43第3章 轨道交通枢纽站换乘设计

合集下载

地铁换乘站的设计与规划研究

地铁换乘站的设计与规划研究

地铁换乘站的设计与规划研究随着城市的发展,地铁交通成为越来越多人出行的首选方式。

为了方便乘客的出行,地铁换乘站的设计与规划至关重要。

一座优秀的地铁换乘站,不仅要具备高效、便捷的换乘功能,还需要考虑人性化设计、环保和智能化等因素。

本文将从多个角度,分析地铁换乘站的设计与规划研究。

一、功能设计地铁换乘站的设计首先要考虑的是功能性,在地铁线路规划中扮演着枢纽的作用,它们通常是连接多条地铁线路的节点,处理大量人员和信息流动的场所。

因此,在设计时,必须考虑人流量、车流量和能量流的复杂性,以最大程度地优化空间、时间和资金预算等资源,使得整个系统在满足安全、便利、舒适等方面的基本要求的同时,具备柔性、弹性、拓展性等特征,能够适应未来的多样化需求。

二、交通接驳地铁换乘站的引入,一般会给周边交通带来一定的影响。

在交通规划中,需要将地铁线路与其他交通模式相结合,以提供便捷的出行体验。

因此,换乘站的位置选择需要考虑巴士、出租车、私人轿车、自行车等各种出行方式的接驳。

同时,周边的步行环境和景观也应该满足人们的需求,设计合理的出入口和人行通道,才能达到更好的出行效果。

三、空间布局空间布局是地铁换乘站设计的重要组成部分,好的设计应该能够满足人们出行的需求,让人们感到轻松和愉悦。

在空间布局上,需要考虑到换乘站内部的不同区域,如候车区、乘车通道、出入口等。

这些区域需要进行科学、合理的划分,以便实现人车分流的目的,并有效避免拥堵的发生。

另外,配合空调设备、通风设施等,保证站内部的通风、采光等硬件条件。

四、智能化应用随着科技发展的飞速进展,智能化应用在地铁换乘站的应用也变得越来越普遍。

基于物联网技术的智能车站、智能设备、智能服务等,能够提供更加便利、个性化、高效的服务,为人们的出行带来便捷。

例如,智能指引、自动售卖等,能够减轻服务人员负担,提高乘客体验。

同时,智能化应用还可以有效提高换乘站的管理水平,更好地保障乘客的信息安全。

五、人性化设计人性化设计是地铁换乘站设计的的一个重要方面。

4-3第3章 轨道交通枢纽站换乘设计

4-3第3章 轨道交通枢纽站换乘设计

轨道交通枢纽换乘规划设计•轨道线路之间换乘布局模式•与铁路客运的衔接规划•与航空客运的衔接规划•与公路客运的衔接规划•与常规公交的衔接规划轨道线路之间换乘布局模式•换乘方式:站台换乘、结点换乘、站厅换乘、通道换乘、混合换乘和站外换乘等六种形式;•轨道枢纽布局模式:并列式、行列式、十字型、T型、L型、H型和混合型等七种形式站台同平面换乘•双线双岛式站台•双线岛侧式站台站台上下平行换乘根据站台和线路方向组合的不同•同线路同站台•同方向同站台•异方向同站台同线路同站台换乘站示意图•将一条线路的两个股道设置在另一条线路两股道的上方,而两个相同方向的股道位于同一竖直平面内。

•换乘特点:所有方向之间的客流均需通过设置在上下岛式站台之间的梯道或自动扶梯才能实现换乘,因此这种形式换乘站的换乘能力受到梯道和自动扶梯通过能力的制约。

股道在不同竖直面内换乘站示意图(同线路同站台)结点换乘•在两条轨道地下线路的交叉处,将两线隧道重叠部分的结构做成整体的结点,并采用楼梯或自动扶梯连接两座车站的上下站台,从而形成节点换乘,各方向的乘客只需通过上下楼梯或自动扶梯一次,便能换乘另一条线路。

