人教版高中数学必修二导学案:第三章直线与方程复习

合集下载

人教版数学必修2第三章直线与方程复习课

人教版数学必修2第三章直线与方程复习课

题型二
一题多解
【例4】已知直线经过点(1,2),倾斜角为60°,
则该直线的
(1)点斜式方程为 y 2 3( x 1)
(2)斜截式方程为 y 3x 2 3 (3)一般式方程为 3x y 2 3 0
练出高分
专项基础训练
1.已知直线 l 经过点 P(-2,5),且斜率为-34,则直线 l 的方程为( A )
C(-2,3),求:
的则斜B率C k的2=垂2直,平分线 DE
(1)BC 所在直线的方程; 由的点斜斜率式k得2=直2线, DE
(2)BC 边上中线 AD 所在直线的方程; (3)BC 边的垂直
的由方点程斜为式y得-直2=线2(DxE-0), 即的2方x-程y为+2y=-02.=2(x-0),
即 2x-y+2=0.
综上可知,直线 l 的方程为 2x-
3y=0 或 x+y-5=0.
题型分类·深度剖析
题型一
求直线的方程
【例 2】 求适合下列条件
的直线方程:
经过点 P(3,2),且在两坐
标轴上的截距相等;
思维启发
解析
探究提高
方法二 由题意,所求直线的斜
率 k 存在且 k≠0, 设直线方程为 y-2=k(x-3), 令 y=0,得 x=3-2k,令 x=0,
直线的方程复习课
教材分析
学情分析
教学目标
教学重难点

本章注意突出解析几何的基本思想“坐标法”:用方程表示直线,运用方程 研究直线的位置关系:平行、垂直,以及两条直线的交点、点到直线的距离、两 条平行直线之间的距离。几何问题代数化,用数量关系表示空间情势、位置关系 等等。结合大量的例题,突出用坐标方法解决几何问题的“三部曲”。 重要的数 学思想方法不怕重复。 “坐标法”应贯穿平面解析几何教学的始终,帮助学生不 断地体会“数形结合”的思想方法。于是,我们在教学中应注意“数”与“形” 的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验 证代数结果;同时,通过视察几何图形得到的数学结论,对结论进行代数证明, 即用解析方法解决某些代数问题,不应割断它们之间的联系,只强调“形”到 “数”的方面。而忽视“数”到“形”的方面。

最新人教版高中数学必修2第三章《直线与方程_复习》教案1

最新人教版高中数学必修2第三章《直线与方程_复习》教案1

第三章直线与方程复习整体设计教学分析本节课是对第三章的基本知识和方法的总结与归纳,从整体上来把握本章,使学生基本知识系统化和网络化,基本方法条理化.本章内容大致分为三个部分:(1)直线的倾斜角和斜率;(2)直线方程;(3)两条直线的位置关系.可采用分单元小结的方式,让学生自己回顾和小结各单元知识.在此基础上,教师可对一些关键处予以强调.比如可重申解析几何的基本思想——坐标法,并用解析几何的基本思想串联全章知识,使全章知识网络更加清晰.指出本章学习要求和要注意的问题,可让学生先阅读教科书中“学习要求和要注意的问题”有关内容.教师重申坐标法、函数与方程思想、数形结合思想、化归与转化思想及分类与讨论思想等数学思想方法在本章中的特殊地位.三维目标通过总结和归纳直线与方程的知识,对全章知识内容进行一次梳理,突出知识间的内在联系,进一步提高学生综合运用知识解决问题的能力.能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.重点难点教学重点:①直线的倾斜角和斜率.②直线的方程和两直线的位置关系的应用.③激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.教学难点:①数形结合和分类讨论思想的渗透和理解.②处理直线综合问题的策略.课时安排1课时教学过程导入新课思路1.我们知道学习是一个循序渐进的过程,更是一个不断积累的过程.送给大家这样一句话:疏浚源头流活水,承上基础梳理已整合;千寻飞瀑悬彩练,启下重点突破须提升.每学完一个单元都要总结复习,这节课我们就来复习刚结束的本章.引出课题.思路2.为了系统掌握第三章的知识,教师直接点出课题.推进新课新知探究提出问题①第一节是直线的倾斜角和斜率棳需 要注意什么?②第二节是直线的方程,有几种形式? 各自的适用范围怎样?③第三节是两直线的位置关系,分为哪些内容? 如何判断?④画出本章的知识结构图.活动:让学生自己回顾所学知识或结合教材,重新对知识整合,对没有思路的学生,教师可以提示按教材的章节标题来分类.对于画知识结构图,可让学生合作交流,待学生有了不同画法后,先对比分析,再画本章的知识结构图.讨论结果:①直线的倾斜角(α)和斜率(k ):倾斜角范围:0°≤α<180°,斜率:k ∈R .k 与α的关系:k =⎩⎪⎨⎪⎧不存在,α=90°,tan α=y 2-y 1x 2-x 1,α∈[0°,90°)∪(90°,180°). 注意倾斜角为90°的直线的斜率不存在(分类讨论).②直线方程的五种形式及适用范围:(a)斜截式:y =kx +b ,不含与x 轴垂直的直线.(b)点斜式:y -y 0=k (x -x 0),不含与x 轴垂直的直线.(c)两点式:y-y1y2-y1=x-x1x2-x1,不含与x轴、y轴垂直的直线.(d)截距式:xa+yb=1,不含过原点和与x轴、y轴垂直的直线.(e)一般式:Ax+By+C=0(A2+B2≠0),无限制(可表示任何直线).注:两点式的“改良”(x-x1)(y2-y1)-(y-y1)(x2-x1)=0,可表示任何直线.③分为:两条直线的位置关系及点到直线的距离和两条平行线间的距离.判定两条直线的位置关系(三种:相交、平行、重合).设l1:y=k1x+b1,A1x+B1y+C1=0;l2:y=k2x+b2,A2x+B2y+C2=0.(a)l1∩l2=P⇔k1≠k2或仅有一个不存在⇔A1B2-A2B1≠0;l1⊥l2⇔k1k2=-1或一个为零一个不存在⇔A1A2+B1B2=0.(b)l1∥l2⇔k1=k2且b1≠b2或k1,k2均不存在⇔A1B2-A2B1=0且A1C2-A2C1≠0.(c)l1与l2重合⇔k1=k2且b1=b2或k1,k2均不存在⇔A1B2-A2B1=0且A1C2-A2C1=0.④第三章的知识结构图如图1所示.从几何直观到代数表示(建立直线的方程)从代数表示到几何直观(通过方程研究几何性质和度量)图1应用示例思路11求满足下列条件的直线方程:(1)经过点P(2,-1)且与直线2x+3y+12=0平行;(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;(3)经过点R(-2,3)且在两坐标轴上截距相等;(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;(5)经过点N(-1,3)且在x轴的截距与它在y轴上的截距的和为零.解:(1)2x+3y-1=0.(2)2x-y+5=0.(3)x+y-1=0或3x+2y=0.(4)4x+y-6=0或3x+2y-7=0.(5)3x+y=0或x-y+4=0.224,求直线l 的方程.解:设l :3x +4y +m =0,则当y =0时,x =-m 3;当x =0时,y =-m 4. ∵直线l 与两坐标轴围成的三角形面积为24,∴12·|-m 3|·|-m 4|=24.∴m =±24.1.如果直线x +2ay -1=0与直线(3a -1)x -ay -1=0平行,则a 等于( )A .0 B.16 C .0或1 D .0或162.直线l 1:mx +(m -1)y +5=0与l 2:(m +2)x +my -1=0互相垂直,则m 的值是________.答案:1.D 2.m =0或m =-12拓展提升问题:过点M (1,2)作l 1交x 正半轴于A ,作l 2交y 正半轴于B ,若l 1⊥l 2,且AB 恰平分四边形OAMB 的面积,求直线AB 的方程.解:设l 1:y -2=k (x -1),即kx -y +2-k =0,l 2:y -2=-1k(x -1),即x +ky -2k -1=0.则A (1-2k ,0),B (0,2+1k). 则|OA |·|OB |=|MA |·|MB |,∴|1-2k |·|2+1k |=(2k )2+4·1+(1k)2.解得k =34或k =-43. 则A (-53,0),B (0,103)或A (52,0),B (0,54). ∴AB 方程为x -53+y 103=1或x 52+y 54=1, 即6x -3y +10=0或2x +4y -10=0.课堂小结本节课总结了第三章的基本知识并形成知识网络,归纳了常见的解题方法,渗透了几种重要的数学思想方法.作业课本本章复习参考题A 组8、9、10.设计感想本节在设计过程中,注重了两点:一是体现学生的主体地位,注重引导学生思考,让学生学会学习;二是既有基础知识的复习、基本题型的联系,又为了满足高考的要求,对教材内容适当拓展.本节课对此进行了归纳和总结.备课资料备用习题1.已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0都通过点P (2,3),求经过两点Q 1(a 1,b 1),Q 2(a 2,b 2)的直线方程.解:依题意得2a 1+3b 1+1=0,这说明Q 1(a 1,b 1)在直线2x +3y +1=0上,同理,Q 2(a 2,b 2)也在直线2x +3y +1=0上.因为两点确定一直线,所以经过两点Q 1(a 1,b 1)、Q 2(a 2,b 2)的直线方程为2x +3y +1=0.2.从点A (-4,1)出发的一束光线l ,经过直线l 1:x -y +3=0反射,反射光线恰好通过点B (1,6),求入射光线l 所在的直线方程.解:设B (1,6)关于直线l 1的对称点为B ′(x 0,y 0),则⎩⎪⎨⎪⎧ x 0+12-y 0+62+3=0,y 0-6x 0-1·1=-1,解得⎩⎪⎨⎪⎧x 0=3,y 0=4. ∴直线AB ′的方程为y -14-1=x +43+4,即3x -7y +19=0. 故直线l 的方程为3x -7y +19=0.3.已知直线l :2x -y +1=0和点A (-1,2)、B (0,3),试在l 上找一点P ,使得|P A |+|PB |的值最小,并求出这个最小值.解:过点B (0,3)且与直线l 垂直的直线方程为l ′:y -3=-12x , 由⎩⎪⎨⎪⎧ 2x -y +1=0,y =-12x +3,得⎩⎨⎧ x =45,y =135,即直线l 与直线l ′相交于点Q (45,135). 点B (0,3)关于点Q (45,135)的对称点为B ′(85,115), 连接AB ′,则依平面几何知识,知AB ′与直线l 的交点P 即为所求.直线AB ′的方程为y -2=113(x +1),由⎩⎪⎨⎪⎧ 2x -y +1=0,y =113x +2713,得⎩⎨⎧x =1425,y =5325,即P (1425,5325),相应的最小值为|AB ′|=(-1-85)2+(2-115)2=1705.。

