广东省广州市天河中学2017高考数学(理科)一轮复习基础知识检测:排列、组合02.doc
广东广州市天河中学2017高考数学一轮复习 分类加法计数原理和分步乘法计数原理基础知识检测 理
分类加法计数原理与分步乘法计数原理基础热身1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( )A.30个 B.42个C.36个 D.35个2.在“庆国庆、展才艺”国庆庆祝活动中,甲、乙、丙三位同学欲报名“朗诵比赛”、“歌唱比赛”,但学校规定每位同学限报其中的一个,且乙知道自已唱歌不如甲,若甲报唱歌,则乙就报朗诵,则他们三人不同的报名方法有( )A.3种 B.6种C.7种 D.8种3.记4名同学报名参加学校三个不同体育队,每人限报一队的不同报法种数为A;记3个班分别从5个风景点中选择一处游览的不同选法种数为B,则A,B分别是( ) A.43,53 B.34,35C.34,53 D.43,354.设A,B是两个非空集合,定义A*B={(a,b)|a∈A,b∈B},若P={0,1,2},Q={1,2,3,4},则P*Q中元素的个数是( )A.4 B.7C.12 D.16能力提升5.如图K57-1,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )A.72种 B.48种C.24种 D.12种6.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A.6种 B.12种C.24种 D.30种7.从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A.36 B.48 C.52 D.548.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同的分配方案的种数为( )A.80 B.120C.140 D.509.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“良数”.例如:32是“良数”,因为32+33+34不产生进位现象;23不是“良数”,因为23+24+25产生进位现象.那么小于1000的“良数”的个数为( )A.27 B.36C.39 D.4810.十字路口来往的车辆,如果不允许回头,共有________种行车路线.11.将1,2,3,…,9这9个数字填在如图K57-2所示的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数有________种.12.学校安排4名教师在六天里值班,每天只安排一名教师,每人至少安排一天,至多安排两天,且这两天要相连,那么不同的安排方法有________种(用数字作答).13.用红、黄、蓝三种颜色之一去涂图K57-3中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为1、5、9的小正方形涂相14.(10分)有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.15.(13分)某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法?难点突破16.(1)(6分)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) A.56 B.65C.5×6×5×4×3×22D.6×5×4×3×2(2)(6分)如图K57-4所示,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有( )A.288种 B.264种C.240种 D.168种答案解析【基础热身】1.C [解析] b有6种取法,a也有6种取法,由分步乘法计数原理共可以组成6×6=36个虚数.2.B [解析] 从甲着手分析,分两类:若甲报唱歌,乙则报朗诵,丙可任选,有2种报名方法;若甲报朗诵,则乙、丙均可任选,有2×2=4(种)报名方法.所以共有2+4=6(种)不同的报名方法.3.C [解析] 4名学生参加3个运动队,每人限报一个,可以报同一运动队,应该是人选运动队,所以不同的报法种数是34,故A=34;3个班分别从5个风景点中选择一处游览,应该是班选风景点,故不同的选法种数是53,故B=53.4.C [解析] 由分步乘法计数原理知有3×4=12个.【能力提升】5.A [解析] 先分两类:一是四种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24种涂法;二是用三种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72种.6.C [解析] 方法1:两人各选修2门的种数为C24C24=36,再求出两人所选两门都相同和都不同的种数均为C24=6,故恰好有1门相同的选法有24种.方法2:恰有1门相同,先从4门选1门,选法C14,然后甲从剩下的3门选1门,乙再从甲选后剩下的2门中选1门,根据乘法原理共有选法4×3×2=24种.7.B [解析] 若取出的数字含有0,则是2×A23=12个,若取出的数字不含0,则是C12C23 A33=36个.根据加法原理得总数为48个.8.A [解析] 分两类:若甲组2人,则乙、丙两组的方法数是C13A22,此时的方法数是C25C13 A22=60;若甲组3人,则方法数是C35A22=20.根据分类加法计数原理得总的方法数是60+20=80.9.D [解析] 一位良数有0,1,2,共3个;两位数的良数十位数可以是1,2,3,两位数的良数有10,11,12,20,21,22,30,31,32,共9个;三位数的良数有百位为1,2,3,十位数为0的,个位可以是0,1,2,共3×3=9个,百位为1,2,3,十位不是零时,十位个位可以是两位良数,共有3×9=27个.根据分类加法计数原理,共有48个小于1000的良数.10.12 [解析] 由分步乘法计数原理有4×3=12.11.6 [解析] 左上方只能填1,右下方只能填9,此时4的上方只能填2.右上方填5时,其下方填6,7,8;右上方填6时,其下方填7,8;右上方填7时,其下方只能填8,此时左下方的两个格填法随之确定.故只能有3+2+1=6种填法.12.144 [解析] 有两名教师要值班两天,把六天分为四份,两个两天连排的是(1,2),(3,4);(1,2),(4,5);(1,2),(5,6);(2,3),(4,5);(2,3),(5,6);(3,4),(5,6),共六种情况,把四名教师进行全排列,有A44=24种情况,根据分步乘法计数原理,共有不同的排法6×24=144种.13.108 [解析] 分步求解.只要在涂好1,5,9后,涂2,3,6即可,若3与1,5,9同色,则2,6的涂法为2×2,若3与1,5,9不同色,则3有两种涂法,2,6只有一种涂法,同理涂4,7,8,即涂法总数是C13(2×2+C12×1)×(2×2+C12×1)=3×6×6=108.14.[解答] (1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步计数原理知共有方法36=729种.(2)每项限报一人,且每人至多限报一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步计数原理得共有报名方法6×5×4=120种.(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理得共有不同的报名方法63=216种.15.[解答] 首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:第一类:2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第二类:2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有2×3×2=12种选法.再由分类计数原理知共有6+12=18种选法.第三类:2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.【难点突破】16.(1)A (2)B [解析] (1)因为每位同学均有5种讲座可选择,所以6位同学共有5×5×5×5×5×5=56种选择,故本题选A.(2)分三类:①B、D、E、F用四种颜色,则有A44×1×1=24种方法;②B、D、E、F用三种颜色,则有A34×2×2+A34×2×1×2=192种方法;③B、D、E、F用两种颜色,则有A24×2×2=48,所以共有不同的涂色方法24+192+48=264种.。
广东省广州市天河中学2017高考高三数学一轮复习讲义精讲精练:基本算法语句
批阅笔记
(1)本题考查了循环语句的应用.由于循环语句有三种不同形 式,所以在写伪代码时,首先应确定用何种语句. (2)本题易错点为:确定不准语句中开始的赋值.
方法与技巧
1.输入、输出语句是任何一个程序必不可少的语句. 2.赋值语句是重要的一种基本语句,也是一个程序必不可少 的语句.利用赋值语句可以实现两个变量值的互换,方 法是引进第三个变量. 3.要区分条件语句的两种格式:If—Then—Else 格式和 If—Then 格式.
基本算法语句
要点梳理
1.基本算法语句
忆一忆知识要点
五种基本算法语句分别是 赋值语句 、输入语句、输出语
循环语句 . 句、 条件语句 、
2.赋值语句、输入语句、输出语句 赋值语句用符号“←”表示,其一般格式是 变量←表 达式(或变量),其作用是对程序中的变量赋值;输入语句 “Read a,b”表示 输入的数据依次递给a,b ,输出语 句“Print x”表示 输出运算结果x .
解
伪代码如下:
探究提高
通过本题掌握 While 语句的特点, 注意与 For 语句的区别. 在 设计算法时要注意循环体的构成,不能颠倒.
变式训练 3
某算法的伪代码如下:
则输出的结果是________.
伪代码所示的算法是一个求和运算:
1 1 1 1 + + +„+ 1×3 3×5 5×7 99×101 1 1 1 1 1 1 1 1 =[1-3+3-5+5-7+„+99-101]× 2 1 1 50 =1-101× = . 2 101
要点梳理
忆一忆知识要点
直到型语句的一般格式是
.
