平方根(提高)知识讲解
平方根与算术平方根(知识解读)(原卷版)
平方根与算术平方根知识点 1 :平方根1.算术平方根的定义如果一个正数的平方等于,即,那么这个正数叫做的算术平方根(规定0的算术平方根还是0);,读作“的算术平方根”,叫做被开方数. 注意:有意义时,≥0,≥0. 2.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为是的算术平方根.知识点2:平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同: 2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.注意:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点3:平方根的性质知识点4:平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位..x a 2x a =x a a a a a a a a a 2x a =x a a a a (0)a a ≥a a a ±a 20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20aaa =≥62500250=62525= 6.25 2.5=0.06250.25=【典例分析】【考点1:算术平方根】【典例1】求下列各数的算术平方根:(1)100;(2);(3)0.0001.【变式1-1】求下列各数的算术平方根.(1)196 (2)(3)0.04 (4)100 (5)(﹣6)2.【变式1-2】求下列各式的值:(1);(2);(3)【考点2:算术平方根的性质】【典例2】(2022秋•崇川区校级月考)已知a,b满足(a﹣1)2+=0,则a+b的值是()A.﹣2B.2C.﹣1D.0【变式2-1】(2021秋•滨海县期末)已知实数x,y满足+(y+1)2=0,则x﹣y等于()A.1B.﹣1C.﹣3D.3【变式2-2】(2022春•绥江县期中)若(a﹣1)2+=0,则(a﹣b)2022=()A.1B.﹣1C.0D.2022【考点3:算术平方根的估算】【典例3】(2022•东丽区二模)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【变式3-1】(2022•河西区模拟)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【变式3-2】(2020秋•福田区期末)设n为正整数,且n<<n+1,则n的值为()A.7B.8C.9D.10【变式3-3】(2018•台州)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【典例4】(2015秋•萧山区期中)已知,则0.005403的算术平方根是()A.0.735B.0.0735C.0.00735D.0.000735【变式4-1】(2019春•港口区期中)若=5.036,则=.【变式4-2】(2022春•渝中区校级月考)若≈7.149,≈22.608,则的值约为()A.71.49B.226.08C.714.9D.2260.8【考点4:平方根】【典例5】求下列各数的平方根(1)49;(2);(3);(4)0.0016.【变式5-1】(2021秋•卫辉市月考)求下列各数的平方根(1)49 (2);(3)2;(4)0.36;(5)(﹣)2.【变式5-2】(2022秋•青羊区校级期中)若m2=4,则m=()A.2B.﹣2C.±2D.±【考点5 :利用平方根的定义解方程】【典例6】(2022秋•莲湖区校级月考)求下列各式中x的值.(1)9x2﹣25=0;(2)(x﹣1)2=36.【变式6-1】(2022秋•江阴市校级月考)求下列各式中x的值:(1)x2﹣4=0;(2)(x﹣1)2﹣9=0.【变式6-2】(2022秋•新城区期中)已知2x2﹣8=0,求x的值.【考点6:利用平方根的定义求参数】【典例7】(2021春•昭阳区校级月考)若一个正数的平方根是2m﹣4与3m﹣1,求这个正数的算术平方根.【变式7-2】(2022春•仁怀市校级月考)若m是169的正的平方根,n是121的负的平方根,求:(1)m+n的值;(2)(m+n)2的平方根.【变式7-3】(2021秋•河南月考)已知一个数m的两个不相等的平方根分别为a+2和3a﹣18.(1)求a的值;(2)求这个数m.【变式7-3】(2022秋•朝阳区校级月考)已知一个正数m的平方根为2n+1和4﹣3n.(1)求m的值;(2)|a﹣1|++(c﹣n)2=0,a+b+c的平方根是多少?【考点7:平方根的实际应用】【典例8】(2022秋•南岗区校级期中)小李同学想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为2:3,他不知道能否裁得出来,正在发愁,这时小于同学见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”(1)长方形纸片的长和宽是分别多少cm?(2)你是否同意小于同学的说法?说明理由.【变式8】(2022秋•市北区期中)某新建学校计划在一块面积为256m2的正方形空地上建一个面积为150m2的长方形花园(长方形花园的边与正方形空地的边平行),要求长方形花园的长是宽的2倍.请你通过计算说明该学校能否实现这个计划.。
平方根知识详解
平方根【知识扫描】知识点一 算术平方根的定义及表示方法1. 算术平方根的定义如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根;a 的算术平方根记作a ,读作“根号a ”或“二次根号a ”,a 叫做被开方数。
规定0的算术平方根还是0,即0=0。
当式子a 有意义时,一定表示一个非负数,即a ≥0,a ≥0。
而当a <0时,a 没有意义。
2. 平方根的定义如果一个数x 的平方等于a ,即a x =2,那么这个数x 叫做a 的平方根。
正数a 的平方根有两根,分别是它的算术平方根“a ”和算术平方根的相反数“-a ”,记作“a ±”,读作“正、负根号a ”。
0的平方根为0。
任何一个数的平方都不会是负数,所以负数没有平方根。
归纳:平方根的性质①一个正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根知识点二 平方根与算术平方根的区别和联系1. 区别(1)定义不同:如果a x =2,那么x 叫做a 的平方根;如果a x =2(x ≥0),那么x 叫做a 的算术平方根;(2)表示方法不同:正数a 的平方根表示为a ±,正数a 的算术平方根表示为a(3)平方根等于它本身的数是0,算术平方根等于它本身的数是0和1。
2. 联系:平方根包含算术平方根,算术平方根是平方根中的非负的那一个。
知识点三 平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥【典型例题】 考点一 算术平方根和平方根的定义和性质【例1】求下列各数的算术平方根(1)81的算术平方根是________;(2)425的算术平方根是________; (3)0.0016的算术平方根是________【变式】下列说法正确的是( ) A. 3是9的算术平方根 B. -2是4的算术平方根C. (-2)2的算术平方根是-2D. -9的算术平方根是3【例2】求下列各数的算术平方根(1)49的平方根是________;(2)8164的平方根是________; (3)0.36的平方根是______。
初中平方根知识讲解
