《数学分析》第五章 导数和微分 .ppt

合集下载

数学分析5.5微分(含习题详解)

数学分析5.5微分(含习题详解)

第五章导数和微分5 微分一、微分的概念定义1:设函数y=f(x)定义在点x0的某邻域U(x0)内. 当给x0一个增量△x,x0+△x∈U(x0)时,相应地得到函数的增量为△y=f(x0+△x)-f(x0). 如果存在常数A,使得△y能表示为△y=A△x +o(△x),则称函数f在点x0可微,并称上式中的第一项A△x为f在点x0的微分,记作:dy=A△x,或df(x)=A△x.当A≠0时,微分dy称为增量△y的线性主部。

定理5.10:函数f在点x0可微的充要条件是函数f在点x0可导,而且定义中的A=f’(x0).证:先证必要性:若f在点x0可微,则△y=A△x +o(△x),即=A+o(1),两边取极限得:f’(x0)==(A+o(1))=A.再证充分性:若f在点x0可导,则f在点x0的有限增量公式为:△y=f’(x0)△x+o(△x),根据微分的定义,f在点x0可微且有dy=f’(x0)△x.微分的几何意义:(如图)当自变量由x0增加到x0+△x时,函数增量△y= f(x0+△x)-f(x0)=RQ,而微分则是在点P处的切线上与△x所对应的增量,即dy=f’(x0)△x=RQ’,且==f’(x0)=0,所以当f ’(x 0)≠0时,=0. 即当x →x 0时线段Q ’Q 远小于RQ ’。

若函数y=f(x)在区间I 上每一点都可微,则称f 为I 上的可微函数.函数y=f(x)在I 上任一点x 处的微分记作dy=f ’(x)△x ,x ∈I. 特别地,当y=x 时,dy=dx=△x ,则微分也可记为dy=f ’(x)dx ,即 f ’(x)=,可见函数的导数等于函数微分与自变量微分的商。

因此导数也常称为微商。

二、微分的运算法则1、d[u(x)±v(x)]=du(x)±dv(x);2、d[u(x)v(x)]=v(x)du(x)+u(x)dv(x);3、d=;4、d(f ◦g(x))=f ’(u)g ’(x)dx ,其中u=g(x),或dy=f ’(u)du.例1:求y=x 2lnx+cosx 2的微分。

《导数与微分》ppt课件

《导数与微分》ppt课件

求 求导方法:
y
(1)求出函数的增量
B
M T
y f (x0 x) f (x0 )
Mo A αφ
x0
△y dy △x X0+△x x
2、作出比值: y
x
y
3、求出 x 0 时 x 的极限。
二、可导与连续的关系
函数在点 x0
连续,指
lim y 0
x0
存在。
,可导是
lim
x0
y x
定理:如果y=f(x) 在点x0处可导,则它在点x0 处一定连续。
9 5
k
1___ k
1 25
切线方程y x ____ y 1 x 25
例:一球在斜面上向上滚动,已知在t(s)时球与 起始位置的距离是s(t) 3t t2, 求初速度、何时 开始下滚? 解:v(t) s' (t) 3 2t ___ t 0 v(0) 3m / s 当v 0时开始下滚, 3 2t 0 t 1.5s

u,对v, 应y 增量 u, v, y
y (u u)(v v) uv uv vu u v
y u v v u u v
x
x x x
y ' (uv)' uv' u 'v
例: 例1、2、3、4 p26
例:求y x sin x cosx 的导数 x cosx sin x
x
2!
y ' lim y nx n1 x0 x
即: (x n )' nxn1
对于n为任意实数时,上式也成立。
例7:正弦函数 y sin x 的导数
y sin(x x) sin x 2cos(x x) sin x
2

数学分析PPT课件第四版华东师大研制 第5章 导数和微分

数学分析PPT课件第四版华东师大研制  第5章 导数和微分
前页 后页 返回
证 当 x0 0 时,用归结原理容易证明 f (x) 在点 x0 不连续, 由定理 5.1, f (x) 在点 x0 不可导.
当 x0 = 0 时, 因为 D( x) 1,所以有
f (0) lim f ( x) f (0) lim xD( x) 0 .
x0 x 0
x 0
k lim f ( x) f ( x0 )
(2)
x x0
x x0
会是什么呢?
答: 它就是曲线在点 P 的切线 PT 的斜率.
前页 后页 返回
上面两个问题虽然出发点相异,但都可归结为同 一类型的数学问题: 求函数 f 在点 x0 处的增量 D y = f (x) – f (x0) 与自变量增量 D x = x – xo 之比 的极限. 这个增量比称为函数 f 关于自变量的平 均变化率,增量比的极限 (如果存在) 称为 f 在点 x0 处关于 x 的瞬时变化率(或简称变化率).
其上一点 P( x0, y0 ) 处的切线 PT. 为此我们在 P 的邻近取一 点 Q , 作曲线的割线 PQ ,这
条割线的斜率为
_
k
f (x)
f ( x0 ) .
x x0
y
Q
y f (x) •
T
P

