放大电路的频率特性.

合集下载

31. 第二章第四节:放大电路的频率特性

31. 第二章第四节:放大电路的频率特性

2.4 放大电路的频率特性由于放大电路中存在电抗元件(如管子的极间电容,电路的负载电容、分布电容、耦合电容、射极旁路电容等),使得放大器可能对不同频率信号分量的放大倍数和相移不同。

耦合电容和旁路电容影响放大器的低频特性;晶体管的结电容和分布电容影响放大器的高频特性。

而且它们的容抗随频率变化,故当输入信号幅值固定而信号频率不同时,放大电路的输出电压相对于输入电压的幅值和相位都将发生变化。

幅频特性:电压放大倍数的模|A u |与频率 f 的关系。

相频特性:输出电压相对于输入电压的相位移 ϕ 与频率 f 的关系。

O0.707 A A A u £££££(b)相频特性图29 放大电路的幅频特性和相频特性一.幅频特性:1. 在中频段++SE bI β图30 中频段放大电路的微变等效电路由于耦合电容和发射极旁路电容的容量较大,故对中频段信号的容抗很小,可视作短路。

三极管的极间电容和导线的分布电容很小,可认为它们的等效电容C O 与负载并联。

由于C O 的电容量很小,它对中频段信号的容抗很大,可视作开路。

所以,在中频段可认为电容不影响交流信号的传送,放大电路的放大倍数与信号频率无关而保持定值,输入电压与输出电压反向。

(前面所讨论的放大倍数及输出电压相对于输入电压的相位移均是指中频段的)2. 在低频段:++SE bI β图31 低频段放大电路的微变等效电路由于信号的频率较低,耦合电容和发射极旁路电容的容抗较大,其分压作用不能忽略即不能把它们视为短路,如图31所示。

以至实际送到三极管输入端的电压比输入信号要小,故放大倍数降低,即电压放大倍数的模随频率的降低而减小,输出电压与输入电压的相移也发生变化,并使产生越前的相位移(相对于中频段),不再保持180°的关系。

所以,在低频段放大倍数降低和相位移越前的主要原因是耦合电容和发射极旁路电容的影响。

当放大倍数降到中频段电压放大倍数时所对应得频率L f 为通频带的下限频率。

放大电路的频率特性

放大电路的频率特性

基本电路的频率特性
共源极
FOM越大越好,表明:用尽量小的电流ID获得尽量大的增 益带宽积GBW,并能够驱动足够大的电容负载CL
共源极频率特性
零点
零点的产生是由于信号有两个路徂 可由输入端到达输出端
两个路徂中,一个通过电容耦合,另一个不 通过电容
零点出现在右半平面,原因在于两 个路徂的信号到达输出端后相位相 反
不稳定系统
稳定性与零极点位置
临界系统
稳定性与零极点位置
零点
稳定性与零极点位置
系统函数中的零点,只影响时域函数的幅度和相 位,不影响时域波形的形式
系统函数中的零点,只影响时域函数的幅度和相位, 不影响时域波形的形式
多个负实极点
稳定性与零极点位置
主极点决定系统带宽
找到放大电路中的高电阻阻抗 节点,这个结点上的电容往往 决定了整个放大器的带宽 找到每个电容两端的开路电阻, 开路电阻最大的那个电容决定 带宽
单极点运放
增益带宽积
反馈与稳定性
增益每下降20dB,带宽就增加10 倍,这两者之间是简单的互换关系
增益带宽积始终不变
两极点运放
两极点运放
反馈与稳定性
闭环反馈系统的极点始终在左半平面
环路增益LG(=AF)的相位<180度 系统始终是稳定的 稳定就够了吗?
两极点运放
较小的反馈
反馈与稳定性
两极点运放
fp2=3GBw: Bessel 三负实极点运放极点配置方案 fp2=3GBw, fp3=7GBw 至少 fp2=4GBw, fp3=4GBw: 近
Butterworth fp2=6GBw, fp3=6GBw 至少 fp2=4GBw, fp3=8GBw: 近
Bessel

放大电路的频率特性

放大电路的频率特性

返回>>第三章 放大电路的频率特性通常,放大电路的输入信号不是单一频率的正弦信号,而是各种不同频率分量组成的复合信号。

由于三极管本身具有电容效应,以及放大电路中存在电抗元件(如耦合电容和旁路电容),因此,对于不同频率分量,电抗元件的电抗和相位移均不同,所以,放大电路的电压放大倍数A u 和相角φ成为频率的函数。