对应的流程图为
[难点正本
广东省天河地区2017高考数学一轮复习试题精选直线与圆理
直线与圆1.倾斜角为135︒,在y 轴上截距为1-直线方程是〔 〕A. 01=+-y xB. 01=--y xC. 01=-+y xD. 01=++y x【答案】D【解析】直线斜率为tan1351k ==-,所以满足条件直线方程为1y x =--,即10x y ++=,选D.2.30y +-=倾斜角是 A .6π B .3π C .65π D .32π 【答案】D【解析】直线斜截式方程为3y =+,即直线斜率tan k α==,所以,选D. 1l :280ax y +-=与直线2l :(1)40x a y +++=平行 ,那么a 值为〔 〕A. 1B. 1或2C. -2D. 1或-2 【答案】A【解析】直线1l 方程为,假设1a =-,那么两直线不平行,所以1a ≠-,要使两直线平行,那么有,由,解得1a =或2a =-。
当2a =-时,,所以不满足条件,所以1a =,选A.4. “1k =〞是“直线0x y k -+=与圆221x y += 相交〞A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】要使直线0x y k -+=与圆221x y += 相交,那么有圆心到直线距离。
即k ≤所以k ≤≤,所以“1k =〞是“直线0x y k -+=与圆221x y += 相交〞充分不必要条件,选A.5.1by +=与圆221x y +=相交于A,B 两点(其中a,b 是实数),且△AOB 是直角三角形(O 是坐标原点),那么点P(a,b)与点(0,1)之间距离最大值为 ( )A.1+B.2 1【答案】A【解析】因为△AOB 是直角三角形,所以圆心到直线距离为2,所以,即2222a b +=。
所以,由,得22,b b ≤≤≤。
所以点P(a,b)与点(0,1)之间距离为d ====,即,因为b ≤≤所以当b =1d ====+选A. 6.假设点(1,1)P 为圆2260x y x +-=弦MN 中点,那么弦MN 所在直线方程为〔 〕 A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --=【答案】D 【解析】圆标准方程为22(3)9x y -+=,圆心为(3,0)A ,因为点(1,1)P 弦MN 中点,所以AP MN ⊥,AP 斜率为,所以直线MN 斜率为2,所以弦MN 所在直线方程为12(1)y x -=-,即210x y --=,选D.点(1,3)P 且在x 轴上截距和在y 轴上截距相等直线方程为〔 〕〔A 〕40x y +-= 〔B 〕30x y -= 〔C 〕40x y +-=或30x y += 〔D 〕40x y +-=或30x y -=【答案】D【解析】假设直线过原点,设直线方程为y kx =,把点(1,3)P 代入得3k =,此时直线为3y x =,即30x y -=。
广东省广州市天河中学2017高考数学(理科)一轮复习基础知识检测:合情推理和演绎推理.doc
合情推理与演绎推理基础热身1.在等差数列{a n}中,若a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,公比q>1,则b4,b5,b7,b8的一个不等关系是() A.b4+b8>b5+b7B.b4+b8<b5+b7C.b4+b7>b5+b8D.b4+b7<b5+b82.规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再退2步”的规律移动.如果将此机器狗放在数轴原点,面向正方向,以1步的距离为1个单位长度移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是()A.P(2007)=403B.P(2008)=404C.P(2009)=403D.P(2010)=4043.已知命题:若数列{a n}为等差数列,且a m=a,a n=b(m≠n,m、n∈N*),则a m+n=bn-amn-m;现已知等比数列{b n}(b n>0,n∈N*),b m=a,b n=b(m≠n,m、n∈N*),若类比上述结论,则可得到b m+n=()A.m-n b ma n B.n-m b na mC.n-mb n a m D.n-mb m a n4.有下列推理:①A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P的轨迹为椭圆;②由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式;③由圆x2+y2=r2的面积S=πr2,猜想出椭圆x2a2+y2b2=1的面积S=πab;④科学家利用鱼的沉浮原理制造潜艇.以上推理不是归纳推理的序号是________.(把所有你认为正确的序号都填上)能力提升5.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n (x )=f n -1′(x ),n ∈N ,则f 2013(x )=( )A .sin xB .-sin xC .cos xD .-cos x6.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,由此若∠A ,∠B 是两条平行直线被第三条直线所截得的同旁内角,则∠A +∠B =180°B .某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人C .由平面正三角形的性质,推测空间四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式7.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A (-3,4),且法向量为n =(1,-2)的直线(点法式)方程为:1×(x +3)+(-2)×(y -4)=0,化简得x -2y +11=0.类比以上方法,在空间直角坐标系中,经过点A (1,2,3)且法向量为n =(-1,-2,1)的平面的方程为( )A .x +2y -z -2=0B .x -2y -z -2=0C .x +2y +z -2=0D .x +2y +z +2=08.“因为指数函数y =a x 是增函数(大前提),而y =⎝⎛⎭⎫13x是指数函数(小前提),所以y =⎝⎛⎭⎫13x 是增函数(结论)”,上面推理的错误是( ) A .大前提错导致结论错 B .小前提错导致结论错 C .推理形式错导致结论错D .大前提和小前提错都导致结论错9.把正整数按一定的规则排成了如图K67-1所示的三角形数表.设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如a 42=8.若a ij =2009,则i 与j 的和为( )12 43 5 76 8 10 129 11 13 15 1714 16 18 20 22 24图K67-1A .105B .106C .107D .10810.对于命题:若O 是线段AB 上一点,则有|OB →|·OA →+|OA →|·OB →=0. 将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA →+S △OCA ·OB →+S △OAB ·OC →=0. 将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________.11.半径为r 的圆的面积S (r )=πr 2,周长C (r )=2πr ,若将r 看做(0,+∞)上的变量,则(πr 2)′=2πr ①,①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看做(0,+∞)上的变量,请你写出类似于①的式子:________________②,②式可以用语言叙述为:________________.12.在计算“11×2+12×3+…+1n n +1 (n ∈N *)”时,某同学学到了如下一种方法:先改写第k 项:1k k +1 =1k -1k +1,由此得11×2=11-12,12×3=12-13,…,1n n +1 =1n -1n +1, 相加,得11×2+12×3+…+1n n +1 =1-1n +1=n n +1.类比上述方法,请你计算“11×2×3+12×3×4+…+1n n +1 n +2(n ∈N *)”,其结果为________.13.某少数民族的刺绣有着悠久的历史,图K67-2为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形,则f (n )的表达式为____________(n ∈N *).图K67-214.(10分)蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图K67-3为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数.(1)试给出f(4),f(5)的值,并求f(n)的表达式(不要求证明);(2)证明:1f 1 +1f 2 +1f 3 +…+1f n <43.图K67-315.(13分)如图K67-4所示,点P为斜三棱柱ABC-A1B1C1的侧棱BB1上一点,PM ⊥BB1交AA1于点M,PN⊥BB1交CC1于点N.(1)求证:CC1⊥MN;(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF·EF·cos∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.图K67-4难点突破16.(12分)规定C mx =x · x -1 ·…· x -m +1 m !,其中x ∈R ,m 是正整数,且C 0x =1,这是组合数C m n (m ,n 是正整数,且m ≤n 的一种推广).(1)求C 5-15的值;(2)组合数的两个性质:①C m n =C n -mn.②C m n +C m -1n =C m n +1.是否都能推广到C mx (x ∈R ,m 是正整然)的情形?若能推广,请写出推广的形式,并给出证明;若不能,则说明理由.(3)已知组合数C m n 是正整数,证明:当x ∈Z ,m 是正整数时,C mx ∈Z.答案解析【基础热身】1.A [解析] 在等差数列{a n }中,由于4+6=3+7时有a 4·a 6>a 3·a 7,所以在等比数列{b n }中,由于4+8=5+7,所以应有b 4+b 8>b 5+b 7或b 4+b 8<b 5+b 7.