2019版高考数学大一轮复习 第九章第5节 第1课时 椭圆及其标准方程学案 文 新人教A版
高三数学第一课时椭圆的定义及其标准方程复习学案1
学习目标1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程,理解椭圆标准方程的推导与化简.2.掌握椭圆的定义、标准方程及几何图形.学好数形结合数学思想的运用.3.通过椭圆定义的归纳和标准方程的推导,培养发现规律、认识规律并利用规律解决实际问题的能力,提高探索数学的兴趣,激发学习热情.学习过程:问题1:我们如何作出一个椭圆?要准确地作出一个椭圆,需要哪些几何要素?用图钉、一段绳子等,焦点间距离(焦距)、到间的距离和.问题2:椭圆的概念:在平面内与两个定点F1、F2的距离的等于常数(|F1F2|)的点的轨迹叫作.这两定点叫作椭圆的,两焦点间的距离叫作椭圆的.问题3:你能分别写出焦点在x轴和y轴上的椭圆的标准方程吗?(1)椭圆的焦点为(-c,0),(c,0),椭圆上的点到两个焦点的距离之和为2a,记b=,则椭圆的标准方程为.(2)椭圆的焦点为(0,-c),(0,c),椭圆上的点到两个焦点的距离之和为2a,记b=,则椭圆的标准方程为.问题4:轨迹为椭圆的标准方程求解时需注意什么?动点P到两个定点F1, F2的距离和为2a,两定点距离=2c,则动点的轨迹分以下几种情况进行讨论:(1)当时,动点轨迹为以F1, F2为焦点的椭圆;(2)当时,动点轨迹为线段F1F2;(3)当时,动点轨迹不存在.二、例题剖析例1:已知椭圆的两个焦点的坐标分别是(-2,0)、(-2,0),并且椭圆经过点53 (,) 22,求它的标准方程。
例2:平面内两个定点的距离是8,写出到这两个定点的距离的和是10的点的轨迹方程。
三、练习1、求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点距离的和是10;(2)焦点在y轴上,且经过两个点(0,2)和(1,0);(3)经过点(,)和点(,1).2、已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是四、作业1.“0<m<9”是“方程+=1表示焦点在x轴上的椭圆”的().A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.已知F1、F2是定点,|F1F2|=8,动点M满足|MF1|+|MF2|=8,则动点M的轨迹是().A.椭圆B.直线C.线段D.圆3.椭圆+=1的焦点坐标为.4.已知椭圆的焦点在y轴上,其上任意一点到两焦点的距离和为8,焦距为2,求此椭圆的标准方程.。
【教案】3.1.1椭圆及其标准方程 教学设计高中数学人教版(2019)选择性必修一
3.1.1椭圆及其标准方程一、内容和内容解析1.内容在学习直线和圆的方程的基础上,抽象椭圆的几何特征,然后建立它的标准方程,再利用方程研究它的几何性质,并利用它们解决简单的实际问题.2.内容解析教材关于圆锥曲线部分安排了三节内容.这三节分别对应着相应的三种圆锥曲线椭圆、双曲线、抛物线.这三种曲线的研究背景、研究问题、研究方法具有高度的相似性.在椭圆的概念部分,在问题“椭圆具有怎样的几何特性?”的引领下进行画图操作,从中发现椭圆的几何特征,进而获得椭圆的概念.椭圆的标准方程部分,先根据椭圆的几何特性建立坐标系,然后通过代数运算得到椭圆的标准方程.上述过程体现了研究圆锥曲线的一般思路和方法,包括如何发现曲线的几何特征、如何建立适当的坐标系、如何简化与优化方程、如何运用方程进行研究等.二、目标和目标解析1.目标(1)了解圆锥曲线的实际背景,及圆锥曲线在刻画现实世界和解决实际问题中的应用. (2)经历从具体情境中抽象出椭圆的过程.(3)掌握椭圆定义以及椭圆标准方程.2.目标解析达成上述目标的标志是:(1)能通过观察平面截圆锥认识到如何得到不同的圆锥曲线.(2)能通过实例知道圆锥曲线在生产生活中有广泛的应用.(3)能通过椭圆的绘制过程,认识椭圆的几何特征,给出椭圆定义.(4)通过能通过求曲线方程的方法,得到椭圆的标准方程.(5)在求解椭圆标准方程的过程中,体会建立曲线方程的方法,发展直观想象、数学运算素养.三、教学问题诊断分析学生对坐标法已有初步的认识,通过直线和圆的方程的学习,对用坐标法研究曲线的基本思路与方法已有了解,但还不善于自觉运用坐标法,在学习中会遇到如下难点.第一,如何抽象出椭圆的几何特征.在绘制过程中,笔尖将细绳分为两段,它们都不是定长,但是总长度一定.第二,如何建立适当的坐标系.建立坐标系的标准是所得方程简单.第三,推导过程中,遇到根式的化简,如何进行两次平方得到最后结果,需要学生有较强的运算能力以及对运算结果的预测能力.四、教学过程设计(一)背景讲解师生活动:教师讲解圆锥曲线的产生以及应用领域.设计意图:让学生了解圆锥曲线的由来以及在实际生活中的应用,激发学生们的学习欲望. (二)新课导入问题1:与一定点的距离等于定长的点的集合是什么?师生活动:教师进行讲解.设计意图:回顾圆的定义引出椭圆定义.问题2:那么与两定点的距离之和为一定长的点的集合又是什么图形呢?师生活动:教师进行讲解,引出小实验.设计意图:利用类比的方法,让学生体会椭圆与圆在定义上的区别与联系.小实验:1.在一张白纸上用两个钉子固定两个点F1,F2取一条定长为l的细绳,使它的两端固定.2.在F1,F2上,用笔绷住细绳使它慢慢移动.师生活动:教师进行讲解并进行动画演示.设计意图:让学生从直观的动画演示,理解椭圆的形成过程.(三)新课讲解师生活动:教师讲解椭圆定义,并给出焦点、焦距、半焦距的定义.问题:PF1与PF2的距离之和与定点F1与F2之间的距离之间不同的大小关系,对应的动点轨迹是什么?设计意图:让学生对椭圆有准确的理解,体会分类讨论的数学思想.问题:求曲线方程的基本步骤是什么?追问:建立平面直角坐标系遵循的原则是什么?师生活动:教师讲解.设计意图:为推导椭圆标准方程做前期准备.师生活动:利用椭圆定义以及求曲线方程的方法推导椭圆标准方程.设计意图:让学生巩固求曲线方程的操作步骤,感受椭圆标准方程的推导过程.师生活动:方程的曲线和曲线的方程的检验.设计意图:经过检验的过程,让学生体会曲线的方程和方程的曲线.问题:焦点在y轴上的椭圆标准方程是什么呢?师生活动:教师讲解.设计意图:让学生体会,不同的坐标系下椭圆的不同的标准方程.问题:你能小结出椭圆标准方程的特点吗?师生活动:教师讲解.设计意图:加深学生对椭圆标准方程的记忆.(四)应用巩固例1.已知椭圆的两个焦点分别是(-2,0),(2,0),并且经过点⎪⎭⎫ ⎝⎛-2325,, 求它的标准方程.师生活动:教师讲解.设计意图:体会求椭圆标准方程的一般解法.例2 如图,在圆x 2+y 2=4上取任意一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?为什么?师生活动:教师讲解.设计意图:让学生体会椭圆与圆的联系与区别.例3 如图设A ,B 两点的坐标分别为(-5,0),直线AM ,BM 相交于点M ,且他们的斜率之积是94-,求点M 的轨迹方程. 师生活动:教师讲解.设计意图:让学生巩固曲线方程的一般步骤.(五)回顾反思本节课从思想方法以及知识点两方面进行小结.1.本节课需要掌握一种方法(待定系数法)和 两种思想(数形结合、分类讨论)2.椭圆的定义以及椭圆的标准方程.3.教师带领学生完成知识体系表.五、布置作业1.教材P109 练习 2(3). 3 .4.2.教材P115 习题3.1 1.2.4.六、目标检测设计1.如果椭圆13610022=+y x 上一点P 与焦点F 1的距离为6,那么点P 与另一个焦点F 2的距离为多少?师生活动:教师讲解.设计意图:巩固椭圆定义.2. 求适合下列条件的椭圆的标准方程.(1)a =4,b =1,焦点在x 轴上;(2)a =4,c =15,焦点在y 轴上. 师生活动:教师讲解.设计意图:让学生体会椭圆标准方程的一般求法.。
【2019年高考一轮课程】理科数学 全国通用版椭圆 教案
一.自我诊断 知己知彼1. 过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆的方程为( )A .x 215+y 210=1 B .x 225+y 220=1 C .x 210+y 215=1 D .x 220+y 215=1 【答案】 A【解析】 由题意知c 2=5,可设椭圆方程为x 2λ+5+y 2λ=1(λ>0),则9λ+5+4λ=1,解得λ=10或λ=-2(舍去),∴所求椭圆的方程为x 215+y 210=1.2.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D .1925或21 【答案】 C【解析】 若a 2=9,b 2=4+k ,则c =5-k ,由c a =45,即5-k 3=45,得k =-1925;若a 2=4+k ,b 2=9,则c =k -5,由c a =45,即k -54+k =45,解得k =21.3.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( ) A .2 B .4 C .8D .2 2【答案】 B【解析】 椭圆方程变形为y 21+x 214=1,∴椭圆长轴长2a =2,∴△ABF 2的周长为4a =4.4.椭圆x 24+y 2=1的左.右焦点分别为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于( )A .72B .32 C .3 D .4 【答案】 A【解析】 F 1(-3,0),∵PF 1⊥x 轴, ∴)21,3(±-P ,∴|PF 1→|=12,∴|PF 2→|=4-12=72.5.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)25,23(-,(3,5),则椭圆方程为________. 【答案】 y 210+x 26=1【解析】 设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ).由⎪⎩⎪⎨⎧=+=+-1531)25()23(22n m n m 解得m =16,n =110.∴椭圆方程为y 210+x 26=1. 二.温故知新 夯实基础1.椭圆的概念平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集. 2.椭圆的标准方程和几何性质三.典例剖析 思维拓展考点一 椭圆的定义例1椭圆22x 1259y +=上的点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON | (O 为坐标原点)的值为( )A 2B 4C 8D 32【答案】B【解析】显然,由椭圆定义得,82=MF .又因ON 为三角形MF 1F 2的中位线,所以421ON ==2MF 故选B .【易错点】椭圆定义不清晰【方法点拨】本题考查椭圆的定义及中位线定理的应用.考点二 椭圆的方程例1 若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y x B .116922=+y x 或221169x y +=C .1162522=+y x D .1162522=+y x 或1251622=+y x 【答案】D【解析】根据椭圆的几何意义知:⎪⎪⎩⎪⎪⎨⎧+===+222621822c b a c b a ,解得435⎪⎩⎪⎨⎧===c b a ,焦点在x 轴是1162522=+y x ,或焦点在y 轴:1162522=+x y【易错点】 椭圆的几何意义不清晰【方法点拨】本题考查椭圆的标准方程与椭圆的几何意义.根据题意求出a ,b 带入标准方程即可,最后要注意焦点在哪个轴.考点三 椭圆的几何性质例1已知椭圆2222x 1(0)y a b a b+=>>经过点A (0,4),离心率为53;(1)求椭圆C 的方程; (2)求过点(3,0)且斜率为54的直线被C 所截线段的中点坐标. 【答案】(1)1162522=+y x (2))56,23(- 【解析】(1)因为椭圆经过点A ,所以b =4.又因离心率为53,所以525915322=∴=-∴=a a b a c 所以椭圆方程为:1162522=+y x 依题意可得,直线方程为)(354-=x y ,并将其代入椭圆方程1162522=+y x ,得0832=--x x .(2)设直线与椭圆的两个交点坐标为),(),,(2211y x y x ,则由韦达定理得,321=+x x , 所以中点横坐标为22321=+x x ,并将其代入直线方程得,56-=y故所求中点坐标为)56,23(-.【考点】求椭圆方程.直线与椭圆相交求弦的中点坐标. 【方法点拨】(1)待定系数法求椭圆方程;(2)先求出直线方程代入椭圆方程,然后由韦达定理求出两根之和,再求出中点横坐标,最后代入直线方程求出中点纵坐标即得结果.四.举一反三 成果巩固考点一 椭圆的定义1.在Rt ABC ∆中,2AB AC ==.如果一个椭圆通过A .B 两点,它的一个焦点为点C ,另一个焦点在边AB 上,则这个椭圆的焦距为 .【解析】设另一个焦点为F ,在R t A B C ∆中,2A B A C ==,所以BC =,而2A C A F B C B F a +=+=,所以422AC AF BC BF a a +++=+=⇒=,又2AC =,所以AF =,所以CF ==.2.已知两点)0,1(1-F .)0,1(F ,且21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )。
近年届高考数学大一轮复习第九章平面解析几何9.5椭圆第1课时学案理北师大版(2021年整理)
2019届高考数学大一轮复习第九章平面解析几何9.5 椭圆第1课时学案理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第九章平面解析几何9.5 椭圆第1课时学案理北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第九章平面解析几何9.5 椭圆第1课时学案理北师大版的全部内容。
§9。
5 椭圆最新考纲考情考向分析1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2。
掌握椭圆的定义、几何图形、标准方程及简单性质.椭圆的定义、标准方程、简单性质通常以小题形式考查,直线与椭圆的位置关系主要出现在解答题中.题型主要以选择、填空题为主,一般为中档题,椭圆方程的求解经常出现在解答题的第一问。
1.椭圆的概念把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c〉0,且a,c为常数:(1)若a〉c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和简单性质标准方程x2a2+错误!=1 (a〉b>0)错误!+错误!=1 (a〉b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a 对称性对称轴:坐标轴对称中心:原点顶点坐标A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=错误!∈(0,1)a,b,c的关系a2=b2+c2知识拓展点P(x0,y0)和椭圆的位置关系(1)点P(x0,y0)在椭圆内⇔错误!+错误!<1。
椭圆复习课(第一课时)学案-2025届高三数学一轮复习
椭圆复习课(第一课时)学习目标知识与技能:掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).过程与方法:通过例题的研究,进一步掌握椭圆的简单应用.理解数形结合的思想. 情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.教学过程一、知识梳理1、定义:平面内到两个定点21F F ,的距离之 等于常数( )的点的 轨迹叫椭圆.2、椭圆的标准方程和几何性质标准方程22221(0)x y a b a b +=>> )0(12222>>=+b a b x a y 图 像范围 -a ≤x ≤a -b ≤y ≤b -a ≤x ≤a -b ≤y ≤b对称性 对称轴:坐标轴; 对称中心:原点顶点坐标()0,1a A - ()0,2a A ()b B -,01 ()b B ,01()a A -,01 ()a A ,02 ()0,1b B - ()0,2b B焦点坐标 ()0,1c F - ()0,2c F()c F -,01 ()c F ,02轴长 长轴长2a ,短轴长2b焦距 c F F 221=a,b,c 关系222b a c +=亲,表格中有数处错误,你能一一找出吗?离心率1>=ac e(1)动点P 到两定点A (–2,0),B(2,0)的距离之和为4,则点P 的轨迹是椭圆.( )(2)若椭圆1ky 4x 22=+的焦距是22,则k=2. ( )三、能力提升考点一 椭圆的定义及其标准方程例1:已知椭圆以坐标轴为对称轴,求分别满足下列条件的椭圆的标准方程.(1)一个焦点为(2,0),离心率为 ;(2)过 ()23,N 1,6M ,),(-两点.直击高考已知椭圆C: 1b y a x 2222=+(a>b>0)的左右焦点为21F F ,,离心率为33,过2F 的直线L 交C 于A ,B 两点,若B AF 1∆的周长为43,则C 的方程为( )A.12y 3x 22=+B. 1y 3x 22=+ C. 18y 12x 22=+ D. 14y 12x 22=+变式提升:设21F F ,分别是椭圆116y 25x 22=+的左、右焦点,P 为椭圆上一点,M 是P F 1的中点,|OM| =3,则P 点到椭圆左焦点的距离为 ( )A.4B.3C.2D.521=e X YPO xyBOA1F1F2F2FM考点二、椭圆的几何性质例2、已知椭圆C: 1b y a x 2222=+(a>b>0)的左右焦点为21F F ,,P 是椭圆短轴的一个端点,且21PF PF ⊥,则椭圆的离心率为 .变式提升椭圆C :1by a x 2222=+(a >b >0)的左、右焦点分别为21F F ,,焦距为2c ,若直线y=3(x+c )与椭圆C 的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .互动探究已知椭圆C: 1by a x 2222=+(a>b>0)的左右焦点为21F F ,,M 为椭圆上一点,021=•M F M F ,则椭圆离心率的范围是 .XYMO1F2FYOXP1F2F探究思考1)本题中若P 点在椭圆内部,其他条件不变,试求之。
(北京专用)2019版高考数学一轮复习 第九章 平面解析几何 第五节 椭圆课件 理
答案 B 因为点P在椭圆上,所以|PF1|+|PF2|=2a,因为P(5,2),F1(-6,0),F2 (6,0),所以|PF2|= 5 ,|PF1|=5 5 ,所以2a=6 5 ,a=3 5 ,又c=6,所以b2=9,所以 b=3,2b=6.