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.3.3~3.3.4

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.3.3~3.3.4

3.3.3 点到直线的距离 3.3.4 两条平行直线间的距离[学习目标] 1.掌握点到直线的距离公式,会用公式解决有关问题.2.掌握两平行线之间的距离公式,并会求两平行线之间的距离.知识点一 点到直线的距离1.概念:过一点向直线作垂线,则该点与垂足之间的距离,就是该点到直线的距离.2.公式:点P (x 0,y 0)到直线l :Ax +By +C =0的距离 d思考 在使用点到直线的距离公式时,对直线方程的形式有什么要求? 答 点到直线的距离公式只适用直线方程的一般式. 知识点二 两平行直线间的距离1.概念:夹在两条平行直线间的公垂线段的长度就是两条平行直线间的距离.2.公式:两条平行直线l1:Ax +By +C 1=0与l 2:Ax +By +C 2=0之间的距离d思考 两条平行直线间的距离公式写成d =|C 1-C 2|A 2+B 2时对两条直线应有什么要求? 答 两条平行直线的方程都是一般式,并且x ,y 的系数分别对应相等.题型一 点到直线的距离例1 求过点P (1,2)且与点A (2,3),B (4,-5)的距离相等的直线l 的方程.解 方法一 由题意知k AB =-4,线段AB 的中点为C (3,-1),所以过点P (1,2)与直线AB 平行的直线方程为y -2=-4(x -1), 即4x +y -6=0.此直线符合题意.过点P (1,2)与线段AB 中点C (3,-1)的直线方程为y -2-1-2=x -13-1,即3x +2y -7=0.此直线也符合题意.故所求直线l 的方程为4x +y -6=0或3x +2y -7=0. 方法二 显然所求直线的斜率存在,设直线方程为y =kx +b ,根据条件得⎩⎪⎨⎪⎧2=k +b ,|2k -3+b |k 2+1=|4k +5+b |k 2+1,化简得⎩⎪⎨⎪⎧k +b =2,k =-4,或⎩⎪⎨⎪⎧k +b =2,3k +b +1=0,所以⎩⎪⎨⎪⎧k =-4,b =6,或⎩⎨⎧k =-32,b =72.所以所求直线l 的方程为: y =-4x +6或y =-32x +72,即4x +y -6=0,或3x +2y -7=0.反思与感悟 1.求点到直线的距离,首先要把直线方程化成一般式方程,然后再套用点到直线的距离公式.2.当点与直线有特殊位置关系时,也可以用公式求解,但是这样会把问题变复杂了,要注意数形结合.3.几种特殊情况的点到直线的距离:(1)点P 0(x 0,y 0)到直线y =a 的距离d =|y 0-a |; (2)点P 0(x 0,y 0)到直线x =b 的距离d =|x 0-b |.跟踪训练1 若点(a ,2)到直线l :y =x -3的距离是1,则a =________. 答案 5±2解析 直线l :y =x -3可变形为x -y -3=0. 由点(a,2)到直线l 的距离为1,得|a -2-3|1+(-1)2=1,解得a =5± 2.题型二 两平行线间的距离例2 求与直线l :5x -12y +6=0平行且到l 的距离为2的直线的方程. 解 方法一 设所求直线的方程为5x -12y +m =0, ∵两直线间的距离为2, ∴|6-m |52+(-12)2=2,∴m =32或m =-20.∴所求直线的方程为5x -12y +32=0或5x -12y -20=0.方法二 设所求直线的方程为5x -12y +c =0. 在直线5x -12y +6=0上取一点P 0⎝⎛⎭⎫0,12, 点P 0到直线5x -12y +c =0的距离为:d =⎪⎪⎪⎪-12×12+c 52+(-12)2=|c -6|13,由题意得|c -6|13=2,则c =32或c =-20.∴所求直线的方程为5x -12y +32=0或5x -12y -20=0. 反思与感悟 1.针对这个类型的题目一般有两种思路:(1)利用“化归”思想将两平行直线间的距离转化为求其中一条直线上任意一点到另一条直线的距离.(2)利用两条平行直线间距离公式d =|C 1-C 2|A 2+B 2. 2.当两直线都与x 轴(或y 轴)垂直时,可利用数形结合来解决. (1)两直线都与x 轴垂直时,l 1:x =x 1,l 2:x =x 2, 则d =|x 2-x 1|;(2)两直线都与y 轴垂直时,l 1:y =y 1,l 2:y =y 2, 则d =|y 2-y 1|.跟踪训练2 直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2,且l 1与l 2间的距离为5,求l 1,l 2的方程.解 若直线l 1,l 2的斜率存在,设直线l 1与l 2的斜率为k , 由斜截式得l 1的方程为y =kx +1,即kx -y +1=0; 由点斜式可得l 2的方程为y =k (x -5), 即kx -y -5k =0. 在直线l 1上取点A (0,1), 则点A 到直线l 2的距离d =|1+5k |1+k 2=5,∴25k 2+10k +1=25k 2+25,∴k =125.∴l 1的方程为12x -5y +5=0, l 2的方程为12x -5y -60=0.若直线l 1,l 2的斜率不存在,则l 1的方程为x =0,l 2的方程为x =5, 它们之间的距离为5,满足条件. 则满足条件的直线方程有以下两组:l 1:12x -5y +5=0,l 2:12x -5y -60=0; l 1:x =0,l 2:x =5.题型三 距离公式的综合应用例3 已知三条直线l 1:2x -y +a =0(a >0),l 2:-4x +2y +1=0和l 3:x +y -1=0,且l 1与l 2的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 是第一象限的点;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,请说明理由. 解 (1)因为l 2可化为2x -y -12=0,所以l 1与l 2的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+12=7510.因为a >0,所以a =3.(2)设存在点P (x 0,y 0)满足②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12·⎪⎪⎪⎪c +125,即c =132或c =116.所以满足条件②的点P 满足2x 0-y 0+132=0或2x 0-y 0+116=0.若点P 满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25·|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|. 所以x 0-2y 0+4=0或3x 0+2=0.因为点P 在第一象限,所以3x 0+2=0不可能. 联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12(舍去), 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎨⎧x 0=19,y 0=3718.所以P ⎝⎛⎭⎫19,3718即为同时满足条件的点.反思与感悟 解决探究性问题时,可先假设需探究的问题存在,以此为出发点寻找满足的条件.若求出的结论符合要求,则问题有解.若求出的结论与要求不符,则说明原探究问题无解.另外,运用公式解决问题要注意适用的范围及使用特点.跟踪训练3 已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P ,使P A =PB ,且点P 到直线l 的距离等于2.解 方法一 设点P 的坐标为P (a ,b ), 由P A =PB ,得(4-a )2+(-3-b )2=(2-a )2+(-1-b )2, ① 化简,得a -b =5.由点P 到直线l 的距离等于2,得 |4a +3b -2|42+32=2. ②由①②方程联立解得⎩⎪⎨⎪⎧a =1,b =-4,或⎩⎨⎧a =277,b =-87.所以,所求的点为P (1,-4)或P (277,-87)方法二 设点P 的坐标为P (a ,b ),因为A (4,-3),B (2,-1),所以线段AB 中点M 的坐标为(3,-2).而直线AB 的斜率k AB =-3-(-1)4-2=-1,所以线段AB 的垂直平分线方程为y -(-2)=x -3, 即x -y -5=0.而点P (a ,b )在直线x -y -5=0上, 故a -b -5=0,①由已知点P 到l 的距离为2, 得|4a +3b -2|42+22,② 由①②方程联立,解得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.所以,所求的点为P (1,-4)或P (277,-87).数形结合思想例4两条互相平行的直线分别过A(6,2)和B(-3,-1)两点,如果两条平行直线间的距离为d,求:(1)d的取值范围;(2)当d取最大值时,两条直线的方程.分析由于平行线的倾斜角不同,两平行线间的距离不同,故可以利用几何图形探索d的取值变化情况.解(1)如图,当两条平行直线与AB垂直时,两平行直线间的距离最大,为d=|AB|=(6+3)2+(2+1)2=310,当两条平行线各自绕点B,A逆时针旋转时,距离逐渐变小,越来越接近于0,所以0<d≤310,即所求的d的取值范围是(0,310].(2)当d取最大值310时,两条平行线都垂直于AB,它们的斜率k=-1k AB=-12-(-1)6-(-3)=-3.故所求的直线方程分别为y-2=-3(x-6)和y+1=-3(x+3),即3x+y-20=0和3x+y+10=0.解后反思通过数形结合,运用运动变化的方法,把握住题中的已知点不动,而两条平行线可以绕点转动,我们很容易直观感受到两平行线间距离的变化情况,从而求出两平行线间的距离的取值范围.忽略斜率不存在的情形致误例5求经过点A(1,2),且到原点的距离等于1的直线方程.分析当直线的斜率不存在时,直线方程为x=1,验证此直线到原点的距离是否等于1;当斜率存在时可设为y-2=k(x-1),利用点到直线的距离公式求k.解当过点A的直线垂直于x轴时,因为它到原点的距离等于1,所以满足题设条件,其方程为x-1=0;当过点A的直线不垂直于x轴时,设所求的直线方程为y-2=k(x-1),即kx -y -k +2=0.因为原点到此直线的距离等于1, 所以|-k +2|k 2+1=1.解得k =34.故所求直线的方程为y -2=34(x -1),即3x -4y +5=0.综上,所求直线的方程为x -1=0或3x -4y +5=0.解后反思 本题易出现的错误是直接利用点斜式设出方程,由点到直线的距离得方程求k ,漏掉了直线x =1.用直线的点斜式方程来解题,一定要考虑斜率不存在的情况,对于斜率不存在的特殊直线,很多情况也符合题意.1.P ,Q 分别为直线3x +4y -12=0与6x +8y +6=0上任意的点,则|PQ |的最小值为( ) A.95 B.185 C.3 D.6 答案 C解析 将6x +8y +6=0化为3x +4y +3=0,由两平行线间的距离公式得d =|3-(-12)|32+42=3,则|PQ |min =d =3.2.若点(4,a )到直线4x -3y =1的距离不大于3,则a 的取值范围是( ) A.[0,10] B.⎣⎡⎦⎤13,313C.(0,10)D.(-∞,0]∪[10,+∞)答案 A解析 d =|4×4-3a -1|42+(-3)2=|15-3a |5≤3,|3a -15|≤15,∴-15≤3a -15≤15,0≤a ≤10.3.若点P 到直线5x -12y +13=0和直线3x -4y +5=0的距离相等,则点P 的坐标应满足的方程是( )A.32x -56y +65=0或7x +4y =0B.x -4y +4=0或4x -8y +9=0C.7x +4y =0D.x -4y +4=0 答案 A解析 设点P 的坐标为(x ,y ),则根据题意得|5x -12y +13|52+(-12)2=|3x -4y +5|32+(-4)2,整理得32x -56y+65=0或7x +4y =0.4.分别过点A (-2,1)和点B (3,-5)的两条直线均垂直于x 轴,则这两条直线间的距离是________. 答案 5解析 d =|3-(-2)|=5.5.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是___________. 答案 12x +8y -15=0解析 l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x +8y -15=0.1.应用点P (x 0,y 0)到直线Ax +By +C =0(A 、B 不同时为零)距离公式d =|Ax 0+By 0+C |A 2+B 2的前提是直线方程为一般式.特别地,当直线方程A =0或B =0时,上述公式也适用,且可以应用数形结合思想求解.2.两条平行线间的距离处理方法有两种:一是转化为点到直线的距离,其体现了数学上的转化与化归思想. 二是直接套用公式d =|C 1-C 2|A 2+B 2,其中l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,需注意此时直线l 1与l 2的方程为一般式且x ,y 的系数分别相同.一、选择题1.原点到直线x +2y -5=0的距离为( ) A.1 B. 3 C.2 D.5 答案 D解析 由点到直线的距离公式,得d =|-5|12+22= 5. 2.两直线x +y -2=0和2x +2y -3=0的距离等于( ) A.22 B.24 C.12D.2 答案 B解析 把2x +2y -3=0化为x +y -32=0,由两直线间的距离公式,得d =⎪⎪⎪⎪-2-⎝⎛⎭⎫-3212+12=24. 3.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A. 2 B.2- 2 C.2-1 D.2+1 答案 C解析 由点到直线的距离公式,得|a -2+3|2=1,即|a +1|=2,所以a =2-1或a =-2-1. 又因为a >0,所以a =2-1.4.已知两直线3x +2y -3=0与6x +my +1=0互相平行,则它们之间的距离等于( ) A.4 B.21313 C.51326 D.71326答案 D解析 因为3x +2y -3=0与6x +my +1=0互相平行,所以-6m =-32,所以m =4.所以6x +my +1=0为6x +4y +1=0,即3x +2y +12=0.所以两平行线间的距离d =⎪⎪⎪⎪-3-1232+22=7213=71326.5.已知点A (0,2),B (2,0),若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( ) A.4 B.3 C.2 D.1 答案 A解析 设点C (t ,t 2),直线AB 的方程是x +y -2=0,|AB |=2 2.由于△ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程12×22h =2,即h = 2.由点到直线的距离公式,得2=|t +t 2-2|2,即|t 2+t -2|=2,即t 2+t -2=2或t 2+t -2=-2,这两个方程各自有两个不相等的实数根,故这样的点C 有4个.6.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A.3x -2y -6=0 B.2x +3y +7=0 C.3x -2y -12=0 D.2x +3y +8=0答案 D解析 方法一 设所求直线的方程为2x +3y +C =0,由题意可知|2-3-6|22+32=|2-3+C |22+32.∴C =-6(舍)或C =8.故所求直线的方程为2x +3y +8=0.方法二 令(x 0,y 0)为所求直线上任意一点,则点(x 0,y 0)关于(1,-1)的对称点为(2-x 0,-2-y 0),此点在直线2x +3y -6=0上,代入可得所求直线方程为2x +3y +8=0. 7.两平行线分别经过点A (5,0),B (0,12),它们之间的距离d 满足的条件是( ) A.0<d ≤5 B.0<d ≤13 C.0<d <12 D.5≤d ≤12答案 B解析 当两平行线与AB 垂直时,两平行线间的距离最大,为|AB |=13,所以0<d ≤13. 二、填空题8.若两平行直线3x -2y -1=0与6x +ay +c =0之间的距离为21313,则c +2a 的值为______.答案 ±1解析 由3x -2y -1=0和6x +ay +c =0平行,得32=-6a ,所以a =-4.所以6x -4y +c =0化为3x -2y +c 2=0.所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或c =-6.所以c +2a =±1.9.已知在△ABC 中,A (3,2),B (-1,5),点C 在直线3x -y +3=0上.若△ABC 的面积为10,则点C 的坐标为________. 答案 (-1,0)或⎝⎛⎭⎫53,8解析 由|AB |=5,△ABC 的面积为10,得点C 到直线AB 的距离为4.设C (x,3x +3),利用点到直线的距离公式可求得x =-1或x =53.10.若点P 在直线x +y -4=0上,O 为原点,则|OP |的最小值是________. 答案 22解析 |OP |的最小值,即为点O 到直线x +y -4=0的距离. d =|0+0-4|1+1=2 2.11.若实数x ,y 满足关系式x +y +1=0,则式子S =x 2+y 2-2x -2y +2的最小值为______. 答案322解析 方法一 ∵x 2+y 2-2x -2y +2=(x -1)2+(y -1)2, ∴上式可看成是一个动点M (x ,y )到一个定点N (1,1)距离的平方.即为点N 与直线l :x +y +1=0上任意一点M (x ,y )距离的平方.∴S =|MN |的最小值应为点N 到直线l 的距离,即|MN |min =d =|1+1+1|2=322. 方法二 ∵x +y +1=0,∴y =-x -1,∴S =x 2+(-x -1)2-2x -2(-x -1)+2=2x 2+2x +5= 2(x +12)2+92,∴x =-12时,S min =92=322. 三、解答题12.当m 取何值时,直线l 1:5x -2y +3m (3m +1)=0与l 2:2x +6y -3m (9m +20)=0的交点到直线l 3:4x -3y -12=0的距离最短?这个最短距离是多少?解 设l 1与l 2的交点为M ,则由⎩⎪⎨⎪⎧5x -2y +3m (3m +1)=0,2x +6y -3m (9m +20)=0, 解得M ⎝⎛⎭⎫3m ,9m 2+18m 2.设M 到l 3的距离为d ,则d =⎪⎪⎪⎪12m -32(9m 2+18m )-1242+(-3)2=110⎣⎡⎦⎤27⎝⎛⎭⎫m +592+473. 故当m =-59时,距离最短,且d min =4730. 13.已知直线l :3x -y -1=0及点A (4,1),B (0,4),C (2,0).(1)试在l 上求一点P ,使|AP |+|CP |最小;(2)试在l 上求一点Q ,使||AQ |-|BQ ||最大.解 (1)如图①,设点C 关于l 的对称点为C ′(a ,b ),则b -0a -2=-13,且3·a +22-b +02-1=0,解得C ′(-1,1),所以直线AC ′的方程为y =1.由⎩⎪⎨⎪⎧y =1,3x -y -1=0 得l 与直线AC ′的交点P (23,1),此时|AP |+|CP |取最小值为5.(2)如图②,设点B 关于l 的对称点为B ′(m ,n ),则n -4m -0=-13,且3·m +02-n +42-1=0,解得B ′(3,3),所以直线AB ′的方程为2x +y -9=0,由⎩⎪⎨⎪⎧ 2x +y -9=0,3x -y -1=0得AB ′与l 的交点Q (2,5),此时||AQ |-|BQ ||取最大值为 5.。