•设计关键:要注意上下楼的客流组织,避免进出站客流与换乘客流的交织紊乱。

该方式与同站台换乘方式一样,多用于两线之间的换乘,如用于三线或三线以上的换乘,则枢纽布置和建筑结构变得相当复杂,必须与其它换乘方式组合应用。

结点换乘•十字型•T型•L型①岛式与侧式换乘两线站台呈“┼┼”字型,换乘楼梯或自动扶梯为两个跟部相对的T 形,上海地铁2号线与规划6号线的河南中路站采用此种换乘方式,2号线岛式站台在下,6号线侧式站台在上。

岛式与侧式结点换乘布置示意图岛式与岛式结点换乘布置示意图②岛式与岛式换乘利用上下二层岛式站台的“十”字交叉点,进行站台与站台之间的直接换乘,两个站台和换乘楼梯在平面上均呈十字型,北京地铁西直门车站采用了此种换乘方式。

③侧式与侧式换乘利用上下二层侧式站台的四个“十”字交叉点来完成站台与站台之间的换乘。

城市轨道交通换乘站点优化设计

城市轨道交通换乘站点优化设计

城市轨道交通换乘站点优化设计城市轨道交通是现代城市发展中不可或缺的交通方式之一,而换乘站点作为轨道交通系统的重要节点,对于提高交通效率和方便乘客出行起着至关重要的作用。

因此,优化设计城市轨道交通换乘站点就成为了城市规划的重要课题之一。

换乘站点的优化设计需要考虑多个因素,其中包括交通流量、空间利用、乘客的舒适度等。

在设计之初,需要通过合理的规划和布局确保顺利的换乘流程。

一方面,要考虑站点的位置,使得站点能够便捷地连接多条轨道线路,减少乘客的换乘时间和换乘步骤。

另一方面,站点本身也要具备足够的空间,以容纳庞大的客流量,并确保乘客在换乘过程中能够得到舒适的体验。

这也意味着换乘站点的布局需要兼顾人流、车流和空间等因素的平衡。

在满足基本需求的前提下,换乘站点的优化设计也可以考虑引入一些创新的元素和概念。

例如,可以引入绿化和景观设计,使得站点呈现出更加宜人的环境,提供更好的视觉享受和休息场所,缓解乘客的疲劳感。

此外,还可以引入智能科技,实现自动检票、导航和信息查询等功能,提高乘客的出行便利性。

通过这些创新设计,不仅可以提高换乘站点的功能性,还能够提升城市形象和品质。

除了站点的设计,换乘通道的布置也是优化设计的重要部分。

通常情况下,乘客需要通过扶梯、电梯或楼梯等方式到达不同的轨道线路。

因此,在设计时需要考虑到各种乘客的需求,包括老年人、残障人士和有孩童的家庭等。

换乘站点应该提供无障碍设施和方便的乘客导引,确保所有乘客可以顺利、安全地换乘。

除了上述的设计考虑,换乘站点的运营管理也需要优化。

在高峰期或人流量较大时,站点需要采取相应的措施,如增加售票窗口和自动售票机,增加安全检查通道等,以提高乘客的效率和体验。

此外,换乘站点还需要设置准点和实时信息显示,及时告知乘客有关列车晚点或变更的信息,方便乘客做出相应的决策。

在城市轨道交通系统的设计和建设中,换乘站点的优化设计是城市发展的重要环节之一。

通过科学合理的站点规划、布局和管理,可以提高交通效率,提升城市形象,改善乘客的出行体验。

轨道交通地铁换乘车站方案设计

轨道交通地铁换乘车站方案设计

轨道交通地铁换乘车站方案设计摘要:作为城市轨道交通中的重要组成部分,地铁换乘车站是从枢纽的一条轨道线到另一条轨道线的必由之路,也是维护地铁线位稳定的重要锚固。

换乘站的特点就是复杂、双站同站台换乘的情况具有其特有的优劣和难易度,因此对于地铁同台换乘中的单站同站台换乘、双站同站台换乘等等加以分析和比较,从乘客的要求出发,将同台换乘站的功能进行拓展和开发,满足客流量较大的地铁换乘站同向、反向的疏通需求。

在投资量有限的条件下,实现双站同台换乘,促进城市交通向着更边界、更高效的方向发展。

关键词:同站台换乘;零换乘;换乘站设计方案地铁带给城市快捷的交通和高速的生活,将人们对于距离和时间的概念进行跟新,实现了真正的高速、高效,给城市创造了四通八达的轨道交通生活。