3.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短
1)(3m2
4) 3k
6k 2m2 2 1
(3k
2
1)m2
=
4m2 4k 3k 2
2
1
4
= 4(k 2 1) 4k 2 4 =0. 3k 2 1
所以OA⊥OB.
综上所述,总有OA⊥OB成立.
(3)因为直线AB与圆O相切,所以圆O的半径即为△OAB的AB边上的高, 当l的斜率不存在时,由(2)可知|AB|=2, 则S△OAB=1. 当l的斜率存在时,由(2)可知,
ka
kO (caE的ac)中,所点以为 12N=,aa则 Ncc ,即0, ka2a=,3由c,于所B以,Me=,13N .三故点选共A.线,所以kBN=kBM,即
2 =
a
方法技巧 求椭圆离心率的常用方法 (1)直接求出a,c,利用定义求解; (2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然 后转化为关于离心率e的一元二次方程求解; (3)通过特殊值或特殊位置求出离心率.
∵焦距为4,∴c2=m-2-10+m=4,解得m=8.
考点三 直线与椭圆的位置关系
典例3 已知圆O:x2+y2=1的切线l与椭圆C:x2+3y2=4相交于A,B两点. (1)求椭圆C的离心率; (2)求证:OA⊥OB; (3)求△OAB面积的最大值.
高考数学一轮复习 第九章 平面解析几何 第5讲 椭圆教案 理(含解析)新人教A版-新人教A版高三全册
第5讲椭圆基础知识整合1.椭圆的概念在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫做□0102焦点,两焦点间的距离叫做□03焦距.椭圆.这两定点叫做椭圆的□集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若□04a>c,则集合P表示椭圆;(2)若□05a=c,则集合P表示线段;(3)若□06a<c,则集合P为空集.2.椭圆的标准方程和几何性质续表椭圆的常用性质(1)设椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,P 点在短轴端点处;当x =±a 时,|OP |有最大值a ,P 点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 为斜边,a 2=b 2+c 2.(3)已知过焦点F 1的弦AB ,则△ABF 2的周长为4a . (4)过椭圆的焦点且垂直于长轴的弦之长为2b2a.(5)椭圆离心率e =1-b 2a2.1.已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .8答案 D解析 椭圆焦点在y 轴上,∴a 2=m -2,b 2=10-m .又c =2,∴m -2-(10-m )=c 2=4.∴m =8.2.(2018·某某模拟)若椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A.12B.33C.22D.24答案 C解析 因为椭圆的短轴长等于焦距,所以b =c ,所以a 2=b 2+c 2=2c 2,所以e =ca =22,故选C.3.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于13,则椭圆C 的方程是( )A.x 24+y 23=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 29+y 28=1 答案 D解析 依题意,设椭圆方程为x 2a 2+y2b2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =13,c 2=a 2-b 2,解得a 2=9,b 2C 的方程为x 29+y 28=1.4.(2019·某某模拟)已知点P (x 1,y 1)是椭圆x 225+y 216=1上的一点,F 1,F 2是其左、右焦点,当∠F 1PF 2最大时,△PF 1F 2的面积是( )A.1633B .12C .16(2+3)D .16(2-3)答案 B解析 ∵椭圆的方程为x 225+y 216=1,∴a =5,b =4,c =25-16=3,∴F 1(-3,0),F 2(3,0).根据椭圆的性质可知当点P 与短轴端点重合时,∠F 1PF 2最大,此时△PF 1F 2的面积S =12×2×3×4=12,故选B.5.椭圆3x 2+ky 2=3的一个焦点是(0,2),则k =________. 答案 1解析 方程3x 2+ky 2=3可化为x 2+y 23k=1.a 2=3k >1=b 2,c 2=a 2-b 2=3k-1=2,解得k=1.6.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.答案33解析 设|PF 2|=x ,∵PF 2⊥F 1F 2,∠PF 1F 2=30°,∴|PF 1|=2x ,|F 1F 2|=3x .又|PF 1|+|PF 2|=2a ,|F 1F 2|=2c .∴2a =3x,2c =3x ,∴C 的离心率为e =c a =33. 核心考向突破考向一 椭圆定义的应用例1 (1)(2018·某某八校联考)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59 答案 B解析 由题意知a =3,b =5,cPF 1的中点为M ,则有OM ∥PF 2,∵OM ⊥F 1F 2,∴PF 2⊥F 1F 2,∴|PF 2|=b 2a =53.又∵|PF 1|+|PF 2|=2a =6,∴|PF 1|=2a -|PF 2|=133,∴|PF 2||PF 1|=53×313=513.故选B.(2)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16.则|AF 2|=________.答案 5解析 由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3.∵△ABF 2的周长为16,∴4a =16,∴a =4.则|AF 1|+|AF 2|=2a =8,∴|AF 2|=8-|AF 1|=8-3=5.触类旁通椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定义和余弦定理可求|PF 1|·|PF 2|,通过整体代入可求其面积等.即时训练 1.(2019·某某联考)设A ,B 是椭圆C :x 212+y 22=1的两个焦点,点P 是椭圆C 与圆M :x 2+y 2=10的一个交点,则||PA |-|PB ||=( )A .2 2B .4 3C .4 2D .6 2答案 C解析 由题意知,A ,B 恰好在圆M 上且AB 为圆M 的直径,∴|PA |+|PB |=2a =43,|PA |2+|PB |2=(2c )2=40,∴(|PA |+|PB |)2=|PA |2+|PB |2+2|PA ||PB |,解得2|PA ||PB |=8,∴(|PA |-|PB |)2=|PA |2+|PB |2-2|PA ||PB |=32,则||PA |-|PB ||=42,故选C.2.已知椭圆C :x 29+y 24=1,点M 与椭圆C 的焦点不重合.若M 关于椭圆C 的焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=________.答案 12解析 取MN 的中点为G ,点G 在椭圆C 上.设点M 关于椭圆C 的焦点F 1的对称点为A ,点M 关于椭圆C 的焦点F 2的对称点为B ,则有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.考向二 椭圆的标准方程例2 (1)(2019·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a=c3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1.选A.(2)已知A ⎝ ⎛⎭⎪⎫-12,0,B 是圆:⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.答案 x 2+43y 2=1解析 如图,由题意知|PA |=|PB |,|PF |+|BP |=2.所以|PA |+|PF |=2且|PA |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+43y 2=1.触类旁通求椭圆方程的常用方法(1)定义法,定义法的要点是根据题目所给的条件确定动点的轨迹满足椭圆的定义. 2待定系数法,待定系数法的要点是根据题目所给的条件确定椭圆中的两个系数a ,b .当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx 2+ny 2=1m >0,n >0,m ≠n ,再用待定系数法求出m ,n 的值即可.即时训练 3.(2019·某某模拟)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 C解析 如图,|AF 2|=12|AB |=32,|F 1F 2|=2,由椭圆定义,得|AF 1|=2a -32. ①在Rt △AF 1F 2中,|AF 1|2=|AF 2|2+|F 1F 2|2=⎝ ⎛⎭⎪⎫322+22. ②由①②得a =2,∴b 2=a 2-c 2=3. ∴椭圆C 的方程为x 24+y 23=1,应选C.4.设F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB 是面积为43的等边三角形,则椭圆C 的方程为________.答案x 29+y 26=1 解析 l 经过F 1垂直于x 轴,得y A =b 2a ,在Rt △AF 1F 2中,∠AF 2F 1=30°,得b 2a =33×2c ,12×2c ×2b 2a =43,a 2=b 2+c 2,解得a 2=9,b 2=6,c 2x 29+y 26=1.考向三 椭圆的几何性质例3 (1)(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A.13B.12C.22D.223答案 C解析 根据题意,可知c =2,因为b 2=4,所以a 2=b 2+c 2=8,即a =22,所以椭圆C 的离心率为e =222=22.故选C.(2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,且满足c 2-b 2+ac <0,则该椭圆的离心率e 的取值X 围是________.答案 ⎝ ⎛⎭⎪⎫0,12 解析 ∵c 2-b 2+ac <0,∴c 2-(a 2-c 2)+ac <0,即2c 2-a 2+ac <0,∴2c 2a 2-1+ca<0,即2e 2+e -1<0,解得-1<e <12.又∵0<e <1,∴0<e <12.∴椭圆的离心率e 的取值X 围是⎝ ⎛⎭⎪⎫0,12.触类旁通椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a ,c 的值;二是由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.即时训练 5.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32B .2- 3C.3-12D.3-1 答案 D解析 在△F 1PF 2中,∠F 1PF 2=90°,∠PF 2F 1=60°,设|PF 2|=m ,则2c =|F 1F 2|=2m ,|PF 1|=3m ,又由椭圆定义可知2a =|PF 1|+|PF 2|=(3+1)m ,则离心率e =c a =2c 2a=2m 3+1m=3-1.故选D.6.(2019·某某模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0),A 为左顶点,B 为上顶点,F 为右焦点且AB ⊥BF ,则这个椭圆的离心率等于________.答案5-12解析 由题意得A (-a,0),B (0,b ),F (c,0),∵AB ⊥BF ,∴AB →·BF →=0,∴(a ,b )·(c ,-b )=ac -b 2=ac -a 2+c 2=0,∴e -1+e 2=0,解得e =5-12. 考向四 直线与椭圆的位置关系角度1 弦的中点问题例4 (2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点.线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且F P →+F A →+F B →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.解 (1)证明:设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得m <⎝ ⎛⎭⎪⎫1-14×3=32,且m >0,即0<m <32,故k <-12. (2)由题意得F (1,0).设P (x 3,y 3),则由(1)及题设得(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0),x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝⎛⎭⎪⎫1,-32,|F P →|=32.于是|F A →|=x 1-12+y 21= x 1-12+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12.同理|F B →|=2-x 22. 所以|F A →|+|F B →|=4-12(x 1+x 2)=3.故2|F P →|=|F A →|+|F B →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则 2|d |=||FB →|-|FA →||=12|x 1-x 2|=12x 1+x 22-4x 1x 2.②将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.角度2 弦长的问题例5 (2019·某某某某模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求△PAB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),∴4a 2+1b2=1,∴a 2=8,b 2=2.故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y22=1,整理,得x 2+2mx +2m 2-4=0.∵Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4.则|AB |=1+14× x 1+x 22-4x 1x 2=54-m 2.点P 到直线l 的距离d =|m |1+14=2|m |5. ∴S △PAB =12d |AB |=12×2|m |5×54-m2=m24-m2≤m 2+4-m 22=2.当且仅当m 2=2,即m =±2时取得最大值. 触类旁通1解决直线与椭圆的位置关系的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.(3)直线与椭圆相交时常见问题的处理方法 涉及问题 处理方法弦长 根与系数的关系、弦长公式(直线与椭圆有两交点) 中点弦或弦 的中点 点差法(结果要检验Δ>0)即时训练 7.(2019·某某联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为4π3,过椭圆C 的右焦点作斜率为k (k ≠0)的直线l 与椭圆C相交于A ,B 两点,线段AB 的中点为P .(1)求椭圆C 的标准方程;(2)过点P 垂直于AB 的直线与x 轴交于点D ⎝ ⎛⎭⎪⎫17,0,求k 的值. 解 (1)由题易得,过椭圆短轴的一个端点与两个焦点的圆的半径为 43. 设椭圆的右焦点的坐标为(c,0),依题意知⎩⎪⎨⎪⎧2c =2,a 2=b 2+c 2,⎝ ⎛⎭⎪⎫b -432+c 2=43.又因为b >1,解得a =2,b =3,c =1, 所以椭圆C 的标准方程为x 24+y 23=1.(2)由题意,过椭圆C 的右焦点的直线l 的方程为y =k (x -1),将其代入x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,所以y 1+y 2=k (x 1+x 2)-2k =-6k3+4k 2.因为P 为线段AB 的中点,所以点P 的坐标为⎝ ⎛⎭⎪⎫4k 23+4k 2,-3k 3+4k 2.又因为直线PD 的斜率为-1k,所以直线PD 的方程为 y --3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x -4k 23+4k 2. 令y =0,得x =k 23+4k2,所以点D 的坐标为⎝ ⎛⎭⎪⎫k 23+4k 2,0, 则k 23+4k 2=17,解得k =±1. 8.(2019·某某某某模拟)已知中心在原点O ,焦点在x 轴上的椭圆E 过点C (0,1),离心率为22. (1)求椭圆E 的方程;(2)直线l 过椭圆E 的左焦点F ,且与椭圆E 交于A ,B 两点,若△OAB 的面积为23,求直线l 的方程.解 (1)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),由已知得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2,解得a 2=2,b 2=1,所以椭圆E 的方程为x 22+y 2=1.(2)由已知,直线l 过左焦点F (-1,0). 当直线l 与x 轴垂直时,A ⎝ ⎛⎭⎪⎫-1,-22,B ⎝ ⎛⎭⎪⎫-1,22, 此时|AB |=2,则S △OAB =12×2×1=22,不满足条件.当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k x +1,x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.