (1)=11+2+12+2=11+2+121+2=2+121+2=12=22, ∴f (-5)+f (-4)+…+f (6)=6×22=3 2. 14.已知数列{a n }的各项均为正整数,其前n 项和为S n ,若a n +1=⎩⎪⎨⎪⎧a n +12,a n 是奇数,3a n -1,a n 是偶数且S 3=10,则S 2016=________.答案 6720解析 当a 1为奇数时,a 2=a 1+12,此时若a 2为奇数,则a 3=a 2+12=a 1+12+12=a 1+34,∴S 3=a 1+a 1+12+a 1+34=7a 1+54=10,解得a 1=5,此时数列{a n }为5,3,2,5,3,2,….当a 1为奇数时,a 2=a 1+12,此时若a 2为偶数,则a 3=3a 2-1=3a 1+12-1=3a 1+12,∴S 3=a 1+a 1+12+3a 1+12=3a 1+1=10,解得a 1=3,此时数列{a n }为3,2,5,3,2,5,….当a 1为偶数时,a 2=3a 1-1,此时a 2为奇数,则a 3=a 2+12=3a 1-1+12=3a 12,∴S 3=a 1+3a 1-1+3a 12=112a 1-1=10,解得a 1=2,此时数列{a n }为2,5,3,2,5,3,….上述三种情况中,数列{a n }均为周期数列.∵672×3=2016,∴S 2016=672S 3=6720.B 级三、解答题15.已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. (1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n .解 (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2),即S n =2S n -1-n +4, 所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =41-2n1-2+n n +12-2n =2n +3+n 2-3n -82.16.已知各项均为正数的数列{a n }的前n 项和为S n ,满足a 2n +1=2S n +n +4,a 2-1,a 3,a 7恰为等比数列{b n }的前3项.(1)求数列{a n },{b n }的通项公式;(2)若c n =log 2b n b n -1a n a n +1,求数列{c n }的前n 项和T n .解 (1)因为a 2n +1=2S n +n +4,所以a 2n =2S n -1+n -1+4(n ≥2),两式相减得a 2n +1-a 2n =2a n +1,所以a 2n +1=a 2n +2a n +1=(a n +1)2,所以a n +1-a n =1.又a 23=(a 2-1)a 7,所以(a 2+1)2=(a 2-1)(a 2+5),解得a 2=3,又a 22=2a 1+1+4,所以a 1=2,所以{a n }是以2为首项,1为公差的等差数列,所以a n =n +1.故b 1=2,b 2=4,b 3=8,所以b n =2n.(2)由(1)得,c n =n 2n -1n +1n +2,故T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫12+24+…+n 2n -⎣⎢⎡12×3+13×4+…+⎦⎥⎤1n +1n +2. 设F n =12+24+…+n 2n ,则12F n =122+223+…+n 2n +1,作差得12F n =12+122+…+12n -n2n +1,所以F n =2-n +22n.设G n =12×3+13×4+…+1n +1n +2=12-13+13-14+…+1n +1-1n +2=12-1n +2,所以T n =2-n +22n -⎝ ⎛⎭⎪⎫12-1n +2=32-n +22n +1n +2. 17.已知等差数列{a n }的前n 项和为S n ,若S m -1=-4,S m =0,S m +2=14(m ≥2,且m ∈N *). (1)求m 的值;(2)若数列{b n }满足a n2=log 2b n (n ∈N *),求数列{(a n +6)·b n }的前n 项和.解 (1)由已知得,a m =S m -S m -1=4, 且a m +1+a m +2=S m +2-S m =14,设数列{a n }的公差为d ,则有2a m +3d =14, ∴d =2.由S m =0,得ma 1+m m -12×2=0,即a 1=1-m ,∴a m =a 1+(m -1)×2=m -1=4, ∴m =5.(2)由(1)知a 1=-4,d =2,∴a n =2n -6, ∴n -3=log 2b n ,得b n =2n -3,∴(a n +6)·b n =2n ·2n -3=n ·2n -2.设数列{(a n +6)·b n }的前n 项和为T n , 则T n =1×2-1+2×20+…+(n -1)×2n -3+n ×2n -2,① 2T n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1,② ①-②,得-T n =2-1+20+…+2n -2-n ×2n -1=2-11-2n1-2-n ×2n -1=2n -1-12-n ×2n -1,∴T n =(n -1)×2n -1+12(n ∈N *). 18.在等比数列{a n }中,a 1>0,n ∈N *,且a 3-a 2=8,又a 1,a 5的等比中项为16. (1)求数列{a n }的通项公式;(2)设b n =log 4a n ,数列{b n }的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n<k 对任意n ∈N *恒成立,若存在,求出正整数k 的最小值;若不存在,请说明理由.解 (1)设数列{a n }的公比为q ,由题意可得a 3=16,a 3-a 2=8,则a 2=8,q =2,a 1=4,所以a n =2n +1.(2)b n =log 42n +1=n +12,S n =b 1+b 2+…+b n =n n +34.1S n =4nn +3=43⎝ ⎛⎭⎪⎫1n -1n +3, 所以1S 1+1S 2+1S 3+…+1S n=43⎝ ⎛⎭⎪⎫11-14+12-15+13-16+…+1n -1n +3=43⎝⎛⎭⎪⎫1+12+13-1n +1-1n +2-1n +3=43×116-43×⎝ ⎛⎭⎪⎫1n +1+1n +2+1n +3=229-43×⎝ ⎛⎭⎪⎫1n +1+1n +2+1n +3.当n =1时,1S 1=1<2<229;当n ≥2时,1S 1+1S 2+…+1S n=229-43⎝ ⎛⎭⎪⎫1n +1+1n +2+1n +3<229<3.故存在k =3时,对任意的n ∈N *都有1S 1+1S 2+1S 3+…+1S n<3.。
高考数学一轮复习第五篇数列(必修5)第4节数列求和习题理(含解析)
3.等差数列{an}的通项公式为an=2n+1,其前n项和为Sn,则数列{ }的前10项的和为( C )
答案: -1
8.有穷数列1,1+2,1+2+4,…,1+2+4+…+2n-1所有项的和为.
解析:由题意知所求数列的通项为 =2n-1,故由分组求和法及等比数列的求和公式可得和为 -n=2n+1-2-n.
答案:2n+1-2-n
能力提升(时间:15分钟)
9.已知数列{an}的前n项和为Sn,a1=1,当n≥2时,an+2Sn-1=n,则S2 017的值为( D )
a2=a1+cos 2π=1+1=2,
a3=-a2+cos 3π=-2-1=-3,
a4=a3+cos 4π=-3+1=-2,
a5=-a4+cos 5π=2-1=1,
……
由上可知,数列{an}是以4为周期的周期数列,且a1+a2+a3+a4=-2,
所以S2 017=504(a1+a2+a3+a4)+a1=504×(-2)+1=-1 007.
10.已知等差数列{an}的前n项和Sn满足S3=6,S5= ,则数列{ }的前n项和为( B )
(A)1- (B)2-
(C)2- (D)2-
高考数学一轮复习第五章数列第4讲数列求和课件文
已知数列{an}的通项公式是 an=2·3n-1+ (-1)n(ln 2-ln 3)+(-1)nnln 3,求其前 n 项和 Sn. [解] Sn=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n](ln 2 -ln 3)+[-1+2-3+…+(-1)nn]ln 3, 所以当 n 为偶数时, Sn=2×11--33n+n2ln 3=3n+n2ln 3-1; 当 n 为奇数时,
分组转化法求和的常见类型 (1)若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分 组转化法求{an}的前 n 项和. (2)通项公式为 an=bcnn,,nn为为偶奇数数的数列,其中数列{bn},{cn} 是等比数列或等差数列,可采用分组转化法求{an}的前 n 项 和.
3.等比数列{an}的首项为 a,公比为 q,Sn 为其前 n 项的和, 求 S1+S2+…+Sn. [解] 当 q=1 时,an=a,Sn=na, 所以 S1+S2+…+Sn=(1+2+…+n)a=n(n2+1)a. 当 q≠1 时, 因为 Sn=a(11--qqn),所以 S1+S2+…+Sn
Tn=11-12+12-13+13-14+…+n1-n+1 1=1-n+1 1=
n n+1.
利用裂项相消法求和时,应注意抵消后并不一定只剩下第一 项和最后一项,也有可能前面剩两项,后面也剩两项,再就 是将通项公式裂项后,有时候需要调整前面的系数,使裂开 的两项之差和系数之积与原通项公式相等.
2Tn=3×[2×23+3×24+…+(n+1)×2n+2], 两 式 作 差 , 得 - Tn = 3×[2×22 + 23 + 24 + … + 2n + 1 - (n +
1)×2n+2]=3×4+4(11--22n)-(n+1)×2n+2
高考数学一轮复习第五章数列5.4数列求和理
答 2 案(1 : 1 2 1 2 1 3 1 3 1 4 1 1 0 1 1 1 ) 1 2 1 0 .
20
11
考向一 裂项相消法求和
【典例1】(2015·全国卷Ⅰ)Sn为数列{an}的前n项和. 已知an>0,an2+2an=4Sn+3. (1)求{an}的通项公式. (2)设bn= ,求数列{bn}的前n项和.
Sn,若an=
,则S5等于 ( )
1
n n 1
A .1 B .5 C .1 D .1 6 6 3 0
【解析】选B. annn11n nn1 1nn 1n1 1,
所以S5=a1+a2+a3+a4+a5
1 1 1 1 1 1 223 56
5. 6
2.(必修5P61习题2.5A组T4(3)改编)1+2x+3x2+…+nxn-1
A.n(n1) C. n(n1)
2
B.n(n1) D.n(n1)
2
【解析】选A.因为d=2,a2,a4,a8成等比数列,所以 a42=a2a8,即(a2+2d)2=a2(a2+6d),解得a2=4,所以 a1=2. 所以利用等差数列的求和公式可求得Sn=n(n+1).