O
x0 x x
点击上图动画演示
前页 后页 返回
设想一下,当动点 Q 沿此曲线无限接近点 P 时,k 的极限若存在,则这个极限
Dx
存在,则称该极限为 f (x) 在点 x0 的右导数, 记作
f( x0 ) . 类似地可以定义左导数 , 合起来即为:
前页 后页 返回
定义1 设函数 y =f (x) 在点 x0 的某邻域内有定

大学数学分析ppt课件

大学数学分析ppt课件
世界上最好的课堂在老人的脚下.
Having a child fall asleep in your arms is one of the most peaceful feeling in the world. 让一个孩子在你的臂弯入睡,你会体会到世间最安宁的感觉.
Being kind is more important than being right. 善良比真理更重要.
§1 微分中值定理 §2 L’Hospital法则 §3 Taylor公式和插值多项式 §4 函数的Taylor公式及其应用 §5 应用举例 §6 方程的近似求解
第六章 不定积分
§1 不定积分的概念和运算法则 §2 换元积分法和分部积分法 §3 有理函数的不定积分及其应用
目 录 (上册)
第七章 定积分
You should never say no to a gift from a child. 永远不要拒绝孩子送给你的礼物.
Sometimes all a person needs is a hand to hold and a heart to understand. 有时候,一个人想要的只是一只可握的手和一颗感知的心.
➢通过严格的训练,具备熟练的运算能力与技巧;
➢注重微积分的应用,掌握数学模型的思想与方法, 提高应用微积分这一有力的数学工具分析问题、解 决问题的能力。
目 录 (上册)
第一章 集合与映射
§1 集合 §2 映射与函数
第二章 数列极限
§1 实数系的连续性 §2 数列极限 §3 无穷大量 §4 收敛准则
Love ,not time,heals all wounds. 治愈一切h,but I'm tougher. 生活是艰苦的,但我应更坚强.

5-5——华东师范大学数学分析课件PPT

5-5——华东师范大学数学分析课件PPT
v( x)
v( x)d u( x) u( x)dv( x) v2(x)
函数 f 在点 x0 可微的充要条件是 f 在点 x0 可
导, 且 d f ( x) x x0 f ( x0)Δ x .
证 (必要性) 如果 f 在点 x0 可微, 据 (1) 式有
于是
Δy A o(1). Δx
f
(
x0
)
lim
Δ x 0
Δ Δ
y x
lim ( A o(1)) A ,
Δ x 0
(4) 式的写法会带来不少好处, 首先可以把导数看
成函数的微分与自变量的微分之商, 即
d y f ( x) ,
(5)
dx
所以导数也称为微商. 更多的好处将体现在后面
积分学部分中.
数学分析 第一章 实数集与函数
高等教育出版社
§5 微分
微分的概念
微分的 运算法则
高阶微分
微分在近似计算 中的应用
例1 d(x ) x 1 dx ;
d (sin x) cos x dx ; d (a x ) a x ln a dx .
数学分析 第一章 实数集与函数
高等教育出版社
§5 微分
微分的概念
微分的运算法则
微分的 运算法则
高阶微分
微分在近似计算 中的应用
由导数与微分的关系,可方便得出微分运算法则: 1. d (u( x) v( x)) du( x) dv( x); 2. d(u( x)v( x)) v( x)du( x) u( x)dv( x);
Δ S ( x x)2 x2 2x x ( x)2 由两部分组成 :
Δ x 的线性部分 2xΔx 和 Δ x 的高阶部分( Δ x)2. 因