平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根. 【要点梳理】知识点一、平方根和算术平方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a,读作“a 的算术平方根”,a 叫做被开方数.要点诠释:a≥0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥a 的算术平方根. 知识点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质||000aa a a a a >⎧⎪===⎨⎪-<⎩()20aa =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=. 【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4 D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.=5,所以本说法正确;B.1,所以l 是l 的一个平方根说法正确;C.4,所以本说法错误;D.因为=0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(24=±.( ) (3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(24=;(4)25是425的算术平方根.2、 填空:(1)4-是 的负平方根.(2表示 的算术平方根,= .(3的算术平方根为 .(43=,则x = ,若3=,则x = .【思路点拨】(3181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个 【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1) (2(3(4【答案】(1)15;(2)15;(3)-0.3;(4)6553x 的取值范围是______________. 【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】有意义时,a 0,a ≥0. 举一反三:【变式】代数式y =3-x 有意义,则x 的取值范围是 . 【答案】3x ≥.类型二、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【思路点拨】表面上看本题是一元二次方程,但是本题可以通过开平方的方法(2)小题将()1x +看作一个整体,(3)小题将()32x +看作一个整体,求出它们的解后,再求x . 【答案与解析】解:(1)∵23610x -= ∴2361x = ∴19x ==±(2)∵()21289x += ∴1x += ∴x +1=±17 x =16或x =-18. (3)∵()2932640x +-= ∴()264329x +=∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度. 类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x ,长为3x , 由题意得,x ·3x =132332x =132321x =±x =-21(舍去) 答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.(提高)【典型例题】类型一、平方根和算术平方根的概念1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m -1),解方程即可求解. 【答案与解析】解:依题意得 2m -4=-(3m -1),解得m =1; ∴m 的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:【变式】已知2a -1与-a +2是m 的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数. 解:①当2a -1=-a +2时,a =1,所以m =()()22212111a -=⨯-=②当2a -1+(-a +2)=0时,a =-1,所以()()22221[2(1)1]39a -=⨯--=-=2、x 为何值时,下列各式有意义?(4)3x -. 【答案与解析】解:(1)因为20x ≥,所以当x(2)由题意可知:40x -≥,所以4x ≥(3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知2b =,求11a b+的算术平方根. 【答案】解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2, ∴1131222a b +=+=,∴11a b+= 类型二、平方根的运算3、求下列各式的值.2234+; 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:2234+257535==⨯=;110.63035=⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)(0)a a =>来解. 类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -= ∴2361x = ∴19x ==±(2)∵()21289x += ∴1x += ∴x +1=±17 x =16或x =-18. (3)∵()2932640x +-= ∴()264329x +=∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度. 举一反三:【变式】求下列等式中的x :(1)若21.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______.【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用5、已知a 、b |0b =,解关于x 的方程2(2)1a x b a ++=-.【答案与解析】解:∵a 、b |0b =0≥,|0b ≥,∴260a +=,0b =.∴a =-3,b =把a =-3,b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可. 举一反三:0=,求20112012x y +的值.【答案】0=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2xy +=+-=. ②当x =-1,y =-1时,2011201220112012(1)(1)0xy +=-+-=.6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm 的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得 32300x x ⋅=. 26300x =. 250x =.∵ x >0,∴ x =∴ 长方形纸片的长为cm . ∵ 50>49,7>.∴ 21>, 即长方形纸片的长大于20cm .cm, 可知其边长为20cm,由正方形纸片的面积为400 2∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm的正方形纸片裁出长方形纸片.。
(完整版)平方根立方根知识点归纳及常见题型
“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。
⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
⑶、算术平方根:正数a 的正的平方根叫做a ”。
2、立方根:⑴、定义:如果x 3=a ,则x 叫做a ”(a 称为被开方数)。
⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。
二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
30a ≥0。
4、公式:⑴2=a (a ≥0)(a 取任何数)。
5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0例1 求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵10227-; ⑶ 0.729二、巧用被开方数的非负性求值.当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值. 0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.23(2)0y z -++=,求xyz 的值。
11平方根(提高)知识讲解