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.1.2

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.1.2

3.1.2 两条直线平行与垂直的判定[学习目标] 1.能根据两条直线的斜率判定两条直线是否平行或垂直.2.能根据两条直线平行或垂直的关系确定两条直线斜率的关系.知识点一 两条直线平行与斜率的关系1.如图①,设两条不重合的直线l 1,l 2的斜率分别为k 1,k 2,若l 1∥l 2,则k 1=k 2;反之,若k 1=k 2,则l 1∥l2.2.如图②,若两条不重合的直线的斜率不存在,则这两条直线也平行.思考 如果两条直线平行,那么这两条直线的斜率一定相等吗? 答 不一定.只有在两条直线的斜率都存在的情况下,斜率才相等. 知识点二 两条直线垂直与斜率的关系1.如图①,如果两条直线都有斜率且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直.即k 1k 2=-1⇒l 1⊥l 2,l 1⊥l 2⇒k 1k 2=-1.2.如图②,若l 1与l 2中的一条斜率不存在,另一条斜率为零,则l 1与l 2的位置关系是垂直.思考 如果两条直线垂直,则它们的斜率的积一定等于-1吗?答 不一定.若两条直线的斜率都存在,它们垂直时斜率之积是-1,但若两条直线垂直时还可能它们的斜率一个是0,另一个不存在.题型一 两条直线平行关系的判定与应用例1 根据下列给定的条件,判断直线l 1与直线l 2是否平行: (1)l 1经过点A (2,3),B (-4,0);l 2经过点M (-3,1),N (-2,2); (2)l 1的斜率为-12,l 2经过点A (4,2),B (2,3);(3)l 1平行于y 轴,l 2经过点P (0,-2),Q (0,5);(4)l 1经过点E (0,1),F (-2,-1),l 2经过点G (3,4),H (2,3). 解 (1)k AB =3-02-(-4)=12,k MN =2-1-2-(-3)=1,k AB ≠k MN ,所以l 1与l 2不平行.(2)l 1的斜率k 1=-12,l 2的斜率k 2=3-22-4=-12,即k 1=k 2,所以l 1与l 2平行或重合.(3)由题意,知l 1的斜率不存在,且不是y 轴,l 2的斜率也不存在,恰好是y 轴,所以l 1∥l 2. (4)由题意,知k EF =-1-1-2-0=1,k GH =3-42-3=1,所以l 1与l 2平行或重合.需进一步研究E ,F ,G ,H 四点是否共线, k FG =4-(-1)3-(-2)=1.所以E ,F ,G ,H 四点共线. 所以l 1与l 2重合.反思与感悟 1.判断两条直线平行,应首先看两条直线的斜率是否存在,即先看两点的横坐标是否相等.2.判断斜率是否相等,实际是看倾斜角是否相等,归根结底是充分利用两条直线平行的条件:同位角相等,则两条直线平行.3.在两条直线斜率都存在,且相等的情况下,应注意两条直线是否重合.跟踪训练1 已知▱ABCD 的三个顶点的坐标分别是A (0,1),B (1,0),C (4,3),求顶点D 的坐标.解 设D (m ,n ),由题意,得AB ∥DC ,AD ∥BC , 则有k AB =k DC ,k AD =k BC . 所以⎩⎪⎨⎪⎧0-11-0=3-n4-m ,n -1m -0=3-04-1,解得⎩⎪⎨⎪⎧m =3,n =4.所以点D 的坐标为(3,4).题型二 两条直线垂直关系的判定与应用 例2 判断下列各组中的直线l 1与l 2是否垂直:(1)l 1经过点A (-1,-2),B (1,2),l 2经过点M (-2,-1),N (2,1); (2)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(3)l 1经过点A (3,4),B (3,100),l 2经过点M (-10,40),N (10,40).解 (1)直线l 1的斜率k 1=2-(-2)1-(-1)=2,直线l 2的斜率k 2=1-(-1)2-(-2)=12,k 1k 2=1,故l 1与l 2不垂直.(2)直线l 1的斜率k 1=-10,直线l 2的斜率k 2=3-220-10=110,k 1k 2=-1,故l 1⊥l 2.(3)l 1的倾斜角为90°,则l 1⊥x 轴.直线l 2的斜率k 2=40-4010-(-10)=0,则l 2∥x 轴.故l 1⊥l 2.反思与感悟 使用斜率公式判定两直线垂直的步骤:(1)一看:就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第二步;(2)二用:就是将点的坐标代入斜率公式;(3)三求值:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.跟踪训练2 已知△ABC 的顶点坐标为A (5,-1),B (1,1),C (2,m ),若△ABC 为直角三角形,试求m 的值.解 ∵A (5,-1),B (1,1),C (2,m ),∴k AB =-1-15-1=-12,k AC =-1-m 5-2=-m +13,k BC =m -12-1=m -1. 当AB ⊥BC 时,有k AB ·k BC =-1, 即-12·(m -1)=-1,解得m =3;当AB ⊥AC 时,有k AB ·k AC =-1, 即-12·⎝⎛⎭⎫-m +13=-1,解得m =-7;当AC ⊥BC 时,有k AC ·k BC =-1, 即⎝⎛⎭⎫-m +13·(m -1)=-1,解得m =±2.综上所述,若△ABC 为直角三角形,则m 的值为3或-7或±2. 题型三 平行与垂直关系的综合应用例3 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接ABCD 四点,试判定图形ABCD 的形状.解 由题意知A ,B ,C ,D 四点在坐标平面内的位置,如图,由斜率公式可得 k AB =5-32-(-4)=13,k CD =0-3-3-6=13,k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12.所以k AB =k CD ,由图可知AB 与CD 不重合, 所以AB ∥CD ,又k AD ≠k BC ,所以AD 与BC 不平行. 又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形.反思与感悟 1.利用直线的斜率判定平面图形的形状一般要运用数形结合的方法,先由图形作出猜测,然后利用直线的斜率关系进行判定.2.由几何图形的形状求参数(一般是点的坐标)时,要根据图形的特征确定斜率之间的关系,既要考虑斜率是否存在,又要考虑到图形可能出现的各种情形.跟踪训练3 已知点A (0,3),B (-1,0),C (3,0),求点D 的坐标,使四边形ABCD 为直角梯形(A ,B ,C ,D 按逆时针方向排列).解 设所求点D 的坐标为(x ,y ),如图所示, ∵k AB =3,k BC =0,∴k AB ·k BC =0≠-1,即AB 与BC 不垂直,故AB ,BC 都不可作为直角梯形的直角边.①若CD 是直角梯形的直角边, 则BC ⊥CD ,AD ⊥CD ,∵k BC =0,∴CD 的斜率不存在,从而有x =3. 又k AD =k BC ,∴y -3x=0,即y =3,此时AB 与CD 不平行,故所求点D 的坐标为(3,3). ②若AD 是直角梯形的直角边, 则AD ⊥AB ,AD ⊥CD , ∵k AD =y -3x ,k CD =yx -3, ∴y -3x ×3=-1,y -3x ·yx -3=-1,即y -3x =-13,-13·y x -3=-1.解得x =185,y =95,∴D 点坐标为⎝⎛⎭⎫185,95.综上可知,D 点坐标为(3,3)或⎝⎛⎭⎫185,95.忽略斜率不存在的情况而致误例4 已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值.分析 由于A ,B 两点的纵坐标为确定的数,故AB 与x 轴不平行,因而CD 与x 轴不垂直,在求解时要对直线AB 分与x 轴垂直和不垂直两种情况讨论求解. 解 因为A ,B 两点的纵坐标不相等, 所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直, 所以-m ≠3,即m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4, 解得m =-1.当m =-1时,C ,D 两点的纵坐标均为-1, 则CD ∥x 轴,此时AB ⊥CD ,满足题意. 当AB 与x 轴不垂直时,由斜率公式,得 k AB =4-2-2m -4-(-m -3)=2-(m +1),k CD =3m +2-m 3-(-m )=2(m +1)m +3.因为AB ⊥CD , 所以k AB ·k CD =-1, 即2-(m +1)·2(m +1)m +3=-1,解得m =1.综上,m 的值为1或-1.解后反思 本题常见的错误是不分情况讨论,直接利用k AB ·k CD =-1求解.由于斜率是倾斜角的正切值,故倾斜角为90°的这种情况一定不要遗漏,这类失误是常犯的错误,一定要注意.1.已知A (1,2),B (m,1),直线AB 与直线y =0垂直,则m 的值( ) A.2 B.1 C.0 D.-1 答案 B解析 直线AB 与x 轴垂直,则点A ,B 横坐标相同,即m =1.2.已知直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8平行,则实数m 的值为( ) A.-7 B.-1 C.-1或-7 D.133答案 A解析 l 1的斜率为-3+m 4,纵截距为5-3m4,l 2的斜率为-25+m ,纵截距为85+m.又∵l 1∥l 2,由-3+m 4=-25+m 得,m 2+8m +7=0,得m =-1或-7.m =-1时,5-3m 4=85+m =2,l 1与l 2重合,故不符合题意;m =-7时,5-3m 4=132≠85+m=-4,符合题意.3.若直线l 1,l 2的倾斜角分别为α1,α2,且l 1⊥l 2,则有( ) A.α1-α2=90° B.α2-α1=90° C.|α2-α1|=90° D.α1+α2=180°答案 C解析 两直线垂直则它们的倾斜角的绝对值相差90°.4.过点(3,6),(0,3)的直线与过点(6,2),(2,0)的直线的位置关系为( ) A.垂直 B.平行 C.重合 D.以上都不正确 答案 A解析 过点(3,6),(0,3)的直线的斜率k 1=6-33-0=2-3;过点(6,2),(2,0)的直线的斜率k 2=2-06-2=3+ 2.因为k 1·k 2=-1,所以两条直线垂直. 5.直线l 1的斜率为2,直线l 2上有三点M (3,5),N (x,7),P (-1,y ),若l 1⊥l 2,则x = ,y = . 答案 -1 7解析 ∵l 1⊥l 2,且l 1的斜率为2,则l 2的斜率为-12,∴7-5x -3=y -5-1-3=-12,∴x =-1,y =7.1.两直线平行或垂直的判定方法.2.一、选择题1.已知过点P (3,2m )和点Q (m,2)的直线与过点M (2,-1)和点N (-3,4)的直线平行,则m 的值是( )A.1B.-1C.2D.-2 答案 B解析 因为k MN =4-(-1)-3-2=-1,所以若直线PQ 与直线MN 平行,则2m -23-m =-1,解得m=-1.2.直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( ) A.平行 B.重合 C.相交但不垂直 D.垂直 答案 D解析 方程x 2-3x -1=0有两个不同实根,且两根之积为-1,即直线l 1,l 2的斜率之积为-1,所以l 1与l 2垂直.3.若直线l 经过点(a -2,-1)和(-a -2,1),且与斜率为-23的直线垂直,则实数a 的值是( )A.-23B.-32C.23D.32答案 A解析 因为直线l 与斜率为-23的直线垂直,所以直线l 的斜率为32.所以1-(-1)-a -2-(a -2)=32,解得a =-23.4.已知A (m,3),B (2m ,m +4),C (m +1,2),D (1,0),且直线AB 与直线CD 平行,则m 的值为( )A.1B.0C.0或2D.0或1 答案 D解析 当AB 与CD 斜率均不存在时,m =0,此时AB ∥CD ,当k AB =k CD 时,m =1,此时AB ∥CD .5.若点P (a ,b )与Q (b -1,a +1)关于直线l 对称,则l 的倾斜角为( ) A.135° B.45° C.30° D.60° 答案 B 解析 k PQ =a +1-bb -1-a=-1,k PQ ·k l =-1,∴l 的斜率为1,倾斜角为45°.6.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( ) A.y =-13x +13B.y =-13x +1C.y =3x -3D.y =13x +1答案 A解析 将直线y =3x 绕原点逆时针旋转90°后所得直线为y =-13x ,再向右平移1个单位,得y =-13(x -1),即y =-13x +13.二、填空题7.已知直线l 1:y =x ,若直线l 2⊥l 1,则直线l 2的倾斜角为 . 答案 135°解析 因为直线y =x 的斜率k 1=1,所以若直线l 2⊥l 1,则直线l 2的斜率k =-1.所以直线l 2的倾斜角为135°.8.已知l 1的斜率是2,l 2过点A (-1,-2),B (x,6),且l 1∥l 2,则log 91x = .答案 -12解析 因为l 1∥l 2,所以6+2x +1=2,解得x =3.所以log 913=-12.9.已知点A (1,2)和点B (0,0),点P 在y 轴上,若∠BAP 为直角,则点P 的坐标为 .答案 (0,52)解析 设P (0,y ),则有2-01-0×y -20-1=-1.所以y =52.所以点P 的坐标为⎝⎛⎭⎫0,52. 10.已知△ABC 的顶点B (2,1),C (-6,3),其垂心为H (-3,2),则其顶点A 的坐标为 . 答案 (-19,-62)解析 设A (x ,y ).∵AC ⊥BH ,AB ⊥CH ,∴k AC ·k BH =-1,k AB ·k CH =-1.又∵k BH =1-22-(-3)=-15,k CH=3-2-6-(-3)=-13,∴⎩⎪⎨⎪⎧k AC=y -3x +6=5,kAB =y -1x -2=3.解得⎩⎪⎨⎪⎧x =-19,y =-62.即点A 的坐标为(-19,-62). 三、解答题11.已知△ABC 三个顶点坐标分别为A (-2,-4),B (6,6),C (0,6),求此三角形三边的高所在直线的斜率.解 由斜率公式可得k AB =6-(-4)6-(-2)=54,k BC =6-66-0=0,k AC =6-(-4)0-(-2)=5. 由k BC =0知直线BC ∥x 轴,∴BC 边上的高线与x 轴垂直,其斜率不存在. 设AB 、AC 边上高线的斜率分别为k 1、k 2, 由k 1·k AB =-1,k 2·k AC =-1, 即k 1·54=-1,k 2·5=-1,解得k 1=-45,k 2=-15.∴BC 边上的高所在直线的斜率不存在; AB 边上的高所在直线的斜率为-45;AC 边上的高所在直线的斜率为-15.12.已知直线l 1经过点A (3,m ),B (m -1,2),直线l 2经过点C (1,2),D (-2,m +2). (1)若l 1∥l 2,求m 的值; (2)若l 1⊥l 2,求m 的值.解 由题意知直线l 2的斜率存在且k 2=2-(m +2)1-(-2)=-m3.(1)若l 1∥l 2,则直线l 1的斜率也存在,由k 1=k 2, 得2-m m -4=-m 3,解得m =1或m =6,经检验,当m =1或m =6时,l 1∥l 2. (2)若l 1⊥l 2.当k 2=0时,此时m =0,l 1斜率存在,不符合题意;当k 2≠0时,直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,则k 1·k 2=-1,即-m 3·2-mm -4=-1, 解得m =3或m =-4,所以当m =3或m =-4时,l 1⊥l 2.。

高中数学 第三章 直线与方程章末复习课学案(含解析)新人教A版必修2-新人教A版高一必修2数学学案

高中数学 第三章 直线与方程章末复习课学案(含解析)新人教A版必修2-新人教A版高一必修2数学学案

第三章 直线与方程学习目标 1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识;2.培养综合运用知识解决问题的能力,能灵活选择直线方程的形式并熟练运用待定系数法求解,渗透数形结合、分类讨论的数学思想.1.直线的倾斜角与斜率(1)直线的倾斜角α的范围是0°≤α<180°.(2)k =⎩⎪⎨⎪⎧存在,α≠90°,不存在,α=90°.(3)斜率的求法:①依据倾斜角;②依据直线方程;③依据两点的坐标. 2.直线方程的几种形式的转化3.两条直线的位置关系设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则 (1)平行⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0; (2)相交⇔A 1B 2-A 2B 1≠0;(3)重合⇔A 1=λA 2,B 1=λB 2,C 1=λC 2(λ≠0)或A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0). 4.距离公式(1)两点间的距离公式.已知点P 1(x 1,y 1),P 2(x 2,y 2),则|P 1P 2|=x 2-x 12+y 2-y 12.(2)点到直线的距离公式.①点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2;②两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0的距离d =|C 1-C 2|A 2+B2.类型一 待定系数法的应用例1 直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.解 方法一 设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足⎩⎪⎨⎪⎧4x 0+y 0+3=0,3-2-x 0-54-y 0-5=0,即⎩⎪⎨⎪⎧4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎪⎨⎪⎧x 0=-2,y 0=5,因此直线l 的方程为y -25-2=x --1-2--1,即3x +y +1=0.方法二 设直线l 的方程为y -2=k (x +1), 即kx -y +k +2=0.由⎩⎪⎨⎪⎧ kx -y +k +2=0,4x +y +3=0,得x =-k -5k +4.由⎩⎪⎨⎪⎧kx -y +k +2=0,3x -5y -5=0,得x =-5k -155k -3.则-k -5k +4+-5k -155k -3=-2,解得k =-3. 因此所求直线方程为y -2=-3(x +1), 即3x +y +1=0.方法三 两直线l 1和l 2的方程为 (4x +y +3)(3x -5y -5)=0,①将上述方程中(x ,y )换成(-2-x,4-y ),整理可得l 1与l 2关于(-1,2)对称图形的方程: (4x +y +1)(3x -5y +31)=0.②①-②整理得3x +y +1=0,即为所求直线方程.反思与感悟 待定系数法,就是所研究的式子(方程)的结构是确定的,但它的全部或部分系数是待定的,然后根据题中条件来确定这些系数的方法.直线的方程常用待定系数法求解.选择合适的直线方程的形式是很重要的,一般情况下,与截距有关的,可设直线的斜截式方程或截距式方程;与斜率有关的,可设直线的斜截式或点斜式方程等.跟踪训练1 求在两坐标轴上截距相等,且到点A (3,1)的距离为2的直线的方程. 解 当直线过原点时,设直线的方程为y =kx , 即kx -y =0.由题意知|3k -1|k 2+1=2,解得k =1或k =-17.所以所求直线的方程为x -y =0或x +7y =0. 当直线不经过原点时, 设所求直线的方程为x a +ya=1, 即x +y -a =0.由题意知|3+1-a |2=2,解得a =2或a =6.所以所求直线的方程为x +y -2=0或x +y -6=0.综上可知,所求直线的方程为x -y =0或x +7y =0或x +y -2=0或x +y -6=0. 类型二 数形结合思想的应用例2 求函数y =|x 2-2x +5-x 2-4x +5|的最大值与最小值,并求取最大值或最小值时x 的值. 解 将已知条件变形为y =|x -12+22-x -22+12|=|x -12+0-22-x -22+0-12|.故设M (x,0),A (1,2),B (2,1), ∴原函数变为y =||MA |-|MB ||.则上式的几何意义为:x 轴上的点M (x,0)到定点A (1,2)与B (2,1)的距离的差的绝对值,由图可知,当|AM|=|BM|时,y取最小值0.即x-12+4=x-22+1,解得x=0,此时点M在坐标原点,y最小=0.又由三角形性质可知||MA|-|MB||≤|AB|,即当||MA|-|MB||=|AB|,也即当A、B、M三点共线时,y取最大值.由已知得AB的方程为y-2=-(x-1),即y=-x+3,令y=0得x=3,∴当x=3时,y最大=|AB|=2-12+1-22= 2.反思与感悟数形结合是解析几何的灵魂,两点间的距离公式和点到直线的距离公式是数形结合常见的结合点,常用这两个公式把抽象的代数问题转化为几何问题来解决,也能把几何问题转化为代数问题来解决,这就是数形结合.跟踪训练2 已知实数x、y满足4x+3y-10=0,求x2+y2的最小值.解设点P(x,y),则点P在直线l:4x+3y-10=0上,x2+y2=(x2+y2)2=(x-02+y-02)2=|OP|2,如图所示,当OP⊥l时,|OP|取最小值|OM|,原点O到直线l的距离|OM|=d=|-10|42+32=2,即|OP|的最小值是2.所以x2+y2的最小值是4.类型三分类讨论思想的应用例3 过点P(-1,0)、Q(0,2)分别作两条互相平行的直线,使它们在x轴上截距之差的绝对值为1,求这两条直线的方程.解当两条直线的斜率不存在时,两条直线的方程分别为x=-1,x=0,它们在x轴上截距之差的绝对值为1,符合题意.当直线的斜率存在时,设其斜率为k,则两条直线的方程分别为y=k(x+1),y-2=kx.令y=0,得x=-1与x=-2 k .由题意得|-1+2k|=1,即k =1.∴两条直线的方程分别为y =x +1,y =x +2, 即为x -y +1=0,x -y +2=0.综上可知,所求的两直线方程分别为x =-1,x =0或x -y +1=0,x -y +2=0.反思与感悟 本章涉及直线方程的形式时,常遇到斜率的存在性问题的讨论,如两直线平行(或垂直)时,斜率是否存在;已知直线过定点时,选择点斜式方程,要考虑斜率是否存在.跟踪训练3 已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2互相垂直,求实数a 的值. 解 l 1的斜率k 1=3a -01--2=a ,当a ≠0时,l 2的斜率k 2=-2a --1a -0=1-2aa .∵l 1⊥l 2,∴k 1·k 2=-1,即a ·1-2aa=-1,得a =1.当a =0时,P (0,-1),Q (0,0),这时直线l 2为y 轴,A (-2,0)、B (1,0),这时直线l 1为x 轴,显然l 1⊥l 2.综上可知,实数a 的值为1或0. 类型四 对称问题的求法例4 已知直线l :y =3x +3,试求: (1)点P (4,5)关于直线l 的对称点的坐标; (2)直线l 关于点A (3,2)对称的直线方程.解 (1)设点P 关于直线l 的对称点为P ′(x ′,y ′),则PP ′的中点M 在直线l 上,且直线PP ′垂直于直线l .即⎩⎪⎨⎪⎧y ′+52=3·x ′+42+3,y ′-5x ′-4·3=-1,解得⎩⎪⎨⎪⎧x ′=-2,y ′=7.∴P ′点的坐标为(-2,7).(2)设直线l 关于点A (3,2)对称的直线为l 3,则直线l 上任一点P (x 1,y 1)关于点A 的对称点P 3(x 3,y 3)一定在直线l 3上,反之也成立.∴⎩⎪⎨⎪⎧x 1+x 32=3,y 1+y 32=2,解得⎩⎪⎨⎪⎧x 1=6-x 3,y 1=4-y 3,代入l 的方程后,得3x 3-y 3-17=0. 即l 3的方程为3x -y -17=0. 反思与感悟 (1)中心对称①两点关于点对称:设P 1(x 1,y 1),P (a ,b ),则P 1(x 1,y 1)关于P (a ,b )对称的点为P 2(2a -x 1,2b -y 1),即P 为线段P 1P 2的中点.②两直线关于点对称:设直线l 1,l 2关于点P 对称,这时其中一条直线上任一点关于点P 对称的点在另外一条直线上,必有l 1∥l 2,且P 到l 1、l 2的距离相等. (2)轴对称两点关于直线对称:设P 1,P 2关于直线l 对称,则直线P 1P 2与l 垂直,且P 1P 2的中点在l 上. 跟踪训练4 在直线l :3x -y -1=0上求一点P ,使得: (1)P 到A (4,1)和B (0,4)的距离之差最大; (2)P 到A (4,1)和C (3,4)的距离之和最小. 解 (1)如图,B 关于l 的对称点B ′(3,3).直线AB ′的方程为2x +y -9=0,由⎩⎪⎨⎪⎧2x +y -9=0,3x -y -1=0,解得⎩⎪⎨⎪⎧x =2,y =5,即P (2,5).(2)如图,C 关于l 的对称点C ′(35,245),由图象可知:|PA |+|PC |≥|AC ′|.当P 是AC ′与l 的交点P (117,267)时“=”成立,∴P (117,267).1.直线l 在两坐标轴上的截距相等,且点M (1,-1)到直线l 的距离为2,则直线l 的方程为_______________.答案 x -y =0或x +y +2=0或x +y -2=0 解析 当直线l 经过原点时, 设直线方程为y =kx , 由题意知|k +1|1+k2= 2.解得k =1,∴直线方程为x -y =0, 当在坐标轴上的截距不为零时, 设直线方程为x a +ya=1, 即x +y -a =0, 由题意知|-a |2=2,得a =±2,∴直线方程为x +y -2=0或x +y +2=0.综上所述得l 的方程为x -y =0或x +y +2=0或x +y -2=0.2.已知直线l 经过2x +y -5=0与x -2y =0的交点,则点A (5,0)到l 的距离的最大值为________. 答案10解析 解方程组⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,得⎩⎪⎨⎪⎧x =2,y =1,∴直线l 过点(2,1).由题意得,当l 与点A 和交点连线垂直时,点A 到l 的距离为最大, 最大值为5-22+0-12=10.3.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为________________________. 答案 x -y +1=0解析 由题意知,直线l 即为AB 的垂直平分线, ∴k l ·k AB =-1, 得k l =1,AB 的中点坐标为(52,72),∴直线l 的方程为y -72=x -52,即x -y +1=0.4.设直线l 的方程为(a +1)x +y +2-a =0 (a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,∴a =2,方程即为3x +y =0. 当直线不经过原点时,截距存在且均不为0. ∴a -2a +1=a -2,即a +1=1. ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧-a +1>0,a -2≤0或⎩⎪⎨⎪⎧-a +1=0,a -2≤0,∴a ≤-1.综上可知a 的取值范围是a ≤-1.1.一般地,与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0;与之垂直的直线方程可设为Bx -Ay +n =0.2.过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0 (λ∈R ),但不包括l 2.3.点到直线与两平行线间的距离的使用条件:(1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x,y的系数对应相等.。