一个城市的城市轨道交通线网一般至少包含几条甚至几十条线路。

当线路发生了交汇,产生了交叉点,就必须要有换乘站的存在,这是将线网的线路进行搭接的独立运营的站点和枢纽,在城市轨道交通线网中担负的责任十分重大。

乘客在这里换乘,列车在这里交汇,线网在这里拥有节点,为四通八达的城市轨道交通打造基础[1]。

可以说每一个轨道交通的换乘站都是一个大型的换乘枢纽。

国外的著名的大型换乘站一般都至少有数条线路在交叉和换乘,有的是与火车站进行的换乘,有的是与公交枢纽和地铁换乘,这些枢纽发挥着方便乘车、提高投资效益的重要作用。

1、轨道交通地铁换乘车站概述1.1换乘站的分类标准,有地铁的线网的规划、线路的环境,地上地下的铺设方式,换乘凉的大小等等。

按照同车站的平行换乘的要求,抱哈了同车站的换乘、同站台的换乘,上下站台的换乘等等,从形式上将,分为十字型,T字型、L字型、H字型等等,每种类型的换乘站,都有自己的换乘形式。

拥有不同的站台、楼梯、通道等等,乘客对其中通行,需要通过楼体、自动扶梯、站台,经过很长的路,等待较长的时间,因此,同站台平面的换乘就解决了等待时间长,需要走出地铁站等问题,简单地说,就是不要等待或者走出站台,就能换乘地铁。

交通枢纽规划布局

交通枢纽规划布局

i 1 K 1
i 1 K 1
i 1 K 1
K 1
i 1
q
n
s.t
XiK Zij ai i 1,2,...m,
K1
j1
q
m
YKj Zij bj j 1,2,...n,
K1
i1
m
n
XiK YKj K 1,2,...q,
i1
j1
m
XiK MWK 0 WK 1表示被选中W,K 0表示被淘汰
5.数学物理方 法特点归纳
一元交通枢纽布局决策的本质 未变。传统重心法、微分法以 及成本分析法只能求解一元问 题,改造后的重心法、微分法 等尽管能够求解多元问题,但 带有很强的局限性,若以分区 的角度分析,其一元问题的本 质未变,不能将其纳入到全域 范围中求解所有的多元性问题。
数学物理方法对交通枢 纽布局网络层次性考虑 不足。重心法、微分法 仅仅考虑两层网络结构, 即交通枢纽待决策点与 需求点的关系,而在现 实中存在交通网络结构 可能具有多层次性。
j 1
n
C jWj
j 1
n
C jWj
j 1
4)特点分析
x, y——决策点的平面坐标; xj , yj ——第j个产生点的横纵坐; 标值 Wj ——第j个产生点到决策点量 的; 运 Cj ——第j个产生点与决策点运 间输 的费率
➢ 只能对一元问题求解;
➢ 解的实用性不强,往往与实际存在较大差距,一般可作为其他方法的 初始解;
Xi1iK,YKj,Zij 0
目标:发点到备选枢纽点运费+备选枢纽点到吸点运费+发点直接到吸点运 费+枢纽点建设费用(涉及到0-1变量问题)+中转费用
约束条件:a.发点到备选枢纽点的流量+直接从发点到吸点的流量≤总的发量 b.备选枢纽点到吸点的流量+直接从发点到吸点的流量≤总的吸量 c.总的发量=总的吸量(供需平衡)

轨道交通换乘枢纽.

轨道交通换乘枢纽.

