初中数学“平方根”与“立方根”知识点小结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“平方根”与“立方根”知识点小结
一、知识要点
1、平方根:
⑴、定义:如果x2=a,则x叫做a的平方根,记作
“
(a称为被开方数)。
⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
⑶、算术平方根:正数a的正的平方根叫做a的算术平
。
2、立方根:
⑴、定义:如果x3=a,则x叫做a的立方根,记作
(a称为被开方数)。
⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。
二、规律总结:
1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
3
有意义的条
件是a≥0。
4、公式:⑴
)2=a(a≥0)
=(a取任
何数)。
5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。
例1求下列各数的平方根和算术平方根(1)64;(2)2)3
(-;(3)
49
15
1;⑷
2
1
(3)
-
例2 求下列各式的值
(1)81
±;(2)16
-;(3)
25
9
;(4)2)4
(-. (5)44
.1,(6)36
-,(7)
49
25
±(8)2)
25
(-
例3、求下列各数的立方根:
⑴343;⑵
10
2
27
-;⑶0.729
二、巧用被开方数的非负性求值.
大家知道,当a≥0时,a的平方根是±a,即a是非负数.
例4、若,6
2
2=
-
-
-
-y
x
x求y x的立方根.
练习:已知,2
1
2
2
1+
-
+
-
=x
x
y求y x的值.
三、巧用正数的两平方根是互为相反数求值.
我们知道,当a≥0时,a的平方根是±a,而.0
)
(
)
(=
-
+
+a
a
例5、已知:一个正数的平方根是2a-1与2-a,求a的平方的相反数的立方根.
练习:若3
2+
a和12
-
a是数m的平方根,求m的值.
四、巧解方程
例6、解方程(1)(x+1)2
=36 (2)27(x+1)3=64
五、巧用算术平方根的最小值求值.
我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零.
例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a
的非算术平方根.
练习①已知2
33(2)0x y z -+-++=,求xyz 的值。 ②已知
互为相反数,求a ,b 的值。
六、实数
1、实数:有理数和无理数统称为实数.我们一般用下列两种情况将实数进行分类:
①按属性分类: ②按符号分类
2.关于有理数的运算法则:运算规律和运算性质,在进行实数运算时仍适用.在实数范围内,不仅可以进行加.减.乘.除.乘方运算,而且正数和零总可以进行开平方运算,任何一个数都可以开立方运算. 3.实数和数轴上的点的对应关系:实数和数轴上的点一一对应,即每一个实数都可以用数轴上的一个点表示.反过来,数轴上的每一个点都可以表示一个实数.我们可以用几何作图方法,在数轴上表示某些无理数,如 、
等.
思考:(1)-a 2一定是负数吗?-a 一定是正数吗? (2)大家都知道是一个无理数,那么
-1在哪两
个整数之间?
(3)15的整数部分为a,小数部分为b,则a=____, b=____
(4)实数包括____________或__________________; (5)下列各数:
3
3
5,π,0.28,04,3.14159,
0.121121112,3,
22
7
.其中无理数有( )个 七、实数大小比较的方法 一、平方法 比较
2
3
和3的大小
二、移动因式法 比较32和23的大小
三、求差法 比较2
1
5-和1的大小
四、求商法 比较53
4
和11的大小
练习:比较下列各组数的大小: ①2-和3-;②3和23-;③15和5
4
3;
④7-
和-2.45。
八、解答题(每题4分,共8分) 1、当2
1
≤
a 时,化简|12|4412-++-a a a
2、已知实数a 、b 在数轴上表示的点如上图,