人教版高中数学必修二导学案:第三章直线与方程复习

人教版高中数学必修二导学案:第三章直线与方程复习

第三章直线与方程复习三维目标1.会梳理本章的知识结构; 2. 重点知识点的深化与拓展.________________________________________________________________________________ 目标三导 学做思1问题1.做以下基础练习.(1)直线330x y +=的倾斜角是( )A .6πB .56πC .3π D .23π(2)直线3x-4y+5=0关于x 轴对称的直线方程是( )A.3x+4y-5=0B.3x+4y+5=0C.-3x+4y-5=0D.-3x+4y+5=0 (3)若直线ax+by+c=0通过第一、二、三象限,则( )A. ab>0,bc>0B. ab>0,bc<0C. ab<0,bc>0D. ab<0,bc<0(4)直线l 过两直线02457=-+y x 和0=-y x 的交点,且点P (5,1)到直线l 的距离为10,则直线l 的方程为_________________________________.(5)两条平行线分别经过点(1,0)和(0,5),且两条直线的距离为5,它们的方程*分别是________________.问题2.梳理本章知识网络【学做思2】1.在平面直角坐标系中,过点P(4 , 1)作一直线l交x轴的正半轴、y轴的正半轴分别于A 、B 两点,求在两坐标轴上截距之和的最小值,并求出此时直线l的方程.2. 设△ABC中两条高所在直线的方程为2x-3y+1=0和x+y=0,且它的一个顶点是A(1,2).(1)求BC边所在直线的方程;(2)求△ABC的面积.3.(1)若直线y=kx+2k+1与直线y=-12x+2的交点在第一象限,则实数k的取值范围是___________________.达标检测1. 点A(1,2)关于直线l :x + y -1=0对称点1A 的坐标为____________.2. 已知点M(x ,y)在直线20x y +-=22(1)x y -+的最小值为 __________.3. 若A(6,2),B(-3,-1),过点B 的直线l 与点A 的距离为d. (1)d 的取值范围为________________;(2)当d 取最大值时,直线l 的方程为________________. (3)当d =32时,直线l 的方程为________________.4. 过点P(2,1)作直线l 交x 、y 轴的正半轴于A 、B 两点,求使△ABC 的面积最小时直线l 的方程5. 已知△ABC 中,A(1,1),B(m m ),C(4,2)(1<m<4),求m 为何值时,△ABC 的面积S 最大.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF-aaBE1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°-aaBE挖掘图形特征:x-aa E-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM(2)当AE =1时,求EF 的长.E2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;CE的值.(3)求AE-变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.。

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.2.3

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.2.3

3.2.3 直线的一般式方程[学习目标] 1.掌握直线的一般式方程.2.了解关于x 、y 的二元一次方程Ax +By +C =0(A 、B 不同时为0)都表示直线,且直线方程都可以化为Ax +By +C =0的形式.3.会进行直线方程不同形式的转化.知识点 直线的一般式方程1.在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x ,y 的二元一次方程;任何关于x ,y 的二元一次方程都表示一条直线.方程Ax +By +C =0(其中A 、B 不同时为0)叫做直线方程的一般式.2.对于直线Ax +By +C =0,当B ≠0时,其斜率为-A B ,在y 轴上的截距为-C B ;当B =0时,在x 轴上的截距为-C A ;当AB ≠0时,在两轴上的截距分别为-C A ,-CB .3.直线一般式方程的结构特征 (1)方程是关于x ,y 的二元一次方程.(2)方程中等号的左侧自左向右一般按x ,y ,常数的先后顺序排列. (3)x 的系数一般不为分数和负数.(4)虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程. 思考 (1)当A ,B 同时为零时,方程Ax +By +C =0表示什么? (2)任何一条直线的一般式方程都能与其他四种形式互化吗?答 (1)当C =0时,方程对任意的x ,y 都成立,故方程表示整个坐标平面; 当C ≠0时,方程无解,方程不表示任何图象.故方程Ax +By +C =0,不一定代表直线,只有当A ,B 不同时为零时,即A 2+B 2≠0时才代表直线.(2)不是.当一般式方程中的B =0时,直线的斜率不存在,不能化成其他形式;当C =0时,直线过原点,不能化为截距式.但其他四种形式都可以化为一般式.题型一 直线的一般形式与其他形式的转化例1 (1)下列直线中,斜率为-43,且不经过第一象限的是( )A.3x +4y +7=0B.4x +3y +7=0C.4x +3y -42=0D.3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A. 3 B.-5 C.95 D.-33答案 (1)B (2)D解析 (1)将一般式化为斜截式,斜率为-43的有:B 、C 两项.又y =-43x +14过点(0,14)即直线过第一象限,所以只有B 项正确. (2)令y =0则x =-3 3.反思与感悟 1.一般式化为斜截式的步骤: ①移项得By =-Ax -C ;②当B ≠0时,得斜截式:y =-A B x -CB .2.一般式化为截距式的步骤: 方法一:①把常数项移到方程右边,得Ax +By =-C ;②当C ≠0时,方程两边同除以-C ,得Ax -C +By-C =1;③化为截距式:x -C A +y-C B =1.方法二:①令x =0求直线在y 轴上的截距b ; ②令y =0求直线在x 轴上的截距a ; ③代入截距式方程x a +yb=1.由于直线方程的斜截式和截距式是惟一的,而两点式和点斜式不惟一,因此,通常情况下,一般式不化为两点式和点斜式.跟踪训练1 一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,求此直线方程.解 设所求直线方程为x a +yb =1,∵点A (-2,2)在直线上,∴-2a +2b =1.①又∵直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.②由①②可得⎩⎪⎨⎪⎧ a -b =1,ab =2,或⎩⎪⎨⎪⎧a -b =-1,ab =-2. 解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-1,b =-2.第二个方程组无解.故所求直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0. 题型二 直线方程的应用例2 已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直.解 方法一 l 的方程可化为y =-34x +3,∴l 的斜率为-34.(1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.方法二 (1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9.∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0. 将(-1,3)代入上式得n =13. ∴所求直线的方程为4x -3y +13=0.反思与感悟 一般地,直线Ax +By +C =0中系数A 、B 确定直线的斜率,因此,与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0,与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +n =0.这是经常采用的解题技巧.跟踪训练2 a 为何值时,直线(a -1)x -2y +4=0与x -ay -1=0. (1)平行;(2)垂直.解 当a =0或1时,两直线既不平行,也不垂直;当a ≠0且a ≠1时,直线(a -1)x -2y +4=0的斜率为k 1=-1+a2,b 1=2;直线x -ay -1=0的斜率为k 2=1a ,b 2=-1a .(1)当两直线平行时,由k 1=k 2,b 1≠b 2, 得1a =-1+a 2,a ≠-12, 解得a =-1或a =2.所以当a =-1或2时,两直线平行. (2)当两直线垂直时,由k 1·k 2=-1, 即1a ·(-1+a )2=-1,解得a =13. 所以当a =13时,两直线垂直.题型三 由含参一般式方程求参数的值或取值范围例3 (1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足______. (2)当实数m 为何值时,直线(2m 2+m -3)x +(m 2-m )y =4m -1. ①倾斜角为45°;②在x 轴上的截距为1. (1)答案 m ≠-3解析 若方程不能表示直线,则m 2+5m +6=0且m 2+3m =0.解方程组⎩⎪⎨⎪⎧m 2+5m +6=0,m 2+3m =0,得m =-3,所以m ≠-3时,方程表示一条直线. (2)解 ①因为已知直线的倾斜角为45°, 所以此直线的斜率是1, 所以-2m 2+m -3m 2-m=1,所以⎩⎪⎨⎪⎧m 2-m ≠0,2m 2+m -3=-(m 2-m ), 解得⎩⎪⎨⎪⎧m ≠0且m ≠1,m =-1或m =1.所以m =-1.②因为已知直线在x 轴上的截距为1, 令y =0得x =4m -12m 2+m -3,所以4m -12m 2+m -3=1,所以⎩⎪⎨⎪⎧2m 2+m -3≠0,4m -1=2m 2+m -3,解得⎩⎨⎧m ≠1且m ≠-32,m =-12或m =2.所以m =-12或m =2.反思与感悟 已知含参的直线的一般式方程求参数的值或范围的步骤跟踪训练3 已知直线l :5ax -5y -a +3=0. (1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线l 不经过第二象限,求a 的取值范围. (1)证明 直线方程变形为y -35=a ⎝⎛⎭⎫x -15, 它表示经过点A ⎝⎛⎭⎫15,35,斜率为a 的直线. ∵点A ⎝⎛⎭⎫15,35在第一象限, ∴直线l 必过第一象限.(2)解 如图所示,直线OA 的斜率k =35-015-0=3.∵直线不过第二象限, ∴直线的斜率a ≥3. ∴a 的取值范围为[3,+∞).一般式求斜率考虑不全致误例4 设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y -(2m -6)=0,若此直线的斜率为1,试确定实数m 的值.分析 由直线方程的一般式,可转化为斜截式,利用斜率为1,建立方程求解,但要注意分母不为0.解 由题意,得⎩⎪⎨⎪⎧-m 2-2m -32m 2+m -1=1,①2m 2+m -1≠0. ② 由①,得m =-1或m =43.当m =-1时,②式不成立,不符合题意,故应舍去; 当m =43时,②式成立,符合题意.故m =43.解后反思 本题易出现的错误是在由一般式转化为斜截式后,直接得到①式,而忽略了②式.因为本例中斜率已存在且为1,故①式应有意义,所以分母应不为0.1.若方程Ax +By +C =0表示直线,则A 、B 应满足的条件为( ) A.A ≠0 B.B ≠0 C.A ·B ≠0 D.A 2+B 2≠0答案 D解析 方程Ax +By +C =0表示直线的条件为A 、B 不能同时为0,即A 2+B 2≠0. 2.已知ab <0,bc <0,则直线ax +by =c 通过( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限 答案 C解析 由ax +by =c ,得y =-a b x +c b ,∵ab <0,∴直线的斜率k =-ab >0,直线在y 轴上的截距cb<0.由此可知直线通过第一、三、四象限.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A.x -2y -1=0 B.x -2y +1=0 C.2x +y -2=0D.x +2y -1=0答案 A解析 由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y =12(x -1),即x -2y -1=0.4.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-12答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 5.已知两条直线y =ax -2和3x -(a +2)y +1=0互相平行,则a =________. 答案 -3或1解析 两条直线y =ax -2和3x -(a +2)y +1=0互相平行,所以a 3=1a +2≠-21,解得a =-3或a =1.1.根据两直线的一般式方程判定两直线平行的方法(1)判定斜率是否存在,若存在,化成斜截式后,则k 1=k 2且b 1≠b 2;若都不存在,则还要判定不重合.(2)可直接采用如下方法:一般地,设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0,或A 1C 2-A 2C 1≠0.这种判定方法避开了斜率存在和不存在两种情况的讨论,可以减小因考虑不周而造成失误的可能性.2.根据两直线的一般式方程判定两直线垂直的方法(1)若一个斜率为零,另一个不存在,则垂直;若两个都存在斜率,化成斜截式后,则k 1k 2=-1.(2)一般地,设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔A 1A 2+B 1B 2=0. 第二种方法可避免讨论,减小失误.一、选择题1.直线x +y -3=0的倾斜角的大小是( ) A.45° B.135° C.1 D.-1 答案 B解析 直线x +y -3=0,即y =-x +3,它的斜率等于-1,故它的倾斜角为135°,故选B.2.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角为45°,则m 的值为( ) A.-2 B.2 C.-3 D.3 答案 D解析 由已知得m 2-4≠0,且2m 2-5m +2m 2-4=1,解得:m =3.3.直线l 的方程为Ax +By +C =0,若直线l 过原点和二、四象限,则( ) A.C =0,B >0 B.A >0,B >0,C =0 C.AB <0,C =0 D.AB >0,C =0答案 D解析 通过直线的斜率和截距进行判断.4.直线ax +3my +2a =0(m ≠0)过点(1,-1),则直线的斜率k 等于( ) A.-3 B.3 C.13 D.-13答案 D解析 由点(1,-1)在直线上可得a -3m +2a =0(m ≠0),解得m =a ,故直线方程为ax +3ay +2a =0(a ≠0),即x +3y +2=0,其斜率k =-13.5.直线y =mx -3m +2(m ∈R )必过定点( ) A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2) 答案 A解析 由y =mx -3m +2,得y -2=m (x -3).所以直线必过点(3,2).6.若三条直线x +y =0,x -y =0,x +ay =3构成三角形,则a 的取值范围是( ) A.a ≠±1 B.a ≠1,a ≠2 C.a ≠-1 D.a ≠±1,a ≠2 答案 A解析 因为直线x +ay =3恒过点(3,0),所以此直线只需不和x +y =0,x -y =0两直线平行就能构成三角形.所以a ≠±1.7.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )答案 C解析 将l 1与l 2的方程化为斜截式得:y =ax +b ,y =bx +a ,根据斜率和截距的符号可得选C. 二、填空题8.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =_______. 答案 35解析 由两直线垂直的条件,得2a +3(a -1)=0,解得a =35.9.若直线mx +3y -5=0经过连接点A (-1,-2),B (3,4)的线段的中点,则m =______. 答案 2解析 线段AB 的中点为(1,1),则m +3-5=0,即m =2.10.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是______________. 答案 (-∞,-12)∪(0,+∞)解析 当a =-1时,直线l 的倾斜角为90°,符合要求; 当a ≠-1时,直线l 的斜率为-aa +1,只要-a a +1>1或者-aa +1<0即可,解得-1<a <-12或者a <-1或者a >0.综上可知,实数a 的取值范围是 (-∞,-12)∪(0,+∞).11.已知两条直线a 1x +b 1y +4=0和a 2x +b 2y +4=0都过点A (2,3),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程为________________. 答案 2x +3y +4=0解析 由条件知⎩⎪⎨⎪⎧2a 1+3b 1+4=0,2a 2+3b 2+4=0,易知两点P 1(a 1,b 1),P 2(a 2,b 2)都在直线2x +3y +4=0上,即2x +3y +4=0为所求. 三、解答题12.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距都为0,当然相等,所以a =2,方程即为3x +y =0.当a ≠2时,截距存在且均不为0,所以a -2a +1=a -2,即a +1=1.所以a =0,方程即为x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,所以⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,所以a ≤-1.综上,a 的取值范围是a ≤-1.13.(1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值. (2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?解 方法一 (1)由l 1:2x +(m +1)y +4=0, l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2.解得m =2或m =-3,∴m 的值为2或-3. (2)由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3.当l 1⊥l 2时,k 1·k 2=-1, 即(-a +21-a )·(-a -12a +3)=-1,∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 方法二 (1)令2×3=m (m +1), 解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, 显然l 1与l 2不重合,∴l 1∥l 2. ∴m 的值为2或-3. (2)由题意知直线l 1⊥l 2,∴(a+2)(a-1)+(1-a)(2a+3)=0,解得a=±1,将a=±1代入方程,均满足题意.故当a=1或a=-1时,直线l1⊥l2.第11页共11页。