平方根(提高)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);aa 的算术平方根”,a 叫做被开方数.要点诠释:a0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥,是a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、(2015秋•张家港市校级期中)已知2a ﹣1的平方根是±3,3a+b ﹣9的立方根是2,c 是的整数部分,求a+b+c 的平方根.【思路点拨】首先根据平方根与立方根的概念可得2a ﹣1与3a+b ﹣9的值,进而可得a 、b 的值;接着估计的大小,可得c 的值;进而可得a+b+c ,根据平方根的求法可得答案.【答案与解析】解:根据题意,可得2a ﹣1=9,3a+b ﹣9=8;故a=5,b=2;又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.【总结升华】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,还要掌握实数的基本运算技能,灵活应用.举一反三:【变式】已知2a -1与-a +2是m 的两个不同的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2互为相反数. 解:当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-= 2、x 为何值时,下列各式有意义?2x 4x -11x x +- (4)13x x --. 【答案与解析】解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x -(3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠时,13x x --有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义. 举一反三: 【变式】已知4322232b a a =-+-+,求11a b+的算术平方根. 【答案】 解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=, ∴11a b+的算术平方根为112a b +=. 类型二、平方根的运算3、求下列各式的值.(1)2222252434-+g ;(2)111200.36900435--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1)2222252434-+g 49257535==⨯=g ; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -=∴2361x =∴36119x ==±(2)∵()21289x +=∴1289x +=±∴x +1=±17x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三: 【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用5、已知a 、b 是实数,26|20a b ++-=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】解:∵a 、b 26|20a b +=260a +≥,|20b -≥, ∴260a +=,20b =.∴a =-3,2b =把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:2110x y -+=,求20112012x y +的值.【答案】解:由2110x y -++=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ 50x =.∴ 长方形纸片的长为350cm .∵ 50>49,∴507>.∴ 35021>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.举一反三:【变式】(2015春•台安县月考)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m 2的正方形空地上建一个篮球场,已知篮球场的面积为420m 2,其中长是宽的倍,篮球场的四周必须留出1m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?【答案】解:设篮球场的宽为xm ,那么长为2815x m , 由题意知,所以x2=225,因为x为正数,所以x==15,又因为=900<1000,所以按规定在这块空地上建一个篮球场.。
初中数学知识归纳平方根的概念和性质
初中数学知识归纳平方根的概念和性质在初中数学中,平方根是一个非常重要的概念。
它不仅能够帮助我们解决各种问题,还有一些有趣的性质。
本文将归纳平方根的概念和性质,帮助读者更好地理解和应用这一概念。
1. 平方根的概念平方根,顾名思义,就是能够使平方得到某个数的根。
对于非负数a来说,如果存在一个非负数b,使得b的平方等于a,那么b就是a的平方根。
用数学符号表示为√a=b。
2. 平方根的性质a) 平方根的存在性:对于非负实数a,总是存在一个非负实数b,使得b的平方等于a。
换句话说,任何一个非负实数都有平方根。
b) 平方根的唯一性:非负实数a的平方根是唯一确定的。
也就是说,如果b的平方等于a,那么b就是a的平方根。
这个性质可以用反证法来证明。
c) 平方根的范围:正数的平方根是正数,非正数的平方根是非正数。
例如,4的平方根为2和-2,-4的平方根为2i和-2i(其中i是虚数单位)。
3. 平方根的计算在初中数学中,我们通常使用近似值来计算平方根。
下面是一些常用的计算平方根的方法:a) 精确平方根:对于一些特殊的数,我们可以准确地求出它的平方根。
例如,√4=2,√9=3等。
这些可以直接通过记忆获得。
b) 估算法:如果某个数的平方根不是一个精确的整数,我们可以使用估算法来计算它的近似值。
这种方法常见的有牛顿迭代法、二分法等。
我们可以根据具体情况选择适当的方法来计算。
c) 计算器:在现代科技的帮助下,我们可以轻松地使用计算器来计算平方根。
大多数计算器都具有开方功能,只需要输入待求平方根的数,按下相应的键,就可以得到准确的结果。
4. 平方根的应用平方根在日常生活和数学领域中有着广泛的应用。
下面是一些常见的应用:a) 测量:在几何学中,我们可以使用平方根来计算物体的尺寸。
例如,通过计算一个矩形的面积的平方根,我们可以得到它的对角线的长度。
b) 方程求解:在代数学中,平方根经常被用于求解方程。
举个例子,对于一个一元二次方程,我们可以使用平方根的性质来求解它的根。
平方根总结知识点
平方根总结知识点一、平方根的定义平方根是指一个数的平方等于另一个数的操作,比如数a的平方根就是满足等式:x^2= a的x,记作√a。
1. 正数的平方根当a是非负实数时,存在一个非负实数x,使得x^2 = a成立,这个非负实数就是a的平方根。
如果a=0,则a的平方根为0;如果a>0,则a的平方根有两个,一个是正数,一个是负数。
比如,√9=3,-3。
2. 负数的平方根当a是负实数时,不存在任何实数x,使得x^2 = a成立,因此负数没有实数域内的平方根,这在实数范围内是没有意义的。
3. 复数的平方根如果a是负数,则我们可以在复数域内寻找a的平方根,因为复数域中规定了i^2 = -1,即虚数单位i的平方为-1。
因此,负数a的平方根可以表示为√a=i√|a|,其中|a|表示a的绝对值。
二、平方根的性质平方根具有一系列性质,这些性质对于平方根的运算和性质分析都有着重要的作用。
1. 非负实数的平方根性质(1)正数的平方根是非负实数,即√a≥0。
(2)如果a<b,则√a<√b。
(3)平方根的运算性质:a) √(ab) = √a * √bb) √(a/b) = √a / √b (其中b≠0)2. 负实数与复数的平方根性质(1)负实数的平方根是复数且成对出现,例如√-4 = 2i。
(2)负实数的平方根满足共轭关系:如果z是负数a的平方根,那么z的共轭z*也是负数a的平方根。
3. 平方根的运算规律(1)平方根的加减法计算:a) √a + √b = √(a + 2√ab + b)b) √a - √b = √(a - 2√ab + b)(2)平方根的乘除法计算:a) √ab = √a * √bb) √(a/b) = √a / √b (其中b≠0)三、平方根的计算方法1. 精确计算如果已知某个数的精确值,可以直接通过平方根的定义来计算,即求解方程x^2 = a。
但是这种方法对于大数来说较为繁琐,且无法精确计算出其平方根。
平方根和开平方(基础)知识讲解学习资料