《数学分析》第五章导数和微分1

《数学分析》第五章导数和微分1

《数学分析》第五章导数和微分1《数学分析》第五章导数和微分1导数和微分是数学分析中非常重要的概念。

导数以及微分的概念不仅在数学中有着广泛的应用,而且在物理、经济、工程等各个学科中都起着关键的作用。

本章首先介绍导数的概念和性质。

导数是描述函数变化快慢的指标,它衡量了函数在其中一点附近的变化率。

直观地说,如果函数在其中一点附近呈现出逐渐增大的趋势,那么该点的导数将是正值;如果函数在其中一点附近呈现出逐渐减小的趋势,那么该点的导数将是负值。

导数的符号和数值都能够揭示出函数局部性质的特点。

导数的计算通常使用极限的概念。

通过定义极限,我们可以精确地计算出函数在其中一点的导数值。

导数的定义以及计算方法是数学分析中的重要内容,对于理解函数的变化规律以及解决实际问题有着重要的帮助。

接下来,本章详细介绍了一阶导数和高阶导数的概念。

一阶导数是函数变化最基本的指标,它描述了函数在其中一点的瞬时变化率;而高阶导数则描述了函数变化率的变化率,它们在一阶导数的基础上进一步深化了对函数性质的研究。

导数和微分在实际问题中有着丰富的应用。

通过导数和微分可以解决各种数学建模中的问题,如最大值、最小值的求解、函数图形的研究、曲线的切线和法线的求解等等。

导数和微分在物理学、经济学、工程学等应用领域也有着广泛的运用,如速度和加速度的求解、最优化问题的分析等。

在本章的最后,还介绍了一些与导数和微分相关的基本定理,如费马定理、罗尔定理、拉格朗日中值定理等。

这些定理是导数和微分性质的重要推论,它们在数学分析和应用领域中起着重要的作用。

总之,导数和微分是数学分析中重要的概念,它们具有广泛的应用价值。

通过深入学习导数和微分的概念、性质和计算方法,我们可以更好地理解函数的特性、求解实际问题,为数学和应用科学的发展做出贡献。

2.许寿裳,王薄清.数学分析[M].高等教育出版社,2024.。

§5.5 微分 数学分析(华师大 四版)课件 高教社ppt 华东师大教材配套课件

§5.5 微分 数学分析(华师大 四版)课件 高教社ppt 华东师大教材配套课件

0()f x '*点击以上标题可直接前往对应内容微分从本质上讲是函数增量中关于自变量增量的如果给边长x 一个增量, 正方形面积的增量Δx 的线性部分和的高阶部分( )2.Δx 2Δx x Δx Δx 此时, 当边长x 增加一个微小量时,可用Δx Δx ΔS 微分的概念222Δ()2()S x x x x x x =+∆-=∆+∆由两部分组成:设一边长为x 的正方形, 它的面积S = x 2是x 的函线性部分, 请先看一个具体例子.数.后退前进目录退出因的线性部分来近似.由此产生的误差是一个关于的高阶无穷小量Δx2(Δ),x即以为边长的小正方形(如图).Δx2xΔx x2Δx定义500Δ(Δ)()y f x x f x =+-可以表示成ΔΔ(Δ),(1)y A x o x =+设函数0(),().y f x x U x =∈并称为 f 在点处的微分, 记作ΔA x 0x 其中A 是与无关的常数, 则称函数f 在点0x Δx 由定义, 函数在点处的微分与增量只相差一个0x 关于的高阶无穷小量,而是的线性函数.Δx d y Δx ,d 0x A y x x ∆==()(2).d 0x A x f x x ∆==或更通俗地说, 是的线性近似.Δy d y 如果增量可微,定理5.10Δ(1).ΔyA o x=+于是00d ()()Δ.x x f x f x x ='=导, 且证(必要性)如果在点可微, 据(1) 式有f 0x 0Δ0Δ()lim Δx yf x x →'=即在点可导, 且f 0x 0().f x A '=函数在点可微的充要条件是在点可f f 0x 0x Δ0lim ((1)),x A o A →=+=(充分性) 设在点处可导,f 0x 0Δ()Δ(Δ),y f x x o x '=+00d ()Δ.x x yf x x ='=且f 则由的有限增量公式说明函数增量可Δy 表示为的线性部分,与关于的高x ∆0()Δf x x 'Δx 所以在点可微,f 0x 阶无穷小量部分之和.(Δ)o x 定理5.1000d ()()Δ.x x f x f x x ='=导, 且函数在点可微的充要条件是在点可f f 0x 0x0Δx x+xyO()y f x =Δyd y0x P RQ Q '∙∙∙∙Δ,y RQ =它是点P 处切线相在点的增量为f 0x d ,y RQ '=而微分是应于的增量.Δx 当很小时,两者之差相比于|Δd |y y Q Q '-=|Δ|x |Δ|x 将是更小的量(高阶无穷小).微分概念的几何解释:更由于0Δ0Δ0Δd limlim()0,Δx x y y Q Qf x xRQ →→'-'=='故若0()0,f x '≠Δ0lim 0.x Q Q RQ →'='这说明当d ()Δ,,(3)y f x x x I '=∈的高阶无穷小量.QQ 'RQ '还是Δ0,x →时若函数在区间上每一点都可微,则称是上f I f I 它既依赖于,也与有关.Δx x ()f x I 在上的微分记为的可微函数.则得到0Δx x+xyO()y f x =Δyd y0x P RQ Q '∙∙∙∙d ()d ,.(4)y f x x x I '=∈(4) 式的写法会带来不少好处, 首先可以把导数看所以导数也称为微商. 习惯上喜欢把写成,于是(3) 式可改写成Δx d x d d Δ.y x x ==这相当于的情形,此时显然有y x =d (),d yf x x '=(5)积分学部分中.