高中数学 必修二 第三章完整全部教案及导学案经典练习

高中数学 必修二 第三章完整全部教案及导学案经典练习

第三章直线与方程3.1直线的倾斜角与斜率3.1.1倾斜角与斜率倾斜角阅读教材P82~P83“思考”以上部分,完成下列问题.倾斜角图3-1-1A .45°B .135°C .0°D .不存在【解析】 根据直线的倾斜角的定义可知,直线l 的倾斜角为45°+90°=135°. 【答案】B斜率阅读教材P 83“思考”以下至P 85“例1”以上部分,完成下列问题.【解析】 k =3-(-2)-2-3=-1.【答案】 -1[探究背景]日常生活中,常用坡度(坡度=升高量前进量)表示倾斜程度,例如,“进2升3”与“进2升2”比较,前者更陡一些,因为坡度32>22.[探究问题]1.直线可利用倾斜角刻画其倾斜程度,能否借助于坡度来刻画直线的倾斜程度?2.坡度为升高量与水平前进量的比值,它与直线倾斜角有何关系?3.一条直线的倾斜角的正切值,叫做这条直线的斜率,若材料中A、B两点在直角坐标系中的坐标分别为(x1,y1),(x2,y2),你能用坐标表示直线AB的斜率k吗?并说明是否所有直线都有斜率?【探究提示】1.可以.2.坡度等于倾斜角的正切值.3.k=y2-y1x2-x1,当x1=x2时,即当直线的倾斜角为90°时,直线没有斜率.[探究成果]1.倾斜角α与斜率k的关系(1)直线都有倾斜角,但并不是所有的直线都有斜率.当倾斜角是90°时,直线的斜率不存在,此时,直线垂直于x轴(平行于y轴或与y轴重合).(2)直线的斜率也反映了直线相对于x轴的正方向的倾斜程度.当0°≤α<90°时,斜率越大,直线的倾斜程度越大;当90°<α<180°时,斜率越大,直线的倾斜程度也越大.2.斜率公式直线的斜率与两点的顺序无关,即两点的纵坐标和横坐标在公式中的次序可以同时调换,就是说,如果分子是y2-y1,分母必须是x2-x1;反过来,如果分子是y1-y2,分母必须是x1-x2,即k=y1-y2x1-x2=y2-y1x2-x1.关键词:x轴正向已知直线l向上的方向与y轴正向所成的角为30°,则直线l的倾斜角为________.【思路点拨】根据题意画出图形,结合直线倾斜角的定义求解.【自主解答】【解析】有两种情况:①如图(1),直线l向上方向与x轴正向所成的角为60°,即直线l的倾斜角为60°.②如图(2),直线l向上方向与x轴正向所成的角为120°,即直线l的倾斜角为120°.【答案】60°或120°1.理解直线的倾斜角首先要弄清以下几个问题:(1)倾斜角定义中含有三个条件:①x轴正向;②直线向上的方向;③小于180°的非负角.2.根据定义求直线的倾斜角的关键是根据题意画出草图,然后根据定义找直线向上的方向与x轴的正向的夹角即为直线的倾斜角.画图时一般要分情况讨论,讨论时要做到不重不漏,讨论的分类主要有0°角、锐角、直角和钝角四类.[变式训练]1.设直线l过原点,其倾斜角为α,将直线l绕坐标原点沿逆时针方向旋转45°,得到直线l1,则直线l1的倾斜角为()A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时为α+45°,当135°≤α<180°时为α-135°【解析】由倾斜角的取值范围知只有当0°≤α+45°<180°,即0°≤α<135°时,l1的倾斜角才是α+45°;又0°≤α<180°,所以当135°≤α<180°时,l1的倾斜角为α-135°(如图所示),故选D.【答案】 D经过下列两点的直线斜率是否存在?如果存在,求其斜率.(1)P(1,1),Q(-1,-2);(2)P(-2,-3),Q(-2,3);(3)P(2,1),Q(m,2).【思路点拨】解题的关键在于先看横坐标是否相等,进而确定是否能利用斜率公式求其斜率.【自主解答】(1)k PQ=-2-1-1-1=32.(2)∵x1=x2,∴斜率不存在.(3)当m=2时,斜率不存在;当m≠2时,k PQ=2-1m-2=1m-2.1.使用斜率公式k=y1-y2x1-x2时,要注意前提条件x1≠x2,若x1=x2,则斜率不存在.当两点的横坐标有字母时,要先讨论横坐标是否相等再解题.2.斜率公式与两点P1,P2的先后顺序无关,也就是说公式中的x1与x2,y1与y2可以同时交换位置.[变式训练]2.(1)已知过两点A(4,y),B(2,-3)的直线的倾斜角为135°,则y=________;(2)过点P(-2,m),Q(m ,4)的直线的斜率为1,则m 的值为________; (3)已知过A(3,1),B(m ,-2)的直线的斜率为1,则m 的值为________. 【解析】 (1)直线AB 的斜率k =tan 135°=-1,又k =-3-y 2-4,由-3-y2-4=-1,得y =-5. (2)由斜率公式k =4-mm +2=1,得m =1.(3)当m =3时,直线AB 平行于y 轴,斜率不存在. 当m ≠3时,k =-2-1m -3=-3m -3=1,解得m =0.【答案】 (1)-5 (2)1 (3)0关键词:数形结合已知A(-3,4),B(3,2),P(1,0),过点P 的直线l 与线段AB 有公共点. (1)求直线l 的斜率k 的取值范围; (2)求直线l 的倾斜角α的取值范围. 【思路点拨】 已知坐标――→斜率公式k PA ,k PB ――→数形结合k 的范围―→α的范围【自主解答】 如图所示,由题意可知k PA =4-0-3-1=-1,k PB =2-03-1=1.(1)要使直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是k ≤-1,或k ≥1.(2)由题意可知,直线l 的倾斜角介于直线PB 与PA 的倾斜角之间,又PB 的倾斜角是45°,PA 的倾斜角是135°,所以α的取值范围是45°≤α≤135°.利用数形结合法求斜率的范围已知一条线段AB 的端点及线段外一点P ,求过点P 的直线l 与线段有交点情况下l 的斜率的范围的方法: ①连接PA ,PB ;②由k =y 2-y 1x 2-x 1求出k PA ,k PB ;③结合图形,写出满足条件的直线l 的斜率的范围. [变式训练]3.已知直线l 经过点P(1,1),且与线段MN 相交,且点M 、N 的坐标分别是(2,-3),(-3,-2). (1)求直线PM 与PN 的斜率; (2)求直线l 的斜率k 的取值范围.【解】 (1)由题意与斜率公式可知,直线PM 与PN 的斜率分别为:k PM =-3-12-1=-4,k PN =-2-1-3-1=34.(2)如图所示,直线l 相当于绕着点P 在直线PM 与PN 间旋转,l ′是过P 点且与x 轴垂直的直线,当l 由PN 位置旋转到l ′位置时,倾斜角增大到90°,又k PN =34,∴k ≥34.又当l 从l ′位置旋转到PM 位置时,倾斜角大于90°,又k PM =-4, ∴k ≤-4.综上所述,k ∈(-∞,-4]∪⎣⎢⎡⎭⎪⎫34,+∞.1.求直线的倾斜角时应注意的问题 要抓住“一个前提,两个方向”(1)一个前提:直线与x轴相交,否则,直线的倾斜角为0°;(2)两个方向:直线向上的方向与x轴的正方向之间所成的角.2.掌握两种求斜率的基本方法:(1)斜率与倾斜角的关系,即k=tanα(α≠90°);(2)过两点的斜率公式,即k=y2-y1x2-x1(x1≠x2).3.求直线斜率应注意的问题(1)已知倾斜角求斜率,该类题目必须注意α是否等于90°;(2)已知直线上的两点求斜率.若已知两点中的横坐标含有参数,必须注意讨论,即分类讨论;(3)在解决斜率的取值范围问题时,常采用数形结合,注意该思想的应用.1.关于直线的倾斜角和斜率,下列说法正确的是()A.任一直线都有倾斜角,都存在斜率B.倾斜角为135°的直线的斜率为1C.若一条直线的倾斜角为α,则它的斜率为k=tanαD.直线斜率的取值范围是(-∞,+∞)【解析】任一直线都有倾斜角,但当倾斜角为90°时,斜率不存在,所以A、C错误;倾斜角为135°的直线的斜率为-1,所以B错误;只有D正确.【答案】 D2.过两点A(4,y),B(2,-3)的直线的倾斜角为45°,则y=()A.-32 B.32C.-1 D.1【解析】tan 45°=k AB=y+34-2,即y+34-2=1,所以y=-1.【答案】 C图3-1-33.如图3-1-3,直线l1,l2,l3的斜率分别为k1,k2,k3,则k1,k2,k3之间的大小关系为______.【解析】设l1,l2,l3的倾斜角分别为α1,α2,α3,则由图可知0<α3<α2<90°<α1<180°,所以tanα2>tanα3>0,tanα1<0,故k1<k3<k2.【答案】k1<k3<k24.已知A(3,3),B(-4,2),C(0,-2),若点D 在线段BC 上移动时,求直线AD 斜率的变化范围.【解】 如图所示,k AB =2-3-4-3=17,k AC =-2-30-3=53.当D 由B 运动到C 时,直线AD 的斜率由k AB 增大到k AC ,所以直线AD 的斜率的变化范围是⎣⎢⎡⎦⎥⎤17,53.教学反思:1、对斜率的定义叙述不准确; 2、书写不对,如tanα=1=45o ;3、培养学生归纳概括,自我获取知识,语言表达能力。

2019年最新-人教版高中数学必修二导学案32(第三章《直线与方程》复习)

2019年最新-人教版高中数学必修二导学案32(第三章《直线与方程》复习)

(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴_____与直线
l_正__向______所成的角向α上叫方做向直线l的倾斜角,当直线l与x轴平行或重合时,规
定它的倾斜角为____. (2)倾斜角的取值范围:____________[__0.,π)
90°
2.直线的斜率: (1)定义: k= (tanα ),α≠倾90斜°角是90°的直线,其斜率不存在.
5 、线 已1、 段 知直 PA1P线 (2 4的, 2中x0点 )、 5MyB的(坐 61, 0标7为)0、与 C_坐 _(0_, _标__3轴 _)_,转 __则成 . 的三角形 直线的A面 B 积 的是 方_程__是_____________._________________,
从几何直观到代数表示 (建立直线的方程)
坐标 斜率
直线
二元一次方程
点斜式 两点式
一般式
本章知识结构 从代数表示到几何直观
(通过方程研究几何性质和度量)
两条直线的位置 关系
平行和垂直 的判定
相交
平行
(一个交点) (无交点)
距离
两点间的距离 点到直线的距离 两条平行线间的距离
【基础知识】
1.直线的倾斜角:
相交
k1≠k2
平行
k1=k2且b1≠b2
l1:A1x+B1y+C1=0 l2:A2x+B2y+C2=0
A1B2-A2B1 ≠ 0


A1B2-A2B1=0 B1C2-B2C1≠0(或A1C2-A2C1≠0).
重合 k1=k2且b1=b2

A1B2-A2B1=0

B1C2-B2C1=0 (且A1C2-A2C1=0)