平方根和开平方(基础)知识讲解平方根和开平方(基础)【学习目标】1•了解平方根、算术平方根的概念,会用根号表示数的平方根.2•了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.平方根的定义如果X2 a,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.a叫做被开方数.平方与开平方互为逆运算.2.算术平方根的定义正数a的两个平方根可以用“,a”表示,其中,a表示a的正平方根(又叫算术平方根),读作“根号a”;.a表示a的负平方根,读作“负根号a ” .要点诠释:当式子,a有意义时,a 一定表示一个非负数,即,.a > 0,a > 0. 要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:■•一a和' a2•联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根•因此,我们可以利用算术平方根来研究平方根•要点三、平方根的性质a a 0a2 | a | 0 a 0a a 0、a a a 0要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位•例如:62500 250,. 625 25,一625 2.5,.0.0625 0.25 .【典型例题】【答案】C;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为'、25 = 5,所以本说法正确;B.因为±"二±1,所以I是I的一个平方根说法正确;C.因为±..4 2=±、、16 = ±4,所以本说法错误;D.因为'一0 = 0,■ 0 = 0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:【变式】判断下列各题正误,并将错误改正:(1)9没有平方根•()A.5是25的算术平方根B.I2C. 4的平方根是一 4D.0是I的一个平方根的平方根与算术平方根都是类型一、平方根和算术平方根的概念(2).16 4 .( )1 1(3)( —)2的平方根是一.( )1010(4)| 2是暮的算术平方根.( )【答案】V ;x; V; x,提示:(2)皿4;(4)§是善的算术平方根. 仇、填空:(1)_________ 4是的负平方根.(2)_____________ 16表示 __________________ 的算术平方根,、.16 -(3)______________________ ;的算术平方根为 .(4)___________________ 若3,则x ____________ ,若7 3,则x .【思路点拨】(3) 1就是丄的算术平方根二-,此题求的是-的算术平方V81 81 9 9根•1 1 1【答案与解析】(1)16 ;⑵ 一;—(3)-⑷9 ; ±316 4 3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ②9的平方根是3.③4是8的正的平方根.④8是64的负的平方根.A. 1个 B . 2个 C . 3个 D . 4个【答案】B;提示:①④是正确的•【变式2】(2015?凉山州)材苟的平方根是_____________ .【答案】土 3.解:因为 -=9, 9的平方根是土3,所以答案为土 3.03、使代数式屮灯〒有意义的x的取值范围是 __________________ .【答案】x > 1 ;【解析】x + 1>0,解得x > 1.【总结升华】当式子有意义时,a一定表示一个非负数,即 a >0, a >0.举一反三:【变式】代数式y二x 3有意义,则x的取值范围是______________________ 【答案】x 3.类型二、利用平方根解方程(2015春?鄂州校级期中)求下列各式中的x值,2(1)169x =1442(2)( x - 2) - 36=0 .【思路点拨】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【答案与解析】2解:( 1) 169x =144,2 144x =169x= 144 ■169,12x= 一13 .2(2)( x - 2) - 36=0,2(x - 2) =36,x - 2= 36 ,x - 2=±6,••• x=8 或x= - 4.【总结升华】本题考查了平方根,注意一个正数的平方根有两个,他们互为相反数.类型三、平方根的应用C5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米•求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x・3 X = 13233 x =1323x 21x = - 21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数。
平方根(基础)知识点归纳总结及典型例题详解
平方根(基础)知识讲解【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【平方根,知识要点】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);a的算术平方根记作a的算术平方根”,a叫做被开方数.要点诠释:a一定表示一个非负数,0,a≥0.2.平方根的定义如果2x a=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为a≥是a的算术平方根.0)知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根. 知识点三、平方根的性质20 ||00a aa a aa a >⎧⎪===⎨⎪-<⎩()()2a a a=≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是()A.5是25的算术平方根B.l是l的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误; D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根.(2116表示 的算术平方根,116= .(3)181的算术平方根为 . (4)若3x =,则x = ,若23x =,则x = . 【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+ (3)0.040.25- (4)40.36121⋅ 【答案】(1)15;(2)15;(3)-0.3;(4)655 3、使代数式1x +有意义的x 的取值范围是______________.【答案】x≥1-;【解析】x+1≥0,解得x≥1-.【总结升华】当式子a有意义时,a一定表示一个非负数,即a≥0,a≥0.举一反三:【变式】(2015春•中江县期中)若+(3x+y﹣1)2=0,求5x+y2的平方根.【答案】解:∵+(3x+y﹣1)2=0,∴,解得,,∴5x+y2=5×1+(﹣2)2=9,∴5x+y2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。
算术平方根平方根知识点
算术平方根平方根知识点算数平方根和平方根是数学中的基本概念,它们在数学和现实生活中都有着重要的应用。
本文将详细介绍算数平方根和平方根的定义、性质以及它们在数学中的应用。
一、算术平方根1.定义2.性质(1)非负数的算术平方根是唯一的。
例如,16的算术平方根是4,没有其他数字的平方等于16(2)正数的算术平方根一定是正数。
(3)零的算术平方根是0。
(4)负数没有实数的算术平方根。
3.求算术平方根的方法(1)直接开方法:对一个给定的数开平方根,找到一个数使得它的平方等于给定数。
例如,√16=4(2)近似开方法:通过计算和估算找到一个数,使得它的平方与给定数值相近。
例如,√25≈54.算术平方根的应用(1)几何学:算术平方根被用于计算直角三角形的斜边长度。
(2)物理学:算术平方根被用于计算速度、加速度和力的大小。
(3)经济学:算术平方根被用于计算方差和标准差,用于测量数据的离散程度。
二、平方根1.定义平方根是指一个数与自身相乘等于给定数的非负根。
例如,4的平方根为2,因为2×2=4、平方根也可以用符号√a来表示。
2.性质(1)非负数的平方根是唯一的。