∵b 4=b 1q 3,b 5=b 1q 4,b 7=b 1q 6,b 8=b 1q 7 ∴(b 4+b 8)-(b 5+b 7)=(b 1q 3+b 1q 7)-(b 1q 4+b 1q 6) =b 1q 6·(q -1)-b 1q 3(q -1)=(b 1q 6-b 1q 3)(q -1)=b1q3(q3-1)(q-1).∵q>1,b n>0,∴b4+b8>b5+b7.故选A.2.D[解析] 显然每5秒前进一个单位,且P(1)=1,P(2)=2,P(3)=3,P(4)=2,P(5)=1,∴P(2007)=P(5×401+2)=401+2=403,P(2008)=404,P(2009)=403,P(2010)=402,故选D.3.B[解析] 等差数列中的bn和am可以类比等比数列中的b n和a m,等差数列中的bn-am可以类比等比数列中的b na m,等差数列中的bn-amn-m可以类比等比数列中的n-m b na m.故b m+n=n-m b na m.4.①③④[解析] ①为演绎推理,②为归纳推理,③④为类比推理.【能力提升】5.C[解析] f1(x)=(sin x)′=cos x,f2(x)=(cos x)′=-sin x,f3(x)=(-sin x)′=-cos x,f4(x)=(-cos x)′=sin x,f5(x)=(sin x)′=cos x=f1(x),f6(x)=(cos x)′=-sin x=f2(x),f n+4(x)=…=…=f n(x),故可猜测f n(x)以4为周期,有f4n+1(x)=f1(x)=cos x,f4n+2(x)=f2(x)=-sin x,f4n+3(x)=f3(x)=-cos x,f4n+4(x)=f4(x)=sin x,所以f2013(x)=f503×4+1(x)=f1(x)=cos x,故选C.6.A[解析] 两条直线平行,同旁内角互补——大前提,∠A,∠B是两条平行直线被第三条直线所截得的同旁内角——小前提,∠A+∠B=180°——结论.故A是演绎推理,而B、D是归纳推理,C是类比推理.故选A.7.A[解析] 类比直线方程求法得平面方程为(-1)×(x-1)+(-2)×(y-2)+1×(z-3)=0即x+2y-z-2=0.8.A[解析] y=a x是增函数这个大前提是错误的,从而导致结论错.9.C[解析] 由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,2009=2×1005-1,所以2009为第1005个奇数,又前31个奇数行内数的个数的和为961,前32个奇数行内数的个数的和为1024,故2009在第32个奇数行内,所以i=63,因为第63行的第一个数为2×962-1=1923,2009=1923+2(m -1),所以m =44,即j =44,所以i +j =107.10.V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 [解析] 平面上的线段长度类比到平面上就是图形的面积,类比到空间就是几何体的体积.11.⎝⎛⎭⎫43πR 3′=4πR 2 球的体积函数的导数等于球的表面积函数 12.n 2+3n4 n +1 n +2[解析]∵1k k +1 k +2=12⎣⎡⎦⎤1k k +1 -1 k +1 k +2 ,依次裂项,求和得n 2+3n 4 n +1 n +2. 13.f (n )=2n 2-2n +1 [解析] 由f (1)=1,f (2)=1+3+1,f (3)=1+3+5+3+1,f (4)=1+3+5+7+5+3+1,可得f (n )=1+3+5+…+2n -1+…+3+1,∴f (n )=2× n -1 [1+ 2n -3 ]2+(2n -1)=2n 2-2n +1.14.[解答] (1)f (4)=37,f (5)=61.由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6,f (4)-f (3)=37-19=3×6,f (5)-f (4)=61-37=4×6,…因此,当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1) =6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1. 又f (1)=1=3×12-3×1+1,所以f (n )=3n 2-3n +1.(2)证明:当k ≥2时,1f k =13k 2-3k +1<13k 2-3k =13⎝⎛⎭⎫1k -1-1k .所以1f 1 +1f 2 +1f 3 +…+1f n <1+13⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =1+13⎝⎛⎭⎫1-1n <1+13=43. 15.[解答] (1)证明:∵PM ⊥BB 1,PN ⊥BB 1,PM ∩PN =P , ∴BB 1⊥平面PMN ,∴BB 1⊥MN . 又CC 1∥BB 1,∴CC 1⊥MN . (2)在斜三棱柱ABC -A 1B 1C 1中,有S 2平面ABB 1A 1=S 2平面BCC 1B 1+S 2平面ACC 1A 1- 2S 平面BCC 1B 1S 平面ACC 1A 1cos α.其中α为平面BCC 1B 1与平面ACC 1A 1所成的二面角的大小. 证明:∵CC 1⊥平面PMN , ∴上述的二面角的平面角为∠MNP .在△PMN 中,∵PM 2=PN 2+MN 2-2PN ·MN cos ∠MNP ,∴PM 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN ·CC 1)cos ∠MNP , 由于S 平面BCC 1B 1=PN ·CC 1,S 平面ACC 1A 1=MN ·CC 1, S 平面ABB 1A 1=PM ·BB 1=PM ·CC 1,∴S 2平面ABB 1A 1=S 2平面BCC 1B 1+S 2平面ACC 1A 1-2S 平面BCC 1B 1·S 平面ACC 1A 1·cos α.【难点突破】16.[解答] (1)根据新规定直接进行演算即可C5-15=-15 -16 -17 -18 -195!=-11628.(2)性质①不能推广.反例:当x =2,m =1时,C 12有意义,但C2-12无意义.性质②能推广,且推广形式不变:C m x +C m -1x =C m x +1(x ∈R ,m 是正整数).证明如下:Cm x+Cm -1x=x x -1 x -2 … x -m +1m !+x x -1 x -2 … x -m +2m -1 !=x x -1 x -2 … x -m +2 m !·(x +1)=1m !·(x +1)[(x +1)-1][(x +1)-2]…[(x +1)-m +1]=C m x +1.(3)需要就x 与m 的大小做出逻辑划分并进行严密的论证. 当x ≥m 时,x ,m 都是正整数,C m n 就是组合数,结论显然成立;当0≤x <m 时,C m x=x x -1 x -2 …0… x -m +1m !=0∈Z ,结论也成立; 当x <0时,C m x=x x -1 x -2 … x -m +1m !=(-1)m 1m !(-x +m -1)(-x +m -2)…(-x +1)(-x )=(-1)m C m-x +m -1 ∵-x +m -1>0,∴C m -x +m -1是正整数,故C m x =(-1)m C m -x +m -1∈Z.综上所述,当x ∈Z ,m 是正整数时,C m x ∈Z.。
广东省广州市天河中学2017高考数学一轮复习数学证明基础知识检测理
数学证明基础热身1.在用反证法证明命题“已知a 、b 、c ∈(0,2),求证a (2-b )、b (2-c )、c (2-a )不可能都大于1”时,反证时假设正确的是( )A .假设a (2-b )、b (2-c )、c (2-a )都小于1B .假设a (2-b )、b (2-c )、c (2-a )都大于1C .假设a (2-b )、b (2-c )、c (2-a )都不大于1D .以上都不对2.在△ABC 中,已知sin A +cos A =12,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定3.设a ,b ,c 均为正实数,那么a +1b ,b +1c ,c +1a( )A .都不大于2B .都不小于2C .至少有一个不大于2D .至少有一个不小于24.已知a ,b 是不相等的正数,x =a +b2,y =a +b ,则x ,y 的大小关系是________.能力提升5.一个质点从A 出发依次沿图中线段到达B 、C 、D 、E 、F 、G 、H 、I 、J 各点,最后又回到A (如图K68-1所示),其中:AB ⊥BC ,AB ∥CD ∥EF ∥HG ∥IJ ,BC ∥DE ∥FG ∥HI ∥JA .欲知此质点所走路程,至少需要测量n 条线段的长度,则n =( )A .2B .3C .4D .56. 已知⎪⎪⎪⎪a c b d =ad -bc ,则⎪⎪⎪⎪48 610+⎪⎪⎪⎪1216 1418+…+⎪⎪⎪⎪20042008 20062010=( )A .-2008B .2008C .2010D .-20107.△ABC 的三内角A 、B 、C 的对边分别为a 、b 、c ,且a 、b 、c 成等比数列,cos A 、cos B 、cos C 成等差数列,则△ABC 为( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形8.已知关于x 的不等式ax -5x 2-a<0的解集为M ,且3∈M,5∉M ,则实数a 的取值范围为( ) A.⎝ ⎛⎭⎪⎫1,53∪(9,25) B.⎣⎢⎡⎭⎪⎫1,53∪(9,25] C.⎝ ⎛⎭⎪⎫1,53∪[9,25) D.⎣⎢⎡⎦⎥⎤1,53∪[9,25]9.若a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数是( ) A .0 B .1 C .2 D .310.观察下表: 12 3 43 4 5 6 74 5 6 7 8 9 10……则第________行的各数之和等于20092.11.如图K68-2所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有n (n >1,n ∈N )个点,每个图形总的点数记为a n ,则9a 2a 3+9a 3a 4+9a 4a 5+…+9a 2010a 2011=________.12.