4.(2016·唐山模拟)(2-3×5-1)+(4-3×5-2)+…+(2n-
2 (2)1+3+5+7+…+2n-1=__.
n2 (3)2+4+6+8+…+2n=____.
(4)12+22+…+n2= n2+n
.
2022届高考数学(理)一轮总复习检测:第五章 第四节 数列求和 Word版含解析
第四节 数列求和【最新考纲】 1.把握等差、等比数列的前n 项和公式.2.把握特殊的非等差、等比数列的几种常见的求和方法.1.公式法直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ;(2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.倒序相加法假如一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.3.错位相减法假如一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法.4.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形: ①1n (n +1)=1n -1n +1; ②1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n.5.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则可用分组求和法求和.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f(n)类型,可接受两项合并求解.例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.1.(质疑夯基)推断下列结论的正误.(正确的打“√”,错误的打“×”)(1)假如数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可依据错位相减法求得.( )(4)假如数列{a n }是周期为k(k 为大于1的正整数)的周期数列,那么S km =mS k .( )答案:(1)√ (2)√ (3)× (4)√2.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 6等于( )A.142B.45C.56D.67 解析:由于a n =1n (n +1)=1n -1n +1,所以S 6=1-12+12-13+…+16-17=1-17=67. 答案:D3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +1+n 2-2 D .2n +n 2-2解析:S n =(2+22+23+…+2n )+(1+3+5+…+(2n -1))=2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.答案:C4.(2022·“江南十校”联考)若数列{a n }为等比数列,且a 1=1,q =2,则T n=1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( ) A .1-14n B .1-12nC.23⎝ ⎛⎭⎪⎫1-14nD.23⎝ ⎛⎭⎪⎫1-12n 解析:a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n 答案:C5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 解析:设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n .答案:4-n+4 2n●两种思路解决非等差、等比数列的求和,主要有两种思路1.转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.2.不能转化为等差或等比数列的数列,往往通过裂项相消法、倒序相加法等来求和.●两点留意利用裂项相消法求和的留意事项1.抵消后并不肯定只剩下第一项和最终一项,也有可能前面剩两项,后面也剩两项;2.将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n}是等差数列,则1a n a n+1=1d⎝⎛⎭⎪⎫1a n-1a n+1,1a n a n+2=12d⎝⎛⎭⎪⎫1a n-1a n+2.]一、选择题1.数列{1+2n-1}的前n项和为()A.1+2n B.2+2nC.n+2n-1 D.n+2+2n解析:由题意得a n=1+2n-1,所以S n=n+1-2n1-2=n+2n-1.答案:C2.已知{a n}是等比数列,a2=2,a5=14,则a1a2+a2a3+…+a n a n+1=() A.16(1-4-n) B.16(1-2-n)C.323(1-4-n) D.323(1-2-n)解析:由于q3=a5a2=18,所以q=12,a1=4,从而数列{a n a n+1}是以8为首项,14为公比的等比数列,其前n项和T n=8⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫14n1-14=323(1-4-n).答案:C3.(2022·太原一模)已知数列{a n}的通项公式为a n=(-1)n·(2n-1)·cosnπ2+1(n∈N*),其前n项和为S n,则S60=()A.-30 B.-60C .90D .120解析:由题意可得,当n =4k -3(k ∈N *)时,a n =a 4k -3=1;当n =4k -2(k ∈N *)时,a n =a 4k -2=6-8k ;当n =4k -1(k ∈N *)时,a n =a 4k -1=1;当n =4k(k ∈N *)时,a n =a 4k =8k.∴a 4k -3+a 4k -2+a 4k -1+a 4k =8,∴S 60=8×15=120.答案:D4.已知函数f(x)=x a的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 013=( )A. 2 012-1B. 2 013-1C. 2 014-1D. 2 014+1解析:由f(4)=2得4a =2,解得a =12,则f(x)=x 12.∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 013=a 1+a 2+a 3+…+a 2 013=(2-1)+(3-2)+(4-3) +…+( 2 014- 2 013)= 2 014-1. 答案:C5.已知等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n ,则数列lg a 1,2lg a 2,22lg a 3,23lg a 4,…,2n -1lga n ,…的前n 项和S n 等于( )A .n ·2nB .(n -1)·2n -1-1C .(n -1)·2n +1D .2n +1解析:∵等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,∴a 2n =102n ,即a n =10n ,∴2n -1lg a n =2n -1lg 10n =n·2n -1, ∴S n =1+2×2+3×22+…+n·2n -1,① 2S n =1×2+2×22+3×23+…+n·2n ,②∴①-②得-S n =1+2+22+…+2n -1-n·2n =2n -1 -n·2n =(1-n)·2n -1,∴S n =(n -1)·2n +1. 答案:C二、填空题6.数列{a n }的通项公式a n =⎩⎨⎧5n +1 n 是奇数,2n 2 n 是偶数,则这个数列的前2m 项的和是________.解析:数列{a n }的奇数项组成首项为6,公差为10的等差数列,偶数项组成首项为2,公比为2的等比数列,则S 2m =6m +m (m -1)2×10+2(1-2m )1-2=5m 2+m +2m +1-2.答案:5m 2+m +2m +1-27.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析:由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20,∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.答案:68.对于每一个正整数n ,设曲线y =x n +1在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99=________.解析:曲线y =x n +1在点(1,1)处的切线方程为y =(n +1)(x -1)+1,即y =(n +1)x -n ,它与x 轴交于点(x n ,0),则有(n +1)x n -n =0⇒x n =nn +1,∴a n =lg x n =lg nn +1=lg n -lg(n +1),∴a 1+a 2+…+a 99=(lg 1-lg 2)+(lg 2-lg 3)+…+(lg 99-lg 100)=lg 1-lg 100=-2,答案:-2 三、解答题9.(2021·安徽卷)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎨⎧a 1=1,a 4=8或⎩⎨⎧a 1=8,a 4=1(舍去).由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.(2)S n =a 1(1-q n )1-q=2n -1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.10.(2021·山东卷)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解:(1)由于2S n =3n +3,所以2a 1=3+3,故a 1=3. 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n -3n -1=2×3n -1, 即a n =3n -1.所以a n =⎩⎨⎧3, n =1,3n -1, n ≥2.(2)由于a n b n =log 3a n ,所以b 1=13.当n ≥2时,b n =31-n log 33n -1=(n -1)·31-n . 所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n =13+[1×3-1+2×3-2+…+(n -1)×31-n ],所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n ], 两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n, 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上可得T n =1312-6n +34×3n.数列中的高考热点题型数列在中学数学中既具有独立性,又具有较强的综合性,是初等数学与高等数学的一个重要连接点,本专题解答题的热点题型有:一是等差、等比数列的综合问题;二是数列与函数的综合问题;三是数列与不等式的综合问题.难度中等.热点1 等差、等比数列的综合问题解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.并留意方程思想的应用,等差(比)数列总共涉及五个量a ,a n ,S n ,d(q),n ,“知三求二”.(2021·湖北卷)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q.已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解:(1)由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n =2n -1或⎩⎨⎧a n =19(2n +79),b n =9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+…+2n -32n -1+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.1.若{a n }是等差数列,则{ba n }(b >0且b ≠1)是等比数列;若{a n }是正项等比数列,则{log b a n }(b >0且b ≠1)是等差数列.2.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系,以便实现等差、等比数列之间的相互转化.【变式训练】 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式.(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解:(1)取n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0.若a 1=0,则S n =0.当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0(n ≥1),若a 1≠0,则a 1=2λ.当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2nλ.综上,当a 1=0时,a n =0;当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n ,由(1)知,b n =lg1002n=2-nlg 2. 所以数列{b n }是单调递减的等差数列{公差为-lg 2}. b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg10027=lg 100128<lg 1=0. 故数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大.热点2 数列与函数的综合问题(满分现场)数列与函数的综合一般体现在两个方面:一是以数列的特征量n ,a n ,S n 等为坐标的点在函数图象上,可以得到数列的递推关系;二是数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.(经典例题)(本小题满分12分)(2022·四川卷)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .规范解答:(1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2.