高考数学一轮复习第七章不等式7.1不等式及其解法课件(2)
高考数学一轮复习 第7章 不等式 第2节 一元二次不等式及其解法课件 文
12/8/2021
第二十二页,共五十二页。
4.已知函数 f(x)=x-2+x22+x,2xx,≥x0<,0,解不等式 f(x)>3.
解:由题意xx≥ 2+02,x>3或x-<x02,+2x>3,解得 x>1. 故原不等式的解集为{x|x>1}.
12/8/2021
第二十三页,共五十二页。
三、易错自纠 4.不等式-x2-3x+4>0 的解集为________.(用区间表示) 解析:由-x2-3x+4>0 可知,(x+4)(x-1)<0,解得-4<x<1. 答案:(-4,1)
12/8/2021
第十四页,共五十二页。
5.设二次不等式 ax2+bx+1>0 的解集为x-1<x<13,则 ab 的值为________. 解析:由不等式 ax2+bx+1>0 的解集为x-1<x<13,知 a<0 且 ax2+bx+1=0 的两 根为 x1=-1,x2=13,由根与系数的关系知- -113+ =131a= ,-ba, 所以 a=-3,b=-2,所以 ab=6. 答案:6
12/8/2021
第五页,共五十二页。
2.三个“二次”间的关系
判别式Δ=b2-4ac
Δ>0
Δ=0
二次函数 y=ax2+bx +c(a>0)的图象
一元二次方程 ax2+bx 有两相异实根 x1,
+c=0 (a>0)的根
x2(x1<x2)
有两相等实根 x1=x2 =-2ba
Δ<0 没有实数根
12/8/2021
第七章 不等式
第二节 一元(yī yuán)二次不等式及 其解法
高考数学一轮复习 第7章 不等式及推理与证明 第2课时 一元二次不等式的解法练习 理-人教版高三全册
第2课时 一元二次不等式的解法1.下列不等式中解集为R 的是( ) A .-x 2+2x +1≥0 B .x 2-25x +5>0 C .x 2+6x +10>0 D .2x 2-3x +4<0答案 C解析 在C 项中,Δ=36-40=-4<0,所以不等式解集为R . 2.函数y =ln (x +1)-x 2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]答案 C解析 由⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,解得-1<x<1.3.若0<m <1,则不等式(x -m)(x -1m )<0的解集为( )A .{x|1m <x <m}B .{x|x >1m 或x <m}C .{x|x >m 或x <1m }D .{x|m <x <1m}答案 D解析 当0<m<1时,m<1m.4.关于x 的不等式x 2+px -2<0的解集是(q ,1),则p +q 的值为( ) A .-2 B .-1 C .1 D .2答案 B解析 依题意得q ,1是方程x 2+px -2=0的两根,q +1=-p ,即p +q =-1,选B. 5.不等式(2x -1)(1-|x|)<0成立的充要条件是( ) A .x>1或x<12B .x>1或-1<x<12C .-1<x<12D .x<-1或x>12答案 B解析 原不等式等价于⎩⎪⎨⎪⎧2x -1>0,1-|x|<0或⎩⎪⎨⎪⎧2x -1<0,1-|x|>0.∴⎩⎪⎨⎪⎧x>12,x>1或x<-1或⎩⎪⎨⎪⎧x<12,-1<x<1.∴x>1或-1<x<12,故选B.6.不等式x 2-x -6x -1>0的解集为( )A.{}x|x<-2或x>3B.{}x|x<-2或1<x<3C.{}x|-2<x<1或x>3D.{}x|-2<x<1或1<x<3答案 C解析 x 2-x -6x -1>0⇒(x -3)(x +2)x -1>0⇒(x +2)·(x-1)(x -3)>0,由数轴标根法,得-2<x<1或x>3.7.已知不等式ax 2+bx +2>0的解集为{x|-1<x<2},则不等式2x 2+bx +a<0的解集为( ) A .{x|-1<x<12}B .{x|x<-1或x>12}C .{x|-2<x<1}D .{x|x<-2或x>1}答案 A解析 由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由韦达定理⎩⎪⎨⎪⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.∴不等式2x 2+bx +a<0,即2x 2+x -1<0.可知x =-1,x =12是对应方程的根,∴选A.8.(2013·某某,理)已知一元二次不等式f(x)<0的解集为{x|x<-1或x>12},则f(10x)>0的解集为( )A .{x|x<-1或x>lg2}B .{x|-1<x<lg2}C .{x|x>-lg2}D .{x|x<-lg2}答案 D解析 方法一:由题意可知f(x)>0的解集为{x|-1<x<12},故f(10x )>0等价于-1<10x <12.由指数函数的值域为(0,+∞),知一定有10x >-1.而10x <12可化为10x<10lg 12,即10x<10-lg2.由指数函数的单调性可知x<-lg2,故选D.方法二:当x =1时,f(10)<0,排除A ,C 选项.当x =-1时,f(110)>0,排除选项B ,选D.9.(2017·某某模拟)若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值X 围是( ) A .(-235,+∞)B .[-235,1]C .(1,+∞)D .(-∞,-235]答案 A解析 由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负, 所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解,只需满足f(5)>0, 即a>-235.10.(2017·某某质检)不等式f(x)=ax 2-x -c>0的解集为{x|-2<x<1},则函数y =f(-x)的图像为( )答案 C解析 由题意得⎩⎪⎨⎪⎧a<0,-2+1=1a ,-2×1=-ca,解得a =-1,c =-2. 则函数y =f(-x)=-x 2+x +2.11.已知a 1>a 2>a 3>0,则使得(1-a i x)2<1(i =1,2,3)都成立的x 的取值X 围是( ) A .(0,1a 1)B .(0,2a 1)C .(0,1a 3)D .(0,2a 3)答案 B12.(2018·某某一模)在关于x 的不等式x 2-(a +1)x +a<0的解集中恰有两个整数,则a 的取值X 围是( ) A .(3,4) B .(-2,-1)∪(3,4) C .(3,4] D .[-2,-1)∪(3,4]答案 D解析 由题意得,原不等式化为(x -1)(x -a)<0,当a>1时,解得1<x<a ,此时解集中的整数为2,3,则3<a≤4;当a<1时,解得a<x<1,此时解集中的整数为0,-1,则-2≤a<-1,故a∈[-2,-1)∪(3,4].13.(2018·某某某某质检)已知g(x)是R 上的奇函数,当x<0时,g(x)=-ln(1-x),且f(x)=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x>0.若f(2-x 2)<f(x),则实数x 的取值X 围是( ) A .(-1,2) B .(1,2) C .(-2,-1) D .(-2,1)答案 D解析 若x>0,则-x<0,因为g(x)是R 上的奇函数,所以g(x)=-g(-x)=ln(x +1),所以f(x)=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x>0,则函数f(x)是R 上的增函数,所以当f(2-x 2)>f(x)时,2-x 2>x ,解得-2<x<1,故选D.14.不等式2x 2-3|x|-35>0的解集为________. 答案 {x|x<-5或x>5}解析 2x 2-3|x|-35>0⇔2|x|2-3|x|-35>0⇔(|x|-5)(2|x|+7)>0⇔|x|>5或|x|<-72(舍)⇔x>5或x<-5.15.已知-12<1x <2,则实数x 的取值X 围是________.答案 x<-2或x>12解析 当x>0时,x>12;当x<0时,x<-2.所以x 的取值X 围是x<-2或x>12.16.若不等式a·4x-2x+1>0对一切x∈R 恒成立,则实数a 的取值X 围是________. 答案 a>14解析 不等式可变形为a>2x-14x =(12)x -(14)x,令(12)x=t ,则t>0. ∴y =(12)x -(14)x =t -t 2=-(t -12)2+14,因此当t =12时,y 取最大值14,故实数a 的取值X 围是a>14.17.(2017·某某毛坦厂中学月考)已知关于x 的不等式kx 2-2x +6k<0(k≠0). (1)若不等式的解集为{x|x<-3或x>-2},求k 的值; (2)若不等式的解集为{x|x∈R ,x ≠1k },求k 的值;(3)若不等式的解集为R ,求k 的取值X 围; (4)若不等式的解集为∅,求k 的取值X 围.答案 (1)k =-25 (2)k =-66 (3)k<-66 (4)k≥66解析 (1)因为不等式的解集为{x|x<-3或x>-2}, 所以k<0,且-3与-2是方程kx 2-2x +6k =0的两根, 所以(-3)+(-2)=2k ,解得k =-25.(2)因为不等式的解集为{x|x∈R ,x ≠1k},所以⎩⎪⎨⎪⎧k<0,Δ=4-24k 2=0,解得k =-66. (3)由题意,得⎩⎪⎨⎪⎧k<0,Δ=4-24k 2<0,解得k<-66. (4)由题意,得⎩⎪⎨⎪⎧k>0,Δ=4-24k 2≤0,解得k≥66.18.(2017·某某中学调研卷)已知不等式组⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0的解集是不等式2x 2-9x +a <0的解集的子集,某某数a 的取值X 围. 答案 (-∞,9]解析 不等式组⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0的解集为(2,3),令g(x)=2x 2-9x +a ,其对称轴为x =94,∴只需g(3)=-9+a≤0,∴a ≤9.1.设一元二次不等式ax 2+bx +1>0的解集为(-1,13),则ab 的值为( )A .-6B .-5C .6D .5答案 C解析 方程ax 2+bx +1=0的两根为-1,13,由根与系数的关系,得⎩⎪⎨⎪⎧-1+13=-b a ,-1×13=1a ,解得⎩⎪⎨⎪⎧a =-3,b =-2.∴ab =6,故选C.2.不等式(a -2)x 2+2(a -2)x -4<0,对一切x∈R 恒成立,则实数a 的取值X 围是( ) A .(-∞,2] B .(-2,2] C .(-2,2) D .(-∞,2)答案 B解析 ∵⎩⎪⎨⎪⎧a -2<0,Δ<0,∴-2<a<2,另a =2时,原式化为-4<0,恒成立,∴-2<a≤2.故选B.3.已知x 1,x 2是二次方程f(x)=0的两个不同实根,x 3,x 4是二次方程g(x)=0的两个不同实根,若g(x 1)g(x 2)<0,则( )A .x 1,x 2介于x 3,x 4之间B .x 3,x 4介于x 1,x 2之间C .x 1,x 2相邻,x 3,x 4相邻D .x 1,x 2与x 3,x 4间隔排列答案 D解析 画图知,选D.4.(2017·某某外国语学校月考)已知函数f(x)=x 2+ax +b(a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f(x)<c 的解集为(m ,m +6),则实数c 的值为________. 答案 9解析 由值域为[0,+∞),当x 2+ax +b =0时有Δ=a 2-4b =0,即b =a 24,∴f(x)=x 2+ax +b =x 2+ax +a 24=(x +a 2)2,∴f(x)=(x +a 2)2<c 解得-c<x +a 2<c ,-c -a 2<x<c -a 2.∵不等式f(x)<c 的解集为(m ,m +6),∴(c -a 2)-(-c -a2)=2c =6,解得c =9.5.已知(ax -1)(x -1)≥0的解集为R ,则实数a 的值为________. 答案 1解析 原不等式为ax 2-(a +1)x +1≥0,∴⎩⎪⎨⎪⎧a>0,Δ=(a +1)2-4a≤0⇒a =1. 6.不等式log 2(x +1x +6)≤3的解集为________.答案 (-3-22,-3+22)∪{1}解析 原不等式⇔0<x +1x+6≤8⇔①⎩⎪⎨⎪⎧x>0,x 2+6x +1>0,x 2-2x +1≤0或②⎩⎪⎨⎪⎧x<0,x 2+6x +1<0,x 2-2x +1≥0.解①得x =1,解②得-3-22<x<-3+2 2. ∴原不等式的解集为(-3-22,-3+22)∪{1}.7.若不等式x 2+ax +1≥0对x∈(0,12]恒成立,求a 的最小值.答案 -52解析 方法一:(1)Δ=a 2-4≤0,即-2≤a≤2成立. (2)a<-2时,-a2>1,只需(12)2+a·12+1≥0,即a≥-52,此时-52≤a<-2.(3)a>2时,-a2<-1恒成立.综上所述,a ≥-52.∴a 的最小值为-52.方法二:由x 2+ax +1≥0,得a≥-x -1x ,x ∈(0,12].令f(x)=-x -1x (x∈(0,12])=-(x +1x ),是增函数.当x =12时,f(12)=-52,∴f(x)max =-52.要使原命题成立,则a≥-52.∴a 的最小值为-52.。
高考数学第一轮基础复习 不等式的性质及解法课件
●命题趋势 1.不等式的性质是主要考查点之一,主要以客观题 形式考查.常见考查方式: ①依据给定的条件,利用不等式的性质,判断不等 式或有关的结论是否成立; ②利用不等式的性质与实数的性质、函数的性质相 结合,比较数的大小; ③判断不等式中条件与结论之间的关系,是充分条 件或必要条件或充要条件; ④解证不等式中的等价变形.