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为________.13.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f x 1+f x 2+…+f x n n≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n.若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.14.(10分)已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14.15. (13分)试比较n n +1与(n +1)n(n ∈N *)的大小.当n =1时,有n n +1________(n +1)n(填>、=或<)当n =2时,有n n +1________(n +1)n(填>、=或<)当n =3时,有n n +1________(n +1)n(填>、=或<)当n =4时,有n n +1________(n +1)n(填>、=或<) 猜想一个一般性结论,并加以证明.难点突破16.(12分)数列{a n }(n ∈N *)中,a 1=0,a n +1是函数f n (x )=13x 3-12(3a n +n 2)x 2+3n 2a n x 的极小值点,求通项a n .答案解析【基础热身】1.B [解析] “不可能都大于1”的否定是“都大于1”,故选B.2.C [解析] 由sin A +cos A =12,得,(sin A +cos A )2=1+2sin A cos A =14,∴sin A cos A <0.∵A ∈(0,π),∴sin A >0,cos A <0,∴A ∈⎝ ⎛⎭⎪⎫π2,π.故选C. 3.D [解析] 因为a +1b+b +1c+c +1a≥6,故选D.4.x <y [解析] x 2-y 2=a +b +2ab2-(a +b )=-a +b -2ab2=-a -b22.∵a ,b 是不相等的正数,∴a ≠b ,∴(a -b )2>0,∴-a -b22<0,∴x 2<y 2.又∵x >0,y >0,∴x <y .【能力提升】5.B [解析] 只需测量AB ,BC ,GH 这3条线段的长.6.A [解析] ∵⎪⎪⎪⎪48 610=-8,⎪⎪⎪⎪1216 1418=-8,…,⎪⎪⎪⎪20042008 20062010=-8,区间[4,2010]中共有1004个偶数,若每四个偶数为一组,共有251组,∴⎪⎪⎪⎪48 610+⎪⎪⎪⎪1216 1418+…+⎪⎪⎪⎪20042008 20062010=(-8)+(-8)+…+(-8251个=-8×251=-2008,故选A.7.A [解析] ∵cos A ,cos B ,cos C 成等差数列,∴2cos B =cos A +cos C =2cos A +C 2cos A -C2=2sin B 2cos A -C 2,∴cos(A -C )=2cos 2A -C 2-1=2cos 2B sin2B 2-1.①∵a ,b ,c 成等比数列,∴b 2=ac ,∴sin 2B =sin A sinC ,∴2sin 2B =cos(A -C )+cos B ,∴cos(A -C )=2sin 2B -cos B ,② 将①代入②整理得:(2cos B -1)(cos B -3)(cos B +1)=0.∵0<B <π,∴cos B =12,∴B =π3,∴cos(A -C )=1,∵-π<A -C <π,∴A =C ,∴A =B =C =π3,从而△ABC 为等边三角形,故选A.8.B [解析] (1)当a ≠25时,⎩⎪⎨⎪⎧3∈M ,5∉M ⇒⎩⎪⎨⎪⎧3a -59-a <0,5a -525-a ≥0⇒⎩⎪⎨⎪⎧a >9或a <53,1≤a <25⇒a∈⎣⎢⎡⎭⎪⎫1,53∪(9,25).(2)当a =25时,不等式为25x -5x 2-25<0,解之得M =(-∞,-5)∪⎝ ⎛⎭⎪⎫15,5,则3∈M 且5∉M , ∴a =25满足条件,综上可得a ∈⎣⎢⎡⎭⎪⎫1,53∪(9,25]. 9.C [解析] ①②正确;③中a ≠c ,b ≠c ,a ≠b 可能同时成立,如a =1,b =2,c =3.选C.10.1005 [解析] 由题意归纳出第n 行的各数之和为(2n -1)2,2n -1=2009,n =1005. 11.20092010[解析] a n =3(n -1),a n a n +1=9n (n -1),裂项求和即可. 12.3+2 2 [解析] 由题知直线经过圆心(2,1),则有a +b =1,所以1a +2b=(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+⎝ ⎛⎭⎪⎫b a+2a b ≥3+2 2.13.332 [解析] sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.14.[解答] 证明:假设三式同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,三式同向相乘,得(1-a )a (1-b )b (1-c )c >164.①又(1-a )a ≤⎝ ⎛⎭⎪⎫1-a +a 22=14,(1-b )b ≤14,(1-c )c ≤14.所以(1-a )a (1-b )b (1-c )c ≤164,与①式矛盾,即假设不成立,故结论正确. 15.[解答] < < > >结论:当n ≥3时,n n +1>(n +1)n (n ∈N *)恒成立.证明:①当n =3时,34=81>64=43成立;②假设当n =k (k ≥3)时成立,即k k +1>(k +1)k成立,即k k +1k +k>1,则当n =k +1时,∵k +k +2k +k +1=(k +1)·⎝ ⎛⎭⎪⎫k +1k +2k +1>(k +1)·⎝ ⎛⎭⎪⎫k k +1k +1=k k +1k +k>1,∴(k +1)k +2>(k +2)k +1,即当n =k +1时也成立.∴当n ≥3时,n n +1>(n +1)n (n ∈N *)恒成立.【难点突破】16.[解答] 易知f ′n (x )=x 2-(3a n +n 2)x +3n 2a n =(x -3a n )(x -n 2),令f ′n (x )=0,得x =3a n 或x =n 2,(1)若3a n <n 2,当x <3a n 时,f ′n (x )>0,f n (x )单调递增;当3a n <x <n 2时,f ′n (x )<0,f n (x )单调递减;当x >n 2时,f ′n (x )>0,f n (x )单调递增,故f n (x )在x =n 2时,取得极小值.(2)若3a n >n 2,仿(1)可得,f n (x )在x =3a n 时取得极小值.(3)若3a n =n 2,f ′n (x )≥0,f n (x )无极值.因a 1=0,则3a 1<12,由(1)知,a 2=12=1.因3a 2=3<22,由(1)知a 3=22=4,因3a 3=12>32,由(2)知a 4=3a 3=3×4,因3a 4=36>42,由(2)知a 5=3a 4=32×4,由此猜想:当n ≥3时,a n =4×3n -3.下面用数学归纳法证明:当n ≥3时,3a n >n 2. 事实上,当n =3时,由前面的讨论知结论成立.假设当n =k (k ≥3)时,3a k >k 2成立,则由(2)知a k +1=3a k >k 2,从而3a k +1-(k +1)2>3k 2-(k +1)2=2k (k -2)+2k -1>0,所以3a k +1>(k +1)2.故当n ≥3时,a n =4×3n -3,于是由(2)知,当n ≥3时,a n +1=3a n ,而a 3=4,因此a n =4×3n -3,综上所述,a n =⎩⎪⎨⎪⎧n =,n =,4×3n -3n。
2017年高考数学(理)一轮复习讲练测 专题10.2 排列与组合(测) 含解析
班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【2016届广东省惠州市高三第一次调研考试】将甲,乙等5位同学分别保送到北京大学,上海交通大学,中山大学这3所大学就读,则每所大学至少保送1人的不同保送方法数为( )种。
A .150B .180C .240D .540 【答案】A 【解析】2.【2015届江西高安高三模拟三】将甲、乙等5名学生分配到三个不的班级,每个班级至少一人,且甲、乙在同一班级的分配方案共有( )A .72种B .36种C .18种D .12种【答案】B 【解析】试题分析:由题可知,有363324==A CN ,故选B 。
3.【2015届江西高安高三模拟二】 某宾馆安排A 、B 、C 、D 、E 五人入住3个房间,每个房间至少住1人,且A 、B 不能住同一房间,则不同的安排方法有( )种A .24B .48C .96D .114 【答案】D 【解析】试题分析:由题可知,5个人住三个房间,每个房间至少住一人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有603335=⋅A C 种,A 、B 住同一房间有183313=⋅AC 种,故有421860=-种,当为(2,2,1)时,有9033222325=⋅⋅A A C C 种,A 、B 住同一房间有18222313=⋅⋅A C C种,故有721890=-种,根据分类计数原理共有1147242=+种;4.【2017届山东省实验高三第一次诊断数学(理)试卷】现有三本相同的语文书和一本数学书,分发给三个学生,每个学生至少分得一本,问这样的分法有( )种。