所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n.4分(2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.6分所以,d =a 2-a 1=1. 从而a n =n ,b n =2n ,8分所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -110分因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n.所以,T n =2n +1-n -22n .12分【满分规章】(1)本题的易失分点是:①不能由题意正确列出a 7、a 8的关系式;②不能正确利用导数的几何意义求解; ③不会利用错位相减法求T n . (2)满分规章:①明确点在函数图象上,点的坐标适合函数解析式. ②明确导数的几何意义是曲线在切点处的切线斜率.③若{a n }是等差数列,{b n }是等比数列,可用错位相减法求数列{a n b n }前n 项的和.【构建模板】错位相减法求和的一般步骤第一步:确定通项,依据已知条件求a n ,b n .其次步:巧分拆,即新的数列分解为等差数列和等比数列的乘积,并确定等比数列的公比.第三步:构差式,即写出S n 的表达式,然后乘以公比,两式作差.第四步:依据差式的特征精确求和.第五步:反思回顾.查看关键点,易错点及解题规范.解决此类问题要抓住一个中心——函数,两个亲密联系:一是数列和函数之间的亲密联系,数列的通项公式是数列问题的核心,函数的解析式是争辩函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行机敏的处理.【变式训练】已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{a n}的前n项和为S n,点(n,S n)(n∈N*)均在函数y=f(x)的图象上.(1)求数列{a n}的通项公式;(2)设b n=3a n a n+1,试求数列{b n}的前n 项和T n.解:(1)设二次函数f(x)=ax2+bx(a≠0),则f′(x)=2ax+b.由于f′(x)=6x-2,得a=3,b=-2,所以f(x)=3x2-2x.又由于点(n,S n)(n∈N*)均在函数y=f(x)的图象上,所以S n=3n2-2n.当n≥2时,a n=S n-S n-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=3×12-2×1=6×1-5,所以a n=6n-5(n∈N*).(2)由(1)得b n=3a n a n+1=3(6n-5)[6(n+1)-5]=12·⎝⎛⎭⎪⎪⎫16n-5-16n+1,故T n=12⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫1-17+⎝⎛⎭⎪⎫17-113+…+⎝⎛⎭⎪⎪⎫16n-5-16n+1=12(1-16n+1)=3n6n+1.热点3数列与不等式的综合问题数列与不等式相结合问题的考查方式主要有三种:一是推断数列中的一些不等关系;二是以数列为载体,考查不等式恒成立问题;三是考查与数列有关的不等式的证明.(2021·安徽卷)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=x21x23…x22n-1,证明:T n≥14n.解:(1)y′=(x2n+2+1)′=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y-2=(2n+2)(x-1).令y =0,得与x 轴交点的横坐标x n =1-1n +1=nn +1.所以数列{x n }的通项公式x n =nn +1.(2)证明:由题设和(1)中的计算结果知,T n =x 21x 23…x 22n -1=⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫342…⎝ ⎛⎭⎪⎪⎫2n -12n 2. 当n =1时,T 1=14.当n ≥2时,由于x 22n -1=⎝ ⎛⎭⎪⎪⎫2n -12n 2=(2n -1)2(2n )2>(2n -1)2-1(2n )2=2n -22n =n -1n, 所以T n >⎝ ⎛⎭⎪⎫122×12×23×…×n -1n =14n .综上可得,对任意的n ∈N *,均有T n ≥14n.解决数列与不等式的综合问题时,假如是证明题要机敏选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;假如是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法等.总之解决这类问题把数列和不等式的学问奇妙结合起来综合处理就行了.【变式训练】 已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m)a n +1<0恒成立,试求m 的取值范围.解:(1)设等比数列{a n }的首项为a 1,公比为q. 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.∴a 2+a 4=20,∴⎩⎨⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎨⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴⎩⎨⎧q =2,a 1=2.∴a n =2n .(2)b n =2n ·log 122n =-n·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ,①∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②①—②,得S n =2+22+23+…+2n -n ×2n +1 =2(1-2n )1-2-n ×2n +1=2n +1-n ×2n +1-2.由S n +(n +m)a n +1<0,得2n +1-n ×2n +1-2+n ×2n +1+m ×2n +1<0对任意正整数n 恒成立, ∴m ·2n +1<2-2n +1,即m <12n -1对任意正整数n 恒成立.∵12n -1>-1,∴m≤-1,即m的取值范围是(-∞,-1].1.(2021·浙江卷)已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+12b2+13b3+…+1n b n=b n+1-1(n∈N*).(1)求a n与b n;(2)记数列{a n b n}的前n项和为T n,求T n.解:(1)由a1=2,a n+1=2a n,得a n=2n(n∈N*).由题意知:当n=1时,b1=b2-1,故b2=2.当n≥2时,1n b n=b n+1-b n.整理得b n+1n+1=b nn,所以b n=n(n∈N*),(2)由(1)知a n b n=n·2n,因此T n=2+2·22+3·23+…+n·2n,2T n=22+2·23+3·24+…+n·2n+1,所以T n-2T n=2+22+23+…+2n-n·2n+1.故T n=(n-1)2n+1+2(n∈N*).2.(2021·四川卷)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n的前n项和为T n,求使得|T n-1|<11 000成立的n的最小值.解:(1)由已知S n=2a n-a1,有a n=S n-S n-1=2a n-2a n-1(n≥2),则a n=2a n-1(n≥2),所以q=2.从而a2=2a1,a3=2a2=4a1.又由于a1,a2+1,a3成等差数列,即a1+a3=2(a2+1),所以a1+4a1=2(2a1+1),解得a1=2.所以数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(2)由(1)得1a n=12n,所以T n=12+122+…+12n=12⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫12n1-12=1-12n.由|T n-1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n-1<11 000,即2n>1 000.由于29=512<1 000<1 024=210,所以n≥10.于是使|T n-1|<11 000成立的n的最小值为10.3.已知数列{a n}的前n项和为S n,满足S n+2n=2a n.(1)证明:数列{a n+2}是等比数列,并求数列{a n}的通项公式a n;(2)若数列{b n}满足b n=log2(a n+2),设T n是数列⎩⎨⎧⎭⎬⎫b na n+2的前n项和,求证:T n <32.证明:(1)由S n +2n =2a n ,得S n =2a n -2n ,① 当n =1时,S 1=2a 1-2,则a 1=2,当n ≥2,n ∈N *时,S n -1=2a n -1-2(n -1),② ①-②,得a n =2a n -2a n -1-2,即a n =2a n -1+2, ∴a n +2=2(a n -1+2), 又a 1+2=4≠0,则a n +2≠0.∴{a n +2}是以a 1+2=4为首项,以2为公比的等比数列. ∴a n +2=4·2n -1,∴a n =2n +1-2. (2)由b n =log 2(a n +2)=log 22n +1=n +1, 得b n a n +2=n +12n +1, 则T n =222+323+…+n +12n +1,③12T n =223+…+n2n +1+n +12n +2.④ ③-④,得12T n =222+123+124+…+12n +1-n +12n +2=14+14⎝ ⎛⎭⎪⎫1-12n 1-12-n +12n +2=14+12-12n +1-n +12n +2=34-n +32n +2, 所以T n =32-n +32n +1<32.4.已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .解:(1)由于{a n }是首项a 1=1,公差d =2的等差数列, 所以a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2.(2)由(1)得a 4=7,S 4=16.由于q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n -1).5.(2022·山东青岛一模)已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n .令c n =(-1)n S n (n ∈N *),{c n }的前20项和T 20=330.数列{b n }满足b n =2(a -2)d n -2+2n -1,a ∈R.(1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∈N *,求a 的取值范围.解:(1)由于等差数列{a n }的公差为d ,设c n =(-1)n S n , 所以T 20=-S 1+S 2-S 3+S 4+…+S 20=330, 则a 2+a 4+a 6+…+a 20=330,即10(3+d)+10×92×2d =330,解得d =3,所以a n =3+3(n -1)=3n.(2)由(1)知b n =2(a -2)3n -2+2n -1,b n +1-b n =2(a -2)3n -1+2n -[2(a -2)3n -2+2n -1] =4(a -2)3n -2+2n -1 =4·3n -2⎣⎢⎢⎡⎦⎥⎥⎤(a -2)+12⎝ ⎛⎭⎪⎫23n -2. 由b n +1≤b n ⇔(a -2)+12⎝ ⎛⎭⎪⎫23n -2≤0⇔a ≤2-12⎝ ⎛⎭⎪⎫23n -2,由于2-12⎝ ⎛⎭⎪⎫23n -2随着n 的增大而增大,所以n =1时,2-12⎝ ⎛⎭⎪⎫23n -2取得最小值54,所以a ≤54. 6.已知数列{a n }的首项a 1=4,前n 项和为S n ,且S n +1-3S n -2n -4=0(n ∈N *). (1)求数列{a n }的通项公式;(2)设函数f(x)=a n x +a n -1x 2+a n -2x 3+…+a 1x n ,f ′(x)是函数f(x)的导函数,令b n =f′(1),求数列{b n }的通项公式,并争辩其单调性.解:(1)由S n +1-3S n -2n -4=0(n ∈N *), 得S n -3S n -1-2n +2-4=0(n ≥2),两式相减得a n +1-3a n -2=0, 可得a n +1+1=3(a n +1)(n ≥2),又由S 2-3S 1-2-4=0及a 1=4,得a 2=14, 所以a 2+1=3(a 1+1),即{a n +1}是一个首项为5,公比为3的等比数列, 所以a n =5×3n -1-1(n ∈N *).(2)由于f′(x)=a n +2a n -1x +…+na 1x n -1,所以f′(1)=a n +2a n -1+…+na 1=(5×3n -1-1)+2(5×3n -2-1)+…+n(5×30-1)=5(3n -1+2×3n -2+3×3n -3+…+n ×30)-n (n +1)2. 令S =3n -1+2×3n -2+3×3n -3+…+n ×30, 则3S =3n +2×3n -1+3×3n -2+…+n ×31,两式作差得S =-n2-3-3n +14,所以f′(1)=5×3n +1-154-n (n +6)2,即b n =5×3n +1-154-n (n +6)2.又b n +1=5×3n +2-154-(n +1)(n +7)2,所以b n +1-b n =15×3n 2-n -72>0,所以数列{b n }是单调递增数列.。
2020高考人教数学(理)大一轮复习检测:第五章 第四节 数列求和及综合应用