2.解不等式主要是一次、二次、分式、指对不等式, 结合函数单调性的抽象不等式,一般都比较容易.与其 它知识揉合在一块命题是主要考查形式,如和函数的定 义域结合,和集合结合,和逻辑用语结合等等,要注意 含参数的讨论 3.基本不等式是考查的重点和热点,常与其它知识 交汇在一起.
4.线性规划是高考考查的重要内容之一,一般为客 观题. 5.证明不等式是考查的重点,经常与一次函数、二 次函数、指对函数、导数等函数知识相结合.有时也与 向量、数列、解析几何各种知识交汇命题,重点考查不 等式知识,试题的立意高、难度大、综合性强,这两年 高考命题难度稍降.
6.应用题是高考命题的热点,而且应用问题多数与 不等式相关,需要根据题意,建立不等关系,设法求解; 或者用均值不等式、函数单调性求出最值等.
●备考指南 1.加强与函数性质、三角、数列、平面向量、解析 几何、导数的交汇训练,难度不宜太大,注意体现不等 式的工具作用. (1)要加强对不等式性质的理解与复习,对于常混易 错点应反复训练强化.可通过判断不等式是否成立,找 不等式成立的条件,比较数的大小等形式命题练习.
3.二元一次不等式组与简单线性规划问题 ①从实际情境中抽象出二元一次不等式组. ②了解二元一次不等式的几何意义,能用平面区域 表示二元一次不等式组. ③从实际情境中抽象出一些简单的二元线性规划问 题,并能加以解决.
a+b 4.基本不等式: ab≤ (a,b>0). 2 ①探索并了解基本不等式的证明过程. ②会用基本不等式解决简单的最大 (小 )值问题.
高考数学一轮复习 第七章 不等式 7.2 一元二次不等式及其解法课件(理)
b(a≠0)的形式.当 a>0 时,解集为
;当 a<0 时,解集为
.若
关于 x 的不等式 ax>b 的解集是 R,则实数 a,b 满足的条件是
.
3.一元二次不等式及其解法
(1)我们把只含有一个未知数,并且未知数的最高次数是 2 的不等式,
称为___Байду номын сангаас______不等式.
(2)使某个一元二次不等式成立的 x 的值叫做这个一元二次不等式的
类型二 一元二次不等式的解法
解下列不等式:
(1)x2-7x+12>0;
(2)-x2-2x+3≥0;
(3)x2-2x+1<0;
(4)x2-2x+2>0.
解:(1)方程 x2-7x+12=0 的解为 x1=3,x2=4. 而 y=x2-7x+12 的图象开口向上,可得原不等式 x2-7x
+12>0 的解集是{x|x<3 或 x>4}.
有两相等实根 x1=x2=-2ba
①
②
{x|x1<x<x2}
∅
无实根 R ③
4.分式不等式解法
(1)化分式不等式为标准型.方法:移项,通分,右边化为 0, 左边化为gf((xx))的形式.
(2)将分式不等式转化为整式不等式求解,如:
gf((xx))>0 ⇔ f(x)g(x)>0;
gf((xx))<0 ⇔ f(x)g(x)<0;
于号取 ,小于号取 ”求解集.
(4)一元二次不等式的解:
函数、方程与不等式
Δ>0
Δ=0
Δ<0
二次函数 y=ax2+bx+c (a>0)的图象
一元二次方程 ax2+bx+c=0
(a>0)的根 ax2+bx+c>0 (a>0)的解集 ax2+bx+c<0 (a>0)的解集
高考数学一轮复习 第七章 不等式 7.1 不等式及其解法课件 理
D.a2>ab>b2
答案 D 选项A,∵c为实数,∴取c=0,得ac2=0,bc2=0,此时ac2=bc2,故选项A不正确;选项B, 1 - 1 =
ab
b ,a∵a<b<0,∴b-a>0,ab>0,∴ b>0a,即 >1 ,1故选项B不正确;选项C,∵a<b<0,∴取a=-2,b=-1,
ab
ab
ab
12/11/2021
2.(2014江苏,10,5分)已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的
取值范围是
.
答案
2 2
,0
解析 要满足f(x)=x2+mx-1<0对于任意x∈[m,m+1]恒成立,
只需
f f
(即m ) 0,解得-
(m 1) 0,
∵0<log0.20.3<log0.20.2=1,log20.3<log20.5=-1,即0<a<1,b<-1,∴a+b<0,排除D.
∵ b =l o g 2=0 . 3 =llgo0g.220.2,∴b- =logb 20.3-log20.2=log2
a lo g 0.2 0 .3 l g 2
a
解法二:易知0<a<1,b<-1,∴ab<0,a+b<0,
<1,∴3 b<1+
2
⇒ab b<a+b,排除A.故选B.
a
∵ 1 +1 =log0.30.2+log0.32=log0.30.4<1,
不等式及其解法课件—高三数学一轮复习
有
f f
(0) 5x 3 (1) (x2
2x2 0, 7) 5x
3
2x2
0,
化简得
2 x
x
2
2 5x 3 0, 5x 4 0,
解得
x x
1 或x 3, 2 1或x 4,
故x≤-4或x≥
1 2
.故选A.
答案 A
例2 (2021江苏连云港测试,14)设函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)< -m+5恒成立,求m的取值范围.
注意 可逆 同向
可逆 c的 符号 可逆 同向
同向同正 可乘性 可乘方性 可开方性
a>b>0,c>d>0⇒ac>bd
a>b>0,n∈N*⇒an>bn a>b>0⇒ n a > n b (n∈N,n≥2)
同向 同正 同正 同正
2.不等式的倒数和分数性质
1)倒数性质:a>b,ab>0⇒ 1< 1;
ab
考向一 解一元二次不等式
1.(2023届山东潍坊临朐实验中学月考,6)若关于x的不等式(a2-4)x2+(a+2)x -1≥0的解集不为空集,则实数a的取值范围为 ( )
A.
2,
6 5
B.