我们把这种函数关系称为放大电路的频率特性。

§1频率特性的一般概念一、频率特性的概念以共e 极基本放大电路为例,定性地分析一下当输入信号频率发生变化时,放大倍数将怎样变化。

在中频段,由于电容可以不考虑,中频A um 电压放大倍数基本上不随频率而变化。

ο180=ϕ,即无附加相移。

对共发射极放大电路来说,输出电压和输入电压反相。

在低频段,由耦合电容的容抗变大,电压放大倍数A u 变小,同时也将在输出电压和输入电压间产生相移。

我们定义:当放大倍数下降到中频率放大倍数的0.707倍时,即2umul A A =时的频率称为下限频率f l 对于高频段。

由于三极管极间电容或分布电容的容抗在低频时较大,当频率上升时,容抗减小,使加至放大电路的输入信号减小,输入电压减小,从而使放大倍数下降。

同时也会在输出电压与输入电压间产生附加相移。

同样我们定义:当电压放大倍数下降到中频区放大倍数的0.707倍时,即2umuh A A =时的频率为上限频率f h 。

共e 极的电压放大倍数是一个复数,ϕ<=•u u A A其中,幅值A u 和相角ϕ都是频率的函数,分别称为放大电路的幅频特性和相频特性。

我们称上限频率与下限频率之差为通频带。

l h bw f f f -=表征放大电路对不同频率的输入信号的响应能力,它是放大电路的重要技术指标之一。

二、线性失真由于通频带不会无穷大,因此对于不同频率的信号,放大倍数的幅值不同,相位也不同。

当输入信号包含有若干多次谐波成分时,经过放大电路后,其输出波形将产生频率失真。

由于它是电抗元件产生的,而电抗元件又是线性元件,故这种失真称为线性失真。

第三章 放大电路的频率特性

第三章 放大电路的频率特性
Ui Io Ai (dB ) = 20 lg (dB ) Ii
Po • 功率增益 Ap (dB ) = 10 lg P (dB ) i
• 式中, lg是以 为底的对数。 式中, 是以10为底的对数。 是以 为底的对数
• 值得指出的是,如果仅取以10为底的对数,例 值得指出的是,如果仅取以 为底的对数 为底的对数, 无单位”的 必须再乘以20后 如: = lg U o ,是“无单位 的,必须再乘以 后, 无单位 A
• 在横坐标采用 在横坐标采用Lgf时,对数频率特性的主要优点是 时 可以扩宽视野, 可以扩宽视野,在较小的坐标内表示宽广的频率 范围的变化情况, 范围的变化情况,同时将低频段和高频段的特性 都表示得很清楚,而且作图方便, 都表示得很清楚,而且作图方便,尤其对于多级 放大电路更是如此。 放大电路更是如此。因为多级放大电路的放大倍 数是各级放大倍数的乘积,故画对数幅频特性时 数是各级放大倍数的乘积, 只需将各级对数增益相加即可。 ,只需将各级对数增益相加即可。多级放大电路 总的相移等于各级相移之和, 总的相移等于各级相移之和,故对数相频特性的 纵坐标不再取对数。 纵坐标不再取对数。
3.1 频率特性的一般概念
• 3.1.1频率特性的概念 频率特性的概念
– 1.幅频特性和相频特性 幅频特性和相频特性 • 由于电抗性元件的作用,使正弦波信号通过放大 由于电抗性元件的作用, 电路时,不仅信号的幅度得到了放大, 电路时,不仅信号的幅度得到了放大,而且还将 产生一个相位移。此时,电压放大倍数A 产生一个相位移。此时,电压放大倍数 u可表示 为: • Au = Au (f)∠ϕ ( f ) )
• RC高通电路的对数相频特性如图 高通电路的对数相频特性如图3.1.3(b)所示, 高通电路的对数相频特性如图 ( )所示, 0 的直线; 在 f ≠ f ( f > 10 f L)时, ϕ 是一条 0 的直线;在 f = f L L 的直线; ( f < 0.1 f L)时,ϕ 是一条900 的直线;在 0.1 f L 之间, 与10 f L 之间,可用一条斜率为 −450 十倍频的直线 来表示。 来表示。由3条直线组成的折线就是它的相频特性 条直线组成的折线就是它的相频特性 曲线,图中的粗线也是加以修正后的实际相频特 曲线, 性曲线。 性曲线。