限时规范训练(限时练·夯基练·提能练)A 级 基础夯实练1.(2018·河北衡水中学质检)1+⎝ ⎛⎭⎪⎫1+12+1+12+14+…+⎝⎛⎭⎪⎫1+12+14+…+1210的值为( )A .18+129B .20+1210C .22+1211D .18+1210解析:选B.设a n =1+12+14+…+12n -1=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n .则原式=a 1+a 2+…+a 11=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫121+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫122+…+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1211 =2⎣⎢⎡⎦⎥⎤11-⎝ ⎛⎭⎪⎫12+122+…+1211 =2⎣⎢⎢⎡⎦⎥⎥⎤11-12×⎝ ⎛⎭⎪⎫1-12111-12=2⎣⎢⎡⎦⎥⎤11-⎝ ⎛⎭⎪⎫1-1211 =2⎝ ⎛⎭⎪⎫11-1+1211=20+1210.2.(2018·重庆联考)设y =f (x )是一次函数,若f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)解析:选 A.由题意可设f (x )=kx +1(k ≠0),则(4k +1)2=(k +1)×(13k +1),解得k =2,f (2)+f (4)+…+f (2n )=(2×2+1)+(2×4+1)+…+(2×2n +1)=2(2+4+…+2n )+n =n (2n +3).3.(2018·贵阳模拟)已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( )A.nn +1 B .4n n +1C.3n n +1D .5n n +1解析:选B.∵a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1,∴S n =4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=4⎝⎛⎭⎪⎫1-1n +1=4nn +1. 4.(2018·南昌模拟)若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 12=( )A .18B .15C .-18D .-15解析:选A.记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 11+a 12=(-b 1)+b 2+…+(-b 11)+b 12=(b 2-b 1)+(b 4-b 3)+…+(b 12-b 11)=6×3=18.5.(2018·深圳调研)已知函数f (n )=⎩⎪⎨⎪⎧n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 200解析:选B.由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =(12-22)+(32-22)+(32-42)+…+(992-1002)+(1012-1002) =-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.故选B.6.(2018·青岛二模)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102,由于26=64,27=128,则n +1≥7,即n ≥6.答案:67.(2018·黄石二模)已知公比不为1的等比数列{a n }的前5项积为243,且2a 3为3a 2和a 4的等差中项.若数列{b n }满足b n =log 3a n +2(n ∈N *),则数列{a n +b n }的前n 项和S n =________.解析:由前5项积为243得a 3=3.设等比数列{a n }的公比为q (q ≠1),由2a 3为3a 2和a 4的等差中项,得3×3q +3q =4×3,由公比不为1,解得q =3,所以a n =3n -2,故b n =log 3a n +2=n ,所以a n +b n =3n -2+n ,数列{a n +b n }的前n 项和S n =3-1+30+31+32+…+3n -2+1+2+3+…+n =3-1(1-3n )1-3+n (n +1)2=3n -16+n (n +1)2.答案:3n -16+n (n +1)28.(2018·济南模拟)在公差d <0的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列,则|a 1|+|a 2|+|a 3|+…+|a n |=________.解析:由已知可得(2a 2+2)2=5a 1a 3,即4(a 1+d +1)2=5a 1·(a 1+2d ),所以(11+d )2=25(5+d ),解得d =4(舍去)或d =-1,所以a n =11-n .当1≤n ≤11时 ,a n ≥0,所以|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a n =n (10+11-n )2=n (21-n )2;当n ≥12时,a n <0,所以|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a 11-(a 12+a 13+…+a n )=2(a 1+a 2+a 3+…+a 11)-(a 1+a 2+a 3+…+a n )=2×11(21-11)2-n (21-n )2=n 2-21n +2202. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎨⎧n (21-n )2,1≤n ≤11,n 2-21n +2202,n ≥12.答案:⎩⎨⎧n (21-n )2,1≤n ≤11,n 2-21n +2202,n ≥129.(2018·河北唐山二模)已知数列{a n }为单调递增数列,S n 为其前n 项和,2S n =a 2n +n .(1)求{a n }的通项公式;(2)若b n =a n +22n +1·a n ·a n +1,T n 为数列{b n }的前n 项和,证明:T n <12.解:(1)当n =1时,2S 1=2a 1=a 21+1,所以(a 1-1)2=0,即a 1=1, 又{a n }为单调递增数列,所以a n ≥1.由2S n =a 2n +n 得2S n +1=a 2n +1+n +1,所以2S n +1-2S n =a 2n +1-a 2n +1,则2a n +1=a 2n +1-a 2n +1,所以a 2n =(a n +1-1)2.所以a n =a n +1-1,即a n +1-a n =1,所以{a n }是以1为首项,1为公差的等差数列,所以a n =n . (2)证明:b n =a n +22n +1·a n ·a n +1=n +22n +1·n ·(n +1)=1n ·2n -1(n +1)·2n +1,所以T n =⎝ ⎛⎭⎪⎫11×21-12×22+⎝ ⎛⎭⎪⎫12×22-13×23+…+⎣⎢⎡⎦⎥⎤1n ·2n -1(n +1)·2n +1=12-1(n +1)·2n +1<12. 10.(2018·浙江卷)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.解:(1)由a 4+2是a 3,a 5的等差中项得a 3+a 5=2a 4+4, 所以a 3+a 4+a 5=3a 4+4=28, 解得a 4=8.由a 3+a 5=20得8⎝ ⎛⎭⎪⎫q +1q =20, 解得q =2或q =12,因为q >1,所以q =2.(2)设c n =(b n +1-b n )a n ,数列{c n }的前n 项和为S n =2n 2+n .由c n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,解得c n =4n -1.由(1)可得a n =2n -1,所以b n +1-b n =(4n -1)×⎝ ⎛⎭⎪⎫12n -1,故b n -b n -1=(4n -5)×⎝ ⎛⎭⎪⎫12n -2,n ≥2,b n -b 1=(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)=(4n -5)×⎝ ⎛⎭⎪⎫12n -2+(4n -9)×⎝ ⎛⎭⎪⎫12n -3+…+7×12+3.设T n =3+7×12+11×⎝ ⎛⎭⎪⎫122+…+(4n -5)×⎝ ⎛⎭⎪⎫12n -2,n ≥2,12T n =3×12+7×⎝ ⎛⎭⎪⎫122+…+(4n -9)×⎝ ⎛⎭⎪⎫12n -2+(4n -5)×⎝ ⎛⎭⎪⎫12n -1, 所以12T n =3+4×12+4×⎝ ⎛⎭⎪⎫122+…+4×⎝ ⎛⎭⎪⎫12n -2-(4n -5)×⎝ ⎛⎭⎪⎫12n -1,因此T n =14-(4n +3)×⎝ ⎛⎭⎪⎫12n -2,n ≥2,又b 1=1,所以b n =15-(4n +3)×⎝ ⎛⎭⎪⎫12n -2.B 级 能力提升练11.(2018·合肥模拟)已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),S n 是数列{a n }的前n 项和,则S 2 020=( )A .22 020-1B .3×21 010-3C .3×21 010-1D .3×22 020-2解析:选B.依题意得a n ·a n +1=2n,a n +1·a n +2=2n +1,于是有a n +1·a n +2a n ·a n +1=2,即a n +2a n =2,数列a 1,a 3,a 5,…,a 2n -1,…是以a 1=1为首项、2为公比的等比数列;数列a 2,a 4,a 6,…,a 2n ,…是以a 2=2为首项、2为公比的等比数列,于是有S 2 020=(a 1+a 3+a 5+…+a 2 019)+(a 2+a 4+a 6+…+a 2 020)=1-21 0101-2+2(1-21 010)1-2=3×21 010-3,故选B.12.定义np 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”.若已知正项数列{a n }的前n 项的“均倒数”为12n +1,又b n =a n +14,则1b 1b 2+1b 2b 3+…+1b 10b 11=( ) A.111 B .112C.1011D .1112解析:选C.依题意有na 1+a 2+…+a n =12n +1,即数列{a n }的前n项和S n =n (2n +1)=2n 2+n ,当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1,a 1=3满足该式.则a n =4n -1,b n =a n +14=n .因为1b n b n +1=1n (n +1)=1n -1n +1,所以1b 1b 2+1b 2b 3+…+1b 10b 11=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫110-111=1-111=1011.13.(2018·衡水模拟)数列{a n }是等差数列,数列{b n }满足b n =a n a n+1a n +2(n ∈N *),设S n 为{b n }的前n 项和.若a 12=38a 5>0,则当S n 取得最大值时n 的值为________.解析:设{a n }的公差为d ,由a 12=38a 5>0,得a 1=-765d ,d <0,所以a n =⎝⎛⎭⎪⎫n -815d ,从而可知当1≤n ≤16时,a n >0;当n ≥17时,a n <0.从而b 1>b 2>…>b 14>0>b 17>b 18>…,b 15=a 15a 16a 17<0,b 16=a 16a 17a 18>0,故S 14>S 13>…>S 1,S 14>S 15,S 15<S 16,S 16>S 17>S 18>….因为a 15=-65d >0,a 18=95d <0,所以a 15+a 18=-65d +95d =35d<0,所以b 15+b 16=a 16a 17(a 15+a 18)>0,所以S 16>S 14,故当S n 取得最大值时n =16.答案:1614.(2018·湘东五校联考)已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式;(2)设T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1前n 项的和,若λT n ≤a n +1对一切n ∈N *恒成立,求实数λ的最大值.解:(1)设公差为d ,由已知得⎩⎪⎨⎪⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ), 解得d =1或d =0(舍去),所以a 1=2,所以a n =n +1. (2)因为1a n a n +1=1n +1-1n +2,所以T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+1n +1-1n +2=12-1n +2=n2(n +2),又λT n ≤a n +1对一切n ∈N *恒成立,所以λ≤2(n +2)2n =2⎝ ⎛⎭⎪⎫n +4n +8,而2⎝⎛⎭⎪⎫n +4n +8≥16,当且仅当n =2时等号成立.所以λ≤16,即λ的最大值为16.15.(2018·长沙模拟)已知数列{a n }是公差不为零的等差数列,a 10=15,且a 3,a 4,a 7成等比数列.(1)求数列{a n }的通项公式;(2)设b n =a n2n ,数列{b n }的前n 项和为T n ,求证:-74≤T n <-1(n∈N *).解:(1)设数列{a n }的公差为d (d ≠0),由已知得⎩⎪⎨⎪⎧a 10=15,a 24=a 3a 7,即⎩⎪⎨⎪⎧a 1+9d =15,(a 1+3d )2=(a 1+2d )(a 1+6d ),解得⎩⎪⎨⎪⎧a 1=-3,d =2.∴a n =2n -5(n ∈N *).(2)证明:∵b n =a n 2n =2n -52n ,n ∈N *.∴T n =-32+-122+123+…+2n -52n ,①12T n =-322+-123+124+…+2n -72n +2n -52n +1,② ①-②得12T n =-32+2⎝ ⎛⎭⎪⎫122+123+…+12n -2n -52n +1=-12+1-2n2n +1,∴T n =-1-2n -12n (n ∈N *),∵2n -12n >0(n ∈N *),∴T n <-1.T n +1-T n =⎝ ⎛⎭⎪⎫-1-2n +12n +1-⎝⎛⎭⎪⎫-1-2n -12n =2n -32n +1,∴T n <T n +1(n ≥2).又T 1=-1-12=-32,T 2=-1-4-14=-74.∵T 1>T 2,∴T 2最小,即T n ≥T 2=-74.综上所述,-74≤T n <-1(n ∈N *).C 级 素养加强练16.已知等差数列{a n }中,a 2=p (p 是不等于0的常数),S n 为数列{a n }的前n 项和,若对任意的正整数n 都有S n =n (a n -a 1)2. (1)记b n =S n +2S n +1+S n +1S n +2,求数列{b n }的前n 项和T n ; (2)记c n =T n -2n ,是否存在正整数N ,使得当n >N 时,恒有c n ∈⎝ ⎛⎭⎪⎫52,3,若存在,证明你的结论,并给出一个具体的N 值,若不存在,请说明理由.解:(1)由S 2=2(a 2-a 1)2得a 1+a 2=a 2-a 1, ∴a 1=0,∴d =a 2-a 1=p -0=p ,∴S n =n (a n -a 1)2=n (n -1)p 2, b n =S n +2S n +1+S n +1S n +2=n +2n +n n +2=2+2⎝ ⎛⎭⎪⎫1n -1n +2, 所以T n =2n +2⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫14-16+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =2n +2⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=2n +3-2⎝ ⎛⎭⎪⎫1n +1+1n +2. (2)c n =T n -2n =3-2⎝ ⎛⎭⎪⎫1n +1+1n +2<3对所有正整数n 都成立; 若c n >52,即3-2⎝ ⎛⎭⎪⎫1n +1+1n +2>52⇔1n +1+1n +2<14,记f (n )=1n +1+1n +2,则f (n )单调递减, 又f (6)=17+18>18+18=14,f (7)=18+19<18+18=14,故可取N =6,则当n >6时,f (n )<14. 故存在正整数N ,使得当n >N 时,恒有c n ∈⎝ ⎛⎭⎪⎫52,3,N 可以取所有不小于6的正整数.。