A .36B .9C .18D .15 【答案】B 【解析】5.学校周三要排语文、数学、英语、物理、化学和生物6门不同的课程,若第一节不排语文且第六节排生物,则不同的排法共有( ) A .96种 B . 120种 C .216种 D .240种 【答案】A【解析】因为生物课时固定的,语文不排在第一节,那么语文的排法有14A ,其它课任意排,不同的排法共有4414A A ⋅=96种.故选A .6. 现安排甲、乙、丙、丁、戊5名同学参加南京青运会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是A .152B .126C .90D .54 【答案】B【解析】根据题意,分情况讨论,①甲乙一起参加除了开车的三项工作之一:1333332118C A=⨯⨯⨯=种;②甲乙不同时参加一项工作,进而又分为2种小情况1°丙、丁、戌三人中有两人承担同一份工作,有222332323236A C A=⨯⨯⨯=种;2°甲或乙与丙、丁、戌三人中的一人承担同一份工作:2112332272A C C A ⨯=⨯⨯种;由分类原理可得18+36+72=126.7.【2017届四川绵阳高三上学期入学考试数学(理)试卷】8个人坐成一排,现要调换其中3个人中每一个人的位置,其余5个人的位置不变,则不同调换方式有( ) A .38C B .3388C AC C . 3282C C D .383C【答案】C 【解析】试题分析:从8人中任选3人有38C 种,3人位置全调,由于不能是自己原来的位置,因此有22A 种,故有2238A C种.故选C .8.【2017届山东潍坊高三上学期开学考试数学(理)试卷】甲、乙、丙、丁、戊五人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为( )A.72种B.52种C.36种 D 。
广东省广州市天河中学高考数学一轮复习 排列、组合01基础知识检测 理
排列、组合01基础热身1.a∈N*,且a<20,则(27-a)(28-a)…(34-a)等于( )A.A827-a B.A27-a34-aC.A734-a D.A834-a2.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法的种数为( )A.1 260 B.4 060C.1 140 D.2 8003.用数字1,2,3去构造一个有6项的数列{a n},其中四项为1,其余两项为2,3,则满足上述条件的数列{a n}共有( )A.30个 B.31个 C.60个 D.61个4.一天有语文、数学、英语、物理、化学、生物、体育七节课,体育不在第一节上,数学不在第六、七节上,这天课表的不同排法种数为( )A.A77-A55 B.A24A55C.A15A16A55 D.A66+A14A15A55能力提升5.用1、2、3、4、5、6组成一个无重复数字的六位数,要求三个奇数1、3、5有且只有两个相邻,则不同的排法种数为( )A.18 B.108 C.216 D.4326.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A.85 B.56 C.49 D.287.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A.324 B.328C.360 D.6488.有5名同学参加唱歌、跳舞、下棋三项比赛,每项比赛至少有一人参加,其中甲同学不能参加跳舞比赛,则共有参赛方案( )A.112种 B.100种C.92种 D.76种9.2010年上海世博会某国将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该国展出这5件作品不同的方案有________种(用数字作答).10.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求男、女医生都有,则不同的组队方案共有________种(数字回答).11.由0,1,2,…,9这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为________个.12.(13分)有六名同学按下列方法和要求分组,各有不同的分组方法多少种?(1)分成三个组,各组人数分别为1、2、3;(2)分成三个组去参加三项不同的试验,各组人数分别为1、2、3;(3)分成三个组,各组人数分别为2、2、2;(4)分成三个组去参加三项不同的试验,各组人数分别为2、2、2;(5)分成四个组,各组人数分别为1,1,2,2;(6)分成四个组去参加四项不同的活动,各组人数分别为1、1、2、2.难点突破13.(12分)从射击、乒乓球、跳水、田径四个大项的北京奥运冠军中选出10名作“夺冠之路”的励志报告.(1)若每个大项中至少选派两人,则名额分配有几种情况?(2)若将10名冠军分配到11个院校中的9个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法?答案解析 【基础热身】1.D [解析] A 834-a =(27-a )(28-a )…(34-a ).2.D [解析] 基本事件总数是C 330,其中不符合要求的基本事件个数是C 320+C 310,故所求种数为C 330-(C 320+C 310)=4060-1260=2800.3.A [解析] 在数列的6项中,只要考虑两个非1的项的位置,即得不同数列,共有A 26=30个.4.D [解析] 若数学课在第一节,则有排法A 66种;若数学不在第一节,则数学课排法有A 14,体育课排法有A 15,其余课排法有A 55,根据乘法原理此时的排法是A 14A 15A 55.根据加法原理,总的排法种数为A 66+A 14A 15A 55.【能力提升】5.D [解析] 第一步,先将1、3、5分成两组,共C 23A 22种方法;第二步,将2、4、6排成一排,共A 33种方法;第三步:将两组奇数插入三个偶数形成的四个空位,共A 24种方法.由乘法原理,共有C 23A 22A 33A 24=3×2×6×12=432种排法.6.C [解析] 方法1:由条件可分为两类:一类是甲、乙两人只有一个入选,选法有C 12·C 27=42;另一类是甲、乙都入选,选法有C 22·C 17=7.所以共有42+7=49种选法.故选C.方法2:甲、乙均不入选的有C 37种,总数是C 39,故甲、乙至少一人入选的方法数是C 39-C 37=84-35=49.7.B [解析] 当0排在个位时,有A 29=9×8=72个;0不排在个位时,有A 14·A 18·A 18=4×8×8=256个.由分类计数原理,得符合题意的偶数共有72+256=328个.故选B.8.B [解析] 甲同学有2种参赛方案,其余四名同学,若只参加甲参赛后剩余的两项比赛,则将四名同学先分为两组,分组方案有C 14·C 33+C 24C 22A 22=7,再将其分到两项比赛中去,共有分配方法数7×A 22=14;若剩下的四名同学参加三项比赛,则将其分成三组,分组方法数是C 24,分到三项比赛上去的分配方法数是A 33,故共有方法数C 24A 33=36.根据两个基本原理共有方法数2×(14+36)=100种.9.24 [解析] 把需要相邻的两个元素看做一个整体,然后与不相邻的元素外的元素进行排列,在隔出的空位上安排需要不相邻的元素.2件书法作做看作一个整体,方法数是A 22=2,把这个整体与标志性建筑作品排列,有A 22种排列方法,其中隔开了三个空位,在其中插入2件绘画作品,有方法数A 23=6.根据乘法原理,共有方法数2×2×6=24(种).10.70 [解析] 分1名男医生2名女医生、2名男医生1名女医生两种情况,或者用间接法.直接法:C 15C 24+C 25C 14=70.间接法:C 39-C 35-C 34=70.11.210 [解析] 如果个位数和百位数是0,8,则方法数是A 22A 28=112;如果个位数和百位数是1,9,则由于首位不能排0,则方法数是A 22C 17C 17=98.故总数是112+98=210.12.[解答] (1)即C 16C 25C 33=60.(2)即C 16C 25C 33A 33=60×6=360.(3)即C 26C 24C 22A 33=15.(4)即C 26C 24C 22=90.(5)即C 16C 15A 22·C 24C 22A 22=45.(6)C 16C 15C 24C 22=180. 【难点突破】13.[解答] (1)名额分配只与人数有关,与不同的人无关. 每大项中选派两人,则还剩余两个名额,当剩余两人出自同一大项时,名额分配情况有C 14=4种,当剩余两人出自不同大项时,名额分配情况有C 24=6种.∴有C 14+C 24=10种.(2)从11个院校中选9个,再从10个冠军中任取2个组合,再进行排列,有C911C210A99=898128000.。
广东省广州市天河中学2017高考数学一轮复习 双曲线02基础知识检测 文
双曲线02基础热身1.下列双曲线中,离心率为62的是( ) A.x 22-y 23=1 B.x 23-y 26=1 C .-x 22+y 24=1 D .-x 22+y 26=12.双曲线x 2m -y 23m=1的一个焦点是(0,2),则实数m 的值是( )A .1B .-1C .-105 D.1053.若k ∈R ,则“k >5”是“方程x 2k -5-y 2k +2=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若椭圆C 的焦点和顶点分别是双曲线x 25-y 24=1的顶点和焦点,则椭圆C 的方程是________.能力提升5.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=16.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A. 2B. 3C.3+12D.5+127.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为( )A .-2B .-8116C .1D .08.双曲线x 216-y 29=1上到定点(5,0)的距离是9的点的个数是( )A .0B .2C .3D .49.双曲线2x 2-3y 2=1的渐近线方程是________.10.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为(5,0),e 1=(2,1)、e 2=(2,-1)分别是两条渐近线的方向向量.任取双曲线Γ上的点P ,若OP →=a e 1+b e 2(a 、b ∈R ),则a 、b 满足的一个等式是________.11.已知点P 为双曲线x 2-y 28=1的右支上一点,F 1、F 2分别为双曲线的左、右焦点,I为△PF 1F 2的内心,若S △IPF 1=SIPF 2+λS △IF 1F 2成立,则λ的值为________.12.(13分)点M (x ,y )到定点F (5,0)距离和它到定直线l :x =95的距离的比是53.(1)求点M 的轨迹方程;(2)设(1)中所求方程为C ,在C 上求点P ,使|OP |=34(O 为坐标系原点).难点突破13.