放大电路的频率特性

放大电路的频率特性

(3)因各级均为共射放大电路,所以在中频段输出电压与输入 电压相位相反。则整个三级放大增益80dB,即放大倍数为 10000。
电压放大倍数
13 104
Au
1
10 jf
1
j
f 2 105
3
*2.7 电路仿真实例
【例2.8】分析共发射极放大电路
解:利用 Multisim 软件仿真如图2.61所示电路。
(3)高频段
耦合电容和旁路电容的容量较大,视为短路;
极间分布电容(含PN结结电容)容抗减小,不能视为开路。
高频源电压放大倍数为:
1
Aush
Uo Us
U
' s
Ub'e
Uo
Us
U
' s
Ub'e
Ri rb'e jRC'
Rs Ri
rbe
1
1 j RC'
gm RL'
Байду номын сангаас
Ausm
1
1 jRC
Ausm 1 1 j
f
fH
在高频段,电压放大倍数随频率升高而减小,相移也发生
变化。其幅频特性基本与低通电路幅频特性相同。
源电压放大倍数的全频率范围表达式为:
jf
Aus
Ausm 1
j
f fL
fL 1
j
f fL
Ausm 1
j
fL f
1
1
j
f fH
单管放大电路的波特图
综上所述,单管放大电路在低频段主要受耦合电容的影 响,表现在放大倍数随频率降低而降低,相移也增大;中频 段可认为其放大倍数和相移都基本为常数(这是放大电路工 作的频段)。在高频段其特性主要受极间电容的影响,表 现在放大倍数随频率升高而下降,相移也随之增大。

放大电路频率特性总结

放大电路频率特性总结

高频区: f&uarr; &rarr; &#981; 在 180 &#8728; 基础上产生 0 &#8728; ~&minus; 90 &#8728; 相移。 中频区: &#981;= 180 &#8728; ,输出与输入反相(如第二章分析结果)。 3.低频区:当 A u = 1 2 A um 时, f= f L 下限频率 高频区: 当 A u = 1 2 A um 时, f= f H 上限频率 BW= f H &minus; f L 通频带。表明放大电路对不同频率信号的响应能力的 大小。通频带愈宽,放大电路对不同频率信号的响应能力愈强。 4.受通频带限制,当输入信号包含有多个频率信号时 &rarr; 频率失真。它 包含幅频失真和相频失真。 幅频失真:放大电路对输入信号中不同频率的谐波分量的放大倍数不同造 成的失真。 相频失真:放大电路对输入信号中不同频率的谐波分量的相移不同造成的 失真。 频率失真属于线性失真。 5.三极管极间电容的存在会影响到三极管对高频信号的放大能力,三极管 对高频信号的放大能力可用三极管的频率参数描述。
放大电路频率特性总结
1.耦合电容、旁路电容、极间电容存在 &rarr; 阻抗随频率变化 &rarr; 放大倍数是频率的函数频率响应(频率特性),它包括幅频特性和相频特性。 2.共射放大电路幅频特性显示: 低频区: f&darr; &rarr; A u &darr; 。 原因:耦合电容的存在。 高频区: f&uarr; &rarr; A u &不随 f 变化。 原因:耦合电容和极间电容的影响很小,可忽略。 共射放大电路相频特性显示: 低频区: f&darr; &rarr; &#981; 在 180 &#8728; 基础上产生 0 &#8728; ~ 90 &#8728; 相移。

第三章 放大电路的频率特性

第三章 放大电路的频率特性

第三章放大电路的频率特性本章研究输入信号的频率不同时,对放大电路电压放大倍数的不同影响及线性失真问题。

着重分析电路参数对放大电路通频带的影响。

本章内容:3.1 频率特性的一般概念3.2 三极管的频率特性3.3 共发射极放大电路的频率特性3.4 多级放大电路的频率特性本章要点:1. 放大电路频率特性的概念2. 三极管的频率参数3. 电路参数对放大电路通频带的影响4. 多级放大电路的通频带与级数的关系电子课件三:放大电路的频率特性课时授课教案一授课计划批准人:批准日期:课序:7 授课日期:授课班次:课题:第三章第3.1节频率特性的一般概念目的要求:1. 了解信号频率对电压放大倍数的影响。