因为S △OAB =12|OF |·|y 1-y 2|=12|y 1-y 2|,由已知S △OAB =23得|y 1-y 2|=43.因为y 1+y 2=k (x 1+1)+k (x 2+1)=k (x 1+x 2)+2k =k · -4k 21+2k 2+2k =2k1+2k2,y 1y 2=k (x 1+1)·k (x 2+1)=k 2(x 1x 2+x 1+x 2+1)=-k 21+2k 2, 所以|y 1-y 2|=y 1+y 22-4y 1y 2=4k21+2k22+4k 21+2k 2=43, 所以k 4+k 2-2=0,解得k =±1,所以直线l 的方程为x -y +1=0或x +y +1=0.1.已知点F 1,F 2是椭圆x 2+2y 2=2的左、右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是( )A .0B .1C .2D .2 2答案 C解析 解法一:设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0),所以PF 1→+PF 2→=(-2x 0,-2y 0),所以|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.因为点P 在椭圆上,所以0≤y 20≤1,所以当y 20=1时,|PF 1→+PF 2→|取最小值2.解法二:由PF 1→+PF 2→=PO →+OF 1→+PO →+OF 2→=2PO →求解.故选C.2.已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,求|PA |+|PF |的最大值和最小值.解 由题意知a =3,b =5,c =2,F (-2,0).设椭圆右焦点为F ′,则|PF |+|PF ′|=6,所以|PA |+|PF |=|PA |-|PFP ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2,或者最小值-|AF ′|=- 2.所以|PA |+|PF |的最大值为6+2,最小值为6- 2.3.在椭圆x 218+y 28=1上求一点,使它到直线2x -3y +15=0的距离最短.解 设所求点坐标为A (32cos θ,22sin θ),θ∈R , 由点到直线的距离公式得 d =|62cos θ-62sin θ+15|22+-32=⎪⎪⎪⎪⎪⎪-12sin ⎝ ⎛⎭⎪⎫θ-π4+1513,当θ=2k π+3π4,k ∈Z 时,d 取到最小值31313,此时A 点坐标为(-3,2). 答题启示椭圆中距离的最值问题一般有3种解法:(1)利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e );(2)根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上);(3)用椭圆的参数方程设动点的坐标,转化为三角问题求解. 对点训练1.设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .52B.46+ 2 C .7+ 2 D .6 2答案 D解析 解法一:设椭圆上任意一点为Q (x ,y ),则圆心(0,6)到点Q 的距离d =x 2+y -62=-9y 2-12y +46=-9⎝ ⎛⎭⎪⎫y +232+50≤52, P ,Q 两点间的最大距离d ′=d max +2=6 2.解法二:易知圆心坐标为M (0,6),|PQ |的最大值为|MQ |max +2,设Q (10cos θ,sin θ), 则|MQ |=10cos 2θ+sin θ-62=-9sin 2θ-12sin θ+46 =-9⎝⎛⎭⎪⎫sin θ+232+50,当sin θ=-23时,|MQ |max =52,所以|PQ |max =52+2=6 2.故选D.2.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.答案 4解析 设P 点坐标为(x 0,y 0).由题意知a =2,因为e =c a =12,所以c =1,所以b 2=a 2-c 2=3.所以椭圆方程为x 24+y 23=1.所以-2≤x 0≤2,-3≤y 0≤ 3. 因为F (-1,0),A (2,0), PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),所以PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 即当x 0=-2时,PF →·PA →取得最大值4.。
高中数学..椭圆及其标准方程学案
2.1。
1椭圆及其标准方程 学案(一)教学目标1.理解椭圆的定义;2。
理解椭圆的标准方程的推导,在化简椭圆方程的过程中提高学生的运算能力;3。
掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。
(二)教学重点与难点 重点:掌握椭圆的标准方程难点:会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。
(三)教学过程问题1:前面两节课,说一说所学习过的内容?1、 曲线与方程的概念?2、求曲线的方程的步骤?引例1:1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长引例2:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的21,F F 两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆 1、椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作 ,这两个定点叫做椭圆的 ,两焦点间的距离叫做椭圆的 即1212|PF |||||PFF F +>;焦点:12,F F ;焦距:12||F F注意:椭圆定义中容易遗漏的两处地方: (1)两个定点—-—两点间距离确定(2)绳长--轨迹上任意点到两定点距离和确定思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(→线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(→圆)由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)问题2:你能利用上一节学过的坐标法求出椭圆的方程吗? 问题3:书本P39页思考? 问题4:书本P40页思考?如果椭圆的焦点在y 轴上(选取方式不同,调换yx ,轴)焦点则变成),0(),,0(21c F c F -,只要将方程12222=+b y a x 中的y x ,调换,即可得12222=+bxa y ,也是椭圆的标准方程2、椭圆标准方程:(1)焦点在焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程12222=+by a x其中222b c a+=(2)焦点在焦点在y 轴上,焦点是),0(),,0(21c F c F -,中心在坐标原点的椭圆方程12222=+bx a y其中222b c a+=(3)方程),0,0(122n m n m ny m x ≠>>=+就不能肯定焦点在哪个轴上;由于m n与的大小关系判断焦点在那个坐标轴上。
2025年高考数学一轮复习-9.5.1-椭圆的定义及标准方程【课件】
预计2025年高考求椭圆的标准方程、直线与椭圆的交汇问题仍会
预测 出题,一般以解答题出现,求椭圆的离心率,考查比较灵活,一般以选择
题、填空题的形式出现.
必备知识·逐点夯实
知识梳理·归纳
1.椭圆的定义
常数
把平面内与两个定点F1,F2的距离的和等于______(大于|F
1F2|)的点的轨迹叫做椭圆.
(3)
源自教材第113页例6.此题给出椭圆的另一种定义方式
[例1](1)如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在
2 2
+y =1
圆上运动时,则线段PD的中点M的轨迹方程为______________.
4
【解析】(1)设点M的坐标为(x,y),点P的坐标为(x0,y0),
(6)焦点三角形的周长为2(a+c).
基础诊断·自测
类型
辨析
改编
易错
高考
题号
1
2
4
3
1.(思考辨析)(正确的打“√”,错误的打“×”)
(1)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆.
(
×
)
提示:(1)因为2a=|F1F2|=8,动点的轨迹是线段F1F2,不是椭圆;
(2)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于6的点的轨迹是椭圆.
(
×
)
提示:(2)由于2a<|F1F2|,动点不存在,因此轨迹不存在;
(3)平面内到点F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的
《椭圆及其标准方程》教学设计(精选3篇)
《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。
这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。
但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。
基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。
使同学真正成为课堂的主体。
三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。
2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。
3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。
(2)进行数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程(一)、创设情景,导入新课。
(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。
2019版高考数学第9章平面解析几何5第5讲椭圆教案理
第5讲 椭 圆1.椭圆的定义条件结论1结论2平面内的动点M 与平面内的两个定点F 1,F 2M 点的轨迹为 椭圆F 1、F 2为椭圆的焦点|F 1F 2|为椭圆的焦距|MF 1|+|MF 2|=2a 2a >|F 1F 2|标准方程x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0) 图形性质范围-a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性对称轴:x 轴、y 轴 对称中心:(0,0)顶点A 1(-a ,0),A 2(a ,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b ,0),B 2(b ,0)轴 长轴A 1A 2的长为2a 短轴B 1B 2的长为2b焦距 |F 1F 2|=2c离心率e =ca,e ∈(0,1) a ,b ,c的关系c 2=a 2-b 2已知点P (x 0,y 0),椭圆x 2a 2+y 2b2=1(a >b >0),则(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.4.椭圆中四个常用结论(1)P 是椭圆上一点,F 为椭圆的焦点,则|PF |∈[a -c ,a +c ],即椭圆上的点到焦点距离的最大值为a +c ,最小值为a -c ;(2)椭圆的通径(过焦点且垂直于长轴的弦)长为2b2a,通径是最短的焦点弦;(3)P 是椭圆上不同于长轴两端点的任意一点,F 1,F 2为椭圆的两焦点,则△PF 1F 2的周长为2(a +c ).(4)设P ,A ,B 是椭圆上不同的三点,其中A ,B 关于原点对称,直线PA ,PB 斜率存在且不为0,则直线PA 与PB 的斜率之积为定值-b 2a2.判断正误(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( ) (3)椭圆既是轴对称图形,又是中心对称图形.( )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( )(5)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b2=1(a >b >0)的焦距相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√(教材习题改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 解析:选D.右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为ca=12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1.与椭圆x 29+y 24=1有相同离心率的椭圆方程是( )A.y 29+x 24=1B.x 236+y 225=1C.y 236+x 225=1 D.x 236+y 211=1 解析:选A.椭圆y 29+x 24=1与已知椭圆的长轴长和短轴长分别相等,因此两椭圆的形状、大小完全一样,只是焦点所在坐标轴不同,故两个椭圆的离心率相同. 若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.解析:由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,解得3<k <5且k ≠4.答案:(3,4)∪(4,5)(教材习题改编)椭圆C :x 225+y 216=1的左右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A 、B 两点,则△F 1AB 的周长为________.解析:△F 1AB 的周长为 |F 1A |+|F 1B |+|AB |=|F 1A |+|F 2A |+|F 1B |+|F 2B | =2a +2a =4a .在椭圆x 225+y 216=1中,a 2=25,a =5,所以△F 1AB 的周长为4a =20. 答案:20椭圆的定义及应用[典例引领](1)(2018·豫北六校联考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16,则|AF 2|=________.(2)(2018·徐州模拟)已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________. 【解析】 (1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3, 因为△ABF 2的周长为16,所以4a =16,所以a =4. 则|AF 1|+|AF 2|=2a =8, 所以|AF 2|=8-|AF 1|=8-3=5. (2)设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 所以2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2, 所以S △PF 1F 2=12r 1r 2=b 2=9,所以b =3.【答案】 (1)5 (2)3本例(2)中增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解:由原题得b 2=a 2-c 2=9,又2a +2c =18,所以a -c =1,解得a =5,故椭圆的方程为x 225+y 29=1.(1)椭圆定义的应用范围①确认平面内与两定点有关的轨迹是否为椭圆. ②解决与焦点有关的距离问题. (2)焦点三角形的结论椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫作焦点三角形.如图所示,设∠F 1PF 2=θ. ①|PF 1|+|PF 2|=2a .②4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ. ③焦点三角形的周长为2(a +c ).④S △PF 1F 2=12|PF 1||PF 2|sin θ=b 2·sin θ1+cos θ=b 2tan θ2=c |y 0|,当|y 0|=b ,即P 为短轴端点时,S △PF 1F 2取最大值,为bc .已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN的垂直平分线交MA 于点P ,则动点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:选B.点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |.由椭圆的定义知,P 的轨迹是椭圆.椭圆的标准方程[典例引领](待定系数法)(1)一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( ) A.x 28+y 26=1 B.x 216+y26=1 C.x 24+y 22=1 D.x 28+y 24=1 (2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为( )A.x 220+y 24=1B.x 225+y 24=1 C.y 220+x 24=1 D.x 24+y 225=1 【解析】 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12,得a 2=8,b 2=6,故椭圆方程为x 28+y26=1.(2)设所求椭圆方程为y 225-k +x 29-k =1(k <9),将点(3,-5)的坐标代入可得(-5)225-k +(3)29-k =1,解得k =5(k =21舍去),所以所求椭圆的标准方程为y 220+x24=1.