(12分)已知双曲线的中心在原点,离心率为2,一个焦点F (-2,0). (1)求双曲线方程;(2)设Q 是双曲线上一点,且过点F 、Q 的直线l 与y 轴交于点M ,若|MQ →|=2|QF →|,求直线l 的方程.答案解析【基础热身】1.C [解析] 计算知,选项C 正确,故选C.2.B [解析] 由焦点坐标知,焦点在y 轴上,m <0,∴双曲线的标准方程为y 2-3m -1-m=1,∴-m -3m =4,∴m =-1.3.A [解析] 当k >5时,方程表示双曲线;反之,方程表示双曲线时,有k >5或k <-2.故选A.4.x 29+y 24=1 [解析] 由题意可知,双曲线x 25-y 24=1的一个焦点和一个顶点的坐标分别为(3,0)、(5,0).设椭圆C 的方程是x 2a 2+y 2b2=1(a >b >0),则a =3,c =5,b =2,所以椭圆C的方程为x 29+y 24=1.【能力提升】5.B [解析] 椭圆的焦点坐标为(±3,0),四个选项中,只有x 22-y 2=1的焦点为(±3,0),且经过点P (2,1).故选B.6.D [解析] 设双曲线的方程为x 2a 2-y 2b 2=1,设F (c,0),B (0,b ),直线FB 的斜率为-bc,与其垂直的渐近线的斜率为b a ,所以有-b 2ac =-1,即b 2=ac ,所以c 2-a 2=ac ,两边同时除以a 2可得e 2-e -1=0,解得e =1+52. 7.A [解析] 由已知可得A 1(-1,0),F 2(2,0),设点P 的坐标为(x ,y ),则PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=x 2-x -2+y 2,因为x 2-y 23=1(x ≥1),所以PA 1→·PF 2→=4x 2-x -5,当x =1时,PA 1→·PF 2→有最小值-2.故选A.8.C [解析] (5,0)是双曲线的右焦点,它到双曲线左顶点的距离为9,所以以(5,0)为圆心,以9为半径作圆,该圆与双曲线的右支有两个交点,所以共有3个这样的点.9.y =±63x [解析] 双曲线2x 2-3y 2=1的渐近线方程为2x ±3y =0,即y =±63x .10.4ab =1 [解析] 易知双曲线Γ的方程为x 24-y 2=1,设P (x 0,y 0),又e 1=(2,1),e 2=(2,-1),由OP →=a e 1+b e 2,得(x 0,y 0)=a (2,1)+b (2,-1),即(x 0,y 0)=(2a +2b ,a -b ), ∴x 0=2a +2b ,y 0=a -b , 代入x 24-y 2=1整理得4ab =1.11.13[解析] I 为△PF 1F 2的内心,所以其到三角形三边的距离d 相等.由S △IPF 1=SIPF 2+λS △IF 1F 2,得12|PF 1|·d =12|PF 2|·d +12λ|F 1F 2|·d ,即|PF 1|-|PF 2|=λ×2c ,得2=λ×2×3,λ=13. 12.[解答] (1)|MF |=x -2+y 2,点M 到直线l 的距离d =⎪⎪⎪⎪⎪⎪x -95, 依题意,有x -2+y2⎪⎪⎪⎪⎪⎪x -95=53, 去分母,得3x -2+y 2=|5x -9|,平方整理得x 29-y 216=1,即为点M 的轨迹方程.(2)设点P 坐标为P (x ,y ),由|OP |=34得x 2+y 2=34,解方程组⎩⎪⎨⎪⎧x 29-y 216=1,x 2+y 2=34,得⎩⎨⎧x =32,y =4或⎩⎨⎧x =-32,y =-4或⎩⎨⎧x =-32,y =4或⎩⎨⎧x =32,y =-4,∴点P 为(32,4)或(-32,-4)或(-32,4)或(32,-4). 【难点突破】13.[解答] (1)由题意可设所求的双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则有e =ca=2,c =2,所以a =1,则b =3,所以所求的双曲线方程为x 2-y 23=1.(2)因为直线l 与y 轴相交于M 且过焦点F (-2,0), 所以l 的斜率一定存在,设为k ,则l :y =k (x +2), 令x =0,得M (0,2k ),因为|MQ →|=2|QF →|且M 、Q 、F 共线于l ,所以MQ →=2QF →或MQ →=-2QF →.当MQ →=2QF →时,x Q =-43,y Q =23k ,所以Q 的坐标为⎝ ⎛⎭⎪⎫-43,23k , 因为Q 在双曲线x 2-y 23=1上,所以169-4k 227=1,所以k =±212,所以直线l 的方程为y =±212(x +2),当MQ →=-2QF →时,同理求得Q (-4,-2k )代入双曲线方程得,16-4k 23=1,所以k =±352,所以直线l 的方程为y =±352(x +2).综上:所求的直线l 的方程为y =±212(x +2)或y =±352(x +2).。
广东省天河地区2017高考数学一轮复习试题精选立体几何06文
立体几何0621.(本小题满分12分)如图5,如图,已知在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 、F 分别是AB 、PD 的中点.(Ⅰ)求证://AF 平面PEC ;(Ⅱ)若PD 与平面ABCD 所成角为60,且4,2==AB AD ,求点A 到平面PED 的距离.【答案】解:【法一】(I )证明:如图,取PC 的中点O ,连接,OF OE . 由已知得//OF DC 且12OF DC =, 又E 是AB 的中点,则//OF AE 且OF AE =,AEOF ∴是平行四边形,···························· 4'∴//AF OE 又OE ⊂平面PEC ,AF ⊄平面PEC//AF ∴平面PEC ···························· 6'(II )设A 平面PED 的距离为d ,【法一】:因PA ⊥平面ABCD ,故PDA ∠为PD 与平面ABCD 所成角,所以oPDA 60=∠,所以3260tan ==oAD PA ,460cos ==oADPD ,又因4=AB ,E 是AB 的中点所以2=AE ,422=+=AE PA PE , 2222=+=AE DA DE .作DE PH ⊥于H ,因22,4===DE PE PD ,则图514,222=-==DH PD PH DH ,…………………………………………9'则221=⋅⨯=∆AE AD S ADE ,7221=⋅⨯=∆DE PH S PDE 因PDE A AED P V V --= 所以721272232=⨯=⋅=∆∆PDE ADE S S PA d ……………………………………………… 12' 【法二】因PA ⊥平面ABCD ,故PDA ∠为PD 与平面ABCD 所成角,所以o PDA 60=∠,所以3260tan ==oAD PA ,460cos ==oADPD ,又因4=AB ,E 是AB 的中点所以AD AE ==2,422=+=AE PA PE ,2222=+=AE DA DE .作DE PH ⊥于H ,连结AH ,因4==PE PD ,则H 为DE 的中点,故DE AH ⊥ 所以⊥DE 平面PAH ,所以平面⊥PDE 平面PAH ,作PH AG ⊥于G ,则⊥AG 平面PDE ,所以线段AG 的长为A 平面PED 的距离.又14,222=-==DH PD PH DH ,222=-=DH AD AH所以721214232=⋅=⋅=PH AH PA AG …………………………………………… 12'C22.(满分12分)如右图,在正三棱柱ABC —A 1B 1C 1中,AA 1=AB ,D 是AC 的中点。
广东省广州市天河中学高考数学一轮复习排列与组合02课件
2)
(n m 1) (m ≤ n)
A
m n
(n
n! m)!
.
A
n n
n!
n(n
1)(n
2)
21
(2)组合(zǔhé)数公式
Байду номын сангаасCmn
n(n 1)(n
2) m!
(n m 1)
Cmn
n! m !(n
m)!
Cmn
Cnm n
Cm n1
Cmn
Cm1 n
第十五页,共24页。
要点梳理
忆一忆知识要点
2. 排列和组合的区别(qūbié)和联系
解法(jiě fǎ)二:排除法 : 总的含有三个奇数数字和两个偶数数字的五
位数有 C53 C52 A55
排除(páichú)掉以0为首位的那些五位C数53 C14 A44
共有(ɡCò53nɡC52
A55
C53
C14
A
4 4
11040.
yǒu)
第二十页,共24页。
【1】在1, 2, 3, , 99这99个自然数中,每次取出不 同(bù tónɡ)的两个数相乘,使它们的积是7的倍数,问 这样的取法共有多少种?
第十页,共24页。
(1)均匀分组与不均匀分组、无序分组与有序分组是组合问题 的常见题型.解决此类问题的关键是正确判断分组是均匀分组 还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还 要充分考虑到是否与顺序有关;有序分组要在无序分组的基础 上乘以分组数的阶乘数.此题中第(3)问为均匀无序分组,第(4) 问为均匀有序分组. (2)本题易错为:很多考生认为第(2)问与第(1)问结果相同,导 致该种错误的原因是没有弄清人与人是有顺序的.
广东省广州市天河中学高考数学一轮复习排列与组合01课件
方法四 (间接法) A99-3·A88=6A88=241 920(种). (2)先排甲、乙,再排其余 7 人, 共有 A22·A77=10 080(种)排法. (3)(插空法) 先排 4 名男生有 A44种方法,再将 5 名女生插空,有 A55种方法, 故共有 A44·A55=2 880(种)排法.
nn-1n-2…n-m+1
n! m!n-m!
=
mm-1…2·1
,由于 0!=1,所以 C0n=1.
(4)组合数的性质:①Cmn = Cnn-m ;②Cmn+1= Cmn + Cmn -1 .
第四页,共16页。
[难点正本 疑点清源] 1.组合数公式有两种形式,(1)乘积形式;(2)阶乘形式.前者
多用于数字计算,后者多用于证明恒等式及合并组合数简 化计算.注意公式的逆用.即由m!nn-!m!写出 Cmn . 2.要搞清组合与排列的区别与联系:组合与顺序无关,排列 与顺序有关;排列可以分成先选取(组合)后排列两个步骤 进行.
一组 ,叫做从 n 个不同元素中取出 m 个元素的一个组合.
(2)组合数的定义:从 n 个不同元素中取出 m(m≤n)个元素的 所有(suǒy的ǒu个)组数合,叫做从 n 个不同元素中取出 m 个元素的组 合数,用 Cmn 表示.