2,
6 5
C.(-∞,-2)∪
6 5
,
D.(-∞,-2]∪
6 5
,
答案 C
2.(多选)(2023届山西长治质量检测,10)已知函数y=x2+ax+b(a>0)有且只有 一个零点,则 ( ) A.a2-b2≤4
1 n
x
高考数学一轮复习 第7章 不等式 2 第2讲 一元二次不等式及其解法教案 理-高三全册数学教案
第2讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >b a ;(2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <b a .2.三个“二次”间的关系判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx+c (a >0)的 图象一元二次方 程ax 2+bx +c =0(a >0)的根有两相异实 根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实 数根ax 2+bx +c>0(a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-b 2aRax 2+bx +c<0(a >0) 的解集{x |x 1<x <x 2}∅∅(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0);(2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.4.绝对值不等式的解法(1)|f (x )|>|g (x )|⇔[f (x )]2>[g (x )]2;(2)|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x ); (3)|f (x )|<g (x )⇔-g (x )<f (x )<g (x ).判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( ) (2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( )(4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)√ (3)× (4)× (5)√(教材习题改编)不等式2x 2-x -3>0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <32B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32<x <1 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1或x <-32解析:选B.2x 2-x -3>0⇒(x +1)(2x -3)>0, 解得x >32或x <-1.所以不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1. 不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎤-12,1B.⎣⎢⎡⎦⎥⎤-12,1 C.⎝ ⎛⎭⎪⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎥⎤-∞,-12∪[1,+∞)解析:选A.由不等式x -12x +1≤0,可得⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0,解得-12<x ≤1,所以不等式的解集为⎝ ⎛⎦⎥⎤-12,1.设二次不等式ax2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,则ab 的值为________. 解析:由不等式ax2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,知a <0且ax2+bx +1=0的两根为x 1=-1,x 2=13,由根与系数的关系知⎩⎪⎨⎪⎧-1+13=-b a,-13=1a ,所以a =-3,b =-2,ab =6. 答案:6若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是__________.解析:因为不等式x 2+ax +4<0的解集不是空集, 所以Δ=a 2-4×4>0,即a 2>16. 所以a >4或a <-4.答案:(-∞,-4)∪(4,+∞)一元二次不等式的解法(高频考点)一元二次不等式的解法是高考的常考内容,题型多为选择题或填空题,难度为中档题.高考对一元二次不等式解法的考查主要有以下三个命题角度:(1)解不含参数的一元二次不等式; (2)解含参数的一元二次不等式;(3)已知一元二次不等式的解集求参数.[典例引领]角度一 解不含参数的一元二次不等式(1)解不等式:-x 2-2x +3≥0;(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.【解】 (1)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0.方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(2)由题意⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}.角度二 解含参数的一元二次不等式(分类讨论思想)解关于x 的不等式:12x 2-ax >a 2(a ∈R ).【解】 因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0};③当a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4.综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4.角度三 已知一元二次不等式的解集求参数已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=b a,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.即不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【答案】 {x |x ≥3或x ≤2}(1)解一元二次不等式的方法和步骤 (2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.②判断相应方程的根的个数,讨论判别式Δ与0的关系. ③确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[通关练习]1.(2018·陕西西安模拟)若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0,B ={x |x 2<2x },则A ∩B =( ) A .{x |0<x <1} B .{x |0≤x <1} C .{x |0<x ≤1} D .{x |0≤x ≤1}解析:选A.因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0={x |0≤x <1}, B ={x |x 2<2x }={x |0<x <2},所以A ∩B ={x |0<x <1},故选A.2.(2018·广东清远一中模拟)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A .(-∞,-1)∪(3,+∞) B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)解析:选C.关于x 的不等式ax -b <0的解集是(1,+∞),即不等式ax <b 的解集是(1,+∞),所以a =b <0,所以不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3,所以所求解集是(-1,3).故选C.3.不等式0<x 2-x -2≤4的解集为________.解析:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0,即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}. 答案:[-2,-1)∪(2,3]一元二次不等式恒成立问题(高频考点)一元二次不等式恒成立问题是每年高考的热点,题型多为选择题和填空题,难度为中档题.高考对一元二次不等式恒成立问题的考查有以下三个命题角度:(1)形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围; (2)形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围; (3)形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围.[典例引领]角度一 形如f (x )≥0(f (x )≤0)(x ∈R )确定 参数的范围若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是________.【解析】 当a -2=0,即a =2时不等式为-4<0, 对一切x ∈R 恒成立.当a ≠2时,则⎩⎪⎨⎪⎧a -2<0,Δ=4(a -2)2+16(a -2)<0,即⎩⎪⎨⎪⎧a <2-2<a <2,解得-2<a <2. 所以实数a 的取值范围是(-2,2]. 【答案】 (-2,2]角度二 形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围(转化与化归思想)若不等式x 2+mx -1<0对于任意x ∈[m ,m +1]都成立,则实数m 的取值范围是________.【解析】 由题意,得函数f (x )=x 2+mx -1在[m ,m +1]上的最大值小于0,又抛物线f (x )=x 2+mx -1开口向上,所以只需⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0, 即⎩⎪⎨⎪⎧2m 2-1<0,2m 2+3m <0, 解得-22<m <0.【答案】⎝⎛⎭⎪⎪⎫-22,0 角度三 形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.【解】 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9,则-1≤a ≤1. 因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去. (2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.则实数x 的取值范围为(-∞,2)∪(4,+∞).(1)不等式恒成立问题的求解方法①一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解.②一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.③一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)求解不等式恒成立问题的数学思想求解此类问题常利用分类讨论思想及转化与化归思想,如例22是不等式与函数的转化,例23是主元与次元的转化,而例21是对二次项系数是否为0进行讨论.[通关练习]1.若函数y =mx 2-(1-m )x +m 的定义域为R ,则m 的取值范围是________.解析:要使y =mx 2-(1-m )x +m 有意义,即mx 2-(1-m )x +m ≥0对∀x ∈R 恒成立,则⎩⎪⎨⎪⎧m >0,(1-m )2-4m 2≤0,解得m ≥13.答案:m ≥132.若关于x 的不等式4x-2x +1-a ≥0在[1,2]上恒成立,则实数a的取值范围为________. 解析:因为不等式4x-2x +1-a ≥0在[1,2]上恒成立,所以4x-2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x+1-1=(2x-1)2-1.因为1≤x ≤2,所以2≤2x≤4.由二次函数的性质可知:当2x=2,即x =1时,y 取得最小值0, 所以实数a 的取值范围为(-∞,0]. 答案:(-∞,0]解分式不等式的关键是先将给定不等式移项,通分,整理成一边为商式,另一边为0的形式,再通过等价转化化成整式不等式(组)的形式进行求解.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值. 易错防范(1)对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形.(2)当Δ<0时,ax 2+bx +c >0(a ≠0)的解集是R 还是∅,要注意区别.(3)不同参数范围的解集切莫取并集,应分类表述. 1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( ) A .(1,2) B .[1,2] C .[1,2)D .(1,2]解析:选D.A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.若不等式ax 2+bx +2<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12,或x >13,则a -ba 的值为( ) A.56 B.16 C .-16D .-56解析:选A.由题意得ax 2+bx +2=0的两根为-12与13,所以-ba=-12+13=-16,则a -b a =1-b a =1-16=56. 3.不等式x -43-2x<0的解集是( )A .{x |x <4}B .{x |3<x <4}C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x <4 解析:选C.不等式x -43-2x <0等价于⎝ ⎛⎭⎪⎫x -32(x -4)>0,所以不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4.4.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析:选A.x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a ≤4即可,解得-1≤a ≤4.5.(2018·福建龙岩模拟)已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞B.⎝ ⎛⎭⎪⎫-32,12 C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫32,+∞D.⎝ ⎛⎭⎪⎫-12,32 解析:选A.不等式f (x )>0的解集是(-1,3),故f (x )<0的解集是{x |x <-1或x >3},故f (-2x )<0的解集为{x |-2x <-1或-2x >3},即⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-32或x >12.6.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2.答案:{x |0<x <2}7.函数y =lg (1-x )-2x 2+12x +32的定义域为________. 解析:由题意,得⎩⎪⎨⎪⎧-2x 2+12x +32>0,1-x >0,即⎩⎪⎨⎪⎧x 2-6x -16<0,1-x >0,解得-2<x <1, 即原函数的定义域为{x |-2<x <1}.答案:(-2,1)8.(2018·江西南昌模拟)在R 上定义运算:x *y =x (1-y ).若不等式(x -y )*(x +y )<1对一切实数x 恒成立,则实数y 的取值范围是________.解析:由题意,知(x -y )*(x +y )=(x -y )·[1-(x +y )]<1对一切实数x 恒成立,所以-x 2+x +y 2-y -1<0对于x ∈R 恒成立.故Δ=12-4×(-1)×(y 2-y -1)<0,所以4y 2-4y -3<0,解得-12<y <32.答案:⎝ ⎛⎭⎪⎫-12,329.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2.