【答案】 (1)A (2)C[提醒] 当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B ).[通关练习]1.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则该椭圆的方程为________.解析:设椭圆方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ).因为椭圆经过P 1,P 2两点,所以P 1,P 2点坐标适合椭圆方程,则⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,②①②两式联立,解得⎩⎪⎨⎪⎧m =19,n =13.所以所求椭圆方程为x 29+y 23=1. 答案:x 29+y 23=12.已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶3,则椭圆C 的方程是________________.解析:设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).由题意知⎩⎨⎧a 2=b 2+c 2,a ∶b =2∶3,c =2,解得a 2=16,b 2=12.所以椭圆C 的方程为x 216+y 212=1.答案:x 216+y 212=1椭圆的几何性质(高频考点)椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大.高考对椭圆几何性质的考查主要有以下三个命题角度: (1)由椭圆的方程研究其性质; (2)求椭圆离心率的值(范围); (3)由椭圆的性质求参数的值(范围).[典例引领]角度一 由椭圆的方程研究其性质已知正数m 是2和8的等比中项,则圆锥曲线x 2+y 2m=1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±3,0)或(±5,0)D .(0,±3)或(±5,0)【解析】 因为正数m 是2和8的等比中项,所以m 2=16,即m =4,所以椭圆x 2+y 24=1的焦点坐标为(0,±3),故选B. 【答案】 B角度二 求椭圆离心率的值(范围)(2017·高考全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为 ( ) A.63 B.33C.23D.13【解析】 以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由原点到直线bx -ay +2ab =0的距离d =2abb 2+a 2=a ,得a 2=3b 2,所以C 的离心率e =1-b 2a 2=63,选A. 【答案】 A角度三 由椭圆的性质求参数的值(范围)已知椭圆mx 2+4y 2=1的离心率为22,则实数m 等于( ) A .2 B .2或83C .2或6D .2或8【解析】 显然m >0且m ≠4,当0<m <4时,椭圆长轴在x 轴上,则1m -141m=22,解得m =2;当m >4时,椭圆长轴在y 轴上,则14-1m 14=22,解得m =8. 【答案】 D(1)求椭圆离心率的方法①直接求出a ,c 的值,利用离心率公式e =ca =1-b 2a2直接求解. ②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.(2)利用椭圆几何性质求值或范围的思路①将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系. ②将所求范围用a ,b ,c 表示,利用a ,b ,c 自身的范围、关系求范围.[通关练习]1.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( ) A .(-3,0) B .(-4,0) C .(-10,0)D .(-5,0)解析:选D.因为圆的标准方程为(x -3)2+y 2=1, 所以圆心坐标为(3,0),所以c =3.又b =4, 所以a =b 2+c 2=5. 因为椭圆的焦点在x 轴上, 所以椭圆的左顶点为(-5,0).2.(2018·新余模拟)椭圆C 的两个焦点分别是F 1,F 2,若C 上的点P 满足|PF 1|=32|F 1F 2|,则椭圆C 的离心率e 的取值范围是( ) A .e ≤12B .e ≥14C.14≤e ≤12D .0<e ≤14或12≤e <1解析:选C.因为椭圆C 上的点P 满足|PF 1|=32|F 1F 2|,所以|PF 1|=32×2c =3c .由a -c ≤|PF 1|≤a +c ,解得14≤c a ≤12.所以椭圆C 的离心率e 的取值范围是⎣⎢⎡⎦⎥⎤14,12. 3.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( ) A .2B .3C .6D .8解析:选C.由椭圆x 24+y 23=1可得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),则OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,-2≤x ≤2, 当且仅当x =2时,OP →·FP →取得最大值6.直线与椭圆的位置关系[典例引领](2017·高考北京卷)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.【解】 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c = 3.所以b 2=a 2-c 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)设M (m ,n ),则D (m ,0),N (m ,-n ). 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n. 所以直线DE 的方程为y =-m +2n(x -m ). 直线BN 的方程为y =n2-m(x -2).联立⎩⎪⎨⎪⎧y =-m +2n (x -m ),y =n2-m (x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n 2.由点M 在椭圆C 上,得4-m 2=4n 2, 所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.(1)直线与椭圆位置关系判断的步骤 ①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.(2)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则 |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率,k ≠0). 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32,离心率为12,左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点.(1)求椭圆C 的方程;(2)当△F 2AB 的面积为1227时,求直线的方程.解:(1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32, 所以1a 2+94b 2=1.①又因为离心率为12,所以c a =12,所以b 2a 2=34.②解①②得a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)当直线的倾斜角为π2时,A ⎝⎛⎭⎪⎫-1,32,B ⎝⎛⎭⎪⎫-1,-32,S △ABF 2=12|AB |·|F 1F 2|=12×3×2=3≠1227. 当直线的倾斜角不为π2时,设直线方程为y =k (x +1),代入x 24+y 23=1得(4k 2+3)x 2+8k 2x +4k 2-12=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以S △ABF 2=12|y 1-y 2|×|F 1F 2|=|k |(x 1+x 2)2-4x 1x 2 =|k |⎝ ⎛⎭⎪⎫-8k 24k 2+32-4·4k 2-124k 2+3 =12|k |k 2+14k 2+3=1227, 所以17k 4+k 2-18=0,解得k 2=1⎝ ⎛⎭⎪⎫k 2=-1817舍去,所以k =±1,所以所求直线的方程为x -y +1=0或x +y +1=0.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a 2,b 2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx 2+ny 2=1(m >0,n >0且m ≠n )与椭圆有关的最值问题,在转化为函数求最值时,一定注意函数的定义域. 易错防范(1)判断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.(2)在解关于离心率e 的二次方程时,要注意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.(3)椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系.1.已知椭圆x 2m -2+y 210-m=1的焦点在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5解析:选A.因为椭圆x 2m -2+y 210-m=1的焦点在x 轴上.所以⎩⎪⎨⎪⎧10-m >0,m -2>0,m -2>10-m ,解得6<m <10.因为焦距为4,所以c 2=m -2-10+m =4,解得m =8.2.(2018·湖北武汉模拟)已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( ) A.x 216+y 27=1 B.x 216+y 27=1或x 27+y 216=1 C.x 216+y 225=1 D.x 216+y 225=1或x 225+y 216=1 解析:选B.因为a =4,e =34,所以c =3,所以b 2=a 2-c 2=16-9=7.因为焦点的位置不确定,所以椭圆的标准方程是x 216+y 27=1或x 27+y 216=1.3.(2018·湖北八校联考)设F 1,F 2分别为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59解析:选 B.由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,因为OM ⊥F 1F 2,所以PF 2⊥F 1F 2,所以|PF 2|=b 2a =53.又因为|PF 1|+|PF 2|=2a =6,所以|PF 1|=2a-|PF 2|=133,所以|PF 2||PF 1|=53×313=513,故选B.4.(2018·湖南百校联盟联考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形FAMN 是平行四边形,则该椭圆的离心率为( ) A.35 B.12 C.23D.34解析:选A.因为圆O 与直线BF 相切,所以圆O 的半径为bc a ,即OC =bc a,因为四边形FAMN是平行四边形,所以点M 的坐标为⎝ ⎛⎭⎪⎫a +c 2,bc a ,代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,所以5e 2+2e -3=0,又0<e <1,所以e =35.故选A.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,22 B.⎝ ⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 解析:选D.由题意可设P ⎝ ⎛⎭⎪⎫a 2c ,y ,因为PF 1的中垂线过点F 2,所以|F 1F 2|=|F 2P |,即2c =⎝ ⎛⎭⎪⎫a 2c -c 2+y 2, 整理得y 2=3c 2+2a 2-a 4c2.因为y 2≥0,所以3c 2+2a 2-a 4c2≥0,即3e 2-1e 2+2≥0,解得e ≥33.所以e 的取值范围是⎣⎢⎡⎭⎪⎫33,1. 6.(2018·贵阳模拟)若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的标准方程为________. 解析:由题意可知e =c a =32,2b =4,得b =2, 所以⎩⎪⎨⎪⎧c a =32,a 2=b 2+c 2=4+c 2,解得⎩⎨⎧a =4,c =23,所以椭圆的标准方程为x 216+y 24=1.答案:x 216+y 24=17.设F 1,F 2是椭圆x 249+y 224=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=4∶3,则△PF 1F 2的面积为________. 解析:因为|PF 1|+|PF 2|=14, 又|PF 1|∶|PF 2|=4∶3, 所以|PF 1|=8,|PF 2|=6. 因为|F 1F 2|=10,所以PF 1⊥PF 2.所以S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24.答案:248.(2018·海南海口模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-c ,0),右顶点为A ,上顶点为B ,现过A 点作直线F 1B 的垂线,垂足为T ,若直线OT (O 为坐标原点)的斜率为-3bc,则该椭圆的离心率为________.解析:因为椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 和F 1点坐标分别为(a ,0),(0,b ),(-c ,0),所以直线BF 1的方程是y =b c x +b ,OT 的方程是y =-3b c x .联立解得T 点坐标为⎝ ⎛⎭⎪⎫-c 4,3b 4,直线AT 的斜率为-3b 4a +c .由AT ⊥BF 1得,-3b 4a +c ·b c =-1,因为a 2=b 2+c 2,e =c a ,所以e =12.答案:129.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),因为椭圆过点(2,-3),所以t 1=224+(-3)23=2,或t 2=(-3)24+223=2512.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1. (2)由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a >b>0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32, 解得a =4,c =2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x 212=1. 10.(2018·兰州市诊断考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点(2,1),且离心率为22. (1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为-12.若动点P 满足OP →=OM →+2ON →,求点P 的轨迹方程.解:(1)因为e =22,所以b 2a 2=12,又椭圆C 经过点(2,1),所以2a 2+1b2=1,解得a 2=4,b 2=2,所以椭圆C 的方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →得x =x 1+2x 2,y =y 1+2y 2, 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 1x 2+4x 22)+2(y 21+4y 1y 2+4y 22)=(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM 与ON 的斜率,由题意知,k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20,故点P 的轨迹方程为x 220+y 210=1.1.(2017·高考全国卷Ⅰ)设A 、B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M满足∠AMB =120°,则m 的取值范围是( ) A .(0,1]∪[9,+∞) B .(0,3]∪[9,+∞) C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)解析:选A.依题意得,⎩⎪⎨⎪⎧3m≥tan∠AMB 20<m <3或 ⎩⎪⎨⎪⎧m 3≥tan ∠AMB 2m >3,所以⎩⎪⎨⎪⎧3m ≥tan 60°0<m <3或⎩⎪⎨⎪⎧m3≥tan 60°m >3,解得0<m ≤1或m ≥9.故选A. 2.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点.则|PA |+|PF |的最大值为________,最小值为________. 解析:如图所示,设椭圆右焦点为F 1,则|PF |+|PF 1|=6. 所以|PA |+|PF |=|PA |-|PF 1|+6.利用-|AF 1|≤|PA |-|PF 1|≤|AF 1|(当P ,A ,F 1共线时等号成立). 所以|PA |+|PF |≤6+2,|PA |+|PF |≥6- 2. 故|PA |+|PF |的最大值为6+2,最小值为6- 2. 答案:6+ 2 6- 23.设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a=-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.4.已知椭圆C 的中心为坐标原点O ,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=2PB →. (1)求椭圆的方程;(2)求m 的取值范围.解:(1)由题意知椭圆的焦点在y 轴上,可设椭圆方程为y 2a 2+x 2b2=1(a >b >0),由题意知a =2,b =c , 又a 2=b 2+c 2, 则b =2,所以椭圆的方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意知,直线l 的斜率存在,设其方程为y =kx +m ,与椭圆方程联立,得⎩⎪⎨⎪⎧y 2+2x 2=4,y =kx +m . 则(2+k 2)x 2+2mkx +m 2-4=0,Δ=(2mk )2-4(2+k 2)(m 2-4)>0.由根与系数的关系知⎩⎪⎨⎪⎧x 1+x 2=-2mk2+k2x 1x 2=m 2-42+k2,又由AP →=2PB →,即(-x 1,m -y 1)=2(x 2,y 2-m ), 得-x 1=2x 2,故⎩⎪⎨⎪⎧x 1+x 2=-x 2,x 1x 2=-2x 22,可得m 2-42+k 2=-2⎝ ⎛⎭⎪⎫2mk 2+k 22, 整理得(9m 2-4)k 2=8-2m 2, 又9m 2-4=0时不符合题意, 所以k 2=8-2m29m 2-4>0,解得49<m 2<4,此时Δ>0,解不等式49<m 2<4,得23<m <2或-2<m <-23, 所以m 的取值范围为⎝⎛⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫23,2.。