第三页,共16页。
要点梳理
忆一忆知识要点
(3)组合数的计算公式:Cnm=AAmnmm=
第十五页,共16页。
甲、乙两人从 4 门课程中各选修 2 门, (1)甲、乙所选的课程中恰有 1 门相同的选法有多少种? (2)甲、乙所选的课程中至少有一门不相同的选法有多少种? 解 (1)甲、乙两人从 4 门课程中各选修 2 门,且甲乙所选课 程中恰有 1 门相同的选法种数共有 C24C21C12=24(种). (2)甲、乙两人从 4 门课程中选两门不同的选法种数为 C42C24, 又甲、乙两人所选的两门课程都相同的选法种数为 C24种,因 此满足条件的不同选法种数为 C42C24-C24=30.
广东省广州市天河中学高考数学一轮复习排列、组合02基础知识检测理
排列、组合02基础热身1.由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{a n},则a19=( )A.2 014 B.2 034 C.1 432 D.1 4302.有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法种数是( )A.1 136 B.1 600C.2 736 D.1 1203.某学校有教职工100人,其中教师80人,职员20人.现从中选取10人组成一个考察团外出学习考察,则这10人中恰好有8名教师的不同选法的种数是( ) A.C280C820 B.A280A820C.A880C220 D.C880C2204.某外商计划在5个候选城市投资3个不同的项目,且在同一城市投资项目不超过2个,则他不同的投资方案有( )A.60种 B.70种C.100种 D.120种能力提升5.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定,每位同学选修三门,则每位同学不同的选修方案种数是( )A.120 B.98C.63 D.566.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有( )A.252个 B.300个C.324个 D.228个7.2011年,哈三中派出5名优秀教师去大兴安岭地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有( )A.80种 B.90种C.120种 D.150种8.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列方式种数共有( )A.576 B.720 C.864 D.1 1529.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的总数为________(用数字作答).10.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同的住宿安排有________种(用数字作答).11.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有________种.12.(13分)一次数学考试的第一大题有11道小题,其中第(1)~(6)小题是代数题,答对一题得3分;第(7)~(11)题是几何题,答对一题得2分.某同学第一大题对6题,且所得分数不少于本题总分的一半,问该同学有多少种答题的不同情况?难点突破13.(12分)(1)10个优秀指标名额分配给6个班级,每个班至少一个,共有多少种不同的分配方法?(2)在正方体的过任意两个顶点的所有直线中,异面直线有多少对?答案解析 【基础热身】1.A [解析] 千位是1的四位偶数有C 13A 23=18,故第19个是千位数字为2的四位偶数中最小的一个,即2014.2.A [解析] 方法一:将“至少有1个是一等品的不同取法”分三类:“恰有1个一等品”,“恰有2个一等品”,“恰有3个一等品”,由分类计数原理有:C 116C 24+C 216C 14+C 316=1136(种).方法二:考虑其对立事件:“3个都是二等品”,用间接法:C 320-C 34=1136(种).3.D [解析] 由于结果只与选出的是哪8名教师和哪两名职员有关,与顺序无关,是组合问题.分步计数,先选8名教师再选2名职员,共有C 880C 220种选法.4.D [解析] 在五个城市中的三个城市各投资一个,有方法数A 35=60,将三个项目分为两组投资到五个城市中的两个,有方法数C 13A 25=60,故不同的投资方案有120种.【能力提升】5.B [解析] 分两类:(1)不包含A ,B ,C 的有C 37种选法;(2)包含A ,B ,C 的有C 27·C 13种选法.所以共有C 37+C 27·C 13=98(种)选法,故应选B.6.B [解析] (1)若仅仅含有数字0,则选法是C 23C 14,可以组成四位数C 23C 14A 33=12×6=72个;(2)若仅仅含有数字5,则选法是C 13C 24,可以组成四位数C 13C 24A 33=18×6=108个;(3)若既含数字0,又含数字5,选法是C 13C 14,排法是若0在个位,有A 33=6种,若5在个位,有2×A 22=4种,故可以组成四位数C 13C 14(6+4)=120个.根据加法原理,共有72+108+120=300个.7.D [解析] 分组法是(1,1,3),(1,2,2),共有C 15C 14C 33A 22+C 15C 24C 22A 22=25,再分配,乘以A 33,即得总数150.8.C [解析] 先让数字1,3,5,7作全排列,有A 44=24种,再排数字6,由于数字6不与3相邻,在排好的排列中,除3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,在剩下的4个空隙中排上2,4,有A 24种排法,共有A 44×3×A 24=864种,故选C.9.8 [解析] 总的分法是⎝⎛⎭⎪⎫C 14+C 24A 22A 22=14,若仅仅甲、乙分到一个班级,则分法是A 22=2,若甲、乙分到同一个班级且这个班级分到3名学生,则分法是C 12A 22=4,故总数是14-2-4=8.10.72 [解析] 甲、乙住在同一个房间,此时只能把另外三人分为两组,这时的方法总数是C 13A 33=18,而总的分配方法数是把五人分为三组再进行分配,方法数是C 15C 24C 22A 22A 33=90,故不同的住宿安排共有90-18=72种.11.222 [解析] 总数是C 223=253,若有两个学校名额相同,则可能是1,2,3,4,5,6,7,9,10,11个名额,此时有10C 23=30种可能,若三个学校名额相同,即都是8个名额,则只有1种情况,故不同的分配方法数是253-30-1=222.12.[解答] 依题意可知本题的总分的一半是14分,某同学在11题中答对了6题,则至少答对两道代数题,至多答对4道几何题,因此有如下答题的情况:(1)代数题恰好对2道,几何题恰好对4道,此时有C 26C 45=75种情况;(2)代数题恰好对3道,几何题恰好对3道,此时有C 36C 35=200种情况;(3)代数题恰好对4道,几何题恰好对2道,此时有C 46C 25=150种情况;(4)代数题恰好对5道,几何题仅对1道,此时有C 56C 15=30种情况;(5)代数题全对,几何题全错,此时有C 66C 05=1种情况. 由分类计数原理得所有可能的答题情况有456种. 【难点突破】13.[解答] (1)由于是10个名额,故名额和名额之间是没有区别的,我们不妨把这10个名额在桌面上从左到右一字摆开,这样在相邻的两个名额之间就出现了一个空挡,10个名额之间就出现了9个空挡,我们的目的是把这10个名额分成6份,每份至少一个,那我们只要把这9个空挡中的5个空挡上各放上一个隔板,两端的隔板外面的2部分,隔板和隔板之间的4部分,这样就把这10个指标从左到右分成了6份,且满足每份至少一个名额,我们把从左到右的6份依次给1,2,3,4,5,6班就解决问题了.这里的在9个空挡上放5个隔板的不同方法数,就对应了符合要求的名额分配方法数.这个数不难计算,那就是从9个空挡中选出5个空挡放隔板,不同的放法种数是C59=126.(2)方法一:连成两条异面直线需要4个点,因此在正方体8个顶点中任取4个点有C48种取法.每4个点可分共面和不共面两种情况,共面的不符合条件,去掉.因为在6个表面和6个体对角面中都有四点共面,故有(C48-12)种.不共面的4点可构成四面体,而每个四面体有3对异面直线,故共有3(C48-12)=174对.方法二:一个正方体共有12条棱、12条面对角线、4条体对角线,计28条,任取两条有C228种情况,除去其中共面的情况:(1)6个表面,每个面上有6条线共面,共有6C26条;(2)6个体对角面,每个面上也有6条线共面,共有6C26条;(3)从同一顶点出发有3条面对角线,任意两条线都共面,共有8C23条,故共有异面直线C228-6C26-6C26-8C23=174对.。
广东天河地区2017高考数学一轮复习试题精选 三角函数01 文
三角函数011.下列各式中值为23的是 ( )A .o o 15cos 15sin 2B .o 2o 215sin 15cos -C .115sin 2o 2-D .o 2o 215cos 15sin +【答案】B【解析】因为2o 2o 03cos 15sin 15cos(215)cos30-=⨯==,选B. 2.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,则“2cos a b C =”是“ABC ∆是等腰三角形”的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】若2c o s a b C =,由正弦定理得sin 2sin cos A B C =,即s i n ()2s i nB C B C +=,所以sin(B C B CB+==+,即s in B C B C -=,所以sin()0B C -=,即B C =,所以ABC ∆是等腰三角形。