高考数学一轮复习 第五章 数列 5.4 数列求和练习(含解析)
数列求和时间:50分钟 总分:70分班级: 姓名:一、 选择题(共6小题,每题5分,共30分)1.已知等差数列{a n }的前n 项和为S n ,S 5=-20,则-6a 4+3a 5=( ) A.-20 B.4 C.12 D.20【答案】C【解析】 因为S 5=-20,所以S 5=5a 3=-20,∴a 3=-4,∴-6a 4+3a 5=-6(a 1+3d )+3(a 1+4d )=-3(a 1+2d )=-3a 3=12.2.(2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101 B.99101 C.99100 D.101100【答案】A【解析】 由S 5=5a 3及S 5=15得a 3=3,∴d =a 5-a 35-3=1,a 1=1,∴a n =n ,1a n a n +1=1n (n +1)=1n -1n +1,所以数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和T 100=1-12+12-13+…+1100-1101=1-1101=100101,故选A.3.数列{a n }满足:a 1 =1,且对任意的m ,n ∈N *都有:a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 008=( )A.2 0072 008B.2 0071 004 C.2 0082 009 D.4 0162 009【答案】D【解析】法一 因为a n +m =a n +a m +mn ,则可得a 1=1,a 2=3,a 3=6,a 4=10,则可猜得数列的通项a n =n (n +1)2,∴1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴1a 1+1a 2+1a 3+…+1a 2 008= 2⎝ ⎛⎭⎪⎫1-12+12-13+…+12 008-12 009=2⎝ ⎛⎭⎪⎫1-12 009=4 0162 009.故选D. 法二 令m =1,得a n +1=a 1+a n +n =1+a n +n ,∴a n +1-a n =n +1, 用叠加法:a n =a 1+(a 2-a 1)+…+(a n -a n -1)=1+2+…+n =n (n +1)2,所以1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1.于是1a 1+1a 2+…+1a 2 008=2⎝ ⎛⎭⎪⎫1-12+2⎝ ⎛⎭⎪⎫12-13+…+2⎝ ⎛⎭⎪⎫12 008-12 009=2⎝⎛⎭⎪⎫1-12 009=4 0162 009,故选D. 4.设a 1,a 2,…,a 50是以-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50当中取零的项共有( ) A.11个 B.12个 C.15个 D.25个【答案】A【解析】 (a 1+1)2+(a 2+1)2+…+(a 50+1)2=a 21+a 22+…+a 250+2(a 1+a 2+…+a 50)+50=107,∴a 21+a 22+…+a 250=39,∴a 1,a 2,…,a 50中取零的项应为50-39=11(个),故选A.5.中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N +),则S 100=( ) A.1 300 B. 2 600 C.0 D.2 602【答案】B【解析】原问题可转化为当n 为奇数时,a n +2-a n =0;当n 为偶数时,a n +2-a n =2.进而转化为当n 为奇数时,为常数列{1};当n 为偶数时,为首项为2,公差为2的等差数列.所以S 100=S 奇+S 偶=50×1+(50×2+50×492×2)=2 600.6.已知定义在R 上的函数f (x )、g (x )满足f (x )g (x )=a x ,且f ′(x )g (x )<f (x )g ′(x ),f (1)g (1)+f (-1)g (-1)=52,若有穷数列⎩⎨⎧⎭⎬⎫f (n )g (n )(n ∈N *)的前n 项和等于3132,则n =( ) A.5 B.6 C.7 D.8【答案】A 【解析】令h (x )=f (x )g (x )=a x ,∵h ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0, ∴h (x )在R 上为减函数,∴0<a <1.由题知,a 1+a -1=52,解得a =12或a =2(舍去),∴f (n )g (n )=⎝ ⎛⎭⎪⎫12n,∴有穷数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n =3132,∴n =5.二、填空题(共4小题,每题5分,共20分)7.已知实数a 1,a 2,a 3,a 4构成公差不为零的等差数列,且a 1,a 3,a 4构成等比数列,则此等比数列的公比等于________. 【答案】 12【解析】设公差为d ,公比为q .则a 23=a 1·a 4,即(a 1+2d )2=a 1(a 1+3d ),解得a 1=-4d ,所以q =a 3a 1=a 1+2d a 1=12.8.(2013·辽宁14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________. 【答案】63【解析】 因为x 2-5x +4=0的两根为1和4,又数列{a n }是递增数列,所以a 1=1,a 3=4,所以q =2.所以S 6=1·(1-26)1-2=63.9.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的n 的最大值为________. 【答案】19 【解析】 由a 11a 10<-1得a 11+a 10a 10<0,由它们的前几项和S n 有最大值,可得公差d <0, ∴a 10>0,a 10+a 11<0,a 11<0,∴a 1+a 19=2a 10>0,a 1+a 20=a 10+a 11<0,使得S n >0的n 的最大值为19, 10.已知向量a =(2,-n ),b =(S n ,n +1),n ∈N *,其中S n 是数列{a n }的前n 项和,若a⊥b ,则数列⎩⎨⎧⎭⎬⎫a n a n +1a n +4的最大项的值为________. 【答案】19【解析】 依题意得a·b =0,即2S n =n (n +1),S n =n (n +1)2.当n ≥2时,a n =S n -S n -1=n (n +1)2-n (n -1)2=n ;又a 1=1,因此a n =n ,a n a n +1a n +4=n (n +1)(n +4)=n n 2+5n +4=1n +4n+5≤19,当且仅当n =4n,n ∈N *,即n =2时取等号,因此数列⎩⎨⎧⎭⎬⎫a n a n +1a n +4的最大项的值是19.三、解答题(共2小题,每题10分,共20分)11.(2015·天津18)已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列. (1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.【答案】见解析【解析】 (1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4), 即a 4-a 2=a 5-a 3,所以a 2(q -1)=a 3(q -1),又因为q ≠1, 故a 3=a 2=2,由a 3=a 1q ,得q =2.当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12;当n =2k (k ∈N *)时,a n =a 2k=2k=2n2.所以,{a n}的通项公式为a n=⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)由(1)得b n =log 2a 2n a 2n -1=n 2n -1,n ∈N *.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n -1)×12n -2+n ×12n -1,12S n =1×121+2×122+3×123+…+(n -1)×12n -1+n ×12n . 上述两式相减得:12S n =1+12+122+…+12n -1-n 2n =1-12n1-12-n 2n =2-22n -n2n ,整理得,S n =4-n +22n -1,n ∈N *.所以,数列{b n }的前n 项和为4-n +22n -1,n ∈N *.12.设函数f (x )=23+1x (x >0),数列{a n }满足a 1=1,a n =f ⎝ ⎛⎭⎪⎫1a n -1,n ∈N *,且n ≥2.(1)求数列{a n }的通项公式; (2)对n ∈N *,设S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1,若S n ≥3t 恒成立,求实数t 的取值范围.【答案】见解析 【解析】 (1)由a n =f ⎝⎛⎭⎪⎫1a n -1得a n -a n -1=23,n ∈N *,n ≥2,所以{a n }是等差数列,又因为a 1=1,所以a n =1+(n -1)×23=2n +13.(2)由a n =2n +13得a n +1=2n +33.所以1a n a n +1=9(2n +1)(2n +3)=92⎝ ⎛⎭⎪⎫12n +1-12n +3.∴S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=92⎣⎢⎡13-15+15-17+17-19+…⎦⎥⎤+12n +1-12n +3=92⎝ ⎛⎭⎪⎫13-12n +3=3n 2n +3. 由S n ≥3t 得t ≤n 2n +3,又⎩⎨⎧⎭⎬⎫n 2n +3递增,所以n =1时,n 2n +3有最小值为15,所以t ≤15.即t的取值范围为1,5⎛⎤-∞⎥⎝⎦.。
高考数学(文)一轮复习文档:第五章 数列 第4讲数列求和 Word版含答案
第4讲 数列求和, )1.等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1.3.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2;(2)1+3+5+7+…+(2n -1)=n 2; (3)2+4+6+8+…+2n =n 2+n .1.辨明两个易误点(1)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.(2)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.2.数列求和的常用方法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(2)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的.(3)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (4)分组转化法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后再相加减.(5)并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.1.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A .9B .8C .17D .16A S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.2.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017等于( )A .1 002B .1 004C .1 006D .1 008D 因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2. 因此S 2 017=S 2 016+a 2 017=(a 1+a 2+a 3+a 4)+…+(a 2 009+a 2 010+a 2 011+a 2 012)+(a 2 013+a 2 014+a 2 015+a 2 016)+a 2 017=2 0164×2+a 1=1 008.3.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为________. S n =2(1-2n)1-2+n (1+2n -1)2=2n +1-2+n 2.2n +1+n 2-24.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________.S n =1×2+2×22+3×23+…+n ×2n ,①所以2S n =1×22+2×23+3×24+…+n ×2n +1,②①-②得-S n =2+22+23+…+2n -n ×2n +1=2×(1-2n)1-2-n ×2n +1,所以S n =(n -1)2n +1+2.