2. 了解放大电路产生线性失真的原因。

3. 掌握影响放大电路通频带的因素。

重点:影响放大电路通频带的因素难点:线性失真教学方法手段:结合电子课件讲解教具:电子课件、计算机、投影屏幕复习提问: 1. 电容和电感元件的阻抗与频率的关系?2. 何谓三极管的PN结结电容?课堂讨论:RC滤波电路的特性?布置作业:课时分配:二 授课内容3.1 频率特性的一般概念3.1.1 频率特性的概念下面以共发射极放大电路为例进行分析。

当输入信号的频率不同时,不仅放大电路电压放大倍数的模不一样,而且输入电压与输出电压的相位关系(简称相移)也不一样。

一、 中频段在中频段,即通带内,因为耦合电容和旁路电容的容量较大,其容抗可忽略不计,把他们视为短路;又因为极间分布电容(含PN结结电容)很小,其容抗很大,可把他们视为开路;感抗视为短路。

可认为电压放大倍数基本与频率无关而保持定值,输入电压与输出电压反相位。

二、低频段当输入信号的频率逐渐降低时,耦合电容和旁路电容的容抗逐渐增大,不能把它们视为短路,如图3-1(a)所示。

电压放大倍数的模随频率的降低而减小,输出电压与输入电压之间的相移也发生变化,不再保持o180的关系。

当放大倍数降到中频段电压放大倍数的21时所对应的频率l f 为通频带的下限频率,如图3-2(a)所示,相移ϕ如图3-2(b)所示。

放大电路的频率特性

放大电路的频率特性

可以得到高频区的电压增益 幅值和相角分别为
2.RC高通电路的频率特性
放大电路的低频区里,耦合电容和射极 旁路电容对低频响应的影响可用如图所示的 RC高通电路来模拟。
由图可得电压增益的表达式: 可以得到低频区的电压增益为
由上式可以得到低频区电压增益的幅值和 相角分别为
1.2 单级放大电路的低频特性
模拟 电子 RC电路的频率特性 1.2 单级放大电路的低频特性 1.3 单级放大电路的高频特性
1.1 RC电路的频率特性
1.RC低通电路的频率特性
在放大电路的高频段,管子的极间电容 和接线电容等是影响频率响应的主要因素。 它们对高频响应的影响可以用图所示的RC低 通电路来模拟。
1.低频等效电路的简化
首先,在电路中的
一般都远
远大于放大电路的阻抗,所以可以将其忽略。
其次,假设Ce的容抗在信号的频率范围内远小 于Re的值。这样我们也可以把Re去掉。
然后我们把Ce折算到基极电路,
根据上述条件,我们可以得到简化电路。可 见其输入回路和输出回路都与高通电路相似。
2. 低频响应和下限频率 由图可以得到电路的低频电压增益的表达式:
令 可得
1.3 单级放大电路的高频特性
(1)只考虑 的影响
(2)只考虑 的影响 只考虑的等效电路如图(c)所示 ,高频
截止频率也是由输出回路的时间常数决定,其 表达式为
在实际情况中,当分别考虑并联电容的影 响时,应取时间常数大的RC回路作为求上限 截止频率的依据。
模拟 电子 技术 基础

电子技术基础第五章 放大电路的频率特性

电子技术基础第五章  放大电路的频率特性

对数幅频特性和相频特性表达式为 20lg| |=20lg| |–20lg
四、波特图
图5.4.5
5.4.2 单管共源放大电路的频率响应
图5.4.7
5.4.3 放大电路频率响应的改善和增益带宽积 为改善低频特性,需加大耦合电容及其回路 路电阻以降低下限频率,直接耦合方式,下限 频率为0。 为改善高频特性,需减小 或 及其回路 电阻,以增大上限频率。
二、超前补偿
图5.6.6
图5.6.7
5.7 频率响应与阶跃响应
5.7.1 阶跃响应的指标 1、上升时间tr: 0.1Um~0.9Um的时间 2、倾斜率δ
3、超调量:上升值 超过终了值的部 分,一般用百分 比来表示。 图5.7.2
5.7.2 频率响应与阶跃响应的关系
图5.7.3 所在回路是低通回路,在阶跃信号作用时, 上的电压 将按指数规律上升,其起始值为 0,终了值为 ,回路时间常数为 ,因而
5.2 晶体管的高频等效模型
5.2.1 晶体管的混合π模型 一、完整的混合π模型
图 5.2.1
二、简化的混合π模型
图 5.2.2
等效变换: 在图(a)电路中,从b’看进去Cμ中流过的电流为
为保证变换的等效性,要求流过 的电流仍 为 ,而它的端电压为 ,因此 的电抗为
在近似计算时, 取中频时的值,所以 | | = 说明 是 的 (1+| |)分之一,因此 | |) 间总电容为 | 用同样的方法可以得出 |)
要减小 ,则要减小 ,这将使电压放大 倍数减小。可见提高 和增大电压放大倍数是 矛盾的。
单管共射放大电路的增益带宽积为 | || |
设 则 |
,则 ;设 。 则 |
;设
,则
,且