高考数学一轮复习第九章解析几何第五节椭圆教案文苏教版
第五节 椭圆1.椭圆的定义平面内到两定点F 1,F 2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做椭圆.两定点F 1,F 2叫做椭圆的焦点.集合P ={M |MF 1+MF 2=2a },F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数. (1)当2a >F 1F 2时,P 点的轨迹是椭圆; (2)当2a =F 1F 2时,P 点的轨迹是线段; (3)当2a <F 1F 2时,P 点不存在. 2.椭圆的标准方程和几何性质[小题体验]1.已知椭圆x 29+y 24=1的两焦点为F 1,F 2,过F 1作直线交椭圆于A ,B 两点,则△ABF 2的周长为________.答案:122.已知直线x -2y +2=0过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点和一个顶点,则椭圆的方程为________.解析:直线x -2y +2=0与x 轴的交点为(-2,0),即为椭圆的左焦点,故c =2.直线x -2y +2=0与y 轴的交点为(0,1),即为椭圆的顶点,故b =1,所以a 2=b 2+c 2=5,故椭圆的方程为x 25+y 2=1.答案:x 25+y 2=13.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________.解析:设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).因为椭圆的一个焦点为F (1,0),离心率e =12,所以⎩⎪⎨⎪⎧c =1,c a =12,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2c =2,b 2=3,故椭圆的标准方程为x 24+y 23=1.答案:x 24+y 23=11.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x 2a 2+y 2b 2=1(a >b >0).2.注意椭圆的范围,在设椭圆x 2a 2+y 2b2=1(a >b >0)上点的坐标为P (x ,y )时,|x |≤a ,|y |≤b ,这往往在求与点P 有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.[小题纠偏]1.(2019·无锡一中月考)已知椭圆x 213-m +y 2m -2=1的焦距为6,则m =________.解析:∵椭圆x 213-m +y 2m -2=1的焦距为6,∴当焦点在x 轴时,(13-m )-(m -2)=9,解得m =3; 当焦点在y 轴时,(m -2)-(13-m )=9,解得m =12. 答案:3或122.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.解析:由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3.解得3<k <5且k ≠4.答案:(3,4)∪(4,5)考点一 椭圆的标准方程基础送分型考点——自主练透[题组练透]1.与椭圆x 29+y 24=1有相同的焦点,且离心率为55的椭圆的标准方程为________.解析:由椭圆x 29+y 24=1,得a 2=9,b 2=4,∴c 2=a 2-b 2=5,∴该椭圆的焦点坐标为(±5,0).设所求椭圆方程为x 2a ′2+y 2b ′2=1,a ′>b ′>0,则c ′=5,又c ′a ′=55,解得a ′=5.∴b ′2=25-5=20,∴所求椭圆的标准方程为x 225+y 220=1.答案:x 225+y 220=12.(2018·海门中学测试)已知中心在坐标原点的椭圆C 的右焦点为F (1,0),点F 关于直线y =12x 的对称点在椭圆C 上,求椭圆C 的标准方程.解:设点F 关于y =12x 的对称点为P (x 0,y 0),又F (1,0),所以⎩⎪⎨⎪⎧y 0-0x 0-1=-2,y 02=12×x 0+12,解得⎩⎪⎨⎪⎧x 0=35,y 0=45.又点P 在椭圆上,设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),所以⎩⎪⎨⎪⎧925a 2+1625b2=1,c 2=a 2-b 2=1,解得⎩⎪⎨⎪⎧a 2=95,b 2=45,则椭圆C 的方程为x 295+y 245=1.3.求分别满足下列条件的椭圆的标准方程:(1)经过点P (-23,0),Q(0,2)两点;(2)与椭圆x 24+y 23=1有相同的焦点且经过点(2,-3).解:(1)由题意,P ,Q 分别是椭圆长轴和短轴上的端点,且椭圆的焦点在x 轴上, 所以a =23,b =2,所求椭圆的标准方程为x 212+y 24=1.(2)设椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,所以F 1(-1,0),F 2(1,0), 所以所求椭圆焦点在x 轴上,设方程为x 2a 2+y 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧a 2-b 2=1,4a 2+3b2=1,解得a 2=4+23,b 2=3+23或a 2=4-23,b 2=3-23(舍去), 所以椭圆的标准方程为x 24+23+y 23+23=1.[谨记通法]求椭圆标准方程的 2种常用方法考点二 椭圆的定义及其应用重点保分型考点——师生共研 [典例引领]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 2(1,0),点H ⎝⎛⎭⎪⎫2,2103在椭圆上.(1)求椭圆的方程;(2)点M 在圆x 2+y 2=b 2上,且点M 在第一象限,过点M 作圆x 2+y 2=b 2的切线交椭圆于P ,Q 两点,求证:△PF 2Q 的周长是定值.解:(1)设椭圆的左焦点为F 1.根据已知,椭圆的左右焦点分别是F 1(-1,0),F 2(1,0),半焦距c =1,因为H ⎝⎛⎭⎪⎫2,2103在椭圆上,所以2a =HF 1+HF 2= +2+⎝⎛⎭⎪⎫21032+ -2+⎝⎛⎭⎪⎫21032=6. 所以a =3,b =22,故椭圆的方程是x 29+y 28=1.(2)证明:设P (x 1,y 1),Q(x 2,y 2),则x 219+y 218=1,所以PF 2=x 1-2+y 21= x 1-2+8⎝ ⎛⎭⎪⎫1-x 219= ⎝ ⎛⎭⎪⎫x 13-32. 因为0<x 1<3,所以PF 2=3-13x 1.在圆x 2+y 2=b 2中,M 是切点, 所以PM =OP 2-OM 2=x 21+y 21-8= x 21+8⎝ ⎛⎭⎪⎫1-x 219-8=13x 1. 所以PF 2+PM =3-13x 1+13x 1=3.同理,Q F 2+Q M =3, 所以F 2P +F 2Q +P Q =3+3=6. 因此△PF 2Q 的周长是定值6.[由题悟法]利用定义求方程、焦点三角形及最值的方法[即时应用]1.已知椭圆的两个焦点为F 1(-2,0),F 2(2,0),点P 是椭圆上的点,且△PF 1F 2的周长是4+22,则椭圆的标准方程为________.解析:∵椭圆的两个焦点为F 1(-2,0),F 2()2,0, ∴椭圆的焦距为F 1F 2=2 2. ∵△PF 1F 2的周长是4+22, ∴PF 1+PF 2+F 1F 2=4+22, 可得PF 1+PF 2=4.根据椭圆的定义,可得2a =PF 1+PF 2=4,∴a =2, 又∵c =2,∴b =a 2-c 2=2,可得a 2=4,b 2=2. 故椭圆的标准方程为x 24+y 22=1.答案:x 24+y 22=12.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1―→⊥PF 2―→.若△PF 1F 2的面积为9,则b =________.解析:由题意知PF 1+PF 2=2a ,PF 1―→⊥PF 2―→,所以PF 21+PF 22=F 1F 22=4c 2,所以(PF 1+PF 2)2-2PF 1·PF 2=4c 2,所以2PF 1·PF 2=4a 2-4c 2=4b 2.所以PF 1·PF 2=2b 2,所以S △PF 1F 2=12PF 1·PF 2=12×2b 2=b 2=9.所以b =3.答案:3考点三 椭圆的几何性质 题点多变型考点——多角探明[锁定考向]椭圆的几何性质是高考的热点,常见的命题角度有: (1)求离心率的值或范围;(2)根据椭圆的性质求参数的值或范围; (3)焦点三角形的研究.[题点全练]角度一:求离心率的值或范围1.(2019·连云港调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2且垂直于x 轴的直线与椭圆交于A ,B 两点,O 为坐标原点,若F 1A ⊥OB ,则椭圆的离心率为________.解析:由题意,可得A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝ ⎛⎭⎪⎫c ,-b 2a . ∵F 1A ⊥OB ,∴b 2a 2c ·-b 2a c=-1,可得a 2-c 2=2ac ,即e 2+2e -1=0,解得e =6-22(负值舍去). 答案:6-222.从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.解析:由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-b a,由于OP ∥AB ,所以-y 0c =-b a ,y 0=bc a,把P ⎝⎛⎭⎪⎫-c ,bc a代入椭圆方程得-c2a 2+⎝ ⎛⎭⎪⎫bc a 2b 2=1,即⎝ ⎛⎭⎪⎫c a 2=12,所以e=c a=22. 答案:22角度二:根据椭圆的性质求参数的值或范围 3.若方程x 2a -5+y 22=1表示的曲线为焦点在x 轴上的椭圆,则实数a 的取值范围是________.解析:∵方程x 2a -5+y 22=1表示的曲线为焦点在x 轴上的椭圆,∴⎩⎪⎨⎪⎧a -5>0,a -5>2,解得a>7.∴实数a 的取值范围是(7,+∞). 答案:(7,+∞)4.如果x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是________. 解析:x 2+ky 2=2转化为椭圆的标准方程,得x 22+y 22k=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k>2,解得0<k <1.所以实数k 的取值范围是(0,1).答案:(0,1)角度三:焦点三角形的研究5.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 为椭圆C 上一点,且∠F 1PF 2=60°.(1)求椭圆C 的离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆C 的短半轴长有关. 解:(1)设PF 1=m ,PF 2=n ,则m +n =2a .在△PF 1F 2中,由余弦定理可知, 4c 2=m 2+n 2-2mn cos 60°=(m +n )2-3mn =4a 2-3mn ≥4a 2-3·⎝⎛⎭⎪⎫m +n 22=4a 2-3a 2=a 2(当且仅当m =n 时取等号).所以c 2a 2≥14,即e ≥12.又0<e <1,所以e 的取值范围是⎣⎢⎡⎭⎪⎫12,1.(2)证明:由(1)知mn =43b 2,所以S △PF 1F 2=12mn sin 60°=33b 2,即△PF 1F 2的面积只与短半轴长有关.[通法在握]1.应用椭圆几何性质的2个技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如-a ≤x ≤a ,-b ≤y ≤b,0<e <1,在求椭圆的相关量的范围时,要注意应用这些不等关系.2.求椭圆离心率的方法(1)直接求出a ,c 的值,利用离心率公式直接求解.(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.[演练冲关]1.已知椭圆x 29+y 24-k =1的离心率为45,则k 的值为______.解析:当9>4-k >0,即-5<k <4时,a =3,c 2=9-(4-k )=5+k ,所以5+k 3=45,解得k =1925. 当9<4-k ,即k <-5时,a =4-k ,c 2=-k -5, 所以-k -54-k=45,解得k =-21,所以k 的值为1925或-21. 答案:1925或-212.过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为椭圆的右焦点,若∠F 1PF 2=60°,则椭圆的离心率为________.解析:由题意,可设P ⎝ ⎛⎭⎪⎫-c ,b 2a . 因为在Rt △PF 1F 2中,PF 1=b 2a,F 1F 2=2c ,∠F 1PF 2=60°,所以2ac b2= 3.又因为b 2=a 2-c 2,所以3c 2+2ac -3a 2=0,即3e 2+2e -3=0, 解得e =33或e =-3, 又因为e ∈(0,1),所以e =33. 答案:333.(2019·南京一模)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=θ,若cos θ=13,则椭圆C 的离心率为________.解析:∵PF 2⊥F 1F 2,cos ∠PF 1F 2=13,F 1F 2=2c ,∴PF 1=6c ,PF 2=42c ,又PF 1+PF 2=2a ,∴6c +42c =2a , ∴椭圆C 的离心率e =2c 2a =13+22=3-2 2.答案:3-2 2考点四 直线与椭圆的位置关系重点保分型考点——师生共研 [典例引领]如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且过点⎝⎛⎭⎪⎫1,32.过椭圆C 的左顶点A 作直线交椭圆C 于另一点P ,交直线l :x =m (m >a )于点M .已知点B (1,0),直线PB 交l 于点N .(1)求椭圆C 的方程;(2)若MB 是线段PN 的垂直平分线,求实数m 的值.解:(1)因为椭圆C 的离心率为32,所以a 2=4b 2. 又因为椭圆C 过点⎝ ⎛⎭⎪⎫1,32,所以1a 2+34b 2=1, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)设P (x 0,y 0),且-2<x 0<2, x 0≠1,则x 204+y 20=1.因为MB 是PN 的垂直平分线,所以点P 关于点B 的对称点N (2-x 0,-y 0), 所以x 0=2-m .由A (-2,0),P (x 0,y 0), 可得直线AP 的方程为y =y 0x 0+2(x +2),令x =m ,得y =y 0m +x 0+2,即M ⎝⎛⎭⎪⎫m ,y 0m +x 0+2. 因为PB ⊥MB ,所以k PB ·k MB =-1,所以k PB ·k MB =y 0x0-1·y 0m +x 0+2m -1=-1, 即y 20m +x 0-x 0+m -=-1.因为x 204+y 20=1.所以x 0-m +x 0-m -=1.因为x 0=2-m ,所以化简得3m 2-10m +4=0, 解得m =5±133.因为m >2,所以m =5+133.[由题悟法]直线与椭圆的位置关系的解题策略解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.[即时应用](2018·南通、扬州调研)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22.A 为椭圆上异于顶点的一点,点P 满足OP ―→=2AO ―→. (1)若点P 的坐标为(2,2),求椭圆的方程;(2)设过点P 的一条直线交椭圆于B ,C 两点,且BP ―→=m BC ―→,直线OA ,OB 的斜率之积为-12,求实数m 的值.解:(1) 因为OP ―→=2AO ―→,而P (2,2),所以A ⎝ ⎛⎭⎪⎫-1,-22,代入椭圆方程,得1a 2+24b 2=1,①又椭圆的离心率为22,所以1-b 2a 2=22.② 由①②,得a 2=2,b 2=1.故椭圆的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3). 因为OP ―→=2AO ―→,所以P (-2x 1,-2y 1),因为BP ―→=m BC ―→,所以(-2x 1-x 2,-2y 1-y 2)=m (x 3-x 2,y 3-y 2),即⎩⎪⎨⎪⎧-2x 1-x 2=m x 3-x 2,-2y 1-y 2=m y 3-y 2,于是⎩⎪⎨⎪⎧x 3=m -1m x 2-2m x 1,y 3=m -1m y 2-2m y 1.