(n -1)2n +1+2分组转化法求和已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)na n ,求数列{b n }的前2n 项和. 【解】 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n ,故b n =2n +(-1)nn .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n , 则A =2(1-22n)1-2=22n +1-2,B =(-1+2)+(-3+4)+…+=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和;(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .S n =2(1+3+…+3n -1)+·(ln 2-ln 3)+·ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n -n -12ln 3-ln 2-1,n 为奇数.裂项相消法求和(高频考点)裂项相消法求和是每年高考的热点,题型多为解答题,难度适中,属中档题. 高考对裂项相消法的考查主要有以下两个命题角度:(1)形如a n =1(n +k )(n +p )型的数列求和;(2)形如a n =1n +n +k型的数列求和.(2015·高考全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.【解】 (1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1,n ∈N *. (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n , 则T n =b 1+b 2+…+b n =12⎣⎢⎡⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+⎦⎥⎤…+⎝⎛⎭⎪⎫12n +1-12n +3=n3(2n +3).利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.角度一 形如a n =1(n +k )(n +p )型的数列求和1.(2017·长春质量监测)等差数列{a n }的前n 项和为S n ,且满足a 1+a 7=-9,S 9=-992.(1)求数列{a n }的通项公式;(2)设b n =12S n ,数列{b n }的前n 项和为T n ,求证:T n >-34.(1)设数列{a n }的公差为d ,则由已知条件可得: ⎩⎪⎨⎪⎧2a 1+6d =-9,9a 1+36d =-992, 解得⎩⎪⎨⎪⎧a 1=-32,d =-1,于是可求得a n =-2n +12.(2)证明:由(1)知,S n =-n (n +2)2,故b n =-1n (n +2)=-12⎝ ⎛⎭⎪⎫1n -1n +2,故T n =-12[⎝ ⎛⎭⎪⎫1+12+13+…+1n -⎝ ⎛⎭⎪⎫13+14+15+…+1n +2]=-12⎝ ⎛⎭⎪⎫32-1n +1-1n +2,又因为32-1n +1-1n +2<32,所以T n >-34.角度二 形如a n =1n +n +k型的数列求和2.(2017·江南十校联考)已知函数f (x )=x a的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=( )A . 2 016-1B . 2 017-1C . 2 018-1D . 2 019-1C 由f (4)=2可得4a=2,解得a =12.则f (x )=x 12. 所以a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017-2 016)+( 2 018- 2 017)= 2 018-1.错位相减法求和(2016·高考山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .【解】 (1)由题意知当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3, 得⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得b 1=4,d =3. 所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又T n =c 1+c 2+…+c n , 所以T n =3×, 2T n =3×,两式作差,得-T n =3×=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2=-3n ·2n +2,所以T n =3n ·2n +2.错位相减法求和策略(1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.(2)在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n 2n +1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . (1)设数列{a n }的公差为d . 令n =1,得1a 1a 2=13, 所以a 1a 2=3. 令n =2,得1a 1a 2+1a 2a 3=25, 所以a 2a 3=15. 解得a 1=1,d =2, 所以a n =2n -1. (2)由(1)知b n =2n ·22n -1=n ·4n,所以T n =1·41+2·42+…+n ·4n, 所以4T n =1·42+2·43+…+n ·4n +1,两式相减,得-3T n =41+42+ (4)-n ·4n +1=4(1-4n)1-4-n ·4n +1=1-3n 3×4n +1-43. 所以T n =3n -19×4n +1+49=4+(3n -1)4n +19., )——数列求和(本题满分12分)(2016·高考全国卷甲)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =,求数列{b n }的前10项和,其中表示不超过x 的最大整数,如=0,=2. (1) (2)(1)设数列{a n }的公差为d ,由题意有 2a 1+5d =4,a 1+5d =3. 解得a 1=1,d =25.(3分)所以{a n }的通项公式为a n =2n +35.(5分) (2)由(1)知,b n =[2n +35].(6分)当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2<2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4<2n +35<5,b n =4.(10分)所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.(12分)某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论., )1.(2017·长沙二模)已知数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10等于( )A .15B .12C .-12D .-15A 因为a n =(-1)n(3n -2),所以a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.2.在数列{a n }中,a 1=2,a 2=2,a n +2-a n =1+(-1)n,n ∈N *,则S 60的值为( ) A .990 B .1 000 C .1 100D .99A n 为奇数时,a n +2-a n =0,a n =2;n 为偶数时,a n +2-a n =2,a n =n .故S 60=2×30+(2+4+…+60)=990.3.数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0172 018,则项数n 为( )A .2 016B .2 017C .2 018D .2 019B a n =1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0172 018,所以n =2 017.4.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为( ) A .2 015 B .2 013 C .1 008D .1 009D 因为a n +2S n -1=n ,n ≥2,所以a n +1+2S n =n +1,n ≥1,两式相减得a n +1+a n =1,n ≥2.又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009,故选D.5.(2017·曲靖模拟)122-1+132-1+142-1+…+1(n +1)2-1的值为( ) A .n +12(n +2)B .34-n +12(n +2)C .34-12⎝ ⎛⎭⎪⎫1n +1+1n +2D .32-1n +1+1n +2C 因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1 =12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.6.(2017·河北省三市第二次联考)古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )A .7B .8C .9D .10B 设该女子第一天织布x 尺,则x (1-25)1-2=5,得x =531,所以前n 天所织布的尺数为531(2n-1). 由531(2n -1)≥30,得2n≥187,则n 的最小值为8. 7.已知各项不为0的等差数列{a n }满足2a 2-a 26+2a 10=0,首项为18的等比数列{b n }的前n 项和为S n ,若b 6=a 6,则S 6=________.由2a 2-a 26+2a 10=0,所以4a 6=a 26, 因为a 6≠0,所以a 6=4.所以b 6=4. 又因为{b n }的首项b 1=18,所以q 5=b 6b 1=32. 所以q =2.所以S 6=18-4×21-2=638.6388.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前 2 018项的和等于________.因为a 1=12,又a n +1=12+a n -a 2n , 所以a 2=1,从而a 3=12,a 4=1, 即得a n =⎩⎪⎨⎪⎧12,n =2k -1(k ∈N *),1,n =2k (k ∈N *),故数列的前2 018项的和等于S 2 018=1 009×⎝ ⎛⎭⎪⎫1+12=3 0272. 3 02729.设函数f (x )=12+log 2x 1-x ,定义S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝ ⎛⎭⎪⎫n -1n ,其中n ∈N *,且n ≥2,则S n =________.因为f (x )+f (1-x )=12+log 2x 1-x +12+log 21-x x=1+log 21=1,所以2S n =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n + ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2n +f ⎝ ⎛⎭⎪⎫n -2n +…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫1n =n -1.所以S n =n -12.n -1210.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n . 所以S n =2-2n +11-2=2n +1-2.2n +1-211.已知等比数列{a n }中,首项a 1=3,公比q >1,且3(a n +2+a n )-10a n +1=0(n ∈N *).(1)求数列{a n }的通项公式;(2)设⎩⎨⎧⎭⎬⎫b n +13a n 是首项为1,公差为2的等差数列,求数列{b n }的通项公式和前n 项和S n .(1)因为3(a n +2+a n )-10a n +1=0,所以3(a n q 2+a n )-10a n q =0,即3q 2-10q +3=0.因为公比q >1,所以q =3.又首项a 1=3,所以数列{a n }的通项公式为a n =3n .(2)因为⎩⎨⎧⎭⎬⎫b n +13a n 是首项为1, 公差为2的等差数列,所以b n +13a n =1+2(n -1). 即数列{b n }的通项公式为b n =2n -1-3n -1, 前n 项和S n =-(1+3+32+…+3n -1)+=-12(3n -1)+n 2.12.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,所以T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.6013.数列{a n }的前n 项和为S n =2n +1-2,数列{b n }是首项为a 1,公差为d (d ≠0)的等差数列,且b 1,b 3,b 9成等比数列.(1)求数列{a n }与{b n }的通项公式;(2)若c n =2(n +1)b n(n ∈N *),求数列{c n }的前n 项和T n . (1)当n ≥2时,a n =S n -S n -1=2n +1-2n =2n , 又a 1=S 1=21+1-2=2=21,也满足上式,所以数列{a n }的通项公式为a n =2n .则b 1=a 1=2.由b 1,b 3,b 9成等比数列,得(2+2d )2=2×(2+8d ),解得d =0(舍去)或d =2,所以数列{b n }的通项公式为b n =2n .(2)由(1)得c n =2(n +1)b n =1n (n +1), 所以数列{c n }的前n 项和T n =11×2+12×3+13×4+…+1n ×(n +1)=1-12+12-13+…+1n -1n +1=1-1n +1=n n +1. 14.(2017·广西玉林、贵港联考)已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列.(1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .(1)因为{a n -1}是等比数列且a 1-1=2,a 2-1=4, 所以a 2-1a 1-1=2, 所以a n -1=2·2n -1=2n, 所以a n =2n +1. (2)b n =na n =n ·2n +n ,故T n =b 1+b 2+b 3+…+b n=(1×2+2×22+3×23+…+n ·2n )+(1+2+3+…+n ), 令A =1×2+2×22+3×23+…+n ·2n ,则2A =1×22+2×23+3×24+…+n ·2n +1, 两式相减得-A =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1, 所以A =2(1-2n )+n ·2n +1=2+(n -1)·2n +1. 又因为1+2+3+…+n =n (n +1)2, 所以T n =(n -1)·2n +1+n 2+n +42.。