19第五章放大电路的频率特性(1)

19第五章放大电路的频率特性(1)
若电流i(t)的幅度是随时间而变化的
Im (t ) Im expt
s=σ+jω,s就是复频率 σ : 振幅的衰减因子, jω: 角频率
对此种非等幅正弦电流,可写成
i(t ) Im (t )exp jt Im (exp t )(exp jt ) Im exp( j )t Im exp st
第五章 放大电路的频率特性 5.1放大电路频率特性的基本概念
一 频率特性和通频带
1.RC阻容耦合放大器 以前分析电压增益的方法 只限于中频段 C1 C2 Ce是大电容,容抗 (1/ωC)很小,相当于短路
在中频区: Av和Ai为常数
C1
Rb1
EC Rc C2
Ci Co 是小电容,容抗 (1/ωC)很大,相当于开路 Rs
(ω)
三 增益带宽积
fL (ωL)
f H(ωH)
uGi (t)B输入U信号AmusoinBWt
u一o (般t)放 Uω大1 0器的U增1 s益in和t带宽U是2 s矛in盾2ω2的t -U1830s0in3t f (ω)
5.2放大电路的复频域分析法
5.2.1复频域中放大电路的传输函数 1.传输函数 在复频域分析中,是把时间t的函数变换成复频 率s = σ+jω的函数
若σ >0,i(t)的振幅Im(t)按指数规律增长,电流 是增幅的正弦电流波
若σ<0,i(t)的振幅Im(t)按指数规律衰减,电流 是衰减的正弦电流波
若σ =0,i(t)的振幅Im(t)不随t变化,电流是等幅 正弦振荡波
i(t)
i(t)
i(t)
σ>0
σ<0
σ=0
ii(i(t(t)t))III eee eee 放H而(大Hjω(器s))=的把H(增系s)统|益σ的:m=m0稳,mA态(Hj响t(ωtj应tω)和j=)jA反j暂t(ts映态t)了|响σ系应=统联0,的系稳起反态来映响了应,

放大电路的频率特性分析解析

放大电路的频率特性分析解析
0.1fL
fL
10fL
-90°
-135°
f
0.01fL
0.1fL
fL
10fL
20dB/十倍频
在高频段,耦合电容C1、C2可以可视为短路,三极管的极间电容不能忽略。 这时要用混合π等效电路,画出高频等效电路如图所示。
3. 高频段
用“密勒定理”将集电结电容单向化。
用“密勒定理”将集电结电容单向化:
定义当 下降为中频α0的0.707倍时的频率fα为共基极截止频率。
(3-7)
fα、fβ、 fT之间有何关系? 将式(3 - 3)代入式(3 - 7)得
一.BJT的混合π型模型
混合π型高频小信号模型是通过三极管的物理模型而建立的。
rbb' ——基区的体电阻
1.BJT的混合π型模型
rb‘e——发射结电阻
b'是假想的基区内的一个点。
Cb‘e——发射结电容
rb‘c——集电结电阻
Cb‘c——集电结电容
——受控电流源,代替了
3.3 单管共射极放大电路的频率特性
(2)用 代替了 。因为β本身就与频率有关,而gm与频率无关。
2.BJT的混合π等效电路
放大电路对不同频率信号的相移不同,使输出波形产生失真 --相位频率失真(相频失真)
图 频率失真
4、分析方法
由对数幅频特性和对数相频特性两部分组成; 横轴 f 采用对数坐标 ; 幅频特性的纵轴采用20lg|Àu|,单位是分贝(dB); 相频特性的纵轴仍用表示。
用近似折线代替实际曲线画出的频率特性曲线称为波特图,是分析放大电路频率响应的重要手段。
相频响应 :
f
0.1fH
-180°
fH
10fH