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章

3.1.1倾斜角与斜率[学习目标] 1.理解直线的倾斜角和斜率的概念.2.掌握求直线斜率的两种方法.3.了解在平面直角坐标系中确定一条直线的几何要素.知识点一直线的倾斜角1.直线倾斜角的定义当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.2.直线倾斜角的取值范围直线的倾斜角α的取值范围是0°≤α<180°,并规定与x轴平行或重合的直线的倾斜角为0°.思考当一条直线的倾斜角为0°时,此时这条直线一定与x轴平行吗?答不一定.也可能与x轴重合.知识点二直线的斜率1.直线斜率的定义一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k表示,即k=tan α.思考所有直线都有斜率吗?若直线没有斜率,那么这条直线的倾斜角为多少?答不是.若直线没有斜率,那么这条直线的倾斜角应为90°.2.倾斜角α与斜率k的关系知识点三直线斜率的坐标公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式是k =y 2-y 1x 2-x 1.思考 在同一直线(与x 轴不重合)上任意取不同的两点的坐标计算的斜率都相等吗? 答 相等.对于一条直线来说其斜率是一个定值,与所选择点的位置无关,所以取任意不同的两点的坐标计算同一条直线的斜率一定相等.题型一 直线的倾斜角例1 设直线l 过坐标原点,它的倾斜角为α,如果将l 绕坐标原点按逆时针方向旋转45°,得到直线l 1,那么l 1的倾斜角为( ) A.α+45° B.α-135° C.135°-αD.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135° 答案 D解析 根据题意,画出图形,如图所示:因为0°≤α<180°,显然A ,B ,C 未分类讨论,均不全面, 不合题意.通过画图(如图所示)可知: 当0°≤α<135°时,l 1的倾斜角为α+45°;当135°≤α<180°时,l 1的倾斜角为45°+α-180°=α-135°.故选D.反思与感悟 1.解答本题要注意根据倾斜角的概念及倾斜角的取值范围解答.2.求直线的倾斜角主要根据定义来求,其关键是根据题意画出图形,找准倾斜角,有时要根据情况分类讨论.①任何一条直线都有惟一的倾斜角; ②一条直线的倾斜角可以为-30°; ③倾斜角为0°的直线只有一条,即x 轴;④按照倾斜角的概念,直线的倾斜角α的集合{α|0°≤α<180°}与直线集合建立了一一映射. A.1 B.2 C.3 D.4 答案 A 解析① √ 任何一条直线都有惟一的倾斜角,故①正确 ② × 倾斜角α的取值范围是0°≤α<180°,故②错误 ③ × 所有与x 轴平行或重合的直线的倾斜角都是0°,故③错误 ④×倾斜角相同的直线有无数条,不是一一映射,故④错误题型二 直线的斜率例2 已知直线l 过P (-2,-1),且与以A (-4,2),B (1,3)为端点的线段相交,求直线l 的斜率的取值范围.解 根据题中的条件可画出图形,如图所示, 又可得直线P A 的斜率k P A =-32,直线PB 的斜率k PB =43,结合图形可知当直线l 由PB 变化到与y 轴平行的位置时,它的倾斜角逐渐增大到90°,故斜率的取值范围为⎣⎡⎭⎫43,+∞, 当直线l 由与y 轴平行的位置变化到P A 位置时,它的倾斜角由90°增大到P A 的倾斜角,故斜率的变化范围是⎝⎛⎦⎤-∞,-32. 综上可知,直线l 的斜率的取值范围是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫43,+∞. 反思与感悟 1.由倾斜角(或范围)求斜率(或范围)利用定义式k =tan α(α≠90°)解决. 2.由两点坐标求斜率运用两点斜率公式 k =y 2-y 1x 2-x 1(x 1≠x 2)求解. 3.涉及直线与线段有交点问题常数形结合利用公式求解. 跟踪训练2 已知A (3,3),B (-4,2),C (0,-2). (1)求直线AB 和AC 的斜率;(2)当点D 在线段BC (包括端点)上移动时,求直线AD 的斜率的变化范围. 解 (1)由斜率公式,得直线AB 的斜率k AB =2-3-4-3=17; 直线AC 的斜率k AC =-2-30-3=53.故直线AB 的斜率为17,直线AC 的斜率为53.(2)如图,当点D 由点B 运动到点C 时,直线AD 的斜率由k AB 增大到k AC , 所以直线AD 的斜率的变化范围是⎣⎡⎦⎤17,53.题型三 斜率公式的应用例3 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx 的最大值和最小值.解 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为(2,4),(3,2).由于yx 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以可求得y x 的最大值为2,最小值为23.反思与感悟 若所求最值或范围的式子可化为y 2-y 1x 2-x 1的形式,则联想其几何意义,利用图形数形结合来求解.跟踪训练3 已知实数x ,y 满足y =x 2-x +2(-1≤x ≤1),试求y +3x +2的最大值和最小值.解 由y +3x +2的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB上任一点(x ,y )的直线的斜率k ,由图可知k P A ≤k ≤k PB ,由已知可得A (1,2),B (-1,4). 则k P A =2-(-3)1-(-2)=53,k PB =4-(-3)-1-(-2)=7.∴53≤k ≤7,∴y +3x +2的最大值为7,最小值为53.分类讨论思想例4 设直线l 过点A (6,12),B (m,13),求直线l 的斜率k 及倾斜角α的取值范围.分析 直线的斜率存在时,首先由斜率公式求斜率k ,然后由k 确定倾斜角α的取值范围;直线的斜率不存在时,可直接下结论.解 (1)当m =6时,直线l 与x 轴垂直,斜率不存在,倾斜角α=90°.(2)当m ≠6时,k =13-12m -6=1m -6.①当m >6时,1m -6>0,即k >0,所以直线l 的倾斜角的取值范围是0°<α<90°; ②当m <6时,1m -6<0,即k <0,所以直线l 的倾斜角的取值范围是90°<α<180°.解后反思 因为直线斜率的坐标公式中有限制条件x 1≠x 2,所以当两点的横坐标有参数存在时,要注意分x 1=x 2和x 1≠x 2两类情况分别处理.A.两条不重合的直线,如果它们的倾斜角相等,那么这两条直线平行B.若一条直线的倾斜角为α,则sin α∈(0,1)C.若α,2α,3α分别为三条直线的倾斜角,则α的度数可以大于60°D.若α是直线l 的倾斜角,且tan α=22,则α=45° 答案 A解析 ∵α∈[0,180°),∴sin α∈[0,1],B 错;当α=60°时,3α=180°,∴C 错;tan 45°=1,∴D 错.2.如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2答案 D解析 由图可知,直线l 2,l 3的倾斜角为锐角,直线l 1的倾斜角为钝角,故k 1最小.直线l 2的倾斜角大于直线l 3的倾斜角,由正切函数在⎣⎡⎭⎫0,π2内单调递增,得k 2>k 3.故k 1<k 3<k 2. 3.若-π2<α<0,则经过P 1(0,cos α),P 2(sin α,0)两点的直线的倾斜角为( )A.αB.-αC.π2+α D.π+α答案 C解析 由斜率的计算公式,得k =0-cos αsin α-0=-cot α=tan ⎝⎛⎭⎫π2+α,而π2+α∈⎝⎛⎭⎫0,π2.4.直线l 经过第二、四象限,则直线l 的倾斜角范围是( ) A.0°≤α<90° B.90°≤α<180° C.90°<α<180° D.0°<α<180°答案 C解析 直线倾斜角的取值范围是0°≤α<180°,又直线l 经过第二、四象限,所以直线l 的倾斜角范围是90°<α<180°.5.已知点A (1,2),若在坐标轴上有一点P ,使直线P A 的倾斜角为135°,则点P 的坐标为 . 答案 (3,0)或(0,3)解析 由题意知k P A =-1,若P 点在x 轴上,则设P (m,0),则0-2m -1=-1,解得m =3;若P在y 轴上,则设P (0,n ),则n -20-1=-1,解得n =3;故P 点的坐标为(3,0)或(0,3).1.倾斜角是一个几何概念,它直观地描述并表现了直线对于x 轴正方向的倾斜程度.2.直线的斜率和倾斜角都反映了直线的倾斜程度,二者紧密相连,如下表:0° 0°<α<90° 90° 90°<α<180°3.运用两点P 1(x 1,y 1),P 2(x 2,y 2)求直线斜率k =21x 2-x 1应注意的问题:(1)斜率公式与P 1,P 2两点的位置无关,而与两点横、纵坐标之差的顺序有关(即x 2-x 1,y 2-y 1中x 2与y 2对应,x 1与y 1对应).(2)运用斜率公式的前提条件是“x 1≠x 2”,也就是直线不与x 轴垂直,而当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在.一、选择题1.下列说法正确的是( )A.直线和x 轴的正方向所成的正角,叫做这条直线的倾斜角B.直线的倾斜角α的取值范围是0°≤α≤180°C.和x 轴平行的直线,它的倾斜角为180°D.每一条直线都存在倾斜角,但并非每一条直线都存在斜率 答案 D解析 直线的倾斜角为直线向上的方向与x 轴的正方向所成的角,故A 不正确;直线的倾斜角α的取值范围是0°≤α<180°,故B 不正确;和x 轴平行的直线,它的倾斜角为0°,故C 不正确;只有D 正确. 2.斜率为33的直线的倾斜角为( ) A.30° B.45° C.60° D.150° 答案 A解析 设直线的倾斜角为α,由题意,得tan α=33,所以α=30°,故选A. 3.若过点A (a ,-1)和B (2,a )的直线的斜率为12,则a 的值为( )A.4B.0C.-4D.1 答案 B解析 k AB =a +12-a =12,解得a =0.4.直线l 过原点(0,0),且不过第三象限,那么l 的倾斜角α的取值范围是( ) A.0°≤α≤90°B.90°≤α<180°C.90°≤α<180°或α=0°D.90°≤α≤135°答案 C解析 倾斜角的取值范围为0°≤α<180°,直线过原点且不过第三象限,切勿忽略x 轴和y 轴. 5.斜率为2的直线经过点A (3,5),B (a,7),C (-1,b )三点,则a ,b 的值分别为( ) A.4,0 B.-4,-3 C.4,-3 D.-4,3 答案 C解析 由题意,得⎩⎪⎨⎪⎧k AC =2,k AB =2,即⎩⎪⎨⎪⎧b -5-1-3=2,7-5a -3=2.解得a =4,b =-3.6.若过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y 的值为( ) A.-32 B.32C.-1D.1答案 C解析 由已知,得y +34-2=tan 45°=1.故y =-1.7.设直线l 的方程为x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是( ) A.[0,π) B.⎣⎡⎭⎫π4,π2C.⎣⎡⎦⎤π4,3π4D.⎝⎛⎭⎫π4,π2∪⎝⎛⎦⎤π4,3π4答案 C解析 当cos θ=0时,方程为x +3=0,其倾斜角为π2.当cos θ≠0时,由直线方程可得,斜率k =-1cos θ.∵cos θ∈[-1,1],且cos θ≠0,∴k ∈(-∞,-1]∪[1,+∞),即tan α∈(-∞,-1]∪[1,+∞).又∵α∈[0,π),∴α∈⎣⎡⎭⎫π4,π2∪⎝⎛⎭⎫π2,3π4.综上可知,倾斜角的范围是[π4,3π4].二、填空题8.若直线AB 与y 轴的夹角为60°,则直线AB 的倾斜角为 ,斜率为 . 答案 30°或150°33或-33解析 因为直线AB 与y 轴的夹角为60°,所以直线AB 的倾斜角为30°或150°. 当倾斜角为30°时,斜率为tan 30°=33; 当倾斜角为150°时,斜率为tan 150°=-33. 9.已知点P (3,2),点Q 在x 轴上,若直线PQ 的倾斜角为150°,则点Q 的坐标为 . 答案 (23+3,0)解析 设点Q 的坐标为(x,0),则k =2-03-x=tan 150°=-33,解得x =23+3.10.若经过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围为 . 答案 (-2,1)解析 ∵k =a -1a +2且直线的倾斜角为钝角,∴a -1a +2<0,即⎩⎪⎨⎪⎧ a -b >0,a +2<0或⎩⎪⎨⎪⎧a -1<0,a +2>0.解得-2<a <1.11.直线l 过点A (1,2),且不过第四象限,则直线l 的斜率的取值范围是 .答案 [0,2]解析 如图,当直线l 在l 1位置时,k =tan 0°=0;当直线l 在l 2位置时,k =2-01-0=2.故直线l 的斜率的取值范围是[0,2].三、解答题12.已知A (-1,1),B (1,1),C (2,3+1), (1)求直线AB 和AC 的斜率;(2)若点D 在线段AB (包括端点)上移动时,求直线CD 的斜率的变化范围. 解 (1)由斜率公式得 k AB =1-11-(-1)=0,k AC =3+1-12-(-1)=33. (2)如图所示. k BC =3+1-12-1= 3.设直线CD 的斜率为k ,当斜率k 变化时,直线CD 绕C 点旋转,当直线CD 由CA 逆时针方向旋转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k CA 增大到k CB ,所以k 的取值范围为⎣⎡⎦⎤33, 3. 13.光线从点A (2,1)射到y 轴上的点Q ,经y 轴反射后过点B (4,3),试求点Q 的坐标及入射光线的斜率.解 方法一 设Q (0,y ),则由题意得k QA =-k QB . ∵k QA =1-y 2,k QB =3-y 4,∴1-y 2=-3-y4. 解得y =53,即点Q 的坐标为⎝⎛⎭⎫0,53, ∴k 入=k QA =1-y 2=-13.方法二 如图,点B (4,3)关于y 轴的对称点为B ′(-4,3), k AB ′=1-32+4=-13,由题意得,A 、Q 、B ′三点共线. 从而入射光线的斜率为k AQ =k AB ′=-13.设Q (0,y ),则k 入=k QA =1-y 2=-13.解得y =53,即点Q 的坐标为⎝⎛⎭⎫0,53.。