例如,16的平方根是4,没有其他数字与自身相乘等于16(2)正数的平方根一定是正数。
(3)零的平方根是0。
(4)负数没有实数的平方根。
3.求平方根的方法(1)直接开方法:对一个给定的数开平方根,找到一个数使得它与自身相乘等于给定数。
例如,√16=4(2)近似开方法:通过计算和估算找到一个数,使得它与自身相乘与给定数相近。
例如,√25≈54.平方根的应用平方根在数学、物理学、工程学等领域有广泛的应用:(1)数学:平方根被用于解方程和求解二次函数的根。
(2)物理学:平方根被用于计算速度、加速度和力的大小。
(3)工程学:平方根被用于计算电阻、电容和感应电流等电路的参数。
综上所述,算术平方根和平方根是数学中的重要概念,它们具有丰富的性质和广泛的应用。
了解算数平方根和平方根的定义、性质以及求解方法,有助于加深对数学的理解,并在实际生活和学习中灵活运用。
(完整版)平方根知识点总结讲义
平方根 知识点总结【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);aa 的算术平方根”,a 叫做被开方数.要点诠释:a0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥,是a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m -1),解方程即可求解.【答案与解析】解:依题意得 2m -4=-(3m -1),解得m =1;∴m 的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:【变式】已知2a -1与-a +2是m 的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数. 解:①当2a -1=-a +2时,a =1,所以m =()()22212111a -=⨯-=②当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-= 2、x 为何值时,下列各式有意义?2x 4x -11x x +-1x - 【答案与解析】解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x - (3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠1x - 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知4322232b a a =-+-+,求11a b +的算术平方根. 【答案】解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=, ∴11a b+的算术平方根为112a b +=. 类型二、平方根的运算3、求下列各式的值.(1)2222252434-+;(2)111200.36900435--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1)2222252434-+49257535==⨯=; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -=∴2361x =∴36119x ==±(2)∵()21289x +=∴1289x +=∴x +1=±17x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用5、已知a 、b 是实数,26|20a b ++=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】解:∵a 、b 26|20a b +-=260a +≥,|20b -≥,∴260a +=,20b -=.∴a =-3,2b =把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:2110x y -+=,求20112012x y +的值. 【答案】2110x y -+=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ 50x = ∴ 长方形纸片的长为350cm .∵ 50>49,507>.∴ 35021>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.。
平方根知识点讲解(含例题)
1.算术平方根(1)定义一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的__________.(2)表示方法a的算术平方根记为__________,读作“根号a”,a叫被开方数.(3)算术平方根的性质①正数a;②0的算术平方根是0=__________;③负数__________算术平方根.被开方数a是非负数,即a≥0;0.2.平方根(1)平方根的概念一般地,如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的__________或二次方根.【注意】在这里,a是x的平方数,它的值是正数或零,因为任何数的平方都不可能是负数,即a≥0.(2)平方根的性质①一个正数a有__________”,它们互为相反数;②0的平方根是0;③负数没有平方根.(3)开平方的概念求一个数a的平方根的运算,叫做__________.(4)利用平方根的定义解方程将各式转化为等号的左边是含x的一个式子的平方式,右边是一个非负数的形式,如x2=m或(ax+b)2=m(m≥0),然后利用平方根的定义得到x=或ax+b=,进而得到原方程的解.3.平方根与算术平方根的区别(1)定义不同;(2)个数不同,一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个;(3)表示方法不同,正数a的平方根表示为,正数a;(4)取值范围不同,正数的算术平方根一定是正数,正数的平方根为一正一负.K知识参考答案:1.(1)算术平方根(23)0,没有2.(1)平方根(2)两(3)开平方一、求平方根和算术平方根若求一个算式的算术平方根,一般是先求出算式的值,再求出它的算术平方根,有时也可通过简单的变形化成一个正数的平方的形式,从而提高运算的速度和准确率.【例1】9的算术平方根是A B.-3 C.±3 D.3【答案】D【解析】∵32=9,∴9的算数平方根是3,故选D.【例2】(-2)2的算术平方根是A.2 B.±2 C.-2 D【答案】A【解析】∵(-2)2=4,4的算术平方根是2,∴(-2)2的算术平方根是2,故选A.【名师点睛】求一个式子的算术平方根时,先把这个式子化简,再按算术平方根的定义求化简所得数的算术平方根即可.【例3】25的平方根是A .5B .-5C .D .±5【答案】D【解析】∵(±5)2=25,∴25的平方根为±5,故选D . 【例4】设a -3是一个数的算术平方根,那么A .a ≥0B .a >0C .a >3D .a ≥3 【答案】D【解析】∵3a -是一个数的算术平方根,∴30a -≥,解得3a ≥,故选D .【名师点睛】本题考查的是算术平方根的“非负性”,即非负数a 0≥.【例5】下列说法正确的是①–是2的一个平方根 ②–4的算术平方根是2③的平方根是±2④0没有平方根A .①②③B .①④C .①③D .②③④ 【答案】C【解析】①–是2的一个平方根,正确;②–4没有算术平方根,错误; ③的平方根是±2,正确;④0有平方根,是0,错误;故选C .【例6】求下列各式的值:(1;(2);(3)4.【解析】(1=12.(2)=-0.9.(3)1114±.(4=56.二、算术平方根非负性的应用常用的三类非负性的表示形式:绝对值、偶次幂、算术平方根,当几个非负数的和为0时,则每一个非负数均为0,这一结论在解答许多数学问题中起着关键的作用.【例7】的值取最小值时,a 的取值为A .0B .−12C .–1D .1 【答案】B【解析】∵2a +1≥0的值取最小值时,2a +1=0,∴a 的取值为–12.故选B . 【例8】若实数x ,y20(y +-=,则xy 的值为__________.【答案】【解析】根据题意得:200x y ⎧-=⎪⎨-=⎪⎩,解得2x y ⎧=⎪⎨=⎪⎩,则xy=故答案为:. 【例9】x 、y0,则xy =__________.【答案】–6【解析】由题意可知:x +2=0,y –3=0,∴x =–2,y =3,∴xy =–6,故答案为:–6. 