(1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0, 即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝⎛⎭⎪⎫-3,12.10.(2018·合肥市第二次教学质量检测)已知函数f (x )=4-|ax -2|(a ≠0). (1)求函数f (x )的定义域;(2)若当x ∈[0,1]时,不等式f (x )≥1恒成立,求实数a 的取值范围.解:(1)要使函数有意义,需4-|ax -2|≥0,即|ax -2|≤4,|ax -2|≤4⇔-4≤ax -2≤4⇔-2≤ax ≤6. 当a >0时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2a≤x ≤6a ;当a <0时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪6a≤x ≤-2a .(2)f (x )≥1⇔|ax -2|≤3,记g (x )=|ax -2|,因为x ∈[0,1],所以需且只需⎩⎪⎨⎪⎧g (0)≤3g (1)≤3⇔⎩⎪⎨⎪⎧2≤3|a -2|≤3⇔-1≤a ≤5,又a ≠0,所以-1≤a ≤5且a ≠0.1.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( ) A .(-1,0) B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析:选C.由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.2.(2018·陕西咸阳模拟)已知a ∈Z ,关于x 的一元二次不等式x2-6x +a ≤0的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18 C .21D .26解析:选C.设f (x )=x 2-6x +a ,其图象为开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧f (2)≤0,f (1)>0,即⎩⎪⎨⎪⎧22-6×2+a ≤0,12-6×1+a >0,解得5<a ≤8,又a ∈Z ,故a =6,7,8.则所有符合条件的a 的值之和是6+7+8=21.3.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n+1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8). 答案:[2,8)4.不等式x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,则实数λ的取值范围为________.解析:因为x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立, 所以x 2+8y 2-λy (x +y )≥0对于任意的x ,y ∈R 恒成立,即x 2-λyx +(8-λ)y 2≥0恒成立,由二次不等式的性质可得,Δ=λ2y 2+4(λ-8)y 2=y 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0, 解得-8≤λ≤4. 答案:[-8,4]5.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解:(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝⎛⎭⎪⎫1+850x .因为售价不能低于成本价,所以100⎝⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.6.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), 因为a >0,且0<x <m <n <1a,所以x -m <0,1-an +ax >0. 所以f (x )-m <0,即f (x )<m .。
高考数学一轮总复习练习不等式的解法 (2)
1.(2019·台州质检)已知关于x 的不等式ax 2-x +c <0的解集为{}x |-1<x <2,则a +c 等于( ) A .-1 B .1 C .-3 D .32.已知函数f (x )=⎝⎛⎭⎫12x,则不等式f (a 2-4)>f (3a )的解集为( ) A .(-4,1) B .(-1,4) C .(1,4)D .(0,4)3.如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于1,另一个大于1,那么实数m 的取值范围是( ) A .(-2,2) B .(-2,0) C .(-2,1)D .(0,1)4.已知p :-12<a <1,q :对任意的x ∈[-1,1],x 2-ax -2<0,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.若不等式ax 2+2x +c <0的解集是⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫12,+∞,则不等式cx 2+2x +a ≤0的解集是( ) A.⎣⎡⎦⎤-12,13 B.⎣⎡⎦⎤-13,12 C .[-2,3]D .[-3,2]6.若不等式ax -b >0的解集为(-∞,1),则关于x 的不等式bx +3ax -5>0的解集为( )A .(-5,3)B .(-∞,-5)∪(3,+∞)C .(-3,5)D .(-∞,-3)∪(5,+∞)7.(2020·浙江省五校联考)已知关于x 的不等式ax 2-2x +3a <0在(0,2]上有解,则实数a 的取值范围是( ) A.⎝⎛⎭⎫-∞,33 B.⎝⎛⎭⎫-∞,47 C.⎝⎛⎭⎫33,+∞D.⎝⎛⎭⎫47,+∞8.若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围是( )A .(-1,1)B .(-1,1]C .[0,1)D .(0,1)9.关于x 的不等式x 2-2kx +k 2+k -1>0的解集为{x |x ≠a ,x ∈R },则实数a =________. 10.若x ∈[-1,1]时,关于x 的不等式x 3-1≤ax 2+2ax -a 2恒成立,则实数a 的取值范围是________.11.(2019·嘉兴模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0,那么不等式x +(x +1)·f (x +1)≤1的解集是( )A .{x |-1≤x ≤ 2-1}B .{x |x ≤1}C .{x |x ≤ 2-1}D .{x |-2-1≤x ≤ 2-1}12.设a ,b 是关于x 的一元二次方程x 2-2mx +m +6=0的两个实根,则(a -1)2+(b -1)2的最小值是( )A .-494B .18C .8D .-613.定义:区间[a ,b ],(a ,b ],(a ,b ),[a ,b )的长度均为b -a ,若不等式1x -1+2x -2≥54的解集是互不相交区间的并集,则该不等式的解集中所有区间的长度之和为( ) A.512 B.125 C.2095D.520920914.定义域为R 的函数f (x )满足f (x +2)=2f (x ),当x ∈[0,2)时,f (x )=))232,0,1,1,1,2,2x x x x x -⎧-∈⎡⎣⎪⎪⎨⎛⎫⎪-∈⎡ ⎪⎣⎪⎝⎭⎩若当x ∈[-4,-2)时,不等式f (x )≥m 24-m +12恒成立,则实数m 的取值范围是( )A .[2,3]B .[1,3]C .[1,4]D .[2,4]15.已知二次函数f (x )=-x 2+2x +3,不等式f (x )≥m 的解集的区间长度为6(规定:闭区间[a ,b ]的长度为b -a ),则实数m 的值是________.16.(2020·浙江省浙南名校联盟联考)已知等比数列{a n }的公比为q ,关于x 的不等式a 2x 2-(a 1+a 3)x +a 2>0有下列说法:①当q >1时,不等式的解集为⎝⎛⎭⎫-∞,1q ,(q ,+∞); ②当0<q <1时,不等式的解集为⎝⎛⎭⎫q ,1q ; ③当a 1>0时,存在公比q ,使得不等式解集为∅; ④存在公比q ,使得不等式解集为R . 上述说法正确的序号是________.答案精析1.A 2.B 3.C 4.A 5.D 6.C 7.A 8.D 9.1 10.⎣⎡⎦⎤0,34 11.C 12.C [因为a ,b 是关于x 的一元二次方程x 2-2mx +m +6=0的两个实根,所以由根与系数的关系得⎩⎪⎨⎪⎧a +b =2m ,ab =m +6,且Δ=4(m 2-m -6)≥0,所以y =(a -1)2+(b -1)2=(a +b )2-2ab -2(a +b )+2=4m 2-6m -10 =4⎝⎛⎭⎫m -342-494,且m ≥3或m ≤-2. 由二次函数的性质知,当m =3时,函数y =4⎝⎛⎭⎫m -342-494取得最小值为8. 即(a -1)2+(b -1)2的最小值为8.] 13.B [不等式1x -1+2x -2≥54,即4(x -2)+8(x -1)-5(x -1)(x -2)4(x -1)(x -2)≥0,化简可得5x 2-27x +264(x -1)(x -2)≤0,∴⎩⎪⎨⎪⎧ 5x 2-27x +26≤0,(x -1)(x -2)>0 或⎩⎪⎨⎪⎧5x 2-27x +26≥0,(x -1)(x -2)<0, 方程5x 2-27x +26=0有两个根x 1=27-20910或x 2=27+20910,则原不等式的解集为⎝ ⎛⎦⎥⎤1,27-20910∪⎝ ⎛⎦⎥⎤2,27+20910,其解集区间的长度为⎝⎛⎭⎪⎫27+20910-2+⎝ ⎛⎭⎪⎫27-20910-1=275-3=125.]14.B [因为当x ∈[-4,-2)时,不等式f (x )≥m 24-m +12恒成立,所以f (x )min ≥m 24-m +12,当x ∈[-4,-2),x +4∈[0,2)时,f (x )=12f (x +2)=14f (x +4)=⎩⎪⎨⎪⎧14[(x +4)2-(x +4)],x +4∈[0,1),-14×34212x +-⎛⎫ ⎪⎝⎭,x +4∈[1,2),当x +4∈[0,1)时,f (x )=14[(x +4)2-(x +4)]≥-14×14=-116,当x +4∈[1,2)时, f (x )=-14×34212x +-⎛⎫⎪⎝⎭≥-14,因此当x ∈[-4,-2)时,f (x )min =-14≥m 24-m +12,所以实数m 的取值范围是1≤m ≤3.] 15.-5解析 根据题意-x 2+2x +3≥m 的解集为[a ,b ],则x =a 和x =b 是方程-x 2+2x +3=m 即x 2-2x +m -3=0的两根, 则a +b =2,ab =m -3,不等式f (x )≥m 的解集的区间长度为6,即b -a =6, 则有(a +b )2-4ab =4-4(m -3)=36, 解得m =-5. 16.③解析 由题意a 1=a 2q ,a 3=a 2q ,不等式a 2x 2-(a 1+a 3)x +a 2>0变为 a 2⎣⎡⎦⎤x 2-⎝⎛⎭⎫1q +q x +1>0, 即a 2(x -q )⎝⎛⎭⎫x -1q >0, 若a 2>0,则(x -q )⎝⎛⎭⎫x -1q >0, 当q >1或-1<q <0时解为x <1q 或x >q ,当0<q <1或q <-1时,解为x <q 或x >1q ,当q =±1时,解为x ≠q ; 若a 2<0,则(x -q )⎝⎛⎭⎫x -1q <0,当q >1或-1<q <0时,解为1q <x <q ,当0<q <1或q <-1时, 解为q <x <1q,当q =±1时,不等式无解. 对照①,②,③,④,只有③正确.。
高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-1
①当 a>0 时,-a4<a3,不等式的解集为 x|x<-a4,或x>a3; ②当 a=0 时,-a4=a3=0,不等式的解集为{x|x∈R,且 x≠0}; ③当 a<0 时,-a4>a3,不等式的解集为 x|x<a3,或x>-a4. 综上所述:当 a>0 时,不等式的解集为 x|x<-a4,或x>a3;
5.简单分式不等式的解法
x-a x-b>0
等价于(x-a)(x-b)>0;
x-a x-b<0
等价于(x-a)(x-b)<0;
xx--ab≥0 等价于xx--ba≠0x-;b≥0, xx--ab≤0 等价于xx--ba≠0x-. b≤0,
[辨识巧记] 1.倒数性质的几个必备结论 (1)a>b,ab>0⇒1a<1b. (2)a<0<b⇒1a<1b. (3)a>b>0,0<c<d⇒ac>bd. (4)0<a<x<b 或 a<x<b<0⇒1b<1x<1a.
[知识梳理]
1.两个实数比较大小的方法
a-b>0⇔a>b, (1)作差法a-b=0⇔a=ba,b∈R,
a-b<0⇔a<b.
ab>1⇔a>ba∈R,b>0, (2)作商法ab=1⇔a=ba∈R,b>0,
ab<1⇔a<ba∈R,b>0.
2.不等式的基本性质
m+n=3, n-m=-1,
解得mn==12.,
因为-π2<α-β<π2,0<α+β<π,
专题7.1不等关系与不等式的性质及一元二次不等式(2021年高考数学一轮复习专题)
专题 不等关系与不等式的性质及一元二次不等式一、题型全归纳题型一 不等式性质的应用命题角度一 判断不等式是否成立【题型要点】判断不等式是否成立的方法(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.(2)在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断. 【例1】(2020·石家庄质量检测)已知a >0>b ,则下列不等式一定成立的是( ) A .a 2<-ab B .|a |<|b | C.1a >1bD .(12)a >(12)b【解析】:通解:当a =1,b =-1时,满足a >0>b ,此时a 2=-ab ,|a |=|b |,⎝⎛⎭⎫12a <⎝⎛⎭⎫12b,所以A ,B ,D 不一定成立,因为a >0>b ,所以b -a <0,ab <0,所以1a -1b =b -a ab >0,所以1a >1b 一定成立,故选C.优解:因为a >0>b ,所以1a >0>1b ,所以1a >1b一定成立.故选C.【例2】若1a <1b <0,给出下列不等式:①1a +b <1ab ;①|a |+b >0;①a -1a >b -1b ;①ln a 2>ln b 2.其中正确的不等式是( )A .①①B .①①C .①①D .①①【解析】因为1a <1b <0,所以b <a <0,|b |>|a |,所以|a |+b <0,ln a 2<ln b 2,由a >b ,-1a >-1b 可推出a -1a >b -1b ,显然有1a +b<0<1ab ,综上知,①①正确,①①错误.命题角度二 比较两个数(式)大小的两种方法【题型要点】比较两个数(式)大小的3种方法【例1】若a =ln 33,b =ln 44,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c【解析】:法一:易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1.所以a >b ;b c =5ln 44ln 5=log 6251 024>1.所以b >c .即c <b <a .法二:对于函数y =f (x )=ln xx ,y ′=1-ln x x 2,易知当x >e 时,函数f (x )单调递减.因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .【例2】已知a ,b 是实数,且e<a <b ,其中e 是自然对数的底数,则a b 与b a 的大小关系是 .【解析】:令f (x )=ln xx ,x >0,则f ′(x )=1-ln x x 2,当x >e 时,f ′(x )<0,即函数f (x )在x >e 时是减函数. 因为e<a <b ,所以ln a a >ln bb,即b ln a >a ln b ,所以ln a b >ln b a ,则a b >b a .命题角度三 求代数式的取值范围【题型要点】求代数式取值范围的方法利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径. 【例1】(2020·长春市质量检测(一))已知角α,β满足-π2<α-β<π2,0<α+β<π,则3α-β的取值范围是 .