成函数的微分与自变量的微分之商, 即更多的好处将体现在后面d (sin )cos d ;x x x =d()ln d .x xa a a x =1d()d ;x xx ααα-=例12()()d ()()d ()3.d ;()()u x v x u x u x v x v x v x ⎛⎫-= ⎪⎝⎭4.d (())()()d ,().f g x f u g x x u g x ''==其中由导数与微分的关系,可方便得出微分运算法则:1.d (()())d ()d ();u x v x u x v x ±=±2.d(()())()d ()()d ();u x v x v x u x u x v x =+d ()d ,u g x x '=由于故运算法则4 又可以写成微分的运算法则d ()d .y f u u '=解2222ln d()d(ln )sin d()x x x x x x =+-2(2ln 12sin )d .x x x x =+-它在形式上与(4)式完全一样, 不管是自变量还u 例2 求的微分.22ln cos y x x x =+这个性质称为“一阶微分形式不变性”.是中间变量( 另一个变量的可微函数) 上式都成立.22d d(ln cos )y x x x =+22d(ln )d(cos )x x x =+2222d(cos )sin d()2sin d x x x x x x =-=-这里在的计算中, 用了一阶微分形式不变性.例3 求的微分.123e ++=x x y 解3213d e d(21)x x y x x ++=++3221(32)e d .x x x x ++=+§5 微分微分的概念微分的运算法则微分在近似计算中的应用高阶微分或写作22d ()d ,y f x x ''=称为f 的二阶微分.d(d )d(()Δ)y f x x '=()ΔΔ()d(Δ)f x x x f x x '''=⋅+则当f 二阶可导时, d y 关于x 的微分为若将一阶微分d ()Δy f x x '=仅看成是的函数, x 注由于与x 无关, 因此x 的二阶微分Δx d(Δ)x =三者各不相同, 不可混淆.2()()f x x ''=∆2()(d ).f x x ''=d(d )x x 2d =,0=22d (d ),x x =它与2d()2d x x x=高阶微分22d ()d ;(6)y f x x ''=当x 是中间变量((),())y f x x t ϕ==时, 二阶微分依次下去, 可由阶微分求n 阶微分:1n -对的n 阶微分均称为高阶微分. 2n ≥当x 是自变量时,的二()y f x =阶微分是为高阶微分不具有形式不变性.)d (d d 1y y n n -=(1)1d(()d )n n f x x --=()()d .n n f x x =22()d ()d .(7)f x x f x x '''=+()2d d ()d y f x x '=()d d ()d(d )f x x x f x x '''=+例422()sin ,(),d .y f x x x t t y ϕ====设求解法一2 () (), sin ,x t y f x y t ϕ===先将代入得.0d 2=x 而当x 为自变量时,它比(6) 式多了一项2()d ,f x x '()x t ϕ=当时,由(6) 得22d ()d x t t ϕ''=不一定为0,22cos ,y t t '=于是.sin 4cos 2222t t t y -=''22222d (2cos 4sin )d .y t t t t =-解法二依(7) 式得222d ()d ()d y f x x f x x'''=+22sin d cos d x x x x =-+2222..sin (2d )cos 2d t t t t t =-+2222(2cos 4sin )d .t t t t =-2()d f x x '如果将漏掉就会产生错误.22d ()d x t tϕ''=§5 微分微分的概念微分的运算法则高阶微分微分在近似计算微分在近似计算中的应用1.函数值的近似计算000(Δ)()()Δ.(8)f x x f x f x x '+≈+000()()()().(9)f x f x f x x x '≈+-(9) 式的几何意义是当x 与x 0充分接近时, 可用点0Δ()Δ(Δ),y f x x o x '=+由于由此得Δd .y y ≈记, 即当时,0Δx x x =+0x x ≈故当很小时, 有Δx (8) 式可改写为中的应用公式(9) 分别用于sin x , tan x , ln(1+x ), e x ( x 0= 0 ), ,sin x x ≈,tan x x ≈(),1ln x x ≈+.1e x x +≈例5 试求sin 33o 的近似值( 保留三位有效数字).解π,60x ∆=由公式(9) 得到处的切线近似代替曲线, 这种线性近00(,())P x f x 可得近似计算公式( 试与等价无穷小相比较):似的方法可以简化一些复杂的计算问题.,606sin 33sin ⎪⎭⎫ ⎝⎛+=ππ 0()sin ,,6f x x x π==取sin33sin cos 6660πππ⎛⎫⎛⎫≈+⨯ ⎪ ⎪⎝⎭⎝⎭0.545≈2.误差的估计0|Δ|||,x x x x δ=-≤设数x 是由测量得到的, y 是由函数经过()y f x =如果已知测量值x 0 的误差限为,即x δ算得到的y 0= f (x 0) 也是y = f (x ) 的一个近似值. 差, 实际测得的值只是x 的某个近似值x 0. 由于测量工具精度等原因, 存在测量误计算得到.由x 0计000().(11)||()yx f x y f x δδ'=则当x δ很小时, 量y 0 的绝对误差估计式为:相对误差限则为0|()|y x f x δδ'=称为y 0 的绝对误差限,而的0y 0()()y f x f x ∆=-0()f x x '≈∆0().x f x δ'≤33001π38792.39cm ,6V d =≈201π2V d d δδ=解以d 0 = 42,0.05d δ=计算的球体体积和误差估绝对误差限和相对误差限.计分别为:203001π21||π6V d d V d δδ=⨯‰.03 3.57d d δ=≈例6 设测得一球体直径为42cm, 测量工具的精度为0.05cm. 试求以此直径计算球体体积时引起的2π420.052=⨯⨯3138.54cm ;≈。