优点
缺点
轨道交通换乘站的类型
——结点换乘
结点换乘适用于“十”型 线路,施工时在通道连接 部分做成一体化设计。换 乘时要求乘客下车后利用 楼梯或电动扶梯,到达位 于另一楼层的站台转车
轨道交通换乘站的类型
——结点换乘
轨道交通换乘站的类型
——站厅换乘
适用
侧式站台或设有多于两个站台的 车站,相交线路共用一个站厅 乘客行进速度快,可避免站台拥 挤,又可减少升降设备的总数量 站厅换乘一般用于相交车站换 乘,它的换乘距离要比站台直接 换乘长,在多数情况下,乘客要 在垂直方向上往返行走,故带来 了一定的高度损失
优点
缺点
轨道交通换乘站的类型
——通道换乘
适用
两条线距离较近,但又无法建造 同一车站 通道布置较为灵活,前期预留工 程少
优点
缺点
由于通道不能无限制拓宽以及增 加通道数量,故而通过能力有 限,因而此换乘方式与其他换乘 方式配合使用
轨道交通换乘站的类型
——通道换乘
H型
T型
L型
轨道交通换乘站的类型
——通道换乘
轨道交通换乘枢纽
换乘
换乘是指乘客在不同路线之间,在不离开车 站付费区及不另行购买车票的情况下,进行 跨线乘坐列车的行为。
换乘站
换乘站是城市轨道交通系统的专用词,指供 乘客在不同路线之间,在不离开车站付费区 及不另行购买车票的情况下,进行跨线乘坐 列车的车站。
轨道交通换乘枢纽
——目录
1
轨道交通线路之间换乘站的类型及 其特点 轨道交通与城市对外交通方式换乘 轨道交通与城市内其他交通方式的 换乘
H型
T型
L型
轨道交通换乘站的类型及特点
——特点

轨道交通换乘枢纽分析课件

轨道交通换乘枢纽分析课件

经济效益评估
投资回报分析
对换乘枢纽进行经济效益评估,需要对其投资规模、资金来源、回 报周期等方面进行分析,以评估其经济效益的可行性。
运营收益分析
对换乘枢纽的运营收益进行分析,包括票务收入、商业租金收入等 方面,以评估其盈利能力。
成本效益分析
对换乘枢纽的建设和运营成本进行分析,与所产生的经济效益进行比 较,以评估其成本效益的合理性。
STEP 01
中型换乘枢纽
小型换乘枢纽
规模较小,仅包含少数几 条轨道交通线路或交通方 式的换乘枢纽。
STEP 03
大型换乘枢纽
规模较大,是城市交通网 络中的核心节点,包含多 种交通方式,如地铁、铁 路、公交等。
规模适中,包含较多的轨 道交通线路或交通方式, 是城市交通网络中的重要 节点。
Part
03
经验教训总结
总结这些国际先进换乘 枢纽在发展过程中遇到 的问题和教训,为我国 轨道交通换乘枢纽的建 设和改进提供参考。
未来换乘枢纽的发展趋势与展望
技术创新
分析未来轨道交通换乘枢纽在技术方面的创新趋势,如智 能化、绿色化等方面的技术应用。
01
运营管理优化
探讨未来轨道交通换乘枢纽在运营管理 方面的优化方向,如提高换乘效率、加 强安全管理等方面的措施。
社会效益评估
1 2 3
交通压力缓解
换乘枢纽能够有效地分散和转移交通流量,减轻 城市交通压力,提高交通运行效率。
促进区域经济发展
换乘枢纽通常位于城市中心或重要节点,其建设 和运营能够带动周边区域经济的发展,增加就业 机会。
提高出行便利性
换乘枢纽提供了多模式、多线路的交通换乘服务 ,使市民出行更加便捷,节省时间和精力。