【解析】:设3α-β=m (α-β)+n (α+β)=(m +n )α+(n -m )β,则⎩⎪⎨⎪⎧m +n =3,n -m =-1,解得⎩⎪⎨⎪⎧m =2,n =1.因为-π2<α-β<π2,0<α+β<π,所以-π<2(α-β)<π,故-π<3α-β<2π.【例2】已知-1<x<4,2<y<3,则x-y的取值范围是________,3x+2y的取值范围是________.【解析】因为-1<x<4,2<y<3,所以-3<-y<-2,所以-4<x-y<2.由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以1<3x+2y<18.题型二一元二次不等式的解法【题型要点】一元二次不等式的解法(1)对于常系数一元二次不等式,可以用分解因式法或判别式法求解,题目简单,情况单一.(2)含有参数的不等式的求解,往往需要对参数进行分类讨论.①若二次项系数为常数,需先将二次项系数化为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;①若二次项系数为参数,则应先考虑二次项系数是否能为零,以确定不等式是一次不等式还是二次不等式,再讨论二次项系数不为零的情形,以便确定解集的形式;①对方程的根进行讨论,比较大小,以便写出解集.(3)若一元二次不等式的解集为区间的形式,则区间的端点值恰对应相应的一元二次方程的根,要注意解集的形式与二次项系数的联系.【易错提醒】当不等式中二次项的系数含有参数时,不要忘记讨论其等于0的情况.命题角度一不含参数的一元二次不等式解一元二次不等式的四个步骤【例1】不等式0<x2-x-2≤4的解集为.【答案】:[-2,-1)①(2,3]【解析】:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0,即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}.命题角度二 含参数的一元二次不等式解含参数的一元二次不等式的一般步骤【例2】解关于x 的不等式ax 2-(a +1)x +1<0.【解析】 若a =0,原不等式等价于-x +1<0,解得x >1.若a <0,原不等式等价于⎪⎭⎫ ⎝⎛-a x 1(x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于⎪⎭⎫ ⎝⎛-a x 1(x -1)<0. ①当a =1时,1a =1,⎪⎭⎫ ⎝⎛-a x 1(x -1)<0无解;①当a >1时,1a <1,解⎪⎭⎫ ⎝⎛-a x 1(x -1)<0,得1a <x <1;①当0<a <1时,1a >1,解⎪⎭⎫ ⎝⎛-a x 1(x -1)<0,得1<x <1a .综上所述,当a <0时,解集为⎭⎬⎫⎩⎨⎧><11x a x x 或; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎭⎬⎫⎩⎨⎧<<a x x 11; 当a =1时,解集为①;当a >1时,解集为⎭⎬⎫⎩⎨⎧<<11x a x.命题角度三 已知一元二次不等式的解集求参数【例3】已知不等式ax 2-bx -1>0的解集是⎭⎬⎫⎩⎨⎧<<31-21-x x ,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎨⎧-12+⎝⎛⎭⎫-13=ba ,-12×⎝⎛⎭⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.即不等式x 2-bx -a ≥0为x 2-5x +6≥0,解得x ≥3或x ≤2.【例4】(2020·黄冈模拟)关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -2)<0的解集是( )A .(-∞,1)①(2,+∞)B .(-1,2)C .(1,2)D .(-∞,-1)①(2,+∞)【解析】因为关于x 的不等式ax +b >0的解集是(1,+∞),所以a >0,且-ba=1,所以关于x 的不等式(ax +b )(x -2)<0可化为⎪⎭⎫⎝⎛+a b x (x -2)<0,即(x -1)(x -2)<0,所以不等式的解集为{x |1<x <2}. 命题角度四 分式不等式的解法求解分式不等式的关键是对原不等式进行恒等变形,转化为整式不等式(组)求解.(1)f (x )g (x )>0(<0)①f (x )·g (x )>0(<0);(2)f (x )g (x )≥0(≤0)①⎩⎪⎨⎪⎧f (x )·g (x )≥0(≤0),g (x )≠0.【例5】不等式1-x 2+x≥1的解集为( )A.⎥⎦⎤⎢⎣⎡--21,2 B.⎥⎦⎤ ⎝⎛21-2-,C .(-∞,-2)①⎪⎭⎫ ⎝⎛∞+,21- D .(-∞,-2]①⎪⎭⎫ ⎝⎛∞+,21- 【解析】:1-x 2+x ≥1①1-x 2+x -1≥0①1-x -2-x 2+x ≥0①-2x -12+x ≥0①2x +1x +2≤0①⎩⎪⎨⎪⎧(2x +1)(x +2)≤0x +2≠0①-2<x ≤-12.故选B.【例6】不等式2x +1x -5≥-1的解集为________.【解析】:将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧(3x -4)(x -5)≥0,x -5≠0,解得x >5或x ≤43.所以原不等式的解集为⎭⎬⎫⎩⎨⎧><534x x x 或. 题型三 一元二次不等式恒成立问题类型一 形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围【题型要点】一元二次不等式在R 上恒成立的条件【例1】若不等式(a -2)x 2+2(a -2)x -4<0对一切x ①R 恒成立,则实数a 的取值范围是 . 【解析】 当a -2=0,即a =2时,不等式为-4<0,对一切x ①R 恒成立.当a ≠2时,则⎩⎪⎨⎪⎧a -2<0,Δ=4(a -2)2+16(a -2)<0,即⎩⎪⎨⎪⎧a <2-2<a <2,解得-2<a <2,a 的取值范围是(-2,2].类型二 形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围【题型要点】形如f (x )≥0(f (x )≤0)(x ①R )恒成立问题的求解思路(1)根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求出参数的范围; (2)数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式求参数的取值范围.【例2】(2020·江苏海安高级中学调研)已知对于任意的x ①(-∞,1)①(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是 .【解析】 设f (x )=x 2-2(a -2)x +a .因为对于任意的x ①(-∞,1)①(5,+∞),都有f (x )=x 2-2(a -2)x +a >0, 所以Δ<0或⎩⎪⎨⎪⎧Δ≥0,1≤a -2≤5,f (1)≥0,f (5)≥0,解得1<a <4或4≤a ≤5,即1<a ≤5.类型三 形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围【题型要点】形如f (x )>0或f (x )<0(参数m ①[a ,b ])的不等式确定x 的范围时,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.【例3】求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 【解析】 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9,则-1≤a ≤1.因为f (a )>0在|a |≤1时恒成立,所以 (1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4. 则实数x 的取值范围为(-∞,2)①(4,+∞).题型四 转化与化归思想在不等式中的应用【题型要点】(1)一元二次不等式ax 2+bx +c >0(a ≠0)的解集的端点值是一元二次方程ax 2+bx +c =0的根,也是函数y =ax 2+bx +c 与x 轴交点的横坐标.(2)二次函数y =ax 2+bx +c 的图象在x 轴上方的部分,是由不等式ax 2+bx +c >0的x 的值构成的;图象在 x 轴下方的部分,是由不等式ax 2+bx +c <0的x 的值构成的,三者之间相互依存、相互转化.【例1】(2020·内蒙古包头)不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )【解析】由题意得⎩⎪⎨⎪⎧a <0,-2+1=1a ,-2×1=-c a,解得⎩⎪⎨⎪⎧a =-1,c =-2,则函数y =f (-x )=-x 2+x +2,结合选项可知选C.【例2】a ,b 是关于x 的一元二次方程x 2-2mx +m +6=0的两个实根,则(a -1)2+(b -1)2的最小值是( ) A .-494B .18C .8D .-6【解析】:因为关于x 的一元二次方程x 2-2mx +m +6=0的两个根为a ,b ,所以⎩⎪⎨⎪⎧a +b =2m ,ab =m +6,且Δ=4(m 2-m -6)≥0,解得m ≥3或m ≤-2.所以y =(a -1)2+(b -1)2=(a +b )2-2ab -2(a +b )+2=4m 2-6m -10=4⎝⎛⎭⎫m -342-494. 由二次函数的性质知,当m =3时,函数y =4m 2-6m -10取得最小值,最小值为8.故选C.二、高效训练突破 一、选择题1.(2020·潍坊模拟)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x ≤2},则A ∩B =( ) A .[-2,-1] B .[-1,2] C .[-1,1]D .[1,2]【解析】A ={x |x 2-2x -3≥0}={x |(x -3)(x +1)≥0}={x |x ≤-1或x ≥3},又B ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤-1}.2.若正实数a ,b 满足a >b ,且ln a ·ln b >0,则( )A.1a >1bB .a 2<b 2C .ab +1>a +bD .lg a +lg b >0【解析】由已知得a >b >1或0<b <a <1,因此必有1a <1b,a 2>b 2,所以A ,B 错误;又ab >1或0<ab <1,因此lg a +lg b =lg (ab )>0或lg (ab )<0,所以D 错误;而ab +1-(a +b )=(a -1)(b -1)>0,即ab +1>a +b ,所以C 正确.3.已知a >0>b ,则下列不等式一定成立的是( ) A .a 2<-ab B .|a |<|b | C.1a >1bD .ba ⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛2121【解析】:法一:当a =1,b =-1时,满足a >0>b ,此时a 2=-ab ,|a |=|b |,ba⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛2121,所以A ,B ,D 不一定成立.因为a >0>b ,所以b -a <0,ab <0,所以1a -1b =b -a ab >0,所以1a >1b 一定成立,故选C.法二:因为a >0>b ,所以1a >0>1b ,所以1a >1b一定成立,故选C.4.(2020·安徽淮北一中(文)模拟)若(x -1)(x -2)<2,则(x +1)(x -3)的取值范围是( ) A .(0,3) B .[-4,-3) C .[-4,0) D .(-3,4]【解析】:由(x -1)(x -2)<2解得0<x <3,函数y =(x +1)(x -3)的图象的对称轴是直线x =1,故函数在(0,1)上单调递减,在(1,3)上单调递增,在x =1处取得最小值,最小值为-4,在x =3处取值为0,在x =0处取值为-3,故(x +1)(x -3)的取值范围为[-4,0).5.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2]①[5,+∞)C .(-∞,-1]①[4,+∞)D .[-2,5] 【解析】:.x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a ≤4即可,解得-1≤a ≤4.6.(2020·湖南益阳4月模拟)已知函数f (x )=ax 2+(a +2)x +a 2为偶函数,则不等式(x -2)f (x )<0的解集为( ) A .(-2,2)①(2,+∞) B .(-2,+∞) C .(2,+∞)D .(-2,2)【解析】:因为函数f (x )=ax 2+(a +2)x +a 2为偶函数,所以a +2=0,得a =-2,所以f (x )=-2x 2+4,所以不等式(x -2)f (x )<0可转化为⎩⎪⎨⎪⎧x -2<0,f (x )>0或⎩⎪⎨⎪⎧x -2>0,f (x )<0,即⎩⎪⎨⎪⎧x <2,-2x 2+4>0或⎩⎪⎨⎪⎧x >2,-2x 2+4<0,解得-2<x <2或x >2.故原不等式的解集为(-2,2)①(2,+∞).故选A. 7.(2020·广东清远一中月考)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式 (ax +b )(x -3)>0的解集是( )A .(-∞,-1)①(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)①(3,+∞)【解析】关于x 的不等式ax -b <0的解集是(1,+∞),即不等式ax <b 的解集是(1,+∞),①a =b <0,①不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3,①所求解集是(-1,3).故选C. 8.设实数x ,y 满足0<xy <4,且0<2x +2y <4+xy ,则x ,y 的取值范围是( ) A .x >2且y >2 B .x <2且y <2 C .0<x <2且0<y <2D .x >2且0<y <2【解析】:由题意得⎩⎪⎨⎪⎧xy >0,x +y >0,则⎩⎪⎨⎪⎧x >0,y >0,由2x +2y -4-xy =(x -2)·(2-y )<0,得⎩⎪⎨⎪⎧x >2,y >2或⎩⎪⎨⎪⎧0<x <2,0<y <2,又xy <4,可得⎩⎪⎨⎪⎧0<x <2,0<y <2.9.(2020·天津市新华中学模拟)已知命题p :1a >14,命题q :①x ①R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】求解不等式1a >14可得0<a <4,对于命题q ,当a =0时,命题明显成立;当a ≠0时,有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0,10.设a ,b ①R ,定义运算“①”和“①”如下:a ①b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,a ①b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b .若m ①n ≥2,p ①q ≤2,则( )A .mn ≥4且p +q ≤4B .m +n ≥4且pq ≤4C .mn ≤4且p +q ≥4D .m +n ≤4且pq ≤4【解析】:.结合定义及m ①n ≥2可得⎩⎪⎨⎪⎧m ≥2,m ≤n 或⎩⎪⎨⎪⎧n ≥2,m >n ,即n ≥m ≥2或m >n ≥2,所以mn ≥4; 结合定义及p ①q ≤2,可得⎩⎪⎨⎪⎧p ≤2,p >q 或⎩⎪⎨⎪⎧q ≤2,p ≤q ,即q <p ≤2或p ≤q ≤2,所以p +q ≤4. 11.(2020·安徽蒙城五校联考)在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含2个整数,则实数a 的取值范围是( ) A .(-3,5) B .(-2,4) C .[-3,5]D .[-2,4]【解析】:因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a };当a <1时,不等式的解集为{x |a <x <1},要使不等式的解集中至多包含2个整数,则a ≤4且a ≥-2,所以实数a 的取值范围是a ①[-2,4],故选D. 12.