最新初中数学概率知识点总复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学概率知识点总复习
一、选择题
1.从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()
A.2
27
B.
1
4
C.
1
54
D.
1
2
【答案】A
【解析】
【分析】
用K的扑克张数除以一副扑克的总张数即可求得概率.【详解】
解:∵一副扑克共54张,有4张K,
∴正好为K的概率为
4
54
=
2
27

故选:A.
【点睛】
此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件
A出现m种结果,那么事件A的概率P(A)=m
n

2.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()
A.1
5
B.
2
5
C.
3
5
D.
4
5
【答案】B
【解析】
试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到
负数的概率是2 5 .
故选B.
考点:概率.
3.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()
A.1
36
B.
1
6
C.
1
12
D.
1
3
【答案】A 【解析】【分析】
本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.
【详解】
P(a,b,c正好是直角三角形三边长)=
61 21636
=
故选:A
【点睛】
本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.
4.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6
y
x
=图象的概率是()
A.1
2
B.
1
3
C.
1
4
D.
1
8
【答案】B
【解析】
【分析】
根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.
【详解】
Q点(),m n在函数6
y
x
=的图象上,
6
mn
∴=.
列表如下:
mn的值为6的概率是
41 123
=.
故选:B.
【点睛】
本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表
找出mn=6的概率是解题的关键.
5.下列事件中,是必然事件的是( )
A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心
C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D
【解析】
【分析】
先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
【详解】
A.购买一张彩票中奖,属于随机事件,不合题意;
B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;
C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;
D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;
故选D.
【点睛】
本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.
6.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是
()
A.1
9
B.
1
6
C.
1
3
D.
2
3
【答案】C
【解析】
分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
详解:将三个小区分别记为A、B、C,
列表如下:
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为31 = 93
.
故选:C.
点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
7.在一个不透明的袋子中装有6个除颜色外均相同的乒乓球,其中3个是黄球,2个是白球.1个是绿球,从该袋子中任意摸出一个球,摸到的不是绿球的概率是()
A.5
6
B.
1
3
C.
2
3
D.
1
6
【答案】A
【解析】
【分析】
先求出摸出是绿球的概率,然后用1-是绿球的概率即可解答.【详解】
解:由题意得:到的是绿球的概率是1
6

则摸到不是绿球的概率为1-1
6
=
5
6

故答案为A.
【点睛】
本题主要考查概率公式,掌握求不是某事件的概率=1-是该事件的概率是解答本题的关键.
8.下列判断正确的是()
A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨
C.“篮球队员在罚球线上投篮一次,投中”为随机事件
D.“a是实数,|a|≥0”是不可能事件
【答案】C
【解析】
【分析】
直接利用概率的意义以及随机事件的定义分别分析得出答案.
【详解】
A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;
B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;
C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;
D、“a是实数,|a|≥0”是必然事件,故此选项错误.
故选C.
【点睛】
此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.
9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()
A.1
6
B.
1
12
C.
1
3
D.
1
4
【答案】D
【解析】
【分析】
【详解】
解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:
∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84
故选D.
10.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()
A.小于1
2
B.等于
1
2
C.大于
1
2
D.无法确定
【答案】B 【解析】【分析】
根据概率的意义分析即可.【详解】
解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2
∴抛掷第100次正面朝上的概率是1 2
故答案选:B
【点睛】
本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.
11.下列说法正确的是( )
A.打开电视机,正在播放“张家界新闻”是必然事件
B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨
C.两组数据平均数相同,则方差大的更稳定
D.数据5,6,7,7,8的中位数与众数均为7
【答案】D
【解析】
【分析】
根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】
A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;
B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;
C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;
D,数据5,6,7,7,8的中位数与众数均为7,正确,
故选D.
【点睛】
本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.
12.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )
A.1
5
B.
1
10
C.
2
5
D.
2
25
【答案】B
【解析】
【分析】
根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,
然后根据概率公式即可得出答案. 【详解】
用字母A 、B 、C 、D 、E 分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:
共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形, 所以,正好抽中养老保险和医疗保险的概率P=212010
=. 故选B. 【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
13.在平面直角坐标系中有三个点的坐标:()()0,2,2,01
(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( ) A .
1
3
B .
16
C .
12
D .
23
【答案】A 【解析】 【分析】
先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解. 【详解】
解:在()()0,2,2,01
(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:
共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是21
63
=; 故选:A .
【点睛】
本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了二次函数图象上点的坐标特征.
14.下列说法正确的是 ()
A.要调查现在人们在数学化时代的生活方式,宜采用普查方式
B.一组数据3,4,4,6,8,5的中位数是4
C.必然事件的概率是100%,随机事件的概率大于0而小于1
D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定
【答案】C
【解析】
【分析】
直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.
【详解】
A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;
B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;
C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;
D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;
故选:C.
【点睛】
此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.
15.下列事件是必然事件的是()
A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50
C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180
【答案】D
【解析】
【分析】
直接利用随机事件以及必然事件的定义分别判断得出答案.
【详解】
A、打开电视机正在插放动画片为随机事件,故此选项错误;
B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;
C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;
D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.
故选:D.
【点睛】
此题考查随机事件以及必然事件,正确把握相关定义是解题关键.
16.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()个.
A.20 B.16 C.12 D.15
【答案】C
【解析】
【分析】
由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案.
【详解】
解:设白球个数为x个,
∵摸到红球的频率稳定在25%左右,
∴口袋中得到红色球的概率为25%,

41 44
x
=
+

解得:12
x=,
经检验,12
x=是原方程的解
故白球的个数为12个.
故选C
【点睛】
本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.
17.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD内投针一次,则针扎在小正方形EFGH内的概率是()
A.
1
16
B.
1
20
C.
1
24
D.
1
25
【答案】D 【解析】
【分析】
根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.
【详解】
根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8
所以小正方形的边长为:862
-=,小正方形的面积为4,
根据勾股定理,大正方形的边长为22
6810
+=,大正方形的面积为100.
所以针扎在小正方形EFGH内的概率是
41
=
10025
,答案选D.
【点睛】
本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH内的概率是小正方形与大正方形的面积比.
18.下列事件中,属于必然事件的是()
A.三角形的外心到三边的距离相等
B.某射击运动员射击一次,命中靶心
C.任意画一个三角形,其内角和是 180°
D.抛一枚硬币,落地后正面朝上
【答案】C
【解析】
分析:必然事件就是一定发生的事件,依据定义即可作出判断.
详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;
B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
C、三角形的内角和是180°,是必然事件,故本选项符合题意;
D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;
故选C.
点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
19.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()
A.B.C.D.
【答案】B
【解析】
【分析】
根据简单概率的计算公式即可得解.
【详解】
一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.
故选B.
考点:简单概率计算.
20.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如
果随机从袋中摸出一个球是白球的概率为1
3
,那么袋中有多少个黑球()
A.4个B.12个C.8个D.不确定【答案】C
【解析】
【分析】
首先设黑球的个数为x个,根据题意得:
41
43
=
x
+
,解此分式方程即可求得答案.
【详解】
设黑球的个数为x个,
根据题意得:
41 43
=
x
+

解得:x=8,
经检验:x=8是原分式方程的解;
∴黑球的个数为8.
故选:C.
【点睛】
此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.。

相关文档
最新文档