放大器的频率特性

放大器的频率特性

c


N

cb'c

rb'c
集电结

P rbb´
b

结 构 示
N re
发射结


cb'e
e
第八节
单级阻容耦合共射极放大电路的频率特性可以用
下式来表示
Au (1 j
Aum fL )(1 j
f)
.
f
fH
式中Aum为中频电压放大倍数,fL为下限截止频率,fH为上限截止频率。f为
频率变量,单位是赫兹。
1
A A • usl1
usm
1 ( fL1 f )2
当 f fL1时 f fL1 时 f fL1时
Ausl1(dB) 20 lg A usm 20 lg 1 ( fL1 f )2
Ausl1(dB) 20 lg Ausm 即为中频电压放大倍数; Ausl1(dB) 20 lg Ausm - 3 Ausl1(dB) 20 lg Ausm - 20lg( fL1 放大电路 的频率特性
多级 放大电路 的频率特性
放大器 的
频率特性
第八节
放大器的电压放大倍数也是频率的函数。
频率特性表达式 Au( f ) Au( f ) ( f )
Au(f )表示电压放大倍数的幅值与频率的关系,称为幅频特性。
φ(f) 表示放大倍数的相位与频率的关系,称为相频特性。
Rc RL Uo
_
代入得
Ausl2
RcRL
(Rs rbe)(Rc RL)(1
1
RL •
1
) Rs rbe 1 j
1
j (Rc RL)C 2

放大电路的频率特性

放大电路的频率特性

幅频特性
幅频特性是描绘放大倍数的幅度随频率变化 而变化的规律。即 Au F( f )
相频特性
相频特性是描绘输出信号与输入 信号之间相位差随频率变化而变化 的规律。即 ∠A ∠U o ∠U i ( f )
Au Aum 0.707 Aum
典型的单管共射放大电路的幅频特性和相频特性
fZ 20dB/ 十倍频
f

90o
45o
f
0
0.1 fZ f Z 10 fZ
例1、
Au

10 6 jf 10 4
解、
20lg Au / dB
40
A u

10 6
10 4 (1
j
f 10
4
)
102
1
j
f 104
0
20

0
45o 90o
103 104 105
f / Hz
f / Hz
f fH
20lg Au
0dB
0dB 3dB 20dB 20lg( f fH )
0o 5.710 450 84.290
900
幅频响应:

│Au│
1 1 ( f fH)2
当 f fH 时,
20 lg | Au (| dB)
0.1fH fH 10fH 100fH
线称为波特图,是分析放大电路频率响应的重要手段。
(2)RC 高通电路
电压传输系数的幅频特性和相频特性
Au

U o U i

fL

1
2RC
f
j

Au
1 1 j
fL

放大电路频率特性

放大电路频率特性

第三章放大电路的频率特性§3.1 频率特性的一般概念 一.频率特性的概念对低频段, 由于耦合电容的容抗变大, 高频时1/ωc<<R, 可视为短路, 低频段时1/ωC<<R 不成立。

我们定义: 当放大倍数下降到中频区放大倍数的0.707倍时, 即时的频率称为下限频率fl 。

如图右是考虑频率特性时的等效电路对高频段, 由于三极管极间电容或分布电容的容抗较小, 低频段视为开路, 高频段处1/ωC 较小, 此时考虑极间电容影响的等效电路如图3 - 1(b)所示。

当频率上升时,容抗减小, 使加至放大电路的输入信号减小, 输出电压减小, 从而使放大倍数下降。

同时也会在输出电压与输入电压间产生附加相移。

同样我们定义: 当放大倍数下降到中频区放大倍数的0.707倍, 即Auh=(1 / )Aum 时的频率称为上限频率fh 。

共发射极放大电路的电压放大倍数将是一个复数, 即其中幅度Au 和相角φ都是频率的函数, 分别称为放大电路的幅频特性和相频特性。

可用图3 - 2(a)和(b)表示。

我们称上、 下限频率之差为通频带fbw, 即fbw=fh-fl通频带的宽度, 表征放大电路对不同频率的输入信号的响应能力, 它是放大电路的重要技术指标之一。

二.线性失真线性失真有两种形式:相频失真和幅频失真一个周期信号经傅里叶级数展开后,可以分解为基波、一次谐波、二次谐波等多次谐波。

设输入信号Ui (t )由基波和二次谐波组成,如图(a )所示, 经过线性电路后, 基波与二次谐波振幅之间的比例没有变化, 但是它们之间的时间对应关系变了,叠加合成后同样引起输出波形不同于输入波形, 这种线性失真称之为相频失真。