数学分析ppt课件

数学分析ppt课件

有限覆盖定理
总结词
有限覆盖定理是实数完备性定理中的另一个 重要结论,它涉及到实数集的覆盖问题。
详细描述
有限覆盖定理说明,任意一个开覆盖${(a_n, b_n)}$的实数集都可以被有限个开区间覆盖 。换句话说,对于任意一个实数集$S$,都 存在有限的开区间${(a_1, b_1), (a_2, b_2), ldots, (a_n, b_n)}$,使得$S subseteq cup_{i=1}^{n} (a_i, b_i)$。这个定理在证 明紧空间的性质和实数完备性中起到了关键 作用。
3
实数系中的基本运算
实数系中可以进行加法、减法、乘法和 除法等基本运算,这些运算具有交换律 、结合律、分配律等性质。此外,实数 系中还可以定义绝对值、最大值、最小 值等概念。
极限理论
01
极限的定义
极限是数学分析中的一个基本概念,它描述了当自变量趋向某一值时,
函数值的变化趋势。极限的定义包括数列极限和函数极限两种形式。
详细描述
介绍向量值函数和空间曲线的定义,通过实例说明向量值函 数和空间曲线的性质,并解释其在数学分析中的重要性和应 用。
06
实数完备性定理
区间套定理
总结词
区间套定理是实数完备性定理中的一个 重要组成部分,它描述了闭区间套的性 质。
VS
详细描述
区间套定理指出,如果存在一个闭区间套 ,即一列闭区间${[a_n, b_n]}$,满足 $a_n < b_n$且$a_n < a_{n+1} < b_{n+1} < b_n$(对任意$n$),则该区 间套中至少存在一个实数。这个定理在数 学分析中有着广泛的应用,例如在证明连 续函数的性质和极限理论中。

《数学分析》第五章导数和微分

《数学分析》第五章导数和微分
函数的变化率问题
函数的增量问题
微分的概念
导数的概念
求导数与微分的方法,叫做微分法.
研究微分法与导数理论及其应用的科学,叫做微分学.
导数与微分的联系:


导数与微分的区别:
思考题
思考题解答
说法不对. 从概念上讲,微分是从求函数增量引出线性主部而得到的,导数是从函数变化率问题归纳出函数增量与自变量增量之比的极限,它们是完全不同的概念.
练 习 题
练习题答案
202X
感谢各位的观看
汇报人姓名
5 微分
Байду номын сангаас
一、问题的提出
实例:正方形金属薄片受热后面积的改变量.
再例如,
既容易计算又是较好的近似值
问题:这个线性函数(改变量的主要部分)是否所有函数的改变量都有?它是什么?如何求?
二、微分的定义
(微分的实质)
定义
由定义知:
三、可微的条件
定理 证 必要性
(2) 充分性
例1

四、微分的几何意义
M N T ) 几何意义:(如图) P
五、微分的求法
基本初等函数的微分公式
求法: 计算函数的导数, 乘以自变量的微分.
函数和、差、积、商的微分法则
例2

例3

六、微分形式的不变性
结论: 微分形式的不变性
例4

例3

例5

在下列等式左端的括号中填入适当的函数,使等式成立.
七、小结
微分学所要解决的两类问题:

高等数学(导数、微分)详细ppt课件

高等数学(导数、微分)详细ppt课件

.
关于导数的说明:
★ 点导数是因变x0处 量的 在变 点化 ,它率 反映因 了变量随自变量 而的 变变 化化 的快 慢程.度 ★ 如果y函 f(x数 )在开I内 区的 间每 处都, 就 可称 导f(函 x)在 数 开I内 区可 间 . 导
.
★ 对于任x 一I,都对应f(着 x)的一个确定的
导数.这 值个函数叫做原 f(x)来 的函 导数 函 . 数
2.右导数:
f ( x 0 ) x lx 0 i 0 f m ( x x ) x f 0 ( x 0 ) l x i 0 f ( m x 0 x x ) f ( x 0 ) ;
★ 函 数 f(x )在 点 x 0处 可 导 左 导 数 f (x 0)和 右 导 数 f (x 0)都 存 在 且 相 等 .
y
y
yf(x)
o
x
yf(x)
o
x0
x
.
例8 讨论函数f (x)xsin1x, x0, 0, x0
在x0处的连续性与可. 导性

sin1 x
是有界函, 数lxim 0xsin1x0
f(0 )lif m (x )0f(x)在 x0处连 . 续
但x在 0处 x 0有 y(0x)sin01x0 sin 1
x23 x2 x5
,

它 们 的 导 数 分 别 为 dy 1 = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ , dx
dy 2 dx
=_
__
__
______
__
, dy 3 = _ _ _ _ _ _ _ _ _ _ _ _ _ dx
.
.
4、 设 f(x)x2,则 ff(x)________________; ff(x)_________________.