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.2.1

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.2.1

3.2.1直线的点斜式方程[学习目标] 1.掌握直线的点斜式方程和直线的斜截式方程.2.结合具体实例理解直线的方程和方程的直线概念及直线在y轴上的截距的含义.3.会根据斜截式方程判断两直线的位置关系.知识点一直线的点斜式方程思考直线的点斜式方程能否表示坐标平面上的所有直线呢?答不能.有斜率的直线才能写成点斜式方程,凡是垂直于x轴的直线,其方程都不能用点斜式表示.知识点二直线的斜截式方程1.直线l在坐标轴上的截距(1)直线在y轴上的截距:直线l与y轴的交点(0,b)的纵坐标b.(2)直线在x轴上的截距:直线l与x轴的交点(a,0)的横坐标a.2.直线的斜截式方程思考直线在y轴上的截距和直线与y轴交点到原点的距离是一回事吗?答 直线在y 轴上的截距是它与y 轴交点的纵坐标,截距是一个实数,可正、可负、可为0.当截距非负时,它等于直线与y 轴交点到原点的距离;当截距为负时,它等于直线与y 轴交点到原点距离的相反数.题型一 直线的点斜式方程例1 求满足下列条件的直线的点斜式方程. (1)过点P (-4,3),斜率k =-3; (2)过点P (3,-4),且与x 轴平行; (3)过P (-2,3),Q (5,-4)两点.解 (1)∵直线过点P (-4,3),斜率k =-3, 由直线方程的点斜式得直线方程为y -3=-3(x +4).(2)与x 轴平行的直线,其斜率k =0,由直线方程的点斜式可得直线方程为y -(-4)=0×(x -3), 即y +4=0.(3)过点P (-2,3),Q (5,-4)的直线的斜率 k PQ =-4-35-(-2)=-77=-1.又∵直线过点P (-2,3).∴直线的点斜式方程为y -3=-(x +2).反思与感悟 1.求直线的点斜式方程的步骤:定点(x 0,y 0)→定斜率k →写出方程y -y 0=k (x -x 0).2.点斜式方程y -y 0=k ·(x -x 0)可表示过点P (x 0,y 0)的所有直线,但x =x 0除外. 跟踪训练1 (1)过点(-1,2),且倾斜角为135°的直线方程为 .(2)已知直线l 过点A (2,1)且与直线y -1=4x -3垂直,则直线l 的方程为 . 答案 (1)x +y -1=0 (2)x +4y -6=0 解析 (1)k =tan 135°=-1, 由直线的点斜式方程得 y -2=-(x +1),即x +y -1=0.(2)方程y -1=4x -3可化为y -1=4⎝⎛⎭⎫x -34, 由点斜式方程知其斜率k =4.又因为l 与直线y -1=4x -3垂直,所以直线l 的斜率为-14.又因为l 过点A (2,1),所以直线l 的方程为y -1=-14(x -2),即x +4y -6=0.题型二 直线的斜截式方程例2 根据条件写出下列直线的斜截式方程. (1)斜率为2,在y 轴上的截距是5; (2)倾斜角为150°,在y 轴上的截距是-2;(3)倾斜角为60°,与y 轴的交点到坐标原点的距离为3. 解 (1)由直线方程的斜截式可知, 所求直线方程为y =2x +5.(2)∵倾斜角α=150°,∴斜率k =tan 150°=-33. 由斜截式可得方程为y =-33x -2. (3)∵直线的倾斜角为60°,∴其斜率k =tan 60°=3, ∵直线与y 轴的交点到原点的距离为3, ∴直线在y 轴上的截距b =3或b =-3. ∴所求直线方程为y =3x +3或y =3x -3.反思与感悟 1.本例(3)在求解过程中,常因混淆截距与距离的概念,而漏掉解“y =3x x -3”.2.截距是直线与x 轴(或y 轴)交点的横(或纵)坐标,它是个数值,可正、可负、可为零. 跟踪训练2 已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的斜截式方程. 解 由斜截式方程,知直线l 1的斜率k 1=-2, 又因为l ∥l 1,所以l 的斜率k =k 1=-2. 由题意,知l 2在y 轴上的截距为-2, 所以l 在y 轴上的截距b =-2,由斜截式,得直线l 的方程为y =-2x -2. 题型三 直线过定点问题例3 求证:不论m 为何值,直线l :y =(m -1)x +2m +1总过第二象限. 证明 方法一 直线l 的方程可化为y -3=(m -1)(x +2), ∴直线l 过定点(-2,3),由于点(-2,3)在第二象限,故直线l 总过第二象限. 方法二 直线l 的方程可化为m (x +2)-(x +y -1)=0.令⎩⎪⎨⎪⎧ x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3.∴无论m 取何值,直线l 总经过点(-2,3). ∵点(-2,3)在第二象限,∴直线l 总过第二象限.反思与感悟 证明直线过定点的基本方法:方法一点斜式的应用,方法二代数方法处理恒成立问题的基本思想.跟踪训练3 已知直线y =(3-2k )x -6不经过第一象限,求k 的取值范围.解 由题意知,需满足它在y 轴上的截距不大于零,且斜率不大于零,则⎩⎪⎨⎪⎧-6≤0,3-2k ≤0,得k ≥32. 所以,k 的取值范围是⎩⎨⎧⎭⎬⎫k ⎪⎪k ≥32.函数与方程思想例4 已知直线y =kx +b ,当-3≤x ≤4时,-8≤y ≤13.求此直线方程.分析 利用直线y =kx +b 与一次函数的关系,并借助一次函数的图象和性质解题. 解 记f (x )=kx +b (k ≠0).当k >0时,f (x )在[-3,4]上单调递增,则⎩⎪⎨⎪⎧ f (-3)=-8,f (4)=13,即⎩⎪⎨⎪⎧ -3k +b =-8,4k +b =13,解得⎩⎪⎨⎪⎧ k =3,b =1. 此时直线方程为y =3x +1.当k <0时,f (x )在[-3,4]上单调递减,则⎩⎪⎨⎪⎧ f (-3)=13,f (4)=-8,即⎩⎪⎨⎪⎧-3k +b =13,4k +b =-8,解得⎩⎪⎨⎪⎧k =-3,b =4. 此时直线方程为y =-3x +4.综上所述,所求直线方程为y =3x +1或y =-3x +4.解后反思 初中学习的一次函数y =kx +b 的图象是一条直线,其中常数k 是直线的斜率,常数b 是直线在y 轴上的截距,这恰是直线方程的斜截式,因此可以把直线方程转化为一次函数,利用函数的单调性求解.忽略点斜式使用范围致错例5 已知直线l 过点(1,2)和(a ,b ),求其方程.分析 本题可利用点斜式求直线方程,注意对字母a 进行讨论. 解 当a =1时,直线l 与x 轴垂直,直线l 的方程为x =1; 当a ≠1时,斜率k =b -2a -1,由点斜式,得直线l 的方程为y -2=b -2a -1(x -1).解后反思 本题常见的错误是没有对a 进行分类讨论,而是直接利用斜率公式求斜率,然后套用点斜式写直线方程.在利用点斜式或斜截式求直线方程时,要注意直线方程的点斜式y -y 0=k (x -x 0)的斜截式y =kx +b 都是在斜率k 存在的前提下才能使用的,要认真分析,避免漏解.1.已知直线l 的方程为2x -5y +10=0,且在x 轴上的截距为a ,在y 轴上的截距为b ,则|a +b |等于( ) A.3 B.7 C.10 D.5 答案 A解析 直线l 的方程为2x -5y +10=0,令y =0,得a =-5,令x =0,得b =2,所以|a +b |=|-5+2|=3.2.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为( ) A.2x +y -1=0 B.2x +y -5=0 C.x +2y -5=0 D.x -2y +7=0答案 A解析 所求直线与已知直线垂直,因此其斜率为-2,故方程为y -3=-2(x +1),即2x +y -1=0.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A.x -2y -1=0 B.x -2y +1=0 C.2x +y -2=0 D.x +2y -1=0 答案 A解析 所求直线与已知直线平行,因此其斜率为12,故方程为y =12(x -1),即x -2y -1=0.4.直线(2m 2-m +3)x +(m 2+2m )y =4m +1在x 轴上的截距为1,则m 的值是( ) A.2或12B.2或-12C.-2或-12D.-2或12答案 A解析 令y =0,解得x =4m +12m 2-m +3.由已知得4m+12m2-m+3=1,则4m+1=2m 2-m+3,即2m2-5m+2=0.解得m=2或12(符合题意).故选A.5.已知直线l的倾斜角是直线y=x+1的倾斜角的2倍,且过定点P(3,3),则直线l的方程为.答案x=3解析直线y=x+1的斜率为1,所以倾斜角为45°,又所求直线的倾斜角是已知直线倾斜角的2倍,所以所求直线的倾斜角为90°,其斜率不存在.又直线过定点P(3,3),所以直线l 的方程为x=3.1.建立点斜式方程的依据是:直线上任一点与这条直线上一个定点的连线的斜率相同,故有y-y1x-x1=k,此式是不含点P1(x1,y1)的两条反向射线的方程,必须化为y-y1=k(x-x1)才是整条直线的方程.当直线的斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式方程可看作点斜式的特殊情况,表示过(0,b)点、斜率为k的直线y-b=k(x-0),即y=kx+b,其特征是方程等号的一端只是一个y,其系数是1;等号的另一端是x的一次式,而不一定是x的一次函数.如y=c是直线的斜截式方程,而2y=3x+4不是直线的斜截式方程.一、选择题1.直线方程可表示成点斜式方程的条件是()A.直线的斜率存在B.直线的斜率不存在C.直线不过原点D.直线过原点答案A解析直线的点斜式方程中,斜率必须存在.2.直线y=x-1的斜率和在y轴上的截距分别是()A.-1,1B.1,1C.-1,-1D.1,-1答案D解析直线y=x-1为斜截式方程,其中斜率为1,在y轴上的截距为-1.3.斜率为4,经过点(2,-3)的直线方程是()A.y+3=4(x-2)B.y-3=4(x-2)C.y-3=4(x+2)D.y+3=4(x+2)答案 A解析 由直线的点斜式方程,知所求直线方程为y +3=4(x -2).4.已知直线方程y -3=3(x -4),则这条直线经过的定点和倾斜角分别是( ) A.(4,3),60° B.(-3,-4),30° C.(4,3),30° D.(-4,-3),60°答案 A解析 y -3=3(x -4),得直线过定点(4,3).因为斜率k =3,所以倾斜角为60°. 5.与直线y =2x +1垂直,且在y 轴上的截距为4的直线的斜截式方程是( ) A.y =12x +4B.y =2x +4C.y =-2x +4D.y =-12x +4答案 D解析 ∵直线y =2x +1的斜率为2, ∴与其垂直的直线的斜率是-12,∴直线的斜截式方程为y =-12x +4,故选D.6.若经过原点的直线l 与直线y =33x +1的夹角为30°,则直线l 的倾斜角是( ) A.0° B.60° C.0°或60° D.60°或90° 答案 C7.方程y =ax +1a表示的直线可能是图中的( )答案 B解析 直线y =ax +1a 的斜率是a ,在y 轴上的截距1a .当a >0时,斜率a >0,在y 轴上的截距1a >0,则直线y =ax +1a 过第一、二、三象限,四个选项都不符合;当a <0时,斜率a <0,在y 轴上的截距1a <0,则直线y =ax +1a 过第二、三、四象限,仅有选项B 符合.故正确答案为B.二、填空题8.直线y =kx +2(k ∈R )不过第三象限,则斜率k 的取值范围是 . 答案 (-∞,0]解析 当k =0时,直线y =2不过第三象限; 当k >0时,直线过第三象限; 当k <0时,直线不过第三象限.9.和直线y =-34x +74垂直,且经过点(-2,0)的直线方程是 .答案 y =43x +83解析 因为y =-34x +74的斜率为-34,所以与其垂直的直线的斜率为43.故所求直线方程为y=43(x +2),即y =43x +83. 10.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是 . 答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].11.已知直线y =12x x +k 与两坐标轴围成的三角形的面积不小于1,则实数k 的取值范围是 .答案 k ≥1或k ≤-1解析 令y =0,则x =-2k .令x =0,则y =k ,则直线与两坐标轴围成的三角形的面积为S =12|k |·|-2k |=k 2. 由题意知,三角形的面积不小于1,可得k 2≥1, 所以k 的取值范围是k ≥1或k ≤-1. 三、解答题12.是否存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5? 解 假设存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5. 由题意可知直线l 的斜率一定存在且不为零,设直线的斜率为k (k ≠0), 则直线方程为y +4=k (x +5),则分别令y =0,x =0, 可得直线l 与x 轴的交点为(-5k +4k ,0),与y 轴的交点为(0,5k -4).因为直线l 与两坐标轴围成的三角形的面积为5, 所以12|-5k +4k|·|5k -4|=5,所以-5k +4k·(5k -4)=±10,即25k 2-30k +16=0(无解)或25k 2-50k +16=0, 所以k =85或k =25,所以存在直线l 满足题意,直线l 的方程为y +4=85(x +5)或y +4=25(x +5),即8x -5y +20=0或2x -5y -10=0.13.已知直线l :y =kx +2k +1. (1)求证:直线l 恒过一个定点;(2)当-3<x <3时,直线上的点都在x 轴上方,求实数k 的取值范围. (1)证明 由y =kx +2k +1,得y -1=k (x +2). 由直线方程的点斜式可知,直线恒过定点(-2,1).(2)解 设函数f (x )=kx +2k +1,显然其图象是一条直线(如图所示),若使当-3<x <3时,直线上的点都在x 轴上方,需满足⎩⎪⎨⎪⎧f (-3)≥0,f (3)≥0.即⎩⎪⎨⎪⎧-3k +2k +1≥0,3k +2k +1≥0. 解得-15≤k ≤1.所以,实数k 的取值范围是-15≤k ≤1.。

人教版数学高一必修2学案 第三章 直线与方程 章末复习课

人教版数学高一必修2学案 第三章 直线与方程 章末复习课

章末复习课1.直线的倾斜角与斜率(1)倾斜角与斜率从“形”和“数”两方面刻画了直线的倾斜程度,但倾斜角α是角度(0°≤α<180°),是倾斜度的直接体现;斜率k是实数(k∈(-∞,+∞)),是倾斜程度的间接反映.在解题的过程中,用斜率往往比用倾斜角更方便.(2)倾斜角与斜率的对应关系:当α=90°时,直线的斜率不存在;当α≠90°时,斜率k=tan α,且经过两点A(x1,y1),B(x2,y2)(x1≠x2)的直线的斜率k AB=y2-y1 x2-x1.(3)当α由0°→90°→180°(不含180°)变化时,k由0(含0)逐渐增大到+∞(不存在),然后由-∞(不存在)逐渐增大到0(不含0).2.直线的五种方程及比较名称方程常数的几何意义适用条件点斜式y-y0=k(x-x0) (x0,y0)是直线上的一个定点,k是斜率直线不垂直于x轴斜截式y=kx+b k是斜率,b是直线在直线不垂直于x轴率不存在的直线,两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直和过原点的直线,一般式虽然可以表示任何直线,但要注意A2+B2≠0,必要时要对特殊情况进行讨论.3.两直线的平行与垂直平行或垂直关系求直线的方程或确定方程的系数关系时,要根据题目条件设出合理的直线方程.4.距离问题代数运算与几何图形直观分析相结合.5.直线系方程直线系方程是解析几何中直线方程的基本内容之一,它把具有某一共同性质的直线族表示成一个含参数的方程,然后根据直线所满足的其他条件确定出参数的值,进而求出直线方程.直线系方程的常见类型有:(1)过定点P(x0,y0)的直线系方程是:y-y0=k(x-x0)(k是参数,直线系中未包括直线x=x0),也就是平常所提到的直线的点斜式方程;(2)平行于已知直线Ax+By+C=0的直线系方程是:Ax+By+λ=0(λ是参数,λ≠C);(3)垂直于已知直线Ax+By+C=0的直线系方程是:Bx-Ay+λ=0(λ是参数);(4)过两条已知直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的交点的直线系方程是:A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ是参数,当λ=0时,方程变为A1x+B1y+C1=0,恰好表示直线l1;当λ≠0时,方程表示过直线l1和l2的交点,但不含直线l2).6.“对称”问题的解题策略对称问题主要有两大类:一类是中心对称,一类是轴对称.(1)中心对称①两点关于点对称,设P1(x1,y1),P(a,b),则P1(x1,y1)关于P(a,b)对称的点为P2(2a-x1,2b-y1),即P为线段P1P2的中点.特别地,P(x,y)关于原点对称的点为P′(-x,-y).②两直线关于点对称,设直线l1,l2关于点P对称,这时其中一条直线上任一点关于点P对称的点在另一条直线上,并且l1∥l2,P到l1,l2的距离相等.(2)轴对称①两点关于直线对称,设P 1,P 2关于直线l 对称,则直线P 1P 2与l 垂直,且线段P 1P 2的中点在l 上,这类问题的关键是由“垂直”和“平分”列方程. ②两直线关于直线对称,设l 1,l 2关于直线l 对称.当三条直线l 1,l 2,l 共点时,l 上任意一点到l 1,l 2的距离相等,并且l 1,l 2中一条直线上任意一点关于l 对称的点在另外一条直线上; 当l 1∥l 2∥l 时,l 1与l 间的距离等于l 2与l 间的距离.方法一 分类讨论思想分类讨论思想其实质就是将整体问题化为部分问题来解决.在解题过程中,需选定一个标准,根据这个标准划分成几个能用不同形式解决的小问题,从而使问题得到解决.在本章中涉及到分类讨论的问题主要是由直线的斜率是否存在及直线的点斜式、斜截式、两点式、截距式的局限性引起的分类讨论问题.【例1】 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R )在两坐标轴上的截距相等,求直线l 的方程.解 ①当2-a =0,即a =2时,直线经过原点,满足条件,此时直线的方程为:3x +y =0.②当a =-1时,直线在x 轴上无截距,不符合题意,故当a ≠-1且a ≠2时, 由题意得:a -2a +1=a -2,解得:a =0.此时直线的方程为:x +y +2=0.综上,所求直线方程为3x +y =0或x +y +2=0.【训练1】 直线l 经过点P (2,3),且在x ,y 轴上的截距互为相反数,试求该直线的方程.解 ①当截距都为0时,直线过原点,此时k =32,所以直线方程为y =32x . ②当截距都不为0时,根据题意, 设所求直线的方程为x a +y-a=1.∵直线过点P (2,3),∴2a +3-a=1,得a =-1.∴直线方程x -y +1=0.综上,所求直线方程为x -y +1=0或y =32x . 方法二 数形结合思想“数形结合”是把代数中的“数”与几何上的“形”结合起来认识问题、理解问题并解决问题的思维方法,是人们一种普遍思维习惯在数学上的具体表现.数形结合一般包括两个方面,即以“形”助“数”和以“数”解“形”.数形结合思想是解析几何的灵魂,两点间的距离公式和点到直线的距离公式是数形结合常见的结合点,常用这两个公式把抽象的代数问题转化为几何问题来解决,也能把几何问题转化为代数问题来解决.用数形结合思想解题,主要通过三种途径:①坐标系;②转化;③构造图形,构造函数.【例2】 已知f (x )=|x 2-2x +3-x 2-4x +10|,求f (x )的最大值及相应的x 值.解 由题意,得f (x )=|x 2-2x +3-x 2-4x +10| =|(x -1)2+(0-2)2- (x -2)2+(0-6)2|.如图所示,在直角坐标平面内,设点P (x ,0),A (1,2),B (2,6).∴f (x )=||PA |-|PB ||≤|AB |,当P ,A ,B 三点共线时,等号成立,此时21-x =6-22-1,∴x =6-226-2=1-32.故当x =1-32时,f (x )max =9-4 3. 【训练2】 过点M (0,-3)的直线l 与以点A (3,0)、B (-4,1)为端点的线段AB 有公共点,求直线l 的斜率k 的取值范围.解 如图,直线l 过点A (3,0)时,就是直线MA ,倾斜角α1为最小,此时有tan α1=0-(-3)3-0=1,∴α1=π4.直线l 过点B (-4,1)时,就是直线MB ,倾斜角α2为最大,此时有tan α2=1-(-3)-4-0=-1,∴α2=3π4.故直线l 过点M ,并绕M 转动时,倾斜角α的取值范围是⎣⎢⎡⎦⎥⎤π4,3π4.当α=π2时,直线l 无斜率;当α∈⎣⎢⎡⎦⎥⎤π4,π2时,直线l 的斜率k =tan α∈[1,+∞);当α∈⎝ ⎛⎦⎥⎤π2,3π4时,直线l 的斜率k =tan α∈(-∞,-1].∴直线l 的斜率k 的取值范围是(-∞,-1]∪[1,+∞). 方法三 转化与化归思想把代数问题几何化、几何问题代数化,可使较繁问题直观化、具体化、简单化,从而使问题快速得到解决.【例3】 在直线2x +3y =6上求一点P (x ,y ),使S =xy 的值最大. 解 ∵点P (x ,y )在2x +3y -6=0上,∴y =6-2x3. ∴S =xy =x (6-2x )3=13(-2x 2+6x )=-23⎝ ⎛⎭⎪⎫x -322+32.∴当x =32时,S 取最大值,此时y =1,即点P 为⎝ ⎛⎭⎪⎫32,1.【训练3】 已知在△ABC 中,A (1,1),B (m ,m ),C (4,2),其中1<m <4,求m 为何值时,△ABC 的面积S 最大?解 ∵A (1,1),C (4,2),∴|AC |=(4-1)2+(2-1)2=10. 又直线AC 的方程为x -3y +2=0, ∴点B (m ,m )到直线AC 的距离d =|m -3m +2|10.∴S =12|AC |·d =12|m -3m +2|=12⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫m -322-14.∵1<m <4,∴1<m <2,∴-12<m -32<12,∴0≤⎝ ⎛⎭⎪⎫m -322<14.∴0<S ≤18,当m -32=0,即m =94时S 取得最大值. 方法四 待定系数法(1)求直线方程的主要方法是待定系数法,要掌握直线方程五种形式的适用条件及相互转化,能根据条件灵活选用方程,当不能确定某种方程条件具备时要另行讨论条件不满足的情况.(2)运用直线系方程的主要作用在于能使计算简单.【例4】 过点P (-1,0),Q (0,2)分别作两条互相平行的直线,使它们在x 轴上截距之差的绝对值为1,求这两条直线的方程.解 (1)当两条直线的斜率不存在时,两条直线的方程分别为x =-1,x =0,它们在x 轴上截距之差的绝对值为1,满足题意;(2)当直线的斜率存在时,设其斜率为k ,则两条直线的方程分别为y =k (x +1), y =kx +2.令y =0,分别得x =-1,x =-2k .由题意得⎪⎪⎪⎪⎪⎪-1+2k =1,即k =1.则直线的方程为y =x +1,y =x +2, 即x -y +1=0,x -y +2=0.综上可知,所求的直线方程为x =-1,x =0,或x -y +1=0,x -y +2=0. 【训练4】 求经过两直线l 1:3x +4y -2=0和l 2:2x +y +2=0的交点且过坐标原点的直线l 的方程. 解 ∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ=R ), 即(3+2λ)x +(4+λ)y +2λ-2=0. 将原点坐标(0,0)代入上式,得λ=1, ∴直线l 的方程为5x +5y =0,即x +y =0.1.(2013·安徽高考)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得f(x1)x1=f(x2)x2=…=f(x n)x n,则n的取值范围为()A.{3,4}B.{2,3,4}C.{3,4,5}D.{2,3}解析由题意,函数y=f(x)上的任一点坐标为(x,f(x)),故f(x)x表示曲线上任一点与坐标原点连线的斜率.若f(x1)x1=f(x2)x2=…=f(x n)x n,则曲线上存在n个点与原点连线的斜率相等,即过原点的直线与曲线y=f(x)有n个交点.如图,数形结合可得n的取值可为2,3,4.答案 B2.(2013·四川高考)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.解析由题意可知,若P为平面直角坐标系内任意一点,则|PA|+|PC|≥|AC|,等号成立的条件是点P在线段AC上;|PB|+|PD|≥|BD|,等号成立的条件是点P 在线段BD上.所以到A,B,C,D四点的距离之和最小的点为AC与BD的交点.直线AC方程为2x-y=0,直线BD方程为x+y-6=0.∴⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =2,y =4.即所求点的坐标为(2,4). 答案 (2,4)。