线性失真的第一种形式如图(b )所示。

假设输入波形Ui(t)仅由基波、二次谐波构成, 它们之间的振幅比例为10∶6,如图(b )上所示。

该输入波形经过线性放大电路后,由于放大电路对不同频率信号的不同放大倍数,使得这些信号之间的比例发生了变化, 变成了10∶3,这二者累加后所得的输出信号Uo(t)如图(b)下所示。

放大电路的频率特性

放大电路的频率特性

U o U o1 U o 2 Au U i U i U o1 U o1 U o 2 Ui Ui2 Au1 Au 2 U oN U iN
U oN U o ( N 1)
AuN Aui
i 1
N
注意:计算每一级的电压放大倍数时,应 将其后一级电路的输入电阻当作它的负载
Ao 2 AF 2
AF
Ao 1 Ao FAF Bo BF来自f多级放大电路
电压放大
前置级 输 入 前置级 第二级 放大电路 第 n级 放大电路 末级 前置级
第一级 放大电路
……
第n-1级 放大电路
输 出 两个单级放大电 路间的联接方式。 实现信号传递
末前级
功率放大
耦合方式:阻容耦合;直接耦合;变压器耦合;光电耦合。
理想情况:ui1 = ui2 VC1 = VC2 uo= 0 共模电压放大倍数: AC
uo uc
(理想时为零)
(2) 差模输入: ui1 = -ui2 = ud
UCC RB2
RB1 ui1
RC
T1
uo T2
RC
RB2
RB1
ui2
设 vC1 =VC1 +VC1 , vC2 =VC2 +VC2 因 ui1 = -ui2, VC1 = -VC2 uo= vC1 - vC2= VC1- VC2 = 2VC1
阻容耦合电压放大电路
射极输出器 分压式偏置 放大电路
+UCC (+24V)
负载
R1
信号源
R2
RC2 10k T2
1M
C2
82k
C1
RS 20k
T1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
arctg(fL f )
(2) RC高通网络的波特图
Av
1 1 ( fL f )2
arctg(fL f )
RC高通电路的频率特性曲线
可见:当频率较高时,│AV │ ≈1,输出与输入电压之间的相位差=0。随 着频率的降低, │AV │下降,相位差增大,且输出电压是超前于输入电 压的,最大超前90o。在此频率响应中,下限截止频率fL是一个重要的频率 点。
忽略CN,并将两个电容合并成一个电容,得简化的高频 等效电路。
该电路有 一个RC电路低通环节。有上限截止频率:
fL
1
2RC
其中: C Cbe CM
R rb'e // [rbb' (Rb // Rs )]
可推出高频电压放大倍数: 其中:
AusL
VO VS
Ausm f
1 j
fH

Ausm
由可求出共射接法交流电 流放大系数。
Ib Vb'e[(1/ rb'e ) + j(Cπ Cμ )] Ic gmVb'e Vb'e jCb c gmVb 'e
gm rb'e
0
1 j r b'e (Cb'e Cb'c ) 1 j f
f
1
f 2 r b'e (Cb'e Cb'c )
│Av│
1 1 ( f fH)2
fH
1
2RC
arctg( f f H )
(2) RC低通电路的波特图
幅相频频响响应应
AV
arctg1( f / fH ) 1 ( f / fH)2
当 当 当 当
f f f
f
fAfHffHVHH时时时 时,,, ,1 (f1/f490H50)2
1
当 0.1 fH 20flgA1V0 fH2时0 l, g1 0 dB
中频电压放大倍数:
共射放大电路
Ausm
VO VS
Ri RS Ri
RL
rbe
2. 低频段
在低频段,三极管的极间电容可视为开路,耦合电容
C1、C2不能忽略。 方便分析,现在只考虑C1,将C2归入第二级。画出低频等 效电路如图所示。
该电路有 一个RC电路高通环节。有下限截止频率:
fL
2 [( Rb
//
二.BJT的混合π型模型
1.BJT的混合π型模型 (1)物理模型
混合π型高频小信号模型是通过三极管的物理模型而建立的。
rbb' ---基区的体电阻,b'是假想 的基区内的一个点。
re --- 发射结电阻
Cbe ---发射结电容,
rbc ---集电结电阻
Cbc ---集电结电容
三极管的物理模型
(2)用