代入椭圆方程,得⎝ ⎛⎭⎪⎫m -1m x 2-2m x 12a 2+⎝ ⎛⎭⎪⎫m -1m y 2-2m y 12b 2=1,即4m 2⎝ ⎛⎭⎪⎫x 21a 2+y 21b 2+m -2m 2⎝ ⎛⎭⎪⎫x 22a 2+y 22b 2-m -m 2⎝ ⎛⎭⎪⎫x 1x2a 2+y 1y 2b 2=1,③ 因为A ,B 在椭圆上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1. ④因为直线OA ,OB 的斜率之积为-12,即y 1x 1·y 2x 2=-12,结合②知x 1x 2a 2+y 1y 2b2=0. ⑤ 将④⑤代入③,得4m 2+m -2m 2=1,解得m =52.一抓基础,多练小题做到眼疾手快1.已知椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且PF 1,F 1F 2,PF 2成等差数列,则椭圆的方程为______________.解析:∵椭圆的中心在原点,焦点F 1,F 2在x 轴上,∴设椭圆方程为x 2a 2+y 2b2=1(a >b >0),∵P (2,3)是椭圆上一点,且PF 1,F 1F 2,PF 2成等差数列, ∴⎩⎪⎨⎪⎧4a 2+3b 2=1,2a =4c ,且a 2=b 2+c 2,解得a =22,b =6,∴椭圆的方程为x 28+y 26=1.答案:x 28+y 26=12.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为12,则该椭圆方程为________________.解析:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),因为2a =12,c a =12,所以a =6,c =3,b 2=27.所以椭圆的方程为x 236+y 227=1.答案:x 236+y 227=13.椭圆x 22+y 2=1的左、右两焦点分别为F 1,F 2,椭圆上一点P 满足∠F 1PF 2=60°,则△F 1PF 2的面积为________.解析:由题意,椭圆x 22+y 2=1的左、右两焦点分别为F 1,F 2,则PF 1+PF 2=22,F 1F 2=2.由余弦定理,得F 1F 22=PF 21+PF 22-2PF 1·PF 2·cos 60°=(PF 1+PF 2)2-3PF 1·PF 2, 解得PF 1·PF 2=43.故△F 1PF 2的面积S =12PF 1·PF 2·sin 60°=33.答案:334.(2019·南京名校联考)若n 是2和8的等比中项,则圆锥曲线x 2+y 2n=1的离心率是________.解析:由n 2=2×8,得n =±4,当n =4时,曲线为椭圆,其离心率为e =4-12=32;当n =-4时,曲线为双曲线,其离心率为e =4+11= 5. 答案:32或 5 5.(2018·北京东城模拟)已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶3,则椭圆C 的方程是__________.解析:设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).由题意知⎩⎨⎧a 2=b 2+c 2,a ∶b =2∶3,c =2,解得a 2=16,b 2=12.所以椭圆C 的方程为x 216+y 212=1.答案:x 216+y 212=16.(2018·启东中学检测)分别过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点F 1,F 2所作的两条互相垂直的直线l 1,l 2的交点在椭圆上,则此椭圆的离心率的取值范围是________.解析:设两直线交点为M ,令MF 1=m ,MF 2=n .由椭圆的定义可得m +n =2a ,因为MF 1⊥MF 2,所以m 2+n 2=4c 2,因为(m +n )2=m 2+n 2+2mn ≤2(n 2+m 2),当且仅当m =n =a 时取等号,即4a 2≤2(4c 2),所以a ≤2c ,所以c a ≥22,即e ≥22,因为e <1,所以22≤e <1. 答案:⎣⎢⎡⎭⎪⎫22,1 二保高考,全练题型做到高考达标1.(2019·启东模拟)设点P 在圆x 2+(y -2)2=1上移动,点Q 在椭圆x 29+y 2=1上移动,则P Q 的最大值是________.解析:已知圆心C (0,2),P Q ≤PC +C Q =1+C Q ,故只需求C Q 的最大值即可. 设Q(x ,y ),则 C Q =x 2+y -2=-y2+y -2=-8y 2-4y +13=-8⎝ ⎛⎭⎪⎫y +142+272. ∵ -1≤y ≤1,∴ 当y =-14时,C Q max =272=362, ∴ P Q max =1+362.答案:1+3622.(2019·常州模拟)若椭圆C 的长轴长是短轴长的3倍,则C 的离心率为________.解析:不妨设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),则2a =2b ×3,即a =3b .所以a 2=9b 2=9(a 2-c 2).即c 2a 2=89, 所以e =c a =223.答案:2233.(2018·镇江期末)已知椭圆x 2m +y 2n=1(m >n >0)的左、右焦点分别为F 1,F 2,P 是以椭圆短轴为直径的圆上任意一点,则PF 1―→·PF 2―→=________.解析:法一:PF 1―→·PF 2―→=(PO ―→+OF 1―→)·(PO ―→+OF 2―→)=(PO ―→+OF 1―→)·(PO ―→-OF 1―→)=|PO ―→|2-|OF 1―→|2=n -(m -n )=2n -m .法二:设F 1(-c,0),F 2(c,0),P (x ,y ),则x 2+y 2=n ,PF 1―→·PF 2―→=(x +c )(x -c )+y 2=x 2+y 2-c 2=n -(m -n )=2n -m .答案:2n -m4.(2018·苏北四市一模)如图,在平面直角坐标系xOy 中,已知点A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的右、下、上顶点,F是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是________.解析:因为F (c,0),B 2(0,b ),B 1(0,-b ),A (a,0),所以B 2F ―→=(c ,-b ),B 1A ―→=(a ,b ).因为B 2F ⊥AB 1,所以ac -b 2=0,即c 2+ac -a 2=0,故e 2+e -1=0,解得e =-1+52(负值舍去).答案:5-125.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足OP =OF ,且PF =4,则椭圆C 的方程为________.解析:设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c ,右焦点为F ′,连结PF ′,如图所示.因为F (-25,0)为C 的左焦点,所以c =2 5.由OP =OF =OF ′知,∠FPF ′=90°,即FP ⊥PF ′.在Rt △PFF ′中,由勾股定理,得PF ′=FF ′2-PF 2=52-42=8.由椭圆定义,得PF +PF ′=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆C 的方程为x 236+y 216=1.答案:x 236+y 216=16.(2019·启东月考)如图所示,A ,B 是椭圆的两个顶点,C 是AB 的中点,F 为椭圆的右焦点,OC 的延长线交椭圆于点M ,且OF =2,若MF ⊥OA ,则椭圆的方程为________.解析:∵F 为椭圆的右焦点,OF =2,∴c = 2.设椭圆方程为x 2b 2+2+y 2b2=1(b >0),∵A ,B 是椭圆的两个顶点,∴A ()b 2+2,0,B (0,b ).又∵C 是AB 的中点,∴C ⎝ ⎛⎭⎪⎫b 2+22,b 2.由OC 的延长线交椭圆于点M ,MF ⊥OA ,得M ⎝⎛⎭⎪⎫2,b 2b 2+2.∵k OM =k OC ,∴b 2b 2+22=b2b 2+22,∴b =2,故所求椭圆的方程为x 24+y 22=1.答案:x 24+y 22=17.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________.解析:设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),因为AB 过F 1且A ,B 在椭圆C 上, 所以△ABF 2的周长=AB +AF 2+BF 2 =AF 1+AF 2+BF 1+BF 2 =4a =16, 所以a =4. 又离心率e =ca =22, 所以c =22, 所以b 2=a 2-c 2=8,所以椭圆C 的方程为x 216+y 28=1.答案:x 216+y 28=18.(2019·句容月考)离心率e =13,焦距为4的椭圆的标准方程为________________.解析:∵椭圆的离心率e =13,焦距为4,∴c =2,a =6,∴b 2=32,∴椭圆的标准方程为x 236+y 232=1或y 236+x 232=1.答案:x 236+y 232=1或y 236+x 232=19.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率.(2)若AF 2―→=2F 2B ―→,AF 1―→·AB ―→=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c . 所以a =2c ,e =c a =22. (2)由题知A (0,b ),F 1(-c,0),F 2(c,0),其中c =a 2-b 2,设B (x ,y ). 由AF 2―→=2F 2B ―→,得(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2,即B ⎝ ⎛⎭⎪⎫3c2,-b 2.将B 点坐标代入x 2a 2+y2b 2=1,得94c 2a 2+b24b2=1,即9c 24a 2+14=1,解得a 2=3c 2.① 又由AF 1―→·AB ―→=(-c ,-b )·⎝ ⎛⎭⎪⎫3c2,-3b 2=32,得b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3,从而有b 2=2. 所以椭圆的方程为x 23+y 22=1.10.(2018·南京学情调研)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,设PF 1―→=λF 1Q ―→.(1)若点P 的坐标为⎝ ⎛⎭⎪⎫1,32,且△P Q F 2的周长为8,求椭圆C 的方程;(2)若PF 2⊥x 轴,且椭圆C 的离心率e ∈⎣⎢⎡⎦⎥⎤12,22,求实数λ的取值范围.解:(1)因为F 1,F 2为椭圆C 的两焦点,且P ,Q 为椭圆上的点, 所以PF 1+PF 2=Q F 1+Q F 2=2a , 从而△P Q F 2的周长为4a , 由题意得4a =8,解得a =2.因为点P 的坐标为⎝ ⎛⎭⎪⎫1,32,且在椭圆上, 所以14+94b 2=1,解得b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)因为PF 2⊥x 轴,且P 在x 轴上方,所以可设P (c ,y 0),且y 0>0,Q(x 1,y 1).因为点P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a ,即P ⎝ ⎛⎭⎪⎫c ,b 2a .因为F 1(-c,0),所以PF 1―→=⎝ ⎛⎭⎪⎫-2c ,-b 2a ,F 1Q ―→=(x 1+c ,y 1).由PF 1―→=λF 1Q ―→,得-2c =λ(x 1+c ),-b 2a=λy 1,解得x 1=-λ+2λc ,y 1=-b2λa,所以Q ⎝⎛⎭⎪⎫-λ+2λc ,-b 2λa .因为点Q 在椭圆上,所以⎝ ⎛⎭⎪⎫λ+2λ2e 2+b 2λ2a 2=1, 即(λ+2)2e 2+(1-e 2)=λ2,即(λ2+4λ+3)e 2=λ2-1. 因为λ+1≠0,所以(λ+3)e 2=λ-1, 从而λ=3e 2+11-e 2=41-e2-3.因为e ∈⎣⎢⎡⎦⎥⎤12,22,所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围为⎣⎢⎡⎦⎥⎤73,5. 三上台阶,自主选做志在冲刺名校1.(2019·宿迁调研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,下顶点为A .若平行于AF 且在y 轴上截距为3- 2 的直线与圆x 2+(y -3)2=1相切,则该椭圆的离心率为________.解析:由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,下顶点为A ,可得AF 的斜率为-bc,则平行于AF 且在y 轴上截距为3-2的直线方程为y =-b cx +3- 2.由该直线与圆x 2+(y -3)2=1相切,可得|-3+3-2|1+b 2c2=1,解得b =c ,所以e =c a =12=22. 答案:222.(2018·连云港质检)已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为________.解析:设点A 关于直线l 的对称点为A 1(x 1,y 1),则有⎩⎪⎨⎪⎧y 1x 1+2=-1,y 12=x 1-22+3,解得x 1=-3,y 1=1,易知PA +PB 的最小值等于A 1B =26, 因此椭圆C 的离心率e =AB PA +PB =4PA +PB 的最大值为22613. 答案:226133.已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的右焦点F 的坐标为(1,0),P ,Q 为椭圆上位于y 轴右侧的两个动点,使PF ⊥Q F ,C 为P Q 中点,线段P Q 的垂直平分线交x 轴,y 轴于点A ,B (线段P Q 不垂直x 轴),当Q运动到椭圆的右顶点时,PF =22. (1)求椭圆M 的方程;(2)若S △ABO ∶S △BCF =3∶5,求直线P Q 的方程. 解:(1)当Q 运动到椭圆的右顶点时,PF ⊥x 轴,所以PF =b 2a =22,又c =1,a 2=b 2+c 2,所以a =2,b =1. 所以椭圆M 的方程为x 22+y 2=1.(2)设直线P Q 的方程为y =kx +b ,显然k ≠0, 联立椭圆方程得:(2k 2+1)x 2+4kbx +2(b 2-1)=0, 设点P (x 1,y 1),Q(x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-4kb2k 2+1>0, ①x 1x 2=b 2-2k 2+1>0, ②Δ=k 2-b 2+>0, ③由PF ―→·Q F ―→=0,得(x 1-1)(x 2-1)+y 1y 2=0, 即(k 2+1)x 1x 2+(kb -1)(x 1+x 2)+b 2+1=0, 代入化简得3b 2-1+4kb =0.④ 由y 1+y 2=k (x 1+x 2)+2b =2b2k 2+1,得C ⎝⎛⎭⎪⎫-2kb 2k 2+1,b 2k 2+1,所以线段P Q 的中垂线AB 的方程为y -b2k 2+1=-1k ⎝ ⎛⎭⎪⎫x +2kb 2k 2+1. 令y =0,x =0,可得A ⎝ ⎛⎭⎪⎫-kb 2k 2+1,0,B ⎝ ⎛⎭⎪⎫0,-b 2k 2+1, 则A 为BC 中点, 故S △BCF S △ABO =2S △ABF S △ABO =2AFAO=-x Ax A=2⎝⎛⎭⎪⎫1x A-1. 由④式得,k =1-3b 24b ,则x A =-kb 2k 2+1=6b 4-2b29b 4+2b 2+1, 所以S △BCF S △ABO =2⎝ ⎛⎭⎪⎫1x A -1=6b 4+8b 2+26b 4-2b 2=53,解得b 2=3.所以b =3,k =-233或b =-3,k =233.经检验,满足条件①②③,故直线P Q 的方程为y =233x -3或y =-233x + 3.。
椭圆及其标准方程学案
椭圆及其标准方程学案椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
这两个定点称为椭圆的焦点,常数2a称为椭圆的长轴。
椭圆的标准方程为x^2/a^2 +y^2/b^2 = 1,其中a>b>0。
首先,我们来看一下椭圆的性质。
椭圆有四条对称轴,长轴、短轴和两条焦轴。
椭圆的中点O是长轴和短轴的交点,焦点F1、F2在长轴上,且OF1=OF2=c,其中c^2=a^2-b^2。
椭圆的离心率定义为e=c/a,离心率e的取值范围为0<e<1。
当e=0时,椭圆退化为圆;当e=1时,椭圆退化为两条重合的直线。
其次,我们来推导椭圆的标准方程。
设椭圆的长轴在x轴上,短轴在y轴上,焦点在x轴上,且焦点与原点的距离为c。
设椭圆上一点P的坐标为(x,y),则PF1+PF2=2a,根据点到焦点的距离公式可得√(x-c)^2+y^2+√(x+c)^2+y^2=2a,整理得(x-c)^2+y^2+(x+c)^2+y^2=a^2,化简得x^2-2cx+c^2+y^2+x^2+2cx+c^2+y^2=a^2,合并同类项得2x^2+2y^2=2a^2,即x^2/a^2+y^2/a^2=1,其中a^2=c^2+b^2,所以椭圆的标准方程为x^2/a^2+y^2/b^2=1。
最后,我们来解一个椭圆的实际问题。
假设有一个椭圆的长轴长为10,短轴长为6,求椭圆的焦距和离心率。
根据a=10,b=6,可得a^2=100,b^2=36,代入c^2=a^2-b^2可得c^2=64,解得c=8,再代入离心率公式e=c/a可得e=8/10=0.8,所以该椭圆的焦距为8,离心率为0.8。
通过本学案的学习,我们对椭圆及其标准方程有了更深入的了解。
希望同学们能够通过练习,掌握椭圆相关知识,提高数学水平。
(湖南专用)高考数学一轮复习 第九章解析几何9.5椭圆教学案 理