高三数学高考一轮数学(理)教案:第5章 第4节 数列求和 Word版含解析
第四节 数列求和[考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法.1.公式法(1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ; (2)等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形: ①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n .4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.5.倒序相加法如果一个数列{a n}的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.6.并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)如果数列{a n}为等比数列,且公比不等于1,则其前n项和S n=a1-a n+11-q.()(2)当n≥2时,1n2-1=12⎝⎛⎭⎪⎫1n-1-1n+1.()(3)求S n=a+2a2+3a3+…+na n之和时只要把上式等号两边同时乘以a即可根据错位相减法求得.()(4)如果数列{a n}是周期为k(k为大于1的正整数)的周期数列,那么S km=mS k.()[答案](1)√(2)√(3)×(4)√2.(教材改编)数列{a n}的前n项和为S n,若a n=1n(n+1),则S5等于()A.1 B.5 6C.16D.130B[∵a n=1n(n+1)=1n-1n+1,∴S5=a1+a2+…+a5=1-12+12-13+…-16=56.]3.(·广东中山华侨中学3月模拟)已知等比数列{a n}中,a2·a8=4a5,等差数列{b n}中,b4+b6=a5,则数列{b n}的前9项和S9等于()A.9 B.18C .36D .72B [∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4, ∴a 5=b 4+b 6=2b 5=4,∴b 5=2, ∴S 9=9b 5=18,故选B.]4.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n =__________.【导学号:57962259】2n +1-2+n 2[S n=2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.]5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =__________. 4-n +42n [设S =3×12+4×122+5×123+…+(n +2)×12n , 则12S =3×122+4×123+5×124+…+(n +2)×12n +1.两式相减得12S =3×12+⎝ ⎛⎭⎪⎫122+123+…+12n -n +22n +1.∴S =3+⎝ ⎛⎭⎪⎫12+122+…+12n -1-n +22n =3+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-n +22n =4-n +42n .]分组转化求和(·北京高考)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.[解] (1)设等比数列{b n }的公比为q ,则q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27,所以b n =3n -1(n =1,2,3,…). 2分设等差数列{a n }的公差为d.因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2. 所以a n =2n -1(n =1,2,3,…). 5分(2)由(1)知a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 7分从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1 =n (1+2n -1)2+1-3n 1-3=n 2+3n -12.12分[规律方法] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,则可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎨⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.易错警示:注意在含有字母的数列中对字母的分类讨论.[变式训练1] (·浙江高考)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *.(1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.[解] (1)由题意得⎩⎨⎧ a 1+a 2=4,a 2=2a 1+1,则⎩⎨⎧a 1=1,a 2=3.2分又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n , 所以数列{a n }的通项公式为a n =3n -1,n ∈N *. 5分(2)设b n =|3n -1-n -2|,n ∈N *,则b 1=2,b 2=1. 当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3. 8分设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,所以T n =⎩⎪⎨⎪⎧2, n =1,3n -n 2-5n +112, n ≥2,n ∈N *. 12分裂项相消法求和(·全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和. [解] (1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).3分由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. 5分 (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3. 8分设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n 3(2n +3). 12分[规律方法] 1.裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵捎,要注意消去了哪些项,保留了哪些项,从而达到求和的目的.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.[变式训练2] (·石家庄一模)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100.(1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和. 【导学号:57962260】[解] (1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎨⎧a 1=1,d =2,3分 所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1. 5分 (2)b n =1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1, 8分所以T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n2n +1. 12分错位相减法求和(·山东高考)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .[解] (1)由题意知当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式. 所以a n =6n +5. 2分设数列{b n }的公差为d.由⎩⎨⎧ a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎨⎧11=2b 1+d ,17=2b 1+3d , 解得⎩⎨⎧b 1=4,d =3.所以b n =3n +1.5分(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 7分又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2],9分两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2] =3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2 =-3n ·2n +2, 所以T n =3n ·2n +2.12分[规律方法] 1.如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,若{b n }的公比为参数,应分公比等于1和不等于1两种情况讨论.2.在书写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,即公比q 的同次幂项相减,转化为等比数列求和.[变式训练3] (·广东肇庆第三次模拟)已知等差数列{a n }的前n 项和S n 满足S 3=6,S 5=15.(1)求{a n }的通项公式;(2)设b n =a n2a n,求数列{b n }的前n 项和T n .[解] (1)设等差数列{a n }的公差为d ,首项为a 1. ∵S 3=6,S 5=15,∴⎩⎪⎨⎪⎧3a 1+12×3×(3-1)d =6,5a 1+12×5×(5-1)d =15,即⎩⎨⎧a 1+d =2,a 1+2d =3,解得⎩⎨⎧a 1=1,d =1.3分 ∴{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×1=n . 5分 (2)由(1)得b n =a n 2a n=n2n ,6分∴T n =12+222+323+…+n -12n -1+n 2n ,① ①式两边同乘12, 得12T n =122+223+324+…+n -12n +n2n +1,②①-②得12T n =12+122+123+…+12n -n2n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n-n 2n +1, 10分∴T n =2-12n -1-n2n .12分[思想与方法]解决非等差、等比数列的求和,主要有两种思路:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的数列,往往通过裂项相消法、倒序相加法等来求和.[易错与防范]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.利用裂项相消法求和的注意事项:(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差与系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝⎛⎭⎪⎫1a n -1a n +2.。
高考数学一轮知能训练 第五章 数列 第4讲 数列的求和(含解析)-人教版高三全册数学试题