rbe=
rb
+
(1+
)
re
rb
(1
)
VT IE
所以
rbe rbb rbe
rbe
(1
) VT IE
rbb rbe rbe
又因为
VgbmeVbe IbrbeIb
所以
gm
rbe
IE VT
Cbe
gm
2fT
Cbc 和 fT 从手册中查出
由β定3义.:BJT的IIbc 频Vce率0 参数fβ、 fT
1 rbe)
RS ]C1
可推出低频电压放大倍数:
低频等效电路
AusL
VO VS
Ausm 1 j fL
f
共射放大电路低频段的波特图
幅频响应 : 相频响应 :


20lg | AusL | 20lg | Ausm | 20lg
180 arctg( fL f )
1 1 ( fL f )2
3. 高频段
.
V ce 0 的等效电路
做出β的幅频特性和相频特性曲线。
当20lgβ下降3dB时,频率f 称为共发射极接法的截止频率
当β=1时对应的频率称为 特征频率fT,且有fT≈β0f
三极管β的幅频特性和相频特性曲线
fT≈β0 f可由下式推出
g m rb' e
0
1 jrb'e (Cb'e Cb'c ) 1 j f
当 f = fT 时, 有
f
( fT )
g m rb' e
1 [ rb'e (Cb e Cb c )]2
0
1
1 ( f T )2
f
因fT>> f ,所以, fT ≈β0 f
三. 阻容耦合共射放大电路的频率响应
对于如图所示的共射放大电路, 分低、中、高三个频段加以研究。
1 .中频段
所有的电容均可忽略。可用前 面讲的h参数等效电路分析。
Ri Rs Ri
rb'e rbb' rb'e
gm RL '
Ri RS Ri
β RL rbe
共射放大电路高频段的波特图
幅频响应 :


20lg | AusH | 20lg | Ausm | 20lg
1
相频响应 : 180 arctg( f fH )
斜率为0分4贝5水/ 十平倍 线 频程的直线
RC低通电路的频率特性曲线
当可着压f见 频 的: 率 ,A当 的 最VfH频 提 大时率高滞, 1较,后 (低9f│01时o/。AfV,H在│)│2此下A频V降f│率H,/响≈相f 应1位,中差输,增出上大与限,输截且入止最输电频大出压率误电之f差H压是间是-一的3d滞个相B后重位于要差输的=0入频。电率随
点。 20 lg AV 20 lg( fH / f )
斜率为 -20dB/十倍频程 的直线
2. RC高通网络
(1)频率响应表达式:
Av =
Vo Vi
R
R 1/ jC
1
1
j/ RC
1
1 jL /
式中
L
1 RC

下限截止频率、模和相角分别为
fL
1
2RC
│Av│
1 1 ( fL f )2
RC 高通电路
.
gm V
b'e代替
.
Ib
根据这一物理模型可以画出混合π型高
频小信号模型。
高频混合π型小信号模型电路
这一模型中用
gm
.
Vb'e来自代替.I b0
,这是因
为β本身就与频率有关,而gm与频率无关。
(3)简化的混合π模型
rb’c很大,可以忽略。 rce很大,也可以忽略。
2. 混合π参数的估算
低频时,混合模型与H参数模型等效
第四章 放大电路的频率特性
频率响应——放大器的电压放大倍数 与频率的关系
下面先分析无源RC网络的频率响应
一. 无源RC电路的频率响应
1. RC低通网络
(1)频率响应表达式:
Av =
Vo Vi
1
1
jRC
1
1
j
H
R
+
+
. Vi
C
. Vo
-
-
RC低通电路
式中H
1 RC
。Av
的模、上限截止频率和相角分别为
在高频段,耦合电容C1、C2可以可视为短路,三极管 的极间电容不能忽略。 这时要用混合π等效电路,画出高频等效电路如图所示。
高频等效电路 用“密勒定理”将集电结电容单向化。
用“密勒定理”将集电结电容单向化:
其中:
CM (1 gmRL' )Cb'c
1 CN (1 gm RL ')Cb'c Cb'c
相关文档
最新文档