数学分析5.1导数的概念(讲义)

数学分析5.1导数的概念(讲义)

第五章导数和微分1 导数的概念一、导数的定义定义1:设函数y=f(x)在点x0的某邻域内有定义,若极限存在,则称函数f在点x0处可导,并称该极限为函数f在点x0处的导数,记作f’(x0). 若该极限不存在,则称f在点x0处不可导.令x=x0+△x,△y=f(x0+△x)-f(x0),则:==f’(x0).∴导数是函数增量△y与自变量增量△x之比的极限. 这个增量比称为函数关于自变量的平均变化率(又称为差商),而导数f’(x0)则为f在x0处关于x的变化率.注:显然常量函数f(x)=C在任何一点x的导数都等于零.例1:求函数f(x)=x2在点x=1处的导数,并求曲线在点(1,1)处的切线方程.解:f’(1)===2.∴曲线在点(1,1)处的切线方程为:y-1=2(x-1),即y=2x-1.例2:证明函数f(x)=|x|在点x=0处不可导.证:f’(0)=,∵=1,=-1,∵不存在,∴f在点x=0处不可导.设f(x)在点x0可导,则ε=f’(x0)-是当△x→0时的无穷小量,于是ε·△x=o(△x),即△y=f’(x0)△x+o(△x),称为f在点x0的有限增量公式.该公式对△x=0仍成立.定理5.1:若函数f在点x0可导,则f在点x0连续.注:可导是连续的充分而非必要条件.例3:证明函数f(x)=x2D(x)仅在点x0=0处可导,其中D(x)为狄利克雷函数.证:当x0≠0时,由归结原理可得f在x= x0处不连续,∴f在x= x0处不可导.当x0=0时,∵D(x)有界,∴f’(0)==xD(x)=0.即f仅在点x0=0处可导.定义2:设函数y=f(x)在点x0的某右邻域(x0, x0+δ)上有定义,若右极限=(0<△x<δ)存在,则称该极限值为f在点x0的右导数,记作f’+(x0). 类似地,定义左导数为f’-(x0)==.右导数和左导数统称为单侧导数.定理5.2:若函数f在点x0的某右邻域内有定义,则f’(x0)存在的充要条件是:f’+(x0)与f’-(x0)都存在,且f’+(x0)=f’-(x0).例4:设f(x)=,讨论f(x)在x=0处的左右导数与导数.解:f’+(0)===0.f’-(x0) ===1.∵f’+(x0)≠f’-(x0),∴f在x=0处不可导.二、导函数若函数在区间I上每一点都可导(区间端点只考虑单侧导数),则称f为I上的可导函数. 对每一个x∈I,都有一个导数f’(x)(或单侧导数)与之对应,函数f’就称为f 在I上的导函数,简称为导数. 记作f’, y’或,即:f’(x)=, x∈I注:f’(x0)可写作:y’或例5:证明:(1)(x n)’=nx n-1,n为正整数;(2)(sinx)’=cosx,(cosx)’=-sinx;(3)(log a x)’=log a e (a>0,a≠1,x>0),特别的(ln x)’=.证:(1)对于y=x n, ==x n-1+x n-2△x +…+△x n-1,∴(x n)’==(x n-1+x n-2△x +…+△x n-1)=x n-1=nx n-1.(2)∵==,由cosx在R上连续可得:(sinx)’==cosx.又==,由sinx在R上连续可得:(cosx)’== -sinx.(3)∵=log a=log a,又由log a x的连续性可得:(log a x)’=log a=log a=log a e.当a=e时,ln e=1,∴(ln x)’=.三、导数的几何意义曲线y=f(x)在点(x0,y0)的切线方程为:y-y0=f’(x0)(x-x0).即函数f在点x0的导数f’(x0)是曲线fy=(x)在点(x0,y0)的切线斜率.若α表示这条切线与x轴正方向的夹角,则f’(x0)=tanα.例6:求曲线y=x3在点P(x0,y0)处的切线方程与法线方程.解:y’=3x2, ∴f’(x0)=3x02==.当x0≠0时,曲线在点P(x0,y0)处的切线方程为y-y0=f’(x0)(x-x0),即y=3x02x-2y0;法线方程为y-y0=(x-x0),即y=x y0.当x0=0时,切线方程为y=0,法线方程为x=0.定义3:若函数f在点x0的某邻域U(x0)内对一切x∈U(x0)有f(x0)≥f(x)或f(x0)≤f(x),则称f在点x0取得极大(小)值,称点x0为极大(小)值点. 极大值和极小值统称为极值,极大值点、极小值点统称为极值点.例7:证明:若f’+(x0)>0,则存在δ>0. 对任何x∈(x0,x0+δ),有f(x0)<f(x).证:∵f’+(x0)=>0,由保号性可知,存在δ>0,对一切x∈(x0,x0+δ),有>0,∴对任何x∈(x0,x0+δ),有f(x0)<f(x).定理5.3(费马定理):设函数f在点x0的某邻域内有定义,且在点x0可导,若点x0为f的极值点,则必有f’(x0)=0.我们称满足方程f’(x0)=0的点为稳定点. 稳定点不一定是极值点。