三、利用平方根的知识解方程先将方程转化为一个式子的平方等于一个非负数的形式,再利用开平方发求解.【例10】求下列各式中的x .(1)x 2=17;(2)212149x -=0. 【解析】(1)因为2(17=,所以x=.(2)2121049x -=, 212149x =,x =117±. 【例11】求下列各式中x 的值:(1)4(x -1)2-16=0;(2)8(2x +1)3-1=0.【解析】(1)4(x -1)2-16=0,4(x -1)2=16,(x -1)2=4,x -1=±2,x =-1或x =3.(2)8(2x +1)2-1=0,8(2x +1)2=1,(2x +1)2=18,2x ,2x =-,x =-12-x =-12. 四、平方根和算术平方根定义和性质的综合运用若一个数的平方根是它本身,则这个数是0;若一个数的算术平方根是它本身,则这个数是0或1.【例12】若一个正数的算术平方根是a ,则比这个数大3的正数的平方根是A B . C .D .【答案】C【解析】根据一个正数的算术平方根是a ,则这个正数为2a ,则比这个数大3的正数的平方根是C .【例13】已知2a-1的平方根是±3b.【解析】∵2a-1的平方根是±3,∴2a-1=9,∴a=5,b,即16的算术平方根是b,∴b=4=3.【名师点睛】本题主要考查的是算术平方根和平方根的定义,由平方根和算术平方根的定义得到2a-1=9,b=4是解题的关键.【例14】已知9的算术平方根是a,b的平方是25,求ab的值.【名师点睛】本题目是一道考查平方根和算术平方根的问题,注意一个正数的平方根有两个,且互为相反数.。
(完整版)平方根和立方根知识点总结及练习,推荐文档
【基础知识巩固】一、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,2个正数x 叫做a 的算术平方根.a “根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。
(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
一般来说,被开放数扩大(或缩小)a 倍,算术平方根扩大(或缩小)a 倍,例如错误!未找到引用源。
=5,错误!未找到引用源。
=50。
(4)夹值法及估计一个(无理)数的大小 (5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
《实数和二次根式》全章复习与巩固(提高)知识讲解
实数和二次根式》全章复习与巩固(提高)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.5.理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.6.熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.7.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用.【知识网络】【要点梳理】类型平方根立方根项目被开方数非负数任意实数3a符号表示a性质一个正数有两个平方根,且互为一个正数有一个正的立方根;要点二、无理数与实数有理数和无理数统称为实数. 1.实数的分类实数⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数正无理数无理数无限不循环小数负无理数 要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数与数轴上的点一 一对应数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。
我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 要点三、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义.2.二次根式的性质(1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2)a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 取何值,2a 意义.(32a a ,再根据绝对值的意义来进行化简. (42a 2()a 的异同2a a 可以取任何实数,而2a 中的a 必须取非负数;2a a ,2)a =a (0a ≥).相同点:被开方数都是非负数,当a 2a 2a .3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.如222,,3,ab x a b +等都是最简二次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.如2与8,由于8=22,2与8显然是同类二次根式.要点四、二次根式的运算 1. 乘除法(1)乘除法法则:类型 法则逆用法则二次根式的乘法(0,0)a b ab a b ⨯=≥≥积的算术平方根化简公式:(0,0)ab a b a b =⨯≥≥二次根式的除法(0,0)a a a b b b=≥> 商的算术平方根化简公式:(0,0)a aa b b b=≥> 要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如a b c d ac bd ⋅=.(2)被开方数a b 、一定是非负数(在分母上时只能为正数).如(4)(9)49-⨯-≠-⨯-.2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-.【典型例题】类型一、有关方根的问题【高清课堂:389318 实数复习,例1】1、已知31233-+-+-=x x x y ,求y x 2的值.【思路点拨】由被开方数是非负数,分母不为0得出x 的值,从而求出y 值,及y x 2的值. 【答案与解析】 解:由题意得303030x x x ⎧-≥⎪-≥⎨⎪-≠⎩,解得x =-3 31233-+-+-=x x x y =-2∴y x 2=()()23218-⨯-=-.【总结升华】根据使式子有意义的条件列出方程,解方程,从而得到y x 2的值. 举一反三: 【变式1】已知322+-+-=x x y ,求x y 的平方根。
平方根知识点总结
平方根知识点总结平方根,是数学中一个重要的概念,它在解决各种数学问题和实际应用中都有着广泛的用途。
接下来,让我们一起深入了解平方根的相关知识。
一、平方根的定义如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
用数学语言表示为:若 x²= a,则 x 叫做 a 的平方根,记为±√a 。
例如,因为 3²= 9,(-3)²= 9,所以 9 的平方根是 ±3,即±√9 = ±3 。
需要注意的是,正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
二、平方根的性质1、一个正数有两个平方根,它们互为相反数。
比如 4 的平方根是 ±2,2 和-2 互为相反数。
2、 0 的平方根是 0。
这是一个比较特殊的情况,因为 0 的平方还是 0 。
3、负数没有平方根。
因为任何数的平方都是非负数,所以负数不存在平方根。
4、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记为√a 。
例如,9 的算术平方根是 3,即√9 = 3 。
三、平方根的表示方法平方根通常用符号“±√”来表示,读作“正负根号”。
例如,±√16 表示 16 的平方根,即 ±4 。
算术平方根则用“√”表示。
四、开平方运算求一个数 a 的平方根的运算叫做开平方,其中 a 叫做被开方数。
开平方与平方互为逆运算。
例如,求 25 的平方根,就是进行开平方运算:±√25 = ±5 。
五、平方根的应用1、在几何中例如,计算正方形的边长。
如果已知正方形的面积为16 平方厘米,那么它的边长就是面积的平方根,即√16 = 4 厘米。
2、在实际生活中比如,在建筑工程中计算面积、体积等问题时,常常会用到平方根。
3、在数学计算中解方程时,也可能会涉及到平方根的运算。
六、平方根与立方根的区别1、定义不同平方根是指一个数的平方等于另一个数,那么这个数就是另一个数的平方根;而立方根是指一个数的立方等于另一个数,那么这个数就是另一个数的立方根。
七年级上册平方根的知识点