城市轨道交通换乘站的设计与优化

城市轨道交通换乘站的设计与优化

城市轨道交通换乘站的设计与优化城市轨道交通的发展是现代城市可持续发展的必然选择。

作为一种高效、环保的交通工具,轨道交通在加速城市发展,减少交通拥堵,改善环境质量等方面发挥着重要作用。

而换乘站作为城市轨道交通的枢纽,其设计与优化对于提高出行效率、改善乘客体验至关重要。

一、站点规划与区位选择换乘站的规划和区位选择是整体规划过程的第一步。

在选择换乘站所在区位时,需要综合考虑区域的社会经济情况、人口密度、交通流量以及其他公共交通设施的布局等因素。

优先选择经济繁荣、人口密集的区域作为换乘站所在地,以满足大量出行需求。

同时,合理布局换乘站与其他公共交通设施之间的联系,确保互相衔接和有效转换。

二、站点设计与布局换乘站的设计与布局是为了提供便捷、高效的乘车环境。

在站点设计方面,需考虑站点的出入口设置、设施配置、通道宽度、候车区域等,以确保乘客的安全、舒适和便利。

此外,换乘站内部的导向标识和信息发布系统也应具备清晰明确的功能,方便乘客的出行导向和信息获取。

换乘站的布局要充分考虑乘客的换乘需求。

一方面,合理设置乘车通道和转乘通道,最大限度地减少换乘所需时间和步行距离。

另一方面,充分利用站点周边的空间条件,提供多种出行方式的接驳服务,比如自行车租赁服务、公交车站等,以提供更多出行选择。

三、智能化与信息化随着科技的不断发展,换乘站的智能化与信息化已成为不可或缺的设计要素。

通过智能化设备,可以实现乘客信息的实时查询和准确呈现,比如列车到站时间、乘车路线、站点附近设施等,并及时提供旅途中的阻塞信息以及替代线路建议等,提高乘客出行的便捷性和时效性。

同时,信息化系统还可以对乘客流量进行监测和调控,以应对高峰期的人流压力。

通过先进的人流监测技术,可以根据乘客流量的变化对站点设施和服务进行动态调整,提供更好的换乘体验。

四、生态与环境保护城市轨道交通作为一种低碳、环保的交通方式,对于环境保护具有重要意义。

因此,在换乘站的设计和优化过程中,必须注重生态和环境保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轨道交通枢纽换乘规划设计•轨道线路之间换乘布局模式•与铁路客运的衔接规划•与航空客运的衔接规划•与公路客运的衔接规划•与常规公交的衔接规划轨道线路之间换乘布局模式•换乘方式:站台换乘、结点换乘、站厅换乘、通道换乘、混合换乘和站外换乘等六种形式;•轨道枢纽布局模式:并列式、行列式、十字型、T型、L型、H型和混合型等七种形式站台同平面换乘•双线双岛式站台•双线岛侧式站台站台上下平行换乘根据站台和线路方向组合的不同•同线路同站台•同方向同站台•异方向同站台•将一条线路的两个股道设置在另一条线路两股道的上方,而两个相同方向的股道位于同一竖直平面内。

•换乘特点:所有方向之间的客流均需通过设置在上下岛式站台之间的梯道或自动扶梯才能实现换乘,因此这种形式换乘站的换乘能力受到梯道和自动扶梯通过能力的同线路同站台换乘站示意图制约。

同方向同站台换乘站示意图异方向同站台换乘站示意图将两条线路中不同方向的股道布置在同一层面上,保证不同方向的客流在同一个站台平面内实现换乘,而相同方向的客流需通过设置在上下岛式站台之间的梯道或自动扶梯才能实现换乘。

方向之间和2、3方向之间的客流分别在上下岛式站台方向之间和2、4方向之间的客流需通过两站台之间的梯道或自动扶梯至另一站台上换乘,适用于折角换乘客流较大而同方向换乘客流较小的情况。

•由于同方向同站台和异方向同站台两种换乘形式要将一线路的两股道分别引入高低不同的两个水平面,以及在车站线路交叉的一端上立体布置四条离站的股道,因此规划设计和施工都相当困难。

•如果相邻两车站分别采用这两种换乘形式,那么可以形成所有方向之间的客流都可以在同一站台平面内实现换乘的全方位组合•站台上下平行换乘(尤其是同方向同站台和异方向同站台的组合形式)是一种比较理想的换乘方式,适合地形不受限制的地方。

但是分别连接上下两层站台和站厅的楼梯或自动扶梯的设置较为困难。

•换乘方式的另一种变化形式为将不同平面内的股道铺设在不同的竖平面内,下层为岛式站台,上层则是两个由天桥联接起来的侧式站台。

•不仅解决了两层站台与站厅之间楼梯和自动扶梯设置的困难,而且可以降低两层站台之间的高差,使换乘更为方便,但却使枢纽占地较大,结构更为复杂。

股道在不同竖直面内换乘站示意图(同线路同站台)结点换乘•在两条轨道地下线路的交叉处,将两线隧道重叠部分的结构做成整体的结点,并采用楼梯或自动扶梯连接两座车站的上下站台,从而形成节点换乘,各方向的乘客只需通过上下楼梯或自动扶梯一次,便能换乘另一条线路。