已知函数f (x )=-x 2+ax +b 2-b +1(a ①R ,b ①R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ①[-1,1]时,f (x )>0恒成立,则b 的取值范围是( ) A .(-1,0)B .(2,+∞)C .(-∞,-1)①(2,+∞)D .不能确定【解析】:由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2.又因为f (x )开口向下,所以当x ①[-1,1]时,f (x )为增函数, 所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2, f (x )>0恒成立,即b 2-b -2>0恒成立解得b <-1或b >2.二、填空题1.设a >b ,有下列不等式①a c 2>b c 2;①1a <1b ;①|a |>|b |;①a |c |≥b |c |,则一定成立的有________.(填正确的序号)【解析】:对于①,1c 2>0,故①成立;对于①,a >0,b <0时不成立;对于①,取a =1,b =-2时不成立;对于①,|c |≥0,故①成立.2.已知实数a ①(1,3),b ①⎪⎭⎫⎝⎛4181,,则a b的取值范围是________.【解析】:依题意可得4<1b <8,又1<a <3,所以4<ab <24,故答案为(4,24).3.不等式|x (x -2)|>x (x -2)的解集是________.【解析】:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2.4.(2020·扬州模拟)若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是 . 【解析】:作差可得(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)·(b 1-b 2), 因为a 1<a 2,b 1<b 2,所以(a 1-a 2)(b 1-b 2)>0,即a 1b 1+a 2b 2>a 1b 2+a 2b 1.6.已知①ABC 的三边长分别为a ,b ,c 且满足b +c ≤3a ,则ca的取值范围为________.【解析】:由已知及三角形的三边关系得⎩⎪⎨⎪⎧a <b +c ≤3a ,a +b >c ,a +c >b ,所以⎩⎪⎨⎪⎧1<b a +ca≤3,1+b a >ca ,1+c a >ba ,所以⎩⎨⎧1<b a +ca ≤3,-1<c a -b a <1,两式相加得,0<2×c a <4,所以ca的取值范围为(0,2).7.若x >y ,a >b ,则在①a -x >b -y ;①a +x >b +y ;①ax >by ;①x -b >y -a ;①a y >bx 这五个式子中,恒成立的不等式的序号是________.【解析】:令x =-2,y =-3,a =3,b =2.符合题设条件x >y ,a >b .因为a -x =3-(-2)=5,b -y =2-(-3)=5.所以a -x =b -y ,因此①不成立.因为ax =-6,by =-6,所以ax =by ,因此①不成立.因为a y =3-3=-1,b x =2-2=-1,所以a y =bx,因此①不成立.由不等式的性质可推出①①成立.8.已知函数f (x )=x 2+2x +ax,若对任意x ①[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.【解析】对任意x ①[1,+∞),f (x )>0恒成立.等价于x 2+2x +a >0,即a >-(x +1)2+1在[1,+∞)上恒成立,令g (x )=-(x +1)2+1,则g (x )在[1,+∞)上单调递减,所以g (x )max =g (1)=-3,所以a >-3.9.(2020·江西临川一中高考模拟)已知函数f (x )=x ln (3-x ),则不等式f (lg x )>0的解集为________.【解析】因为f (x )=x ln (3-x ),则⎩⎪⎨⎪⎧x ≥0,3-x >0,解得0≤x <3,所以定义域为[0,3),因为f (x )=x ln (3-x )>0等价于⎩⎨⎧x >0,ln (3-x )>0,解得0<x <2,因为f (lg x )>0,所以⎩⎪⎨⎪⎧0≤lg x <3,0<lg x <2,x >0,解得1<x <100,所以解集为(1,100).10.已知函数f (x )=x 2+ax +b (a ,b ①R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.【解析】:由题意知f (x )=x 2+ax +b =22⎪⎭⎫ ⎝⎛+a x +b -a 24,f (x )的值域为[0,+∞),所以b -a 24=0,即b =a 24.所以f (x )=(x +a 2)2.又f (x )<c ,所以(x +a 2)2<c ,即-a 2-c <x <-a2+c .所以⎩⎨⎧-a2-c =m ①,-a2+c =m +6 ①.①-①,得2c =6,所以c =9.三 解答题1.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 【解析】:将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9,因为f (a )>0在|a |≤1时恒成立,所以 (1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4则实数x 的取值范围为(-∞,2)①(4,+∞). 2.已知函数f (x )=ax 2+2ax +1的定义域为R .(1)求a 的取值范围;(2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 【解析】:(1)因为函数f (x )=ax 2+2ax +1的定义域为R ,所以ax 2+2ax +1≥0恒成立,当a =0时,1≥0恒成立.当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0,解得0<a ≤1, 综上可知,a 的取值范围是[0,1].(2)因为f (x )=ax 2+2ax +1=a (x +1)2+1-a ,因为a >0,所以当x =-1时,f (x )min =1-a ,由题意得,1-a =22,所以a =12,所以不等式x 2-x -a 2-a <0可化为x 2-x -34<0. 解得-12<x <32,所以不等式的解集为⎪⎭⎫⎝⎛2321-,.3已知函数f (x )=ax 2+(b -8)x -a -ab ,当x ①(-∞,-3)①(2,+∞)时,f (x )<0,当x ①(-3,2)时,f (x )>0. (1)求f (x )在[0,1]内的值域;(2)若ax 2+bx +c ≤0的解集为R ,求实数c 的取值范围.【解析】:(1)因为当x ①(-∞,-3)①(2,+∞)时,f (x )<0,当x ①(-3,2)时,f (x )>0. 所以-3,2是方程ax 2+(b -8)x -a -ab =0的两个根,所以⎩⎨⎧-3+2=8-ba,-3×2=-a -aba ,所以a =-3,b =5.所以f (x )=-3x 2-3x +18=-3221⎪⎭⎫ ⎝⎛+x +754.因为函数图象关于x =-12对称且抛物线开口向下,所以f (x )在[0,1]上为减函数,所以f (x )max =f (0)=18, f (x )min =f (1)=12,故f (x )在[0,1]内的值域为[12,18].(2)由(1)知不等式ax 2+bx +c ≤0可化为-3x 2+5x +c ≤0,要使-3x 2+5x +c ≤0的解集为R ,只需Δ=b 2-4ac ≤0,即25+12c ≤0,所以c ≤-2512,所以实数c 的取值范围为⎥⎦⎤ ⎝⎛∞1225--, 4.(2020·湖北孝感3月模拟)设关于x 的一元二次方程ax 2+x +1=0(a >0)有两个实根x 1,x 2.(1)求(1+x 1)(1+x 2)的值;(2)求证:x 1<-1且x 2<-1;(3)如果x 1x 2①⎥⎦⎤⎢⎣⎡10101,,试求a 的取值范围. 【解析】:(1)因为关于x 的一元二次方程ax 2+x +1=0(a >0)有两个实根x 1,x 2. 所以x 1+x 2=-1a ,x 1x 2=1a ,则(1+x 1)(1+x 2)=1+x 1+x 2+x 1·x 2=1-1a +1a =1.(2)证明:由Δ≥0,得0<a ≤14.设f (x )=ax 2+x +1,则f (x )的对称轴与x 轴交点横坐标x =-12a ≤-2,又由于f (-1)=a >0,所以f (x )的图象与x 轴的交点均位于点(-1,0)的左侧,故x 1<-1且x 2<-1. (3)由⎩⎨⎧x 1+x 2=-1a ,x 1·x 2=1a①(x 1+x 2)2x 1·x 2=x 1x 2+x 2x 1+2=1a .因为x 1x 2①⎣⎡⎦⎤110,10,所以1a =x 1x 2+x 2x 1+2①⎣⎡⎦⎤4,12110①a ①⎣⎡⎦⎤10121,14.又⎩⎪⎨⎪⎧a >0,Δ=1-4a ≥0①0<a ≤14, 所以a 的取值范围为⎣⎡⎦⎤10121,14.。
2020版高考数学大一轮复习 第七章 不等式 第2讲 一元二次不等式及其解法分层演练 理(含解析)新人教A版
第2讲 一元二次不等式及其解法1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:选D.A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.若不等式ax 2+bx +2<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12,或x >13,则a -b a 的值为( )A.56 B.16 C .-16D .-56解析:选A.由题意得ax 2+bx +2=0的两根为-12与13,所以-b a =-12+13=-16,则a -b a=1-b a =1-16=56. 3.不等式x -43-2x<0的解集是( )A .{x |x <4}B .{x |3<x <4}C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x <4 解析:选C.不等式x -43-2x <0等价于⎝ ⎛⎭⎪⎫x -32(x -4)>0,所以不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4.4.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析:选A.x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4即可,解得-1≤a ≤4.5.(2019·福建龙岩模拟)已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞ B.⎝ ⎛⎭⎪⎫-32,12C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫32,+∞ D.⎝ ⎛⎭⎪⎫-12,32解析:选A.不等式f (x )>0的解集是(-1,3),故f (x )<0的解集是{x |x <-1或x >3},故f (-2x )<0的解集为{x |-2x <-1或-2x >3},即⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-32或x >12.6.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2} 7.函数y =lg (1-x )-2x 2+12x +32的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧-2x 2+12x +32>0,1-x >0,即⎩⎪⎨⎪⎧x 2-6x -16<0,1-x >0,解得-2<x <1, 即原函数的定义域为{x |-2<x <1}. 答案:(-2,1)8.(2019·江西南昌模拟)在R 上定义运算:x *y =x (1-y ).若不等式(x -y )*(x +y )<1对一切实数x 恒成立,则实数y 的取值范围是________.解析:由题意,知(x -y )*(x +y )=(x -y )·[1-(x +y )]<1对一切实数x 恒成立,所以-x 2+x +y 2-y -1<0对于x ∈R 恒成立.故Δ=12-4×(-1)×(y 2-y -1)<0,所以4y 2-4y-3<0,解得-12<y <32.答案:⎝ ⎛⎭⎪⎫-12,32 9.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2.(1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0, 即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝⎛⎭⎪⎫-3,12.10.(2019·合肥市第二次教学质量检测)已知函数f (x )=4-|ax -2|(a ≠0). (1)求函数f (x )的定义域;(2)若当x ∈[0,1]时,不等式f (x )≥1恒成立,求实数a 的取值范围.解:(1)要使函数有意义,需4-|ax -2|≥0,即|ax -2|≤4,|ax -2|≤4⇔-4≤ax -2≤4⇔ -2≤ax ≤6.当a >0时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2a ≤x ≤6a ;当a <0时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪6a≤x ≤-2a .(2)f (x )≥1⇔|ax -2|≤3,记g (x )=|ax -2|,因为x ∈[0,1],所以需且只需⎩⎪⎨⎪⎧g (0)≤3g (1)≤3⇔⎩⎪⎨⎪⎧2≤3|a -2|≤3⇔-1≤a ≤5,又a ≠0,所以-1≤a ≤5且a ≠0.1.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析:选C.由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.2.(2019·陕西咸阳模拟)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13B .18C .21D .26解析:选C.设f (x )=x 2-6x +a ,其图象为开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧f (2)≤0,f (1)>0,即⎩⎪⎨⎪⎧22-6×2+a ≤0,12-6×1+a >0, 解得5<a ≤8,又a ∈Z ,故a =6,7,8. 则所有符合条件的a 的值之和是6+7+8=21.3.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8). 答案:[2,8)4.不等式x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,则实数λ的取值范围为________. 解析:因为x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,所以x 2+8y 2-λy (x +y )≥0对于任意的x ,y ∈R 恒成立,即x 2-λyx +(8-λ)y 2≥0恒成立,由二次不等式的性质可得,Δ=λ2y 2+4(λ-8)y 2=y 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0, 解得-8≤λ≤4. 答案:[-8,4]5.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解:(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x的取值范围是⎣⎢⎡⎦⎥⎤12,2.6.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), 因为a >0,且0<x <m <n <1a,所以x -m <0,1-an +ax >0. 所以f (x )-m <0,即f (x )<m .。
2024年高考数学总复习第七章不等式真题分类27一元二次不等式及其解法
答案:(-5,0)∪(5,+∞) 由于 f(x)为 R 上的奇函数,所以当 x=0
时,f(0)=0;当 x<0 时,-x>0,所以 f(-x)=x2+4x=-f(x),即 f(x)=-x2-4x,
x2-4x,x>0, 所以 f(x)=0,x=0,
-x2-4x,x<0.