七年级上册平方根的知识点介绍
平方根是数学中经常使用的一种运算方法,对于我们学习数学也有重要的意义。
本文将为大家详细介绍七年级上册平方根的知识点。
一、平方根的定义
平方根是指一个数的平方等于另一个数,那么这个数就是这个数的平方根。
比如,3的平方根是√3,因为3的平方是9,√3也就是3的一个正平方根。
二、平方根的性质
1. 正数的平方根是一个正数,而负数则没有平方根。
2. 一个正数的平方根可以有两个解,即正根和负根。
例如,4的平方根可以是正的2或负的-2。
3. 如果是一个实数的平方根,则必须要求这个实数大于或等于0。
三、平方根的运算
1. 运用乘方的方法来计算平方根。
比如,在计算4的平方根时,可以表示为4^(1/2),结果为2。
2. 可以运用除法法来计算平方根。
例如,√2可以化成2/√2,结果为√2。
3. 可以间接求解平方根,通过乘积进行计算。
比如,求解12
的平方根,在1-12中找到两个数相乘可以得到12的最小数,可以得到2×6或3×4,因此12的平方根为2√3或2×2。
四、应用实例
1. 用平方根来计算三角形的面积,就可以先求出三角形周长,
然后运用海伦公式来求得三角形面积。
2. 平方根也常常被用来计算人口增长率、股票的涨跌幅度等。
结语
以上便是七年级上册平方根的知识点介绍,本文尽可能详尽地介绍了平方根的定义、性质、运算以及应用实例等方面。
希望这篇文章能够帮助各位同学更好地掌握平方根的概念和使用方法。
平方根(提高)知识讲解
平方根(提高)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【平方根,知识要点】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);aa 的算术平方根”,a 叫做被开方数.要点诠释:a0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥,a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、(2015秋•张家港市校级期中)已知2a ﹣1的平方根是±3,3a+b ﹣9的立方根是2,c 是的整数部分,求a+b+c 的平方根.【思路点拨】首先根据平方根与立方根的概念可得2a ﹣1与3a+b ﹣9的值,进而可得a 、b 的值;接着估计的大小,可得c 的值;进而可得a+b+c ,根据平方根的求法可得答案.【答案与解析】解:根据题意,可得2a ﹣1=9,3a+b ﹣9=8;故a=5,b=2; 又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.【总结升华】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,还要掌握实数的基本运算技能,灵活应用.举一反三:【变式】已知2a -1与-a +2是m 的两个不同的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2互为相反数. 解:当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-=2、x 为何值时,下列各式有意义?; 【答案与解析】解:(1)因为20x ≥,所以当x(2)由题意可知:40x -≥,所以4x ≥(3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤有意义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠ 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知2b =,求11a b+的算术平方根. 【答案】 解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=,∴11a b += 类型二、平方根的运算3、求下列各式的值.2234+; 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序. 【答案与解析】解:2234+257535=⨯=;110.63035=⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根(0)a a =>来解.类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -=∴2361x =∴19x ==±(2)∵()21289x +=∴1x += ∴x +1=±17x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用【高清课堂:389316 平方根:例5】5、已知a 、b 是实数,|0b =,解关于x 的方程2(2)1a x b a ++=-.【答案与解析】解:∵a 、b |0b =0≥,|0b ≥,∴260a +=,0b =.∴a =-3,b =把a =-3,b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:【高清课堂:389316 平方根:例5练习】0=,求20112012x y +的值.【答案】0=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.【高清课堂:389316 平方根:例6】6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ x =∴ 长方形纸片的长为cm .∵ 50>49,7>.∴ 21>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.举一反三:【变式】(2015春•台安县月考)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m 2的正方形空地上建一个篮球场,已知篮球场的面积为420m 2,其中长是宽的倍,篮球场的四周必须留出1m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?【答案】解:设篮球场的宽为xm,那么长为2815x m,由题意知,所以x2=225,因为x为正数,所以x==15,又因为=900<1000,所以按规定在这块空地上建一个篮球场.。
平方根知识点
平方根知识点平方根,这一数学概念在我们的数学学习中占据着重要的位置。
它就像是一把神奇的钥匙,能够帮助我们打开解决许多数学问题的大门。
首先,咱们来聊聊什么是平方根。
想象一下,有一个数 a ,如果存在另一个数 b ,使得 b 的平方等于 a ,那么 b 就是 a 的平方根。
简单地说,就是“谁乘谁自己能得到这个数”,那个“谁”就是平方根。
比如说,4 的平方根是多少呢?因为 2 的平方是 4 ,同时-2 的平方也是 4 ,所以 4 的平方根是 ±2 。
这里的“ ± ”可不能忽略,它表示正的和负的两个值。
平方根有着一些重要的性质。
一个正数有两个平方根,它们互为相反数。
零的平方根就是零,负数是没有平方根的。
这是为啥呢?因为任何数的平方都是非负数呀,所以负数就不可能有平方根啦。
那怎么来表示平方根呢?对于正数 a ,它的平方根记作±√a 。
这里的“ √ ”叫做根号,就像是一个特殊的符号,告诉我们要找这个数的平方根。
比如说,要表示 9 的平方根,就写成±√9 = ±3 。
在计算平方根的时候,有些数的平方根是整数,像 4 、 9 、 16 等等,这些比较容易。
但有些数的平方根就不是整数了,比如 2 的平方根,它是一个无限不循环小数,约等于 ±1414 。
这时候,我们可以用近似值来表示,或者保留根号的形式。
平方根在实际生活中也有很多应用呢。
比如在测量领域,如果知道一个正方形的面积,要求它的边长,那就得用到平方根的知识。
假设正方形的面积是 25 平方米,那么它的边长就是√25 = 5 米。
在数学解题中,平方根也经常出现。
比如解方程 x²= 16 ,那么 x=±√16 = ±4 。
再来说说平方根的运算。
平方根的加法和减法,可不能像普通的数字那样直接加减。
只有当被开方数相同时,才能像合并同类项一样进行加减运算。
比如√2 +2√2 =3√2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根(提高)
【学习目标】
1.了解平方根、算术平方根的概念,会用根号表示数的平方根.