第4讲 数列的求和1.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n +a n +1=2n +1,则S 20172017=( )A .1009B .1008C .2D .12.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,若b n =1a n a n +1,那么数列{b n }前n 项的和为( )A .4⎝⎛⎭⎪⎫1-1n +1 B .4⎝ ⎛⎭⎪⎫12-1n +1C .1-1n +1 D.12-1n +13.已知数列{a n }的前n 项和S n =n 2-6n ,则数列{|a n |}的前n 项和T n 等于( ) A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n >3 D.⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n ,n >34.已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2018=( )A .3B .2C .1D .05.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n,则数列{a n }的前n 项和S n =( )A .2B .2nC .2n +1-2 D .2n -1-26.(多选)已知数列{a n }满足a 1=1,a n +1=a n2+3a n(n ∈N *),则下列结论正确的有( )A.⎩⎨⎧⎭⎬⎫1a n+3为等比数列 B .{a n }的通项公式为a n =12n +1-3C .{a n }为递增数列D.⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =2n +2-3n -4 7.在数列{a n }中,a 1=1,a n +2+(-1)na n =1,记S n 是数列{a n }的前n 项和,则S 60=________. 8.(2017年新课标Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则11nk kS=∑=________.9.(2019年新课标Ⅱ)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.10.已知数列{a n }的前n 项和S n =2n +1+n -2. (1)求数列{a n }的通项公式; (2)设b n =log 2(a n -1),求T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1.11.(2018年某某)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.12.(2018年某某)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *), ⅰ)求T n ;ⅱ)证明:21()(1)(2)nk k k k T b b k k +=+++∑=2n +2n +2-2(n ∈N *).第4讲 数列的求和1.A 解析:S 2017=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2016+a 2017) =(2×0+1)+(2×2+1)+(2×4+1)+…+(2×2016+1) =1+2×2016+1×10092=2017×1009, ∴S 20172017=1009.故选A. 2.A 解析:∵a n =1+2+3+…+nn +1=n n +12n +1=n 2,∴b n =1a n a n +1=4n n +1=4⎝ ⎛⎭⎪⎫1n -1n +1. ∴S n =4⎝⎛⎭⎪⎫1-1n +1. 3.C 解析:∵由S n =n 2-6n 得{a n }是等差数列, 且首项为-5,公差为2. ∴a n =-5+(n -1)×2=2n -7. ∴n ≤3时,a n <0;n >3时,a n >0.∴T n =⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n >3.4.A 解析:∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0.故S 2018=336×0+a 2017+a 2018=a 1+a 2=3.5.C 解析:∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n,∴S n =2-2n +11-2=2n +1-2.6.ABD7.480 解析:∵a n +2+(-1)na n =1,∴a 3-a 1=1,a 5-a 3=1,a 7-a 5=1,…,且a 4+a 2=1,a 6+a 4=1,a 8+a 6=1,…. ∴{a 2n -1}为等差数列,且a 2n -1=1+(n -1)×1=n ,即a 1=1,a 3=2,a 5=3,a 7=4,…. ∴S 4=a 1+a 2+a 3+a 4=1+1+2=4,S 8-S 4=a 5+a 6+a 7+a 8=3+4+1=8,S 12-S 8=a 9+a 10+a 11+a 12=5+6+1=12,….∴该数列构成以4为首项,4为公差的等差数列. ∴S 60=4×15+15×142×4=480.8.2nn +1解析:设等差数列{a n }的首项为a 1,公差为d , 依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+4×32d =10.解得⎩⎪⎨⎪⎧a 1=1,d =1.数列{a n }的前n 项和为S n =na 1+n n -12d =n n +12,1S k =2kk +1=2⎝ ⎛⎭⎪⎫1k -1k +1,则11nk kS =∑=2⎝ ⎛1-12+12-⎭⎪⎫13+13-14+…+1n -1n +1=2nn +1. 9.解:(1)设{a n }的公比为q ,由题设得 2q 2=4q +16,即q 2-2q -8=0. 解得q =-2(舍去)或q =4. 因此{a n }的通项公式为a n =2×4n -1=22n -1.(2)由(1)得b n =(2n -1)log 22=2n -1, ∴数列{}b n 的前n 项和为1+3+…+2n -1=n 2.10.解:(1)由⎩⎪⎨⎪⎧S n =2n +1+n -2,S n -1=2n+n -1-2,得a n =2n+1(n ≥2).当n =1时,a 1=S 1=3, 综上所述,a n =2n+1.(2)由b n =log 2(a n -1)=log 22n=n .T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×2+12×3+13×4+…+1nn +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. 11.解:(1)由a 4+2是a 3,a 5的等差中项,得a 3+a 5=2a 4+4,∴a 3+a 4+a 5=3a 4+4=28,解得a 4=8.由a 3+a 5=20,得8⎝⎛⎭⎪⎫q +1q =20,∵q >1,∴q =2.(2)设=(b n +1-b n )a n ,数列{}前n 项和为S n .由=⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.解得=4n -1.由(1)可知a n =2n -1,∴b n +1-b n =(4n -1)·⎝ ⎛⎭⎪⎫12n -1,故b n -b n -1=(4n -5)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,b n -b 1=(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)=(4n -5)·⎝ ⎛⎭⎪⎫12n -2+(4n -9)·⎝ ⎛⎭⎪⎫12n -3+…+7·12+3.设T n =3+7·12+11·⎝ ⎛⎭⎪⎫122+…+(4n -5)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,12T n =3·12+7·⎝ ⎛⎭⎪⎫122+…+(4n -9)·⎝ ⎛⎭⎪⎫12n -2+(4n -5)·⎝ ⎛⎭⎪⎫12n -1,∴12T n =3+4·12+4·⎝ ⎛⎭⎪⎫122+…+4·⎝ ⎛⎭⎪⎫12n -2-(4n -5)·⎝ ⎛⎭⎪⎫12n -1, 因此T n =14-(4n +3)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,又b 1=1,∴b n =15-(4n +3)·⎝ ⎛⎭⎪⎫12n -2.12.(1)解:设等比数列{a n }的公比为q . 由a 1=1,a 3=a 2+2,可得q 2-q -2=0. ∵q >0,可得q =2,故a n =2n -1.设等差数列{b n }的公差为d , 由a 4=b 3+b 5,可得b 1+3d =4.由a 5=b 4+2b 6, 可得3b 1+13d =16, 从而b 1=1,d =1,故b n =n . ∴数列{a n }的通项公式为a n =2n -1,数列{b n }的通项公式为b n =n .(2)ⅰ)解:由(1),有S n =1-2n1-2=2n-1,故T n =1(n k =∑2k-1)=12nk =∑k-n =2×1-2n1-2-n =2n +1-n -2.ⅱ)证明:∵T k +b k +2b kk +1k +2=2k +1-k -2+k +2kk +1k +2=k ·2k +1k +1k +2=2k +2k +2-2k +1k +1, ∴1nk =∑T k +b k +2b k k +1k +2=⎝ ⎛⎭⎪⎫233-222+⎝ ⎛⎭⎪⎫244-233+…+⎝ ⎛⎭⎪⎫2n +2n +2-2n +1n +1=2n +2n +2-2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4节数列求和
【选题明细表】
基础巩固(时间:30分钟)
1.S n=+++…+等于( B )
(A) (B)
(C)(D)
解析:由S n=+++…+,①
得S n=++…++, ②
①-②得,S n=+++…+-=-,所以S n=.
2.数列{(-1)n(2n-1)}的前2 018项和S2 018等于( B )
(A)-2 016 (B)2 018 (C)-2 015 (D)2 015
解析:S2 018=-1+3-5+7-…-(2×2 017-1)+(2×2 018-1)=(-1+3)+(-5+7)+…+[-(2×2 017-1)+(2×2 018-1)]=2×1 009=2 018.故选B.
3.等差数列{a n}的通项公式为a n=2n+1,其前n项和为S n,则数列{}的前10项的和为( C )
(A)120 (B)70 (C)75 (D)100
解析:由a n=2n+1,得a1=3,d=2.
所以S n=3n+×2=n2+2n.
因为=n+2,
所以数列{}是以3为首项,1为公差的等差数列.
所以()的前10项和为10×3+×1=75.
4.已知函数y=log a(x-1)+3(a>0,a≠1)的图象所过定点的横、纵坐标分
别是等差数列{a n}的第二项与第三项,若b n=,数列{b n}的前n项和为T n,则T10等于( B )
(A) (B) (C)1 (D)
解析:对数函数y=log a x的图象过定点(1,0),所以函数y=log a(x-1)+3
的图象过定点(2,3),则a2=2,a3=3,故a n=n,所以b n==-,所以T10=1-+-+…+-=1-=,故选B.
5.+++…+的值为( C )
(A) (B)-
(C)-(+) (D)-+
解析:因为===(-),
所以+++…+
=(1-+-+-+…+-)
=(--)=-(+).
6.在2016年至2019年期间,甲每年6月1日都到银行存入m元的一年定期储蓄,若年利率为q保持不变,且每年到期的存款本息自动转为新的一年定期,到2020年6月1日甲去银行不再存款,而是将所有存款的本息全部取出,则取回的金额是( D )
(A)m(1+q)4元 (B)m(1+q)5元
(C)元 (D)
解析:2019年存款的本息和为m(1+q),2018年存款的本息和为m(1+q)2,2017年存款的本息和为m(1+q)3,2016年存款的本息和为
m(1+q)4,四年存款的本息和为m(1+q)+m(1+q)2+m(1+q)3+m(1+q)4=
=.故选D.
7.已知函数f(x)=x a的图象过点(4,2),令a n=,n∈N*.记数列{a n}的前n项和为S n,则S2 018= .
解析:由f(4)=2可得4a=2,
解得a=.则f(x)=.
所以a n===-,
S2 018=a1+a2+a3+…+a2 018=(-)+(-)+(-)+…+(-)+(-)=-1.
答案:-1
8.有穷数列1,1+2,1+2+4,…,1+2+4+…+2n-1所有项的和为. 解析:由题意知所求数列的通项为=2n-1,故由分组求和法及等比数
列的求和公式可得和为-n=2n+1-2-n.
答案:2n+1-2-n
能力提升(时间:15分钟)
9.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值为( D )
(A)2 015 (B)2 013 (C)1 008 (D)1 009
解析:因为a n+2S n-1=n(n≥2),所以a n+1+2S n=n+1(n≥1),两式相减得
a n+1+a n=1(n≥2).又a1=1,所以S2 017=a1+(a2+a3)+…+(a2 016+a2 017)=1+1 008×1=1 009,故选D.
10.已知等差数列{a n}的前n项和S n满足S3=6,S5=,则数列{}的前n 项和为( B )
(A)1-(B)2-
(C)2-(D)2-
解析:设等差数列{a n}的公差为d,
则S n=na1+d,
因为S3=6,S5=,
所以解得
所以a n=n+1,=,
设数列{}的前n项和为T n,
则T n=+++…++,
T n=+++…++,
两式相减得T n=+(++…+)-=+(1-)-,所以T n=2-.故选B.
11.(2018·江西赣南联考)在数列{a n}中,已知a1=1,a n+1+(-1)n a n=
cos(n+1)π,记S n为数列{a n}的前n项和,则S2 017= .
解析:由a1=1,a n+1+(-1)n a n=cos(n+1)π,得
a2=a1+cos 2π=1+1=2,
a3=-a2+cos 3π=-2-1=-3,
a4=a3+cos 4π=-3+1=-2,
a5=-a4+cos 5π=2-1=1,
……
由上可知,数列{a n}是以4为周期的周期数列,且a1+a2+a3+a4=-2,
所以S2 017=504(a1+a2+a3+a4)+a1=504×(-2)+1=-1 007.
答案:-1 007
12.设函数f(x)=+log2,定义S n=f()+f()+…+f(),其中n∈N*,且n≥2,则S n= .
解析:因为f(x)+f(1-x)
=+log2++log2=1+log21=1,
所以2S n=[f()+f()]+[f()+f()]+…+[f()+f()]=n-1. 所以S n=.
答案:
13.已知数列{a n}的前n项和是S n,且S n+a n=1(n∈N*).
(1)求数列{a n}的通项公式;
(2)设b n=lo(1-S n+1)(n∈N*),令T n=++…+,求T n. 解:(1)当n=1时,a1=S1,
由S1+a1=1,得a1=,
当n≥2时,S n=1-a n,S n-1=1-a n-1,
则S n-S n-1=(a n-1-a n),即a n=(a n-1-a n),
所以a n=a n-1(n≥2).
故数列{a n}是以为首项,为公比的等比数列.
故a n=·()n-1=2·()n(n∈N*).
(2)因为1-S n=a n=()n.
所以b n=lo(1-S n+1)=lo()n+1=n+1,
因为==-,
所以T n=++…+
=(-)+(-)+…+(-)=-=.
14.(2018·广西玉林一模)已知数列{a n}中,a1=1,a n+1=(n∈N*).
(1)求证:(+)为等比数列,并求{a n}的通项公式a n;
(2)数列{b n}满足b n=(3n-1)··a n,求数列{b n}的前n项和T n. 解:(1)因为a1=1,a n+1=,
所以==1+,
即+=+=3(+),
则(+)为等比数列,公比q=3,
首项为+=1+=,则+=·3n-1,
即=-+·3n-1=(3n-1),
即a n=.
(2)b n=(3n-1)··a n=,
则数列{b n}的前n项和T n=+++…+,
T n=+++…+,
两式相减得T n=1+++…+-=-=2--=2-, 则T n=4-.。