数学分析--导数 ppt课件

数学分析--导数  ppt课件

数,如果要讨论改函数在端点处的变化率时,就要对导数概念加以补充,引出单 侧导数的概念。
定义 2 设函数 y f (x) 在点 x0 的某右邻域 (x0 ,x 0 δ)上有定义,若右
极限 或
l i m Δ y l i m f ( x0 Δ x ) f ( x0 ) (0< x < )
Δ x Δx 0
理 5.1, f(x) x 在 x x 0 0 处不可导。
当 x0 0 时,由于 D(x) 为有界函数, 因此得到
f(0)
lim
f(x)
f(0)
li
mxD(x)
0.
x0 x 0
x 0
ppt课件
下页 18
(二)函数在一点的单侧导数
类似于函数在一点有左、右极限, 对于定义在某个闭区间或半开区间上的函
dx
dx
运算,待到学过“微分”之后,将说明这个记号实际上是一个“商”,相应于上述各种
表示导数的形式,f |x x 0 或
dy dx
|xx0

ppt课件
下页 23
例 6 证明:
(i) ( xn ) nxn1, n 为正整数 ;
(ii) (sinx) cosx , (cosx) sinx
(iii)
y 1
-1/π
0
1/π
x
ppt课件
下页 22
(三)导函数 若函数在区间 I 上每一点都可导(对区间端点,仅考虑相应的单侧导数),则称 f
为 I 上的可导函数。此时对每一个χ∈I,都有 f 的一个导数 f '(x) (或单侧导数)与之
对应,这样就定义了一个在 I 上的函数,称为 f 在 I 上的导函数,也简称为导数,记作

高中数学(人教版)第5章导数和微积分求导法则课件

高中数学(人教版)第5章导数和微积分求导法则课件
cos 2 x sin2 x 1 2 sec x. 2 2 cos x cos x
导数的四则运算
同理可得
1 2 ( cot x ) csc x. 2 sin x
1 cos x sin x (iii) (sec x ) 2 2 cos x cos x cos x
f ( x0 ) 1 . ( y0 ) (6)
证 设 Δx x x0 , Δy y y0 , 则 Δx ( y0+ Δy ) ( y0 ), Δy f ( x0Δx ) f ( x0 ) .
由假设, f 1 在点 x0 的某邻域内连续,
0
(4)
导数的四则运算
1 证 设 g( x ) ,则 f ( x ) u( x )g( x ). 对 g( x ), 有 v( x ) 1 1 v ( x0 Δ x ) v ( x0 ) g ( x0 Δ x ) g ( x 0 ) Δx Δx v ( x0 Δ x ) v ( x 0 ) 1 . Δx v ( x0 Δ x ) v ( x 0 ) 由于 v ( x ) 在点 x0 可导, v( x0 ) 0, 因此
1
反函数 的导数
π2) 上 (ii) y arctan x 是 x tan y 在 ( π 2,
的反函数,故
1 1 1 (arctan x ) 2 2 sec x 1 tan y (tan y )
1 2, 1 x x ( ,).
同理有
1 (arccot x ) , x ( , ). 2 1 x
sec x tan x.
同理可得
(csc x ) csc x cot x .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数 f ( x)在点 x0可微, 且 f ( x0 ) A.
可导 可微. A f ( x0 ). 函数 y f ( x)在任意点x的微分, 称为函数的 微分, 记作 dy或df ( x), 即 dy f ( x)x.
例1 求函数 y x3 当 x 2, x 0.02时的微分.
解 dy ( x3 )x 3x2x.
dy x2 3 x 2x x2 0.24.
x 0.02
x 0.02
通常把自变量x的增量x称为自变量的微分,
记作dx, 即dx x.
dy f ( x)dx.
dy f ( x). dx
即函数的微分dy与自变量的微分dx之商等于
该函数的导数. 导数也叫"微商".
四、微分的几何意义
几何意义:(如图)
二、微分的定义
定义 设函数 y f ( x)在某区间内有定义, x0及 x0 x在这区间内, 如果 y f ( x0 x) f ( x0 ) A x o(x) 成立(其中A是与x无关的常数), 则称函数 y f ( x)在点 x0可微, 并且称A x为函数 y f ( x)在点 x0相应于自变量增量x的微分, 记作dy x x0 或 df ( x0 ), 即dy x x0 A x.
再例如, 设函数 y x3在点 x0处的改变量 为x时, 求函数的改变量y.
y ( x0 x)3 x03
3x02 x 3x0 (x)2 (x)3 .
(1)
(2)
当 x 很小时, (2)是x的高阶无穷小o(x),
y 3x02 x.
既容易计算又是较好的近似值
问题:这个线性函数(改变量的主要部分)是否 所有函数的改变量都有?它是什么?如何求?
d(e x ) e xdx
d (loga
x)
1 x lna
dx
d(arcsin x) 1 dx 1 x2
d(ln x) 1 dx x
d(arccos x) 1 dx 1 x2
d
(arctan
x
)
1
1 x
2
dx
d
(arc
cot
x)
1
1 x2
dx
2. 函数和、差、积、商的微分法则
d(u v) du dv d(uv) vdu udv
d(Cu) Cdu
u vdu udv
d( ) v
v2
例2 设 y ln( x e x2 ), 求dy.