9.5 椭圆考纲要求1.掌握椭圆的定义、几何图形、标准方程和简单几何性质. 2.理解数形结合的思想.3.了解椭圆的简单应用,了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的__________,两焦点间的距离叫做椭圆的__________.2-a ≤x ≤a -b ≤y ≤b -b ≤x ≤b -a ≤y ≤a 对称轴:坐标轴 对称中心:原点 A 1(-a,0),A 2(a,0) B 1(0,-b ),B 2(0,b )(0,-a ),A 2(0,1(-b,0),B 2(b,0) 长轴A 1A 2的长为____;短轴B 1B 2的长为____|F 1F ____ e =____(0,1)的关系________1.已知椭圆x210-m +y2m -2=1,长轴在x 轴上,若焦距为4,则m 等于( ).A .4B .5C .7D .8 2.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ). A.45 B.35 C.25 D.153.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则该椭圆方程为( ).A.x 2144+y 2128=1 B.x 236+y 220=1 C.x 232+y 236=1D.x 236+y 232=1 4.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( ).A. 3B.32 C.83D.235.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=__________;∠F 1PF 2的大小为__________.一、椭圆的定义及标准方程【例1-1】已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆上的一个动点,若△PF 1F 2的周长为12,离心率e =12,则此椭圆的标准方程为__________.【例1-2】 一动圆与已知圆O 1:(x +3)2+y 2=1外切,与圆O 2:(x -3)2+y 2=81内切,试求动圆圆心的轨迹方程.方法提炼1.在利用椭圆定义解题的时候,一方面要注意到常数2a >|F 1F 2|这个条件;另一方面要熟练掌握由椭圆上任一点与两个焦点所组成的“焦点三角形”中的数量关系.2.用待定系数法求椭圆方程的一般步骤(1)作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能.(2)设方程:根据上述判断设方程x 2a 2+y 2b 2=1(a >b >0)或x 2b 2+y 2a2=1(a >b >0).(3)找关系:根据已知条件,建立关于a ,b ,c 的方程组.(4)得方程:解方程组,将解代入所设方程,即为所求. 请做演练巩固提升3 二、椭圆的几何性质【例2】如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆x 2a 2+y 2b2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为__________.方法提炼离心率是椭圆的几何性质中考查的重点,求离心率的方法通常是根据条件列出a ,c 所满足的齐次方程(或不等式),然后再求离心率的值或取值范围.请做演练巩固提升4椭圆主观题的规范解答【典例】 (12分)(2012山东高考)如图,椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线x =±a 和y =±b 所围成的矩形ABCD 的面积为8.(1)求椭圆M 的标准方程;(2)设直线l :y =x +m (m ∈R )与椭圆M 有两个不同的交点P ,Q ,l 与矩形ABCD 有两个不同的交点S ,T .求|PQ ||ST |的最大值及取得最大值时m 的值.规范解答:(1)设椭圆M 的半焦距为c ,由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =32,4ab =8,所以a =2,b =1.(3分)因此椭圆M 的方程为x 24+y 2=1.(4分)(2)由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +m整理得5x 2+8mx +4m 2-4=0,由Δ=64m 2-80(m 2-1)=80-16m 2>0, 得-5<m < 5.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=m 2-5.所以|PQ |=x 1-x 22+y 1-y 22=x 1+x 22-4x 1x 2] =45-m 2(-5<m <5).(7分) 线段CD 的方程为y =1(-2≤x ≤2),线段AD 的方程为x =-2(-1≤y ≤1).①不妨设点S 在AD 边上,T 在CD 边上,可知1≤m <5,S (-2,m -2),D (-2,1), 所以|ST |=2|SD |=2[1-(m -2)]=2(3-m ),因此|PQ ||ST |=455-m 2-m 2,令t =3-m (1≤m <5),则m =3-t ,t ∈(3-5,2],所以|PQ ||ST |=455--t 2t 2=45-4t 2+6t-1=45-4⎝ ⎛⎭⎪⎫1t -342+54, 由于t ∈(3-5,2],所以1t ∈⎣⎢⎡⎭⎪⎫12,3+54,因此当1t =34,即t =43时,|PQ ||ST |取得最大值255,此时m =53.(9分)②不妨设点S 在AB 边上,T 在CD 边上, 此时-1≤m ≤1,因此|ST |=2|AD |=22,此时|PQ ||ST |=255-m 2,所以当m =0时,|PQ ||ST |取得最大值255.(10分)③不妨设点S 在AB 边上,T 在BC 边上,-5<m ≤-1,由椭圆和矩形的对称性知|PQ ||ST |的最大值为255,此时m =-53.综上所述,当m =±53或m =0时,|PQ ||ST |最大值为255.(12分)答题指导:从圆锥曲线定义入手掌握有关知识,注意总结规律和防范细节性的错误.1.(2012江西高考)椭圆x 2a+y 2b=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( ).A.14B.55C.12D.5-22.已知椭圆的中心为原点,离心率e =32,且它的一个焦点与抛物线x 2=-43y 的焦点重合,则此椭圆方程为( ).A .x 2+y 24=1B.x 24+y 2=1 C.x 216+y 24=1 D.x 24+y 216=1 3.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为____________________.4.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°,则椭圆离心率的取值范围为__________.5.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值.参考答案基础梳理自测知识梳理1.焦点 焦距2.2a 2b 2c c ac 2=a 2-b 2基础自测1.A 解析:椭圆焦点在x 轴上, ∴a 2=10-m ,b 2=m -2.又c =2,∴(10-m )-(m -2)=4. ∴m =4.2.B 解析:由题意有2a +2c =2(2b ),即a +c =2b .又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac ,即5e 2+2e -3=0,∴e =35或e =-1(舍去).3.D 解析:2a =12,c a =13,∴a =6,c =2,b 2=32, ∴椭圆的方程为x 236+y 232=1.4.B 解析:∵a 2=2,b 2=m , ∴c 2=2-m .∵e 2=c 2a 2=2-m 2=14.∴m =32.5.2 120° 解析:由题意知a =3,b =2,c =7. 由椭圆定义得|PF 1|+|PF 2|=6. ∵|PF 1|=4,∴|PF 2|=2. 又∵|F 1F 2|=27,在△F 1PF 2中,由余弦定理可得cos∠F 1PF 2=-12,∴∠F 1PF 2=120°. 考点探究突破【例1-1】 x 216+y 212=1 解析:由于△PF 1F 2的周长为2a +2c =12,椭圆的离心率e =ca =12, 故a =4,c =2,b 2=12,椭圆的标准方程为x 216+y 212=1.【例1-2】 解:如图所示,设动圆的圆心为C ,半径长为r .则由圆相切的性质知,|CO 1|=1+r ,|CO 2|=9-r , ∴|CO 1|+|CO 2|=10,而|O 1O 2|=6<10.∴点C 的轨迹是以O 1,O 2为焦点的椭圆,其中2a =10,2c =6,b =4. ∴动圆圆心的轨迹方程为x 225+y 216=1.【例2】 27-5 解析:A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b ),F (c,0), 直线A 1B 2的方程为y =b a x +b ,直线B 1F 的方程为y =b cx -b ,联立解得交点T ⎝⎛⎭⎪⎫2ac a -c ,b (a +c )a -c .又∵中点M ⎝ ⎛⎭⎪⎫ac a -c ,b (a +c )2(a -c )在椭圆上,则⎝ ⎛⎭⎪⎫ac a -c 2a 2+⎣⎢⎡⎦⎥⎤b (a +c )2(a -c )2b2=1⇒3a 2-c 2-10ac =0,即e 2+10e -3=0. 又∵0<e <1,∴e =27-5.演练巩固提升1.B 解析:因为A ,B 为左、右顶点,F 1,F 2为左、右焦点, 所以|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c . 又因为|AF 1|,|F 1F 2|,|F 1B |成等比数列,所以(a -c )(a +c )=4c 2,即a 2=5c 2.所以离心率e =c a =55,故选B.2.A 解析:抛物线的焦点为(0,-3),椭圆的中心在原点,则所求椭圆的一个焦点为(0,-3),即半焦距c = 3.又离心率e =c a =32,所以a =2,b =1.故所求椭圆方程为x 2+y 24=1.3.x 212+y 29=1或y 212+x 29=1 解析:由题意知⎩⎪⎨⎪⎧a -c =3,c a =12,解得⎩⎨⎧a =23,c = 3.∴椭圆方程为x 212+y 29=1或y 212+x 29=1.4.⎣⎢⎡⎭⎪⎫12,1 解析:不妨设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),令|PF 1|=t 1,|PF 2|=t 2,则cos 60°=t 12+t 22-|F 1F 2|22t 1t 2=(t 1+t 2)2-|F 1F 2|2-2t 1t 22t 1t 2,∴t 1t 2=4a 2-2t 1t 2-4c 2.∴t 1t 2=43b 2≤⎝ ⎛⎭⎪⎫t 1+t 222=a 2.∴3a 2≥4b 2=4(a 2-c 2). ∴c a ≥12,∴e ≥12. 又0<e <1,∴e ∈⎣⎢⎡⎭⎪⎫12,1.5.解:(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4,又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y 2b 2=1.化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b21+b2.因为直线AB 的斜率为1, 所以|AB |=2|x 2-x 1|, 即43=2|x 2-x 1|. 则89=(x 1+x 2)2-4x 1x 2=4(1-b 2)(1+b 2)2-4(1-2b 2)1+b 2=8b 4(1+b 2)2,解得b =22.。
【2019年高考一轮课程】理科数学 全国通用版椭圆 教案
一.自我诊断 知己知彼1. 过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆的方程为( )A .x 215+y 210=1 B .x 225+y 220=1 C .x 210+y 215=1 D .x 220+y 215=1 【答案】 A【解析】 由题意知c 2=5,可设椭圆方程为x 2λ+5+y 2λ=1(λ>0),则9λ+5+4λ=1,解得λ=10或λ=-2(舍去),∴所求椭圆的方程为x 215+y 210=1.2.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D .1925或21 【答案】 C【解析】 若a 2=9,b 2=4+k ,则c =5-k ,由c a =45,即5-k 3=45,得k =-1925;若a 2=4+k ,b 2=9,则c =k -5,由c a =45,即k -54+k =45,解得k =21.3.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( ) A .2 B .4 C .8D .2 2【答案】 B【解析】 椭圆方程变形为y 21+x 214=1,∴椭圆长轴长2a =2,∴△ABF 2的周长为4a =4.4.椭圆x 24+y 2=1的左.右焦点分别为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于( )A .72B .32 C .3 D .4 【答案】 A【解析】 F 1(-3,0),∵PF 1⊥x 轴, ∴)21,3(±-P ,∴|PF 1→|=12,∴|PF 2→|=4-12=72.5.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)25,23(-,(3,5),则椭圆方程为________. 【答案】 y 210+x 26=1【解析】 设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ).由⎪⎩⎪⎨⎧=+=+-1531)25()23(22n m n m 解得m =16,n =110.∴椭圆方程为y 210+x 26=1. 二.温故知新 夯实基础1.椭圆的概念平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集. 2.椭圆的标准方程和几何性质三.典例剖析 思维拓展考点一 椭圆的定义例1椭圆22x 1259y +=上的点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON | (O 为坐标原点)的值为( )A 2B 4C 8D 32【答案】B【解析】显然,由椭圆定义得,82=MF .又因ON 为三角形MF 1F 2的中位线,所以421ON ==2MF 故选B .【易错点】椭圆定义不清晰【方法点拨】本题考查椭圆的定义及中位线定理的应用.考点二 椭圆的方程例1 若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y x B .116922=+y x 或221169x y +=C .1162522=+y x D .1162522=+y x 或1251622=+y x 【答案】D【解析】根据椭圆的几何意义知:⎪⎪⎩⎪⎪⎨⎧+===+222621822c b a c b a ,解得435⎪⎩⎪⎨⎧===c b a ,焦点在x 轴是1162522=+y x ,或焦点在y 轴:1162522=+x y【易错点】 椭圆的几何意义不清晰【方法点拨】本题考查椭圆的标准方程与椭圆的几何意义.根据题意求出a ,b 带入标准方程即可,最后要注意焦点在哪个轴.考点三 椭圆的几何性质例1已知椭圆2222x 1(0)y a b a b+=>>经过点A (0,4),离心率为53;(1)求椭圆C 的方程; (2)求过点(3,0)且斜率为54的直线被C 所截线段的中点坐标. 【答案】(1)1162522=+y x (2))56,23(- 【解析】(1)因为椭圆经过点A ,所以b =4.又因离心率为53,所以525915322=∴=-∴=a a b a c 所以椭圆方程为:1162522=+y x 依题意可得,直线方程为)(354-=x y ,并将其代入椭圆方程1162522=+y x ,得0832=--x x .(2)设直线与椭圆的两个交点坐标为),(),,(2211y x y x ,则由韦达定理得,321=+x x , 所以中点横坐标为22321=+x x ,并将其代入直线方程得,56-=y故所求中点坐标为)56,23(-.【考点】求椭圆方程.直线与椭圆相交求弦的中点坐标. 【方法点拨】(1)待定系数法求椭圆方程;(2)先求出直线方程代入椭圆方程,然后由韦达定理求出两根之和,再求出中点横坐标,最后代入直线方程求出中点纵坐标即得结果.四.举一反三 成果巩固考点一 椭圆的定义1.在Rt ABC ∆中,2AB AC ==.如果一个椭圆通过A .B 两点,它的一个焦点为点C ,另一个焦点在边AB 上,则这个椭圆的焦距为 .【解析】设另一个焦点为F ,在R t A B C ∆中,2A B A C ==,所以BC =,而2A C A F B C B F a +=+=,所以422AC AF BC BF a a +++=+=⇒=,又2AC =,所以AF =,所以CF ==.2.已知两点)0,1(1-F .)0,1(F ,且21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )。
2019届高考数学一轮复习 第九章 解析几何 第5课时 椭圆(一)教案 文
则m32+n42=1,且mn = 23,解得 m2=235,n2=245. 故所求方程为2y52 +2x52 =1.
34
方法二:若焦点在 x 轴上,设所求椭圆方程为 x42+y32=t(t>0),将点(2,- 3)代入,得 t=242+(-3 3)2=2. 故所求方程为x82+y62=1. 若焦点在 y 轴上,设方程为y42+x32=λ(λ>0)代入点(2,- 3), 得 λ=2152,∴所求方程为2y52 +2x52 =1.
授人以渔
题型一 椭圆的定义及应用
(1)已知两圆 C1:(x-4)2+y2=169,C2:(x+4)2+y2=9, 动圆在圆 C1 内部且和圆 C1 相切,和圆 C2 相外切,则动圆圆心 M 的轨迹方程为________.