•设计关键:要注意上下楼的客流组织,避免进出站客流与换乘客流的交织紊乱。

该方式与同站台换乘方式一样,多用于两线之间的换乘,如用于三线或三线以上的换乘,则枢纽布置和建筑结构变得相当复杂,必须与其它换乘方式组合应用。

结点换乘•十字型•T型•L型①岛式与侧式换乘两线站台呈“┼┼”字型,换乘楼梯或自动扶梯为两个跟部相对的T 形,上海地铁2号线与规划6号线的河南中路站采用此种换乘方式,2号线岛式站台在下,6号线侧式站台在上。

岛式与侧式结点换乘布置示意图②岛式与岛式换乘利用上下二层岛式站台的“十”字交叉点,进行站台与站台之间的直接换乘,两个站台和换乘楼梯在平面上均呈十字型,北京地铁西直门车站采用了此种换乘方式。

岛式与岛式结点换乘布置示意图③侧式与侧式换乘利用上下二层侧式站台的四个“十”字交叉点来完成站台与站台之间的换乘。

站台呈井字形,换乘楼梯呈四个内向的L形。

侧式与侧式结点换乘布置示意图⑵T型和L型换乘T型和L型结点换乘中两线路车站的主体结构相脱离,前者是一座车站中间的侧面与另一车站的端部通过换乘设施相衔接,后者是两站的端部通过换乘设施相衔接。

如北京地铁环线与地铁1号线相交的复兴门和建国门站均采用了T型换乘,北环与规划的地铁4号线则采用了L型换乘。

3 站厅换乘站厅换乘是设置两条线或多条线的公用站厅,或将不同线路的站厅相互连通形成统一的换乘大厅。

站厅换乘与同站台换乘和结点换乘相比,乘客换乘线路通常需要先上(或下)再下(或上),换乘总高度大,换乘距离长。

若站台和站厅之间采用自动扶梯连接,可以改善换乘条件。

依据轨道线路以及车站站台的不同形式,站厅换乘有三种典型的布置方式:⑴已建成的地铁1号线(侧式站台)、莘闵轻轨线(侧式站台)以及地面铁路沪杭线上的莘庄站,是将三者的站台平行地设置在地面层,地铁和轻轨线的联合站厅设置在地上第二层,并通过高架通道与铁路站台相连,三者之间的换乘均在联合站厅中进行。

⑵上海地铁1号线与规划地铁8号线的人民广场站在地下二层采用并列岛式站台形式,通过地下一层共用站厅来完成换乘。

⑶高架轨道明珠线与规划轻轨C-C线的虹口体育场站,采用上下平行侧式站台形式,通过夹在中间公用站厅来完成换乘。

4 通道换乘如果两轨道线路的车站靠得很近,但又无法建造成同一车站,那么可以采用通道换乘的形式。

通道换乘对乘客来说不是一种理想的换乘方式,换乘条件取决于通道的长度及其通过能力。

其优势:通道布置较为灵活,对两线的交角和车站的位置有较大的适应性,预留工程少。

通道换乘根据车站站位的不同,又有T型、L型和H型三种布置形式。

T型和L型站位与结点换乘中的T型和L型换乘相似,只是在两车站的联结部位,考虑到建筑结构设置的困难,可以不设置换乘设施,乘客的换乘通过设置在其它部位的专用换乘通道进行。

上海地铁2号线中山公园站(地下2层)与轨道明珠线长宁路站(高架2层站台、地面站厅)呈T型站位,利用两条地下通道联络两车站站厅层进行换乘。

•地铁1号线人民广场站与2号线人民公园站呈L 型站位,利用2号线地下2层站厅层与1号线地下1层站厅层,通过10m 宽地下通道来完成换乘。

又无法采用同站台换乘,那么可以采用H型站位的通道换乘方式。

•上海地铁2号线东方路站与轨道明珠线二期工程张扬路站呈H型站位,利用地下通道进行换乘,如果通道较长,那么应在通道的中间插入一缓冲区域。

通道换乘分析由于换乘通道的通过能力有限,且不能无限止拓宽通道宽度和增加通道的数量,因此通道换乘一般与其它换乘方式配合使用。

纯通道换乘常常作为路网考虑不周、规划失控、路网实施受阻等情况下的一种补救措施,在路网规划中应尽量避免采用。

5 混合换乘在进行实际的换乘枢纽规划设计时,若单独采用某种换乘方式不能奏效时,可采用上述两种或多种换乘方式的组合,形成混合换乘布局模式,以达到改善换乘条件,方便乘客使用,降低工程造价的目的。