由 f(x)>x,可得x2-4x>x, x>0
或- 5 或-5<x<0,所以原不等式的解集为(-5,0)∪(5,+∞).
第7页
返回层目录 返回目录
真题分类27 一元二次不等式及其解法
高考·数学
02. 解不等式需要注意下面几个问题
(1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法. (2)掌握用数轴标根法解高次不等式和分式不等式,特别要注意因式的处理方 法. (3)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化 为易解的不等式. (4)对于含字母的不等式,要按照正确的分类标准,进行分类讨论.
C3.一元二次不等式的解法
高考·数学
命题者说:掌握二次不等式的解题要领,能讨论含参不等式的解法及高次不等式的解法.
第1题 第2题 第3题 第4题
第2页
返回目录
真题分类27 一元二次不等式及其解法
高考·数学
Ⅰ.不含参数的一元二次不等式的解法 1.(2013·广东,9,5 分)不等式 x2+x-2<0 的解集为________.
真题分类27 一元二次不等式及其解法
高考·数学
第七章 不等式
§7.1 不等式及其解法 真题分类27 一元二次不等式及其解法
C3.一元二次不等式的解法 C4.一元二次不等式的恒成立问题 C5.一元二次方程的根的分布问题 C6.一元二次不等式与函数的综合问题
高考数学一轮复习 专题7.2 一元二次不等式及其解法(讲
专题7.2 一元二次不等式及其解法【考纲解读】内容要求备注A B C集合一元二次不等式√对知识的考查要求依次分为了解、理解、掌握三个层次(在表中分别用A、B、C表示).了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.线性规划√基本不等式√【直击考点】题组一常识题1.不等式-x2-x+2≥0的解集是________.2.某产品的总成本y(万元)与产量x(台)之间的函数关系式为y=3000+20x-0.1x2(0<x<240,x∈N),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是________台.【解析】根据题意,得3000+20x-0.1x2≤25x,整理得x2+50x-30 000≥0,解得x≤-200(舍去)或x≥150.因为x∈N,所以生产者不亏本时的最低产量是150台.3. 若关于x的一元二次方程mx2-(1-m)x+m=0没有实数根,则m的取值范围是______________.【解析】易知m≠0,Δ=[-(1-m)]2-4m2<0,整理得-3m2-2m+1<0,即3m2+2m-1>0,解得m<-1或m>13,所以m的取值范围是(-∞,-1)∪⎝⎛⎭⎪⎫13,+∞.4.已知函数f(x)=(ax-1)·(x+b),如果不等式f(x)>0的解集是(-1,3),则不等式f(-2x)<0的解集是 ______________.题组二 常错题5.不等式x (2-x )>0的解集为________.【解析】由不等式x (2-x )>0,得不等式x (x -2)<0,则0<x <2. 6.不等式(ax -1)(x -2)<0(a ≤0)的解集是________.【解析】当a <0时,不等式(ax -1)(x -2)<0可化为⎝ ⎛⎭⎪⎫x -1a (x -2)>0,解得x <1a或x >2;当a =0时,不等式(ax -1)(x -2)<0可化为x -2>0,解得x >2.7.不等式x -12x +1≤0的解集是________.【解析】原不等式等价于⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0,解得-12<x ≤1.题组三 常考题8. 设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =________________.【解析】集合A =(1,3),B =⎝ ⎛⎭⎪⎫32,+∞,所以A ∩B =⎝ ⎛⎭⎪⎫32,3.9. 不等式2x 2-x <4的解集为________.【解析】因为2x 2-x <4=22,所以x 2-x <2,解得-1<x <2,故不等式的解集为(-1,2).10.设函数f (x )=mx 2-mx -1.若对于一切实数x ,f (x )<0恒成立,则m 的取值范围是 ________. 【解析】要使mx 2-mx -1<0恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒-4<m <0, 所以m 的取值范围为-4<m ≤0.【知识清单】考点1 一元二次不等式的解法对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.24b ac ∆=-0>∆ 0=∆ 0<∆二次函数cbx ax y ++=2(0>a )的图象20(0)ax bx c a ++=>的根有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅∅考点2 一元二次不等式恒成立问题由二次函数图像与一元二次不等式的关系得到的两个常用结论(1)不等式20ax bx c>++对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c >0,或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式20axbx c <++对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0,或⎩⎪⎨⎪⎧a <0,Δ<0.当定义域不是全体实数时,可结合二次函数图象考虑或者参变分离或转化为求二次函数最值. 考点3 一元二次不等式的应用构建不等式模型解决实际问题不等式的应用问题常常以函数为背景,多是解决实际生活、生产中的最优化问题等,解题时,要仔细审题,认清题目的条件以及要解决的问题,理清题目中各量之间的关系,建立恰当的不等式模型进行求解.【考点深度剖析】江苏新高考对不等式知识的考查要求较高,整个高中共有8个C 能级知识点,本章就占了两个,高考中以填空题和解答题的形式进行考查,涉及到数形结合、分类讨论和等价转化的思想,着重考查学生基本概念及基本运算能力.经常与其它章节知识结合考查,如与函数、方程、数列、平面解析几何知识结合考查.一元二次不等式及其解法主要有两种常见的考查方式:一是解一元二次不等式,往往是比较简单的,是一些问题的基础;二是与恒成立问题相结合,这一般都要与一元二次方程和一元二次函数相结合,也就是常说的“三个二次”问题.【重点难点突破】考点1 一元二次不等式的解法【1-1】不等式220ax bx +-≥的解集为1{|2}4x x --≤≤,则______,a b == .【答案】a =-4,b =-9【解析】Q 不等式220ax bx +-≥的解集为1{|2}4x x --≤≤,12,4∴--为方程220ax bx +-=的两根,则根据根与系数关系可得1122(),(2)()44b a a-+-=--⋅-=-,4,9a b ∴=-=-. 【1-2】已知不等式022>++bx ax 的解集为{}21<<-x x ,则不等式022<++a bx x 的解集为 .【答案】 ⎭⎬⎫⎩⎨⎧<<-211x x解为211<<-x ; 【1-3】已知函数22,1,()45,1,x x f x x x x ≤⎧=⎨-+>⎩若()1f a ≥,则实数a 的取值范围为 .【答案】[)0,+∞【解析】1()121a a f a ≤⎧≥⇒⎨≥⎩或21451a a a >⎧⎨-+≥⎩,∴10a a ≤⎧⎨≥⎩或1a x R >⎧⎨∈⎩,∴01a ≤≤或1a >,∴0a ≥.【1-4】不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是 . 【答案】(-∞,-4)∪(4,+∞)【解析】不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a<-4或a>4. 【1-5】解不等式2221x ax a -≤-+【思想方法】1.解一元二次不等式首先要看二次项系数a 是否为正;若为负,则将其变为正数; 2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数. 【温馨提醒】注意一元二次方程、二次函数、二次不等式的联系,解二次不等式应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;当0∆>时,需要计算相应二次方程的根,其解集是用根表示,对于含参数的二次不等式,需要针对开口方向、判别式的符号、根的大小分类讨论. 考点2 一元二次不等式恒成立问题【2-1】不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为 . 【答案】[-1,4]【解析】x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a≤4,解得-1≤a≤4,故选A. 【2-2】若不等式的解集是R ,则m 的范围是 .【答案】【2-3】若不等式对满足的所有都成立,则x 的取值范围是 .【答案】【解析】不等式化为:,令,则时,恒成立所以只需即,所以x 的范围是.【2-4】若不等式2230x x a -+-<成立的一个充分条件是40<<x ,则实数a 的取值范围应为 . 【答案】11a ≥【解析】记2()23f x x x a =-+-,因为(0),(4)f f 不同时为0,所以仅需(0)011(4)0f a f ≤⎧⇒≥⎨≤⎩. 【2-5】在R 上定义运算⊗:(1)x y x y ⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 都成立,则a 的取值范围是 . 【答案】1322a -<< 【解析】根据定义可得不等式()()1x a x a -⊗+<为()[1()]1x a x a --+<即2(1)10x x a a -+-+>,此不等式对任意实数x都成立,所以214[(1)1]04430(21)(23)0a a a a a a ∆=--+<⇒--<⇒+-<,从中解得1322a -<<.【思想方法】(1)解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方. 【温馨提醒】二次函数的恒成立问题实质是相应的图象落在x 轴上方或者下方,借助数形结合思想或者分类讨论思想求解.考点3 一元二次不等式的应用【3-1】有纯农药液一桶,倒出8升后用水补满,然后又倒出4升后再用水补满,此时桶中的农药不超过容积的28%,则桶的容积的取值范围是________. 【答案】(8]403,【3-2】汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速40 km/h 以内的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了,事发后现场测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m ,又知甲、乙两种车型的刹车距离s (m)车速x (km/h)之间有如下关系:20.10.01s x x 甲=+,20.050.05s x x 乙=+.问:超速行驶应负主要责任的是谁?【答案】A【思想方法】不等式应用问题常以函数、数列的模型出现,在解题中主要涉及不等式的解以及不等式的应用问题,解不等式应用题,重在审题,构造数学模型,这是解题关键.【温馨提醒】仔细分析已知条件,将实际问题转化为数学模型.考点4 不等式性质的应用【易错试题常警惕】1.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形.2.当Δ<0时,ax2+bx+c>0 (a≠0)的解集为R还是∅,要注意区别.3.含参数的不等式要注意选好分类标准,避免盲目讨论.。
精选高考数学一轮复习第七章不等式7.2不等式的解法公开课课件省市一等奖完整版
3.(2013四川,14,5分)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x.那么,不等式f(x+2)<5的
解集是
.