【解析】 设圆 M 的半径为 r,则|MC1|+|MC2|=(13-r)+(3 +r)=16,|C1C2|=8,
(4)方法一:∵e=ca= a2a-b2=
1-ba22=
1-34=12,若
焦点在 x 轴上,设所求椭圆方程为mx22+ny22=1(m>n>0),则 1-(mn )2
=14.
从而(mn )2=34,mn =
3 2.
又m42+n32=1,∴m2=8,n2=6. ∴方程为x82+y62=1.
若焦点在 y 轴上,设方程为my22+nx22=1(m>n>0),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时 椭圆及其标准方程最新考纲 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.知 识 梳 理1.椭圆的定义在平面内与两定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.其数学表达式:集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集. 2.椭圆的标准方程和几何性质[常用结论与微点提醒]1.过椭圆的一个焦点且与长轴垂直的弦的长为2b2a,称为通径.2.椭圆离心率e =c a =a 2-b 2a =1-b 2a2. 3.应用“点差法”时,要检验直线与圆锥曲线是否相交.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( )(3)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( )(4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b2=1(a >b >0)的焦距相同.( ) 解析 (1)由椭圆的定义知,当该常数大于|F 1F 2|时,其轨迹才是椭圆,而常数等于|F 1F 2|时,其轨迹为线段F 1F 2,常数小于|F 1F 2|时,不存在这样的图形.(2)因为e =c a =a 2-b 2a=1-⎝ ⎛⎭⎪⎫b a 2,所以e 越大,则b a 越小,椭圆就越扁.答案 (1)× (2)× (3)√ (4)√2.(2017·浙江卷)椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.59解析 由已知,a =3,b =2,则c =9-4=5,所以e =c a =53. 答案 B3.(2018·张家口调研)椭圆x 216+y 225=1的焦点坐标为( ) A.(±3,0) B.(0,±3) C.(±9,0)D.(0,±9)解析 根据椭圆方程可得焦点在y 轴上,且c 2=a 2-b 2=25-16=9,∴c =3,故焦点坐标为(0,±3),故选B. 答案 B4.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则椭圆C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1D.x 24+y 23=1 解析 由题意知c =1,e =c a =12,所以a =2,b 2=a 2-c 2=3.故所求椭圆C 的方程为x 24+y 23=1.答案 D5.(选修1-1P42A6改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,∴P 点坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1. 答案 ⎝⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1考点一 椭圆的定义及其应用【例1】 (1)(选修1-1P42A7改编)如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( )A.椭圆B.双曲线C.抛物线D.圆(2)椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( ) A.5B.6C.7D.8解析 (1)连接QA .由已知得|QA |=|QP |. 所以|QO |+|QA |=|QO |+|QP |=|OP |=r .又因为点A 在圆内,所以|OA |<|OP |,根据椭圆的定义,点Q 的轨迹是以O ,A 为焦点,r 为长轴长的椭圆. (2)由椭圆定义知点P 到另一个焦点的距离是10-2=8. 答案 (1)A (2)D规律方法 1.椭圆定义的应用主要有:判定平面内动点的轨迹是否为椭圆、求椭圆的标准方程和离心率等. 2.椭圆的定义式必须满足2a >|F 1F 2|.【训练1】 (1)设定点F 1(0,-3),F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a(a >0),则点P 的轨迹是( )A.椭圆B.线段C.不存在D.椭圆或线段(2)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________. 解析 (1)∵a +9a≥2a ·9a=6, 当且仅当a =9a,即a =3时取等号,∴当a =3时,|PF 1|+|PF 2|=6=|F 1F 2|, 点P 的轨迹是线段F 1F 2;当a >0,且a ≠3时,|PF 1|+|PF 2|>6=|F 1F 2|, 点P 的轨迹是椭圆.(2)设动圆的半径为r ,圆心为P (x ,y ),则有|PC 1|=r +1,|PC 2|=9-r . 所以|PC 1|+|PC 2|=10>|C 1C 2|,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上, 得点P 的轨迹方程为x 225+y 216=1.答案 (1)D (2)x 225+y 216=1考点二 椭圆的标准方程【例2】 (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝ ⎛⎭⎪⎫-32,52,(3,5),则椭圆的标准方程为________________.(2)(一题多解)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆标准方程为________.解析 (1)设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ).由⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫-322m +⎝ ⎛⎭⎪⎫522n =1,3m +5n =1,解得m =16,n =110.∴椭圆的标准方程为y 210+x 26=1.(2)法一 椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2, 解得a =2 5.由c 2=a 2-b 2可得b 2=4. 所以所求椭圆的标准方程为y 220+x 24=1. 法二 设所求椭圆方程为y 225-k +x 29-k =1(k <9),将点(3,-5)的坐标代入可得(-5)225-k +(3)29-k =1,解得k=5(k =21舍去),所以所求椭圆的标准方程为y 220+x 24=1.答案 (1)y 210+x 26=1 (2)y 220+x 24=1规律方法 1.求椭圆方程的基本方法是待定系数法,先定位,再定量,即首先确定焦点所在位置,然后根据条件建立关于a ,b 的方程组.2.如果焦点位置不确定,可设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),求出m ,n 的值即可.【训练2】 (1)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为________.(2)(一题多解)若椭圆经过两点(2,0)和(0,1),则椭圆的标准方程为________________.解析 (1)依题意,设椭圆C :x 2a 2+y 2b2=1(a >b >0).过点F 2(1,0)且垂直于x 轴的直线被曲线C 截得弦长|AB |=3,∴点A ⎝ ⎛⎭⎪⎫1,32必在椭圆上, ∴1a 2+94b2=1.① 又由c =1,得1+b 2=a 2.② 由①②联立,得b 2=3,a 2=4. 故所求椭圆C 的方程为x 24+y 23=1.(2)法一 当椭圆的焦点在x 轴上时,设所求椭圆的方程为x 2a 2+y 2b2=1 (a >b >0).∵椭圆经过两点(2,0),(0,1), ∴⎩⎪⎨⎪⎧4a 2+0b 2=1,0a 2+1b 2=1,解得⎩⎪⎨⎪⎧a =2,b =1.∴所求椭圆的标准方程为x 24+y 2=1;当椭圆的焦点在y 轴上时,设所求椭圆的方程为y 2a 2+x 2b2=1 (a >b >0).∵椭圆经过两点(2,0),(0,1), ∴⎩⎪⎨⎪⎧0a 2+4b 2=1,1a 2+0b2=1, 解得⎩⎪⎨⎪⎧a =1,b =2,与a >b 矛盾,故舍去.综上可知,所求椭圆的标准方程为x 24+y 2=1.法二 设椭圆方程为mx 2+ny 2=1 (m >0,n >0,m ≠n ).∵椭圆过(2,0)和(0,1)两点,∴⎩⎪⎨⎪⎧4m =1,n =1, 解得⎩⎪⎨⎪⎧m =14,n =1.综上可知,所求椭圆的标准方程为x 24+y 2=1.答案 (1)x 24+y 23=1 (2)x 24+y 2=1考点三 焦点三角形问题【例3】 (1)已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是( )A. 2B.2C.2 2D. 3(2)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且∠F 1PF 2=60°,S △PF 1F 2=33,则b =________.解析 (1)由椭圆的方程可知a =2,c =2,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2,所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =22,所以有|PF 1|2=|PF 2|2+|F 1F 2|2,即△PF 1F 2为直角三角形,且∠PF 2F 1为直角, 所以S △PF 1F 2=12|F 1F 2||PF 2|=12×22×1= 2.(2)由题意得|PF 1|+|PF 2|=2a ,又∠F 1PF 2=60°, 所以|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=|F 1F 2|2, 所以(|PF 1|+|PF 2|)2-3|PF 1||PF 2|=4c 2, 所以3|PF 1||PF 2|=4a 2-4c 2=4b 2, 所以|PF 1||PF 2|=43b 2,所以S △PF 1F 2=12|PF 1||PF 2|sin 60°=12×43b 2×32=33b 2=33,所以b =3. 答案 (1)A (2)3规律方法 1.椭圆上一点P 与两焦点F 1,F 2构成的三角形称为焦点三角形,解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理等知识.2.椭圆中焦点三角形的周长等于2a +2c .【训练3】 已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1,F 2的连线夹角为直角,则|PF 1|·|PF 2|=________.解析 依题意a =7,b =26,c =49-24=5, |F 1F 2|=2c =10,由于PF 1⊥PF 2,所以由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2,即|PF 1|2+|PF 2|2=100.又由椭圆定义知|PF 1|+|PF 2|=2a =14, ∴(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|=100, 即196-2|PF 1|·|PF 2|=100. 解得|PF 1|·|PF 2|=48. 答案 48基础巩固题组 (建议用时:40分钟)一、选择题1.椭圆x 2m +y 24=1的焦距为2,则m 的值等于( )A.5B.3C.5或3D.8解析 由题意知椭圆焦距为2,即c =1,又满足关系式a 2-b 2=c 2=1,故当a 2=4时,m =b 2=3;当b 2=4时,m =a 2=5. 答案 C2.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( ) A.椭圆B.直线C.圆D.线段解析 ∵|MF 1|+|MF 2|=6=|F 1F 2|,∴动点M 的轨迹是线段. 答案 D3.设F 1,F 2是椭圆x 225+y 29=1的焦点,P 为椭圆上一点,则△PF 1F 2的周长为( )A.16B.18C.20D.不确定解析 △PF 1F 2的周长为|PF 1|+|PF 2|+|F 1F 2|=2a +2c .因为2a =10,c =25-9=4,所以周长为10+8=18. 答案 B4.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 若x 2m -2+y 26-m=1表示椭圆.则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,∴2<m <6且m ≠4.故“2<m <6”是“x 2m -2+y 26-m=1表示椭圆”的必要不充分条件.答案 B5.过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,则△PQF 周长的最小值是( )A.14B.16C.18D.20解析 如图,设F1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上下顶点时,△PQF 1即△PQF 的周长取得最小值为10+2×4=18. 答案 C 二、填空题6.椭圆9x 2+16y 2=144的焦点坐标为________. 解析 椭圆的标准方程为x 216+y 29=1,∴a 2=16,b 2=9,c 2=7,且焦点在x 轴上, ∴焦点坐标为(-7,0),(7,0). 答案 (-7,0),(7,0)7.已知椭圆的中心在原点,一个焦点为(0,-23)且a =2b ,则椭圆的标准方程为________. 解析 ∵c =23,a 2=4b 2,∴a 2-b 2=3b 2=c 2=12,b 2=4,a 2=16.又焦点在y 轴上,∴标准方程为y 216+x 24=1.答案y 216+x 24=1 8.(2018·昆明诊断)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.解析 记椭圆的两个焦点分别为F 1,F 2,有|PF 1|+|PF 2|=2a =10.则m =|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=25,当且仅当|PF 1|=|PF 2|=5,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25.∴点P 的坐标为(-3,0)或(3,0). 答案 (-3,0)或(3,0)三、解答题9.已知动圆M 过定点A (-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程. 解 设动圆M 的半径为r ,则|MA |=r ,|MB |=8-r , ∴|MA |+|MB |=8,且8>|AB |=6,∴动点M 的轨迹是椭圆,且焦点分别是A (-3,0),B (3,0),且2a =8,∴a =4,c =3,∴b 2=a 2-c 2=16-9=7. ∴所求动圆圆心M 的轨迹方程是x 216+y 27=1.10.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.解 设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).设焦点F 1(-c ,0),F 2(c ,0)(c >0). ∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0,而F 1A →=(-4+c ,3),F 2A →=(-4-c ,3),∴(-4+c )·(-4-c )+32=0,∴c 2=25,即c =5. ∴F 1(-5,0),F 2(5,0). ∴2a =|AF 1|+|AF 2|=(-4+5)2+32+(-4-5)2+32=10+90=410.∴a =210,∴b 2=a 2-c 2=(210)2-52=15. ∴所求椭圆的标准方程为x 240+y 215=1.能力提升题组 (建议用时:20分钟)11.已知F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点⎝⎛⎭⎪⎫1,22在椭圆上,且点(-1,0)到直线PF 2的距离为455,其中点P (-1,-4),则椭圆的标准方程为( ) A.x 2+y 24=1B.x 24+y 2=1 C.x 2+y 22=1D.x 22+y 2=1 解析 设F 2的坐标为(c ,0)(c >0),则kPF 2=4c +1,故直线PF 2的方程为y =4c +1(x -c ),即4c +1x -y -4c c +1=0,点(-1,0)到直线PF 2的距离d =⎪⎪⎪⎪⎪⎪-4c +1-4c c +1⎝ ⎛⎭⎪⎫4c +12+1=4⎝ ⎛⎭⎪⎫4c +12+1=455,即⎝ ⎛⎭⎪⎫4c +12=4,解得c =1或c =-3(舍去), 所以a 2-b 2=1.①又点⎝ ⎛⎭⎪⎫1,22在椭圆E 上,所以1a 2+12b 2=1,② 由①②可得⎩⎪⎨⎪⎧a 2=2,b 2=1,所以椭圆的标准方程为x 22+y 2=1.答案 D12.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2的大小为________.解析 由题意得a =3,c =7.因为|PF 1|=4,|PF 1|+|PF 2|=2a =6,所以|PF 2|=6-4=2.所以cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=42+22-(27)22×4×2=-12,所以∠F 1PF 2=120°.答案 120°13.(2018·石家庄月考)已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.解 (1)由已知得⎩⎪⎨⎪⎧6a 2+2b 2=1,c a =63,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=12,b 2=4. 故椭圆C 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2),AB 的中点为D (x 0,y 0).由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1,消去y ,整理得4x 2+6mx +3m 2-12=0,由Δ=36m 2-16(3m 2-12)>0,得m 2<16, 则x 0=x 1+x 22=-34m ,y 0=x 0+m =14m , 即D ⎝ ⎛⎭⎪⎫-34m ,14m ....11 因为AB 是等腰三角形PAB 的底边,所以PD ⊥AB ,即PD 的斜率k =2-m 4-3+3m 4=-1, 解得m =2,满足m 2<16.此时x 1+x 2=-3,x 1x 2=0,则|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=32, 又点P 到直线l :x -y +2=0的距离为d =32, 所以△PAB 的面积为S =12|AB |·d =92.。