y
1 2 xe x2 x ex2
,
dy
1 2 xe x2 x ex2
dx.
例3 设 y e13x cos x, 求dy. 解 dy cos x d(e13x ) e13x d(cos x)
(e13x ) 3e13x , (cos x) sin x. dy cos x (3e13x )dx e13x ( sin x)dx
e13x (3cos x sin x)dx.
六、微分形式的不变性
设函数 y f ( x)有导数 f ( x),
(1) 若x是自变量时, dy f ( x)dx;
cos(2x 1) 2dx 2cos(2x 1)dx. 例4 设 y eax sin bx, 求dy. 解 dy eax cos bxd(bx) sin bx eaxd(ax)
eax cos bx bdx sin bx eax (a)dx eax (b cos bx a sin bx)dx.
x0 x
x0 x
ቤተ መጻሕፍቲ ባይዱ
即函数 f ( x)在点 x0可导, 且A f ( x0 ).
(2) 充分性 函数f ( x)在点x0可导,
lim y x0 x
f ( x0 ),
即 y x
f ( x0 ) ,
从而 y f ( x0 ) x (x), 0 (x 0),
f ( x0 ) x o(x),
d(C) 0
d ( x ) x1dx
d(sin x) cos xdx
d(cos x) sin xdx
d(tan x) sec2 xdx d(cot x) csc2 xdx
d(sec x) sec x tan xdx d(csc x) csc x cot xdx
d(a x ) a x ln adx
(2) 若x是中间变量时, 即另一变量t 的可
微函数 x (t), 则 dy f ( x)(t)dt
(t)dt dx,
dy f ( x)dx.
结论:无论 x是自变量还是中间变量, 函数 y f ( x)的微分形式总是 dy f ( x)dx
微分形式的不变性
例3 设 y sin( 2x 1), 求dy. 解 y sin u, u 2x 1. dy cos udu cos(2x 1)d(2x 1)
微分 dy叫做函数增量y的线性主部.(微分的实质)
由定义知:
(1) dy是自变量的改变量x的线性函数;
(2) y dy o(x)是比x高阶无穷小;
(3) 当A 0时, dy与y是等价无穷小;
y dy
1
o(x) A x
1
(x 0).
(4) A是与x无关的常数, 但与f ( x)和x0有关;
§5 微分
一、问题的提出
实例:正方形金属薄片受热后面积的改变量.
设边长由x0变到x0 x,
正方形面积 A x02, A ( x0 x)2 x02
2x0 x (x)2 .
(1)
(2)
x0
x0x
x (x)2
x
A x02
x0x x0
(1) : x的线性函数,且为A的主要部分; (2) : x的高阶无穷小,当x 很小时可忽略.
y
T
当y是曲线的纵
坐标增量时, dy 就是切线纵坐标 对应的增量.
y f (x)

o
当 x 很小时, 在点M的附近,
N
P
o(x)
M
dy y
x
x0 x0 x
x
切线段 MP可近似代替曲线段MN .
五、微分的求法
dy f ( x)dx
求法: 计算函数的导数, 乘以自变量的微分.
1.基本初等函数的微分公式
(5) 当x 很小时,y dy (线性主部).
三、可微的条件
定理 函数 f ( x)在点 x0可微的充要条件是函 数 f ( x)在点 x0处可导, 且 A f ( x0 ).
证 (1) 必要性 f ( x)在点x0可微,
y A x o(x),
y A o(x) ,
x
x
则 lim y A lim o(x) A.
相关文档
最新文档