例如,同站台换乘方式辅以站厅或通道换乘方式,使所有的换乘方向都能换乘;结点换乘方式在岛式站台中,必须辅以站厅或通道换乘方式,才能满足换乘能力;站厅换乘辅以通道换乘方式,可减少预留工程量,等等。

这些组合的目的,是力求车站换乘功能更强大,既保证具有足够的换乘能力,又使得工程实施容易及乘客使用方便。

上海轨道规划路网中的多线换乘枢纽大都采用混合换乘方式,如徐家汇站、人民广场站、东方路站、上海火车南站站等。

6 站外换乘站外换乘是乘客在车站付费区以外进行换乘,实际上是没有专用换乘设施的换乘方式。

它在下列情况下可能会出现:⑴高架线与地下线之间的换乘,因条件所迫,不能采用付费区内的换乘方式;⑵两线交叉处无车站或两车站相距较远;⑶规划不周,已建线路未预留换乘的接口,增建换乘设施又十分困难。

如上海地铁1号线和轨道明珠线上海火车站站目前就采用在付费区以外进行换乘的方式。

由于乘客增加一次进出站手续,步行距离长,再加上在站外与其它人流混合,因而很不方便。

对轨道交通而言是一种系统性的缺陷,因此站外换乘方式在路网规划中应尽量避免。

总的来说,轨道交通换乘方式与线路走向、车站埋深、换乘客流量、地面环境、施工技术水平以及经济发展水平等因素密切相关。

应在远期换乘客流量预测的基础上,因地制宜地选择能充分满足换乘需求而又经济合理的方式。

7 与铁路客运的衔接规划①在铁路客运站的站前广场地下单独修建轨道交通车站,站厅通道的出入口直接设置在站前广场,再通过站前广场与客运站衔接。

如上海地铁2号线一期终点龙东路站(地下1层站台层、地面站厅),通过站前广场与浦东铁路客运站(规划中)候车大厅进行换乘;②轨道车站的出口通道直接通到客运站的站厅层,乘客出站后就能进入客运站的候车室或售票室。

广州地铁1号线与广州东站的衔接采用这种模式;③由轨道车站的站厅层直接引出通道至铁路客运站的月台下,并通过楼梯或自动扶梯与各月台相连,乘客可以通过此通道在轨道交通与铁路客运之间直接换乘,只是换乘步行距离较长。

如上海地铁1号线(地下两层)与铁路新客站的衔接就采用此种模式,此种模式适合于同步实施;④轨道交通与铁路客运联合设站,对换乘乘客来说,这是最好的衔接布局模式。

上海地铁2号线与浦东客站衔接示意图上海地铁1号线与新客站衔接示意图8 与航空港的衔接规划①轨道车站位于机场范围以外,在航站和车站之间提供固定的公交服务。

波士顿洛根机场轨道枢纽站与航站楼衔接示意图②轨道车站与机场航站楼接近,再通过专用换乘通道设施衔接。

大阪关西机场轨道枢纽站与航站楼衔接示意图③轨道车站直接与航站楼相结合,乘客通过设置在站台上的楼梯或自动扶梯就可进入航站楼。

如美国亚特兰大国际机场的MARTA轻轨站,直接穿入航站建筑,使得旅客能够迅速接近机场服务;又如东京成田机场,京成线快速列车直接到达航站楼,并在航站楼地层设置车站,从航站楼的一层出入口通过分布在多处的自动扶梯即可直达。

东京成田机场轨道枢纽站与航站楼衔接示意图美国旧金山BART-机场(SFO)。

相关文档
最新文档