若ABC ∆是等腰三角形,当A B =时,2cos a b C =不一定成立,所以“2cos a b C =”是“ABC ∆是等腰三角形”的充分不必要条件,选A. 3.函数2sin()y x ωϕ=+在一个周期内的图象如图所示,则此函数的解析式是(A) 2sin(2)4y x π=-(B) 2sin(2)4y x π=+(C) 32sin()8y x π=+ (D) 72sin()216x y π=+ 【答案】B【解析】由图象可知52882T πππ=-=,所以函数的周期T π=,又2T ππω==,所以2ω=。
所以2s i n (2)y x ϕ=+,又()2s i n (2)288y f ππϕ==⨯+=,所以s i n ()14πϕ+=,即2,42k k Z ππϕπ+=+∈,所以24k πϕπ=+,所以2sin(2)4y x π=+,选B. 4.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ).A 向左平移4π个长度单位 .B 向右平移4π个长度单位.C 向左平移2π个长度单位 D .向右平移2π个长度单位【答案】B【解析】=s i n (2)s i n (2)s i n [2()]32646y x x x πππππ-=-+=-+,所以只需把函数s i n (2)6y x π=+的图像向右平移4π个长度单位,即可,选B.5.定义行列式运算1234a a a a =3241a a a a -.将函数sin 2()cos 2xf x x=的图象向左平移6π个单位,以下是所得函数图象的一个对称中心是 ( ) A .,04π⎛⎫⎪⎝⎭B .,02π⎛⎫ ⎪⎝⎭ C .,03π⎛⎫⎪⎝⎭D .,012π⎛⎫⎪⎝⎭【答案】B【解析】根据行列式的定义可知()sin 22=2sin(2)3f x x x x π=-,向左平移6π个单位得到()2sin[2()]2sin 263g x x x ππ=+-=,所以()2sin(2)2sin 022g πππ=⨯==,所以(,0)2π是函数的一个对称中心,选B.6.已知ABC ∆中,,BC=1,,则AC 等于______. 【答案】2【解析】由tan 0C =>,所以3C π=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列、组合02
基础热身
1.由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{a n},则a19=()
A.2 014 B.2 034 C.1 432 D.1 430
2.有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法种数是()
A.1 136 B.1 600
C.2 736 D.1 120
3.某学校有教职工100人,其中教师80人,职员20人.现从中选取10人组成一个考察团外出学习考察,则这10人中恰好有8名教师的不同选法的种数是() A.C280C820B.A280A820
C.A880C220D.C880C220
4.某外商计划在5个候选城市投资3个不同的项目,且在同一城市投资项目不超过2个,则他不同的投资方案有()
A.60种B.70种
C.100种D.120种
能力提升
5.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定,每位同学选修三门,则每位同学不同的选修方案种数是() A.120 B.98
C.63 D.56
6.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有()
A.252个B.300个
C.324个D.228个
7.2011年,哈三中派出5名优秀教师去大兴安岭地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有()
A.80种B.90种
C.120种D.150种
8.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列方式种数共有()
A.576 B.720 C.864 D.1 152
9.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的总数为________(用数字作答).
10.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同的住宿安排有________种(用数字作答).
11.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有________种.
12.(13分)一次数学考试的第一大题有11道小题,其中第(1)~(6)小题是代数题,答对一题得3分;第(7)~(11)题是几何题,答对一题得2分.某同学第一大题对6题,且所得分数不少于本题总分的一半,问该同学有多少种答题的不同情况?
难点突破
13.(12分)(1)10个优秀指标名额分配给6个班级,每个班至少一个,共有多少种不同的分配方法?
(2)在正方体的过任意两个顶点的所有直线中,异面直线有多少对?
答案解析 【基础热身】
1.A [解析] 千位是1的四位偶数有C 13A 2
3=18,故第19个是千位数字为2的四位偶
数中最小的一个,即2014.
2.A [解析] 方法一:将“至少有1个是一等品的不同取法”分三类:“恰有1个一等
品”,“恰有2个一等品”,“恰有3个一等品”,由分类计数原理有:C 116C 24+C 216C 14+C 3
16=
1136(种).
方法二:考虑其对立事件:“3个都是二等品”,用间接法:C 320-C 3
4=1136(种).
3.D [解析] 由于结果只与选出的是哪8名教师和哪两名职员有关,与顺序无关,是
组合问题.分步计数,先选8名教师再选2名职员,共有C 880C 2
20种选法.
4.D [解析] 在五个城市中的三个城市各投资一个,有方法数A 35=60,将三个项目
分为两组投资到五个城市中的两个,有方法数C 13A 25=60,故不同的投资方案有120种.
【能力提升】
5.B [解析] 分两类:(1)不包含A ,B ,C 的有C 37种选法;(2)包含A ,B ,C 的有C 2
7·C 13
种选法.所以共有C 37+C 2
7·C 13=98(种)选法,故应选B.
6.B [解析] (1)若仅仅含有数字0,则选法是C 23C 14,可以组成四位数C 23C 14A 3
3=12×
6=72个;
(2)若仅仅含有数字5,则选法是C 13C 24,可以组成四位数C 13C 24A 33=18×6=108个; (3)若既含数字0,又含数字5,选法是C 13C 14,排法是若0在个位,有A 33=6种,若5在个位,有2×A 22=4种,故可以组成四位数C 13C 1
4(6+4)=120个.
根据加法原理,共有72+108+120=300个.
7.D [解析] 分组法是(1,1,3),(1,2,2),共有C 15C 14C 33A 22+C 15C 24C 2
2
A 22
=25,再分配,乘以
A 33,即得总数150.
8.C [解析] 先让数字1,3,5,7作全排列,有A 44=24种,再排数字6,由于数字6不与3相邻,在排好的排列中,除3的左、右2个空隙,还有3个空隙可排数字6,故数字6有
3种排法,最后排数字2,4,在剩下的4个空隙中排上2,4,有A 24种排法,共有A 4
4×3×A 24=
864种,故选C.
9.8 [解析] 总的分法是⎝
⎛⎭⎫C 14+C 2
4A 22A 22=14,若仅仅甲、乙分到一个班级,则分法是A 2
2=2,若甲、乙分到同一个班级且这个班级分到3名学生,则分法是C 12A 2
2=4,故总数是14
-2-4=8.
10.72 [解析] 甲、乙住在同一个房间,此时只能把另外三人分为两组,这时的方法总数是
C 13A 3
3=18,而总的分配方法数是把五人分为三组再进行分配,方法数是C 15C 24C 2
2A 22
A 33=
90,故不同的住宿安排共有90-18=72种.
11.222[解析] 总数是C223=253,若有两个学校名额相同,则可能是1,2,3,4,5,6,7,9,10,11个名额,此时有10C23=30种可能,若三个学校名额相同,即都是8个名额,则只有1种情况,故不同的分配方法数是253-30-1=222.
12.[解答] 依题意可知本题的总分的一半是14分,某同学在11题中答对了6题,则至少答对两道代数题,至多答对4道几何题,因此有如下答题的情况:
(1)代数题恰好对2道,几何题恰好对4道,此时有C26C45=75种情况;
(2)代数题恰好对3道,几何题恰好对3道,此时有C36C35=200种情况;
(3)代数题恰好对4道,几何题恰好对2道,此时有C46C25=150种情况;
(4)代数题恰好对5道,几何题仅对1道,此时有C56C15=30种情况;
(5)代数题全对,几何题全错,此时有C66C05=1种情况.
由分类计数原理得所有可能的答题情况有456种.
【难点突破】
13.[解答] (1)由于是10个名额,故名额和名额之间是没有区别的,我们不妨把这10个名额在桌面上从左到右一字摆开,这样在相邻的两个名额之间就出现了一个空挡,10个名额之间就出现了9个空挡,我们的目的是把这10个名额分成6份,每份至少一个,那我们只要把这9个空挡中的5个空挡上各放上一个隔板,两端的隔板外面的2部分,隔板和隔板之间的4部分,这样就把这10个指标从左到右分成了6份,且满足每份至少一个名额,我们把从左到右的6份依次给1,2,3,4,5,6班就解决问题了.这里的在9个空挡上放5个隔板的不同方法数,就对应了符合要求的名额分配方法数.这个数不难计算,那就是从9个空挡中选出5个空挡放隔板,不同的放法种数是C59=126.
(2)方法一:连成两条异面直线需要4个点,因此在正方体8个顶点中任取4个点有C48种取法.每4个点可分共面和不共面两种情况,共面的不符合条件,去掉.因为在6个表面和6个体对角面中都有四点共面,故有(C48-12)种.不共面的4点可构成四面体,而每个四面体有3对异面直线,故共有3(C48-12)=174对.
方法二:一个正方体共有12条棱、12条面对角线、4条体对角线,计28条,任取两条有C228种情况,除去其中共面的情况:(1)6个表面,每个面上有6条线共面,共有6C26条;
(2)6个体对角面,每个面上也有6条线共面,共有6C26条;(3)从同一顶点出发有3条面对角线,任意两条线都共面,共有8C23条,
故共有异面直线C228-6C26-6C26-8C23=174对.。