答案 (-7,3)
解析 ∵f(x)是偶函数,∴f(x)=f(|x|). 又x≥0时,f(x)=x2-4x, 不等式f(x+2)<5⇒f(|x+2|)<5 ⇒|x+2|2-4|x+2|<5⇒(|x+2|-5)(|x+2|+1)<0 ⇒|x+2|-5<0⇒|x+2|<5⇒-5<x+2<5⇒-7<x<3. 故解集为(-7,3).
2
,
3 2
,
三、解答题
6.(2015浙江绍兴一中回头考,20)已知f(x)=x2-2ax-3a2. (1)设a=1,解不等式f(x)>0; (2)若不等式f(x)<x的解集中有且仅有一个整数,求a的取值范围; (3)若a> 1 ,且当x∈[1,4a]时,|f(x)|≤4a恒成立,试确定a的取值范围.
5.(2017浙江吴越联盟测试,9)设函数f(x)=
3 3
xx则, xf(f(01,))=
4 x (1 x ), x 0 ,
为
.
;不等式f(f(x))≤0的解集
答案
1;
0
,
12∪
3 2
,
解析 由已知得f(1)=0,所以f(f(1))=f(0)=1.
作出函数f(x)的图象(如图),令u=f(x),若f(u)≤0,则u≤-3或u≥1,
评析 综合考查函数的奇偶性以及不等式等知识,考查灵活应用知识的能力及转化与化归思想.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
2.(2019浙江衢州、湖州、丽水三地教学质量检测,7)已知a,b是正实数,若2a+b≥2,则 ( )
A.ab≥ 1 B.a2+ b2 ≥ 1
2
42
C. 1 + 1 ≥2
2a b
D.a2+b2≥1
答案 B 解法一:令a= 3 ,b= 1 ,则ab= 3 < 1 ,a2+b2= 9 + 1 = 13 <1,排除A,D;
,若f(x0)>1,则x0的
B组 2017—2019年高考模拟·专题综合题组
时间:20分钟 分值:43分
一、选择题(每小题4分,共20分)
1.(2018浙江镇海中学阶段测试,7)若不等式[(1-a)n-a]lg a<0对任意正整数n恒成立,则实数a的 取值范围是 ( )
A.{a|a&g16 4 16
令a=b=1,则 1 2a
+ 1 = 3 <2,排除C;a2+ b2 ≥a2+ (2 2a)2
b2
4
4
=2a2-2a+1=2
a
1 2
2
+ 1 ≥ 1 ,可得B成立.
22
解法二:4≤(2a+b)2=4a2+b2+4ab≤4a2+b2+4a2+b2,化简可得a2+ b2 ≥ 1 ,选B.
故选D.
3.(2019浙江高考模拟试卷(四),12)已知函数f(x)=
2
x
1,
x
0,
则f(-1)=
x, x 0,
取值范围是
.
答案 1;(-∞,-1)∪(1,+∞)
解析 f(-1)=2-1=1.当x0≤0时, 2x0 -1>1,即 2x0 >2,所以-x0>1,解得x0<-1; 当x0>0时, x0 >1,解得x0>1. 综上,x0的取值范围为(-∞,-1)∪(1,+∞).
答案 C 易知函数f(x)的定义域为{x|x≠0,x∈R},且为偶函数,当x>0时, f(x)=x2+log2x,易知此 时函数f(x)单调递增,原不等式可化为0≠|x+1|<2,解得-3<x<1,且x≠-1,故选C.
2.(2017浙江衢州质量检测(1月),7)已知函数f(x)(x∈R,且x≠1)的图象关于点(1,0)对称,当x>1时,
,所以
x3 y4
=
x2 y
2
· x1y2
∈[2,27],故最大值为27,最小
值为2.
考点二 不等式的解法
1.(2019浙江杭州四中期中考试,6)已知函数f(x)=x2+log2|x|,则不等式f(x+1)-f(2)<0的解集为 () A.(-∞,-1)∪(3,+∞) B.(-∞,-3)∪(1,+∞) C.(-3,-1)∪(-1,1) D.(-1,1)∪(1,3)
4.(2019浙江高考模拟试卷(五),10)已知实数a,b,c满足a>0,b,c∈R,若a-c≤b≤3a-c,3b2≤a(a+c)
≤6b2,则 ( )
A.3b≥a+c且b2+c2≥ 1 a2
2
B.b+4a≤6c且b2+c2≤ 9 a2
2
C.b+4a≥-6c且b2+c2≥ 1 a2
2
D.3a+c≥5b且b2+c2≤ 9 a2
2
≥ 4 >1.
e
故选A.
3.(2019浙江宁波北仑中学高三模拟(二),14)设实数x,y满足3≤xy2≤8,4≤ xy2 ≤9,则 yx34 的最大值
是
,最小值是
.
答案 27;2
解析
由题意得
x2 y
2
∈[16,81],且 x1y2
∈ 18 ,
1 3
,所以a≤- 1 或a≥1.
4
评析 本题考查不等式恒成立问题,解题的关键是换元,要特别注意换元后的新变量的取值
范围.
6.(2018浙江杭州地区重点中学第一学期期中,17)若存在实数a,对任意的x∈(0,t](t∈Z),不等式x
|x-a|≤x+4恒成立,则整数t的最大值为
.
答案 6
解析 不等式x|x-a|≤x+4等价于|x-a|≤1+ 4 (x≠0),所以函数y=|x-a|的图象不在y=1+ 4 的图象上
.(用区间表示)
答案 (-4,1) 解析 不等式-x2-3x+4>0等价于x2+3x-4<0,解得-4<x<1.
三年模拟
A组 2017—2019年高考模拟·考点基础题组
考点一 不等式的概念和性质
1.(2019浙江高考数学仿真卷,2)已知a=log 23,b=8-0.7,c=sin 156 π,则a,b,c的大小关系是 (
2
答案 C 由a>0,a-c≤b≤3a-c,得a≤b+c≤3a,则1≤ b + c ≤3.
aa
由3b2≤a(a+c)≤6b2,得3 ba22 ≤1+ ac ≤6 ba22 , 令x= b ,y= c ,则1≤x+y≤3,即1-x≤y≤3-x.
aa
由3x2≤1+y≤6x2,得3x2-1≤y≤6x2-1.
想;考查的核心素养为数学抽象、数学建模以及数学运算.
由人体特征可知,头顶至咽喉的长度应小于头顶至脖子下端的长度,故咽喉至肚脐的长度应小
于 26 ≈42 cm,可得到此人的身高应小于26+42+ 26 42 ≈178 cm;
0.618
0.618
同理,肚脐至足底的长度应大于腿长105 cm,故此人的身高应大于105+105×0.618≈170 cm,结
42
3.(2019浙江高考模拟试卷(三),8)若对任意的x∈[0,1],|ax+b|≤1(a,b∈R)都成立,则 ( ) A.|a|>2 B.|a-2b|>4 C.对任意的x∈[0,1],都有|bx+a|≤2成立 D.对任意的x∈[0,1],都有|bx+a|>1成立
答案 C 解法一:设f(x)=ax+b,则f(0)=b, f(1)=a+b,即b=f(0),a=f(1)-f(0),由已知可得|f(0)|≤1,|f(1) |≤1,所以对任意的x∈[0,1],有|bx+a|=|f(0)x+f(1)-f(0)|=|f(0)(x-1)+f(1)|≤|f(0)||x-1|+|f(1)|≤|x-1|+1=2 -x≤2,选C. 解法二:令a=1,b=-1,满足已知条件,但此时A,B,D均错,所以选C.
咽喉的长度与咽喉至肚脐的长度之比也是 5 1.若某人满足上述两个黄金分割比例,且腿长 2
为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是 ( )
A.165 cm B.175 cm
C.185 cm D.190 cm
答案 B 本题主要考查学生的数学应用意识、抽象概括能力、运算求解能力,以及方程思
x1 x2 e
x1 x2 e
答案
A
由x1+x2<ex1x2和x2>0,得
x1 x2
<ex1-1,
又x1>0,x2>0,∴ex1-1>
x1 x2
>0,
∴x2>
x1 ex1
1
,则x1+x2>x1+
x1 ex1
1
=x1+ 1e +
1 e(ex1
1)
= 1e (ex1
答案 B 本题主要考查利用不等式性质比较大小.
特值法:令a=2,b= 1 ,可排除A,C,D.故选B.
2
2.(2019课标全国Ⅰ文,4,5分)
古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 5 1 2
5 1≈0.618,称为黄金分割比例 ,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至 2
f(x)=loga(x-1),且f(3)=-1,则不等式f(x)>1的解集是 ( )
A.
3,
3 2
B.(-∞,-3)∪ 32 ,
C.(-∞,-1)∪ 32 ,
D.(-∞,-1)∪ 1, 32
答案 D 由题意知, f(3)=loga2=-1,所以a= 12 ,
)
A.a>c>b B.a>b>c C.b>a>c D.c>b>a
答案 B 由题意得a>1,0<b<1,c<0,所以a>b>c,故选B.
2.(2019浙江学军中学高三上期中,6)已知x1>0,x2>0,x1+x2<ex1x2(e为自然对数的底数),则 ( )
A.x1+x2>1 B.x1+x2<1
C. 1 + 1 < 1 D. 1 + 1 > 1
B组 统一命题、省(区、市)卷题组
1.(2017山东理,7,5分)若a>b>0,且ab=1,则下列不等式成立的是 ( )
A.a+ b1 < 2ba <log2(a+b) B. 2ba <log2(a+b)<a+ b1 C.a+ b1 <log2(a+b)< 2ba D.log2(a+b)<a+ b1 < 2ba