2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.
【要点梳理】
要点一、平方根和算术平方根的概念
1.算术平方根的定义
如果一个正数x 的平方等于a ,即2
x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a
a 的算术平方根”,a 叫做被开方数.
要点诠释:
a
0,a ≥0.
2.平方根的定义
如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)
的平方根的符号表达为0)a ≥,
是a 的算术平方根.
要点二、平方根和算术平方根的区别与联系
1.区别:(1)定义不同;(2
)结果不同:
2.联系:(1)平方根包含算术平方根;
(2)被开方数都是非负数;
(3)0的平方根和算术平方根均为0.
要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方
根;负数没有平方根.
(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的
另一个平方根.因此,我们可以利用算术平方根来研究平方根.
要点三、平方根的性质
(0)||0
(0)(0)
a a a a a a >⎧⎪===⎨⎪-<⎩
()20a a =≥
要点四、平方根小数点位数移动规律
被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.
250=
25=
2.5=
0.25=.
【典型例题】
类型一、平方根和算术平方根的概念
1、(2015秋•张家港市校级期中)已知2a ﹣1的平方根是±3,3a+b ﹣9的立方根是2,c 是的整数部分,求a+b+c 的平方根.
【思路点拨】首先根据平方根与立方根的概念可得2a ﹣1与3a+b ﹣9的值,进而可得a 、b 的值;接着估计的大小,可得c 的值;进而可得a+b+c ,根据平方根的求法可得答案.
【答案与解析】
解:根据题意,可得2a ﹣1=9,3a+b ﹣9=8;
故a=5,b=2; 又∵2<<3,
∴c=2,
∴a+b+c=5+2+2=9,
∴9的平方根为±3.
【总结升华】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,还要掌握实数的基本运算技能,灵活应用.
举一反三:
【变式】已知2a -1与-a +2是m 的两个不同的平方根,求m 的值.
【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2互为相反数. 解:当2a -1+(-a +2)=0时,a =-1,
所以m =()()22
221[2(1)1]39a -=⨯--=-= 2、x 为何值时,下列各式有意义? 2x 4x -11x x +- (4)
13
x x --. 【答案与解析】
解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x -
(3)由题意可知:1010
x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.
(4)由题意可知:1030
x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.
所以当1x ≥且3x ≠时,
13x x --有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式
子才有意义.
举一反三: 【变式】已知4322232b a a =-+-+,求11a b +的算术平方根. 【答案】 解:根据题意,得320,230.
a a -≥⎧⎨-≥⎩则23a =,所以
b =2,∴1131222a b +=+=, ∴11a b
+的算术平方根为112a b +=. 类型二、平方根的运算
3、求下列各式的值.
(1)2222252434-+;(2)111200.36900435
--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.
【答案与解析】
解:(1)22
22252434-+49257535==⨯=; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72
=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.
类型三、利用平方根解方程
4、求下列各式中的x .
(1)23610;x -= (2)()2
1289x +=; (3)()2
932640x +-=
【答案与解析】
解:(1)∵23610x -=
∴2361x =
∴36119x ==±
(2)∵()21289x +=
∴1289x +=± ∴x +1=±17
x =16或x =-18.
(3)∵()2
932640x +-= ∴()2
64329
x += ∴8323
x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)
(3)小题中运用了整体思想分散了难度.
举一反三:
【变式】求下列等式中的x :
(1)若2 1.21x =,则x =______; (2)2
169x =,则x =______; (3)若2
9,4
x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用
【高清课堂:389316 平方根:例5】
5、已知a 、b 是实数,
26|20a b ++-=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】
解:∵a 、b 26|20a b +=260a +≥,|20b -≥,
∴260a +=,20b =.
∴a =-3,2b =
把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.
【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.
举一反三:
【高清课堂:389316 平方根:例5练习】
【变式】若2110x y -+
+=,求20112012x y +的值. 【答案】
解:由2110x y -++=,得210x -=,10y +=,即1x =±,1y =-.
①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.
②当x =-1,y =-1时,2011
201220112012(1)(1)0x y +=-+-=. 【高清课堂:389316 平方根:例6】
6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm 的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.
【答案与解析】
解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得
32300x x ⋅=.
26300x =.
250x =.
∵ x >0,
∴ 50x =.
∴ 长方形纸片的长为350cm .
∵ 50>49,
∴507>.
∴ 35021>, 即长方形纸片的长大于20cm .
由正方形纸片的面积为400 2cm , 可知其边长为20cm ,
∴ 长方形的纸片长大于正方形纸片的边长.
答: 小丽不能用这块纸片裁出符合要求的长方形纸片.
【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.
举一反三:
【变式】(2015春•台安县月考)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m 2的正方形空地上建一个篮球场,已知篮球场的面积为420m 2,其中长是宽的倍,篮球场的四周必须留出1m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?
【答案】
解:设篮球场的宽为xm,那么长为28
15
x m,
由题意知,
所以x2=225,
因为x为正数,
所以x==15,
又因为=900<1000,所以按规定在这块空地上建一个篮球场.。