人教版高中数学必修二第3章《直线与方程复习》导学案.doc

人教版高中数学必修二第3章《直线与方程复习》导学案.doc

第三章直线与方程复习三维目标1. 会梳理本章的知识结构;2. 重点知识点的深化与拓展目标三导学做思1问题1 •做以下基础练习(1)直线x +"y +3 =0的倾斜角是( )7TA.c- 3⑵直线3x-4y+5=0关于x轴对称的直线方程是( )A.3x+4y-5=0B.3x+4y+5=0C.-3x+4y-5=0D.-3x+4y+5=0⑶若直线ax+by+c二0通过第一、二、三象限,则( )A. ab>0,bc>0B. ab>0,bc<0C. ab<0,bc>0D. ab<0,bc<0+ _ = _ =(4)直线I过两直线7x 5y 24 一0和x y_0的交点,且点P(5, 1)到直线丨的距离为,则直线I的方程为 ____________________________________ (5)两条平行线分别经过点问题2•梳理本章知识网络【学做思2]1. 在平面直角坐标系中,过点P(4, 1)作一直线I交x轴的正半轴、y轴的正半轴分别于A、B两点,求在两坐标轴上截距之和的最小值,并求出此时直线I的方程.2. 设ZXABC中两条高所在直线的方程为2x-3y+1=0和x+y = O,且它的一个顶点是A(1,2)・(1)求BC边所在直线的方程;(2)求AABC的面积.⑵ 当d 取竽值时,直缁勺方程为 ____________________ .⑶当d=3 2时,直绷方程为 _______________________ •4. 过点P(2,1)作直纹x 、y 轴的正半轴于 A 、B 两点,求使△ ABC 的面积最小时直细勺 方程3. (1)若直kx+2k+1与直给一 是 ___________________ .12x + 2的交点在第一象限,则数 k 的取值岡2+ (b — 3)2的最小值是 ______ ・(2)已知 a, beR,且 a+b+1=0,则(a —2) 达樋「点A(1,2)关于直践x + y-1=0 对称点 + —= 2.已知点M(x, y)在直戏y 2 0上,则 2 2 (X 1) y 的最小值为 3. 若A(6,2) , B(-3, - 1),过点B 的直给点A 的距离为d. (1)d 的取值厂5. 已知△ ABC 中,A(1,1) , B(m, m), C(4,2)(1<m<4),求m 为何值吋,△ ABC 的面积S最大.人教版高中数学必修二导学案。

人教版高中数学必修二导学案:第三章第二节直线的一般式方程

人教版高中数学必修二导学案:第三章第二节直线的一般式方程

第三章第二节直线一般式方程三维目标1.掌握直线方程一般式形式特征;2.会把直线方程一般式化为斜截式,进而求斜率和截距;3.会把直线方程点斜式、两点式化为一般式;4. 学会用分类讨论思想方法解决问题,学会用联系观点看问题.________________________________________________________________________________ 目标三导 学做思1*问题1.到目前为止,我们已经学习了直线方程哪些形式?试写出相应直线方程。

问题2.在平面直角坐标系中,是否每一条直线都可以用一个关于y x ,二元一次方程来表示呢?试说明理由.问题3.在平面直角坐标系中,是否每一个关于y x ,二元一次方程0=++C By Ax (A ,B 不同时为0)都表示一条直线呢?为什么?问题4.什么叫直线一般式方程?问题5.在学习了直线方程点斜式、斜截式、两点式、截距式基础上我们今天学习了直线方程一般式,请思考(1)和直线其它方程形式相比,一般式方程具备怎样特点?(2)在一般式方程0=++C By Ax (A ,B 不同时为0)中,当A,B,C 为何值时,方程表示直线①平行于x 轴 ②平行于y 轴 ③与x 轴重合 ④与y 轴重合【学做思2】1. 把直线l 一般式方程260x y -+=化成斜截式,求出直线l 斜率以及它在x 轴与y 轴上截距,并画出图形.2. 设直线l 方程为22(23)(21)620m m x m m y m --++-+-=,请分别根据下列条件求字母m 值:(1)l 在x 轴上截距是-3; (2)l 斜率为1.【变式】直线l 过P (-6,3),且它在x 轴上截距等于它在y 轴上截距一半,其方程是_____.3.已知直线1l :ay +6=0,直线2l :(a -2)x +3y +2a =0(1)若1l //2l ,求a 值. (2)若1l ⊥2l ,求a 值.达标检测1.已知直线Ax +By +C =0横截距大于纵截距,则A 、B 、C 应满足条件是( )A .A >B B .A <B C.C A +C B >0 D.C A -C B<0 2.直线(a +2)x +(1-a )y -3=0与(a -1)x +(2a +3)y +2=0互相垂直,则a =( )A .-1B .1C .±1D .-323.直线l 1:ax -y +b =0,l 2:bx +y -a =0(ab ≠0)图像只可能是下图中( )4.与直线3x -4y +7=0平行,且在两坐标轴上截距之和为1直线l 方程是____________.5.纵截距为-4,与两坐标轴围成三角形面积为20直线一般式方程为___________.。

人教版高中必修2《直线与方程》单元复习教案

人教版高中必修2《直线与方程》单元复习教案

人教版高中必修2《直线与方程》单元复习教案《人教版高中必修2《直线与方程》单元复习教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教材的地位与作用:在平面几何和立体几何里,我们直接依据几何图形中点、直线、平面的关系研究几何图形的性质。

现在采用另外一种研究方法:坐标法。

坐标法是在坐标系的基础上,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法,它是解析几何中最基本的研究方法。

初步形成用代数方法解决几何问题的能力,体会数形结合的思想。

解析几何是17世纪法国数学家笛卡儿和费马创立的。

解析几何的创立是数学发展史上的一个里程碑,数学从此由常量数学进入变量数学时期。

解析几何由此成为近代数学的基础之一。

二、教材分析:(一)、新课程知识结构:从几何直观到代数表示(建立直线的方程)从代数表示到几何直观(通过方程研究几何性质和度量)1.“直线的倾斜角与斜率”首先探索平面直角坐标系中确定直线位置的几何要素--点和倾斜角。

给出斜率的概念,并用代数方法表示它,导出用两点坐标表示斜率的公式,并根据直线的斜率判断两条直线平行与垂直。

2.“直线的方程”首先在直角坐标系中建立直线的方程,然后介绍直线方程的点斜式、两点式、一般式,最后得出结论:在平面直角坐标系中,一切直线的方程都是二元一次方程,二元一次方程表示直线。

3.“直线的交点坐标与距离公式”通过直线的方程研究两条直线的交点,并由此判断两条直线的位置关系:相交、平行及重合。

通过点的坐标和直线的方程,导出两点间的距离、点到直线的距离以及两平行线间的距离。

(二)、教材的重点与难点:1、重点:(1)、斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。

(2)、根据斜率判定两条直线平行与垂直。

(3)、直线的点斜式方程和一般式方程。

(4)、两条直线的交点坐标。

2、难点:(1)、直线的斜率与它的倾斜角之间的关系,根据斜率判定两条直线互相垂直。

【优选整合】人教A版高中数学必修二第三章直线与方程复习教案

【优选整合】人教A版高中数学必修二第三章直线与方程复习教案

必修二第三章直线与方程复习小结【授课目的】1.知识与技术:(1)掌握直线的五个方程,并能求直线的方程;(2)理解直线之间的地址关系,并能解决相关问题;(3)使学生掌握知识结构与联系,进一步牢固、深入所学知识;(4)经过对知识的梳理,提高学生的归纳知识和综合运用知识的能力。

2.过程与方法:对本章知识进行系统的小结,直观、简短再现所学知识,化抽象学习为直观学习,易于识记;同时凸现数学知识的发展和联系。

3.感神态度价值观:学生经过知识的整合、梳理,搭理直线的方程及其相互联系,进一步培养学生的数形结合思想和解决问题能力。

【重点难点】1.授课重点:各知识点间的网络关系;2.授课难点:利用直线方程相关知识解决问题。

授课过程:一、知识梳理二.典例剖析例 1. 以下命题正确的有⑤:①每条直线都有唯一一个倾斜角与之对应, 也有唯一一个斜率与之对应;②倾斜角的范围是:0 °≤ α <180° , 且当倾斜角增大时, 斜率也增大 ;③过两点A(1,2),B(m,-5)的直线能够用两点式表示;⑤直线 Ax+By+C=0(A,B 不同样时为零 ), 当 A,B,C 中有一个为零时, 这个方程不能够化为截距式.⑥若两直线平行, 则它们的斜率必相等;⑦若两直线垂直, 则它们的斜率相乘必等于-1.例 2. 若直线l1: ax 2 y 6 0 与直线 l 2 : x (a 1) y a 2 1 0 ,则l与l 订交时,a_________; l1// l21 2时, a=__________; 这时它们之间的距离是________; l1 l 2时,a=________ .答案: a 2且 a 1 ;a 1 ;6 5; a 23 5例 3.求满足以下条件的直线方程:(1)经过点 P(2 , -1) 且与直线 2x+3y+12=0 平行;(2)经过点 Q(-1 , 3) 且与直线 x+2y-1=0 垂直;(3)经过点 R(-2 , 3) 且在两坐标轴上截距相等;(4)经过点 M(1, 2) 且与点 A(2,3) 、 B(4,-5) 距离相等;答案: ( 1)2x+3y-1=0(2)2x-y+5=0(3)x+y-1=0或3x+2y=0(4)4x+y-6=0或3x+2y-7=0例 4.已知直线 L 过点( 1,2 ),且与 x, y 轴正半轴分别交于点A、 B ( 1)求△ AOB面积为 4 时 L 的方程;解:设A(a,0),B(0,b)∴ a,b>0∴ L 的方程为xy 1 ∵点( 1,2 )在直线上a b∴ 12 1 ∴ b 2a ① ∵ b>0 ∴ a>1a b a 1(1) S △ AOB= 1ab = 1 a 2a =4 2 2 a 1∴a=2 这时 b=4 ∴当 a=2, b=4 时 S 为 4△AOB此时直线 L 的方程为xy 1 即2x+y-4=02 4yB(1,2)OAx( 2)求 L 在两轴上截距之和为 3 2 2 时L的方程.2a∴ a 2 1 这时 b 2 22) a 3 2 2a 1∴ L 在两轴上截距之和为 3+2 2 时,直线L的方程为y=- 2 x+2+ 2 例5.已知△ ABC的两个极点 A(-10 , 2) , B(6 ,4) ,垂心是 H(5, 2) ,求极点 C 的坐标.解 : ∵k BH 2 42 ∴ k AC1 5 6 2∴直线 AC 的方程为 y 21(x 10)2即 x+2y+6=0 (1)又∵ k AH0 ∴ BC 所在直线与 x 轴垂直故直线 BC 的方程为 x=6 (2)解 (1)(2) 得点 C 的坐标为 C(6,-6)三. 课堂练习 1. 直线 3x y 1 0 的倾斜角等于()A.2 B.C. 5D.33 66【剖析】直线的斜率为3 ,设倾斜角为,则 tan3 ,因为(0, ) ,所以,所以。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章直线与方程复习
三维目标
1.会梳理本章的知识结构;
2. 重点知识点的深化与拓展.
________________________________________________________________________________ 目标三导 学做思1
问题1.做以下基础练习.
(1)直线30x +=的倾斜角是( )
A .6π
B .56π
C .3π
D .23
π (2)直线3x-4y+5=0关于x 轴对称的直线方程是( )
A.3x+4y-5=0
B.3x+4y+5=0
C.-3x+4y-5=0
D.-3x+4y+5=0
(3)若直线ax+by+c=0通过第一、二、三象限,则( )
A. ab>0,bc>0
B. ab>0,bc<0
C. ab<0,bc>0
D. ab<0,bc<0
(4)直线l 过两直线02457=-+y x 和0=-y x 的交点,且点P (5,1)到直线l 的距离为10,则直线l 的方程为_________________________________.
(5)两条平行线分别经过点(1,0)和(0,5),且两条直线的距离为5,它们的方程*分别是________________.
问题2.梳理本章知识网络
【学做思2】
1.在平面直角坐标系中,过点P(4 , 1)作一直线l交x轴的正半轴、y轴的正半轴分别于A 、
B 两点,求在两坐标轴上截距之和的最小值,并求出此时直线l的方程.
2. 设△ABC中两条高所在直线的方程为2x-3y+1=0和x+y=0,且它的一个顶点是A(1,2).
(1)求BC边所在直线的方程;(2)求△ABC的面积.
3.(1)若直线y =kx +2k +1与直线y =-12
x +2的交点在第一象限,则实数k 的取值范围是___________________.
(2)已知a ,b ∈R ,且a +b +1=0,则(a -2)2+(b -3)2的最小值是________.
达标检测
1. 点A(1,2)关于直线l :x + y -1=0对称点1A 的坐标为____________.
2. 已知点M(x ,y)在直线20x y +-=的最小值为 __________.
3. 若A(6,2),B(-3,-1),过点B 的直线l 与点A 的距离为d.
(1)d 的取值范围为________________;
(2)当d 取最大值时,直线l 的方程为________________.
(3)当d =32时,直线l 的方程为________________.
4. 过点P(2,1)作直线l 交x 、y 轴的正半轴于A 、B 两点,求使△ABC 的面积最小时直线l 的方程
5. 已知△ABC 中,A(1,1),B(m ),C(4,2)(1<m<4),求m 为何值时,△ABC 的面积S 最大.。

相关文档
最新文档