WFMC-TC-1011-Terminology and Glossary(en)

合集下载

稳定表达猪δ_冠状病毒S1_蛋白CHO_细胞系的构建与鉴定

稳定表达猪δ_冠状病毒S1_蛋白CHO_细胞系的构建与鉴定

河南农业科学,2023,52(6):131‐138Journal of Henan Agricultural Sciencesdoi :10.15933/ki.1004‐3268.2023.06.014稳定表达猪δ冠状病毒S1蛋白CHO 细胞系的构建与鉴定孙雪珂1,2,丁培阳3,王思桥1,2,刘思源2,李明慧2,常泽杰2,陈艺兰2,李瑞琪2,张改平1,2,4(1.河南农业大学生命科学学院,河南郑州450002;2.河南省农业科学院动物免疫学重点实验室,河南郑州450002;3.郑州大学生命科学学院,河南郑州450001;4.江苏高校动物重要疾病与人兽共患病防控协同创新中心,江苏扬州225009)摘要:为构建稳定表达猪δ冠状病毒(PDCoV )S1蛋白的CHO 细胞系,利用电转染技术将重组质粒pCGS3-S 1转染至CHO 细胞,通过有限稀释法筛选稳定表达重组S1蛋白的单克隆细胞系。

利用阴离子交换层析和凝胶过滤层析方法对重组S1蛋白进行纯化,采用间接ELISA 方法检测重组S1蛋白活性。

将纯化的重组S1蛋白免疫BALB/c 小鼠,通过间接ELISA 、间接免疫荧光试验(IFA )及病毒中和试验对重组S1蛋白免疫原性进行检测。

结果显示,稳定表达PDCoV S1蛋白的CHO 细胞系成功建立,并获得了纯度高于90%、产量为28.5mg/L 的重组S1蛋白;且重组S1蛋白与PDCoV 阳性血清反应性良好,具有良好的免疫原性,中和效价为1∶128。

综上,成功建立了稳定表达PDCoV S1蛋白的CHO 细胞系,且纯化获得的重组S1蛋白具有良好的生物学活性。

关键词:猪δ冠状病毒;S1蛋白;CHO 细胞;稳定表达;蛋白质纯化中图分类号:S855.3文献标志码:A文章编号:1004-3268(2023)06-0131-08收稿日期:2023-01-14基金项目:河南省重大科技专项(221100110600)作者简介:孙雪珂(1997-),女,河南新乡人,在读硕士研究生,研究方向:动物免疫学。

基于MSP430F44的血氧测量仪设计_李天鹰

基于MSP430F44的血氧测量仪设计_李天鹰
心脏是人体内部的发动机 ,驱动人体的各个部分 正 常 运转,在心脏的周期 性 跳 动 过 程 中 ,血 流 以 波 的 形 式 从 主 动脉血管开始向人 体 的 动 脉 系 统 传 播 ,形 成 脉 搏 波,从 脉 搏波中可提取人体的各种生理信息 ,脉搏波所表现出 的 波 形、波的幅值、波的频率和周期等方面的综合信息 ,可 基 本 展示人体心血管系统中许多生理病理特征 ,通过对这 些 特 征的分析和判断 ,医 护 人 员 可 以 准 确 诊 断 出 患 者 的 病 因 , 因此对脉搏波采集和处理在医学上具有广阔的前景和应 用价值。由于人体的生理信号为低频信号且通常有强噪 声干扰,因此红外传感器采集到的信号必需经过放大 和 滤 波才能满足处理器的要求。
图 1 硬 件 系 统 结 构
图 4 截 止 频 率 为 0.1Hz的 二 阶 高 通 滤 波 器
第7期 李天鹰:基于 MSP430F44的血氧测量仪设计
· 139 ·
2.4 信 息 显 示 与 供 电 测量结果选用液晶屏1602LCD 显示而 不 是 使 用 数 码
检测人体血液中氧的含有量是判别人体呼吸系统和 人体循环系统是否缺氧的重要指标。血氧测量仪以往仅 在病人手术和监护时使用 ,近年来随着科技进步和人 们 生 活水平的提高,血氧 测 量 仪 正 逐 步 走 向 大 众 ,为 人 们 提 供 了 直 接 ﹑ 快 速 ﹑ 有 效 的 血 氧 含 量 参 数 。 [1]
图 5 主 பைடு நூலகம் 序 流 程 图 6 中 断 服 务 程 序 流 程
提高血氧测量仪测量精度的主要方法有 :对于强 光 干
扰情况,可采取削弱 背 景 光 的 处 理 方 法 ,使 红 外 传 感 器 处
于相对密闭系统 ,保证红外传感器不透光 ,即密闭处 理 法。

工作流技术在高职院校人事系统中的应用

工作流技术在高职院校人事系统中的应用

工作流技术在高职院校人事系统中的应用重庆电子工程职业学院,重庆401331摘要高职教育体制和教学方式的变革,引起高职院校的人员结构的巨大变化,人事管理的相关流程也需要做相应的调整。

高职院校急需自动化、智能化的人事管理系统来提高人事管理的效率和科学水平。

本文就具备高度的自动化、智能化,卓越的人机交互能力的基于工作流技术在人事管理系统中的应用进行探讨。

关键词人事管理系统;工作流技术;应用中图分类号tp31 文献标识码a 文章编号1674-6708(2012)61-0170-011 工作流技术概述1.1 基本概念工作流的定义是:一种自动化的工作流程;在这整个或者部分过程中,文档、信息或者任务将根据一系列过程规则,在不同的执行者之间传递与执行。

工作流定义元模型如图1所示。

1.2 工作流的特点及应用价值现代工作流技术的主要特点从下几个方面体现。

第一个是计算机管理。

工作流管理是由计算机管理的企业业务流程,而不是手工管理的流程,也不是部分步骤由计算机来完成的计算机应用。

第二个是自动流转:流程实现任务及任务信息在流程参与人之间自动流转,无需手工指派任务。

第三个是流程有显式或隐式的计算机定义:定义明确描述了流程在计算机上执行所需要的一切信息。

在信息化普遍应用的今天,工作流技术在办公室环境得到广泛应用。

它的应用价值主要体现在以下三方面。

其中之一是协助执行涉及多人(多个部门)相关任务的工作。

工作流技术强大的交互能力,可很方便的将业务涉及的人员纳入流程执行过程。

之二是作为企业应用集成(enterprise application integration,eai)的平台。

具有扩展性的工作流管理系统能方便的结合企业的专门业务应用,具备整合企业应用于统一平台的能力。

最后是嵌入式工作流引擎。

工作流引擎能够作为一个独立的模块嵌入到企业的专门应用中,提升应用的交互性、扩展性。

同时也改善了系统的可维护性。

引入工作流管理技术的优势表现在:1)提高运转效率。

工作流参考模型

工作流参考模型

工作流参考模型(Workflow reference model)是由工作流管理联盟于1995年提出的工作流管理系统的体系结构模型。

工作流参考模型标识了构成工作流管理系统的基本部件和这些基本部件交互使用的接口。

这些基本部件包括:工作流执行服务、工作流引擎、流程定义工具、客户端应用、调用应用、管理监控工具;基本部件交互使用的接口包括:接口一、接口二、接口三、接口四和接口五。

这个模型很大地影响了人们后来对工作流技术的讨论。

[编辑]参考模型中的部件工作流参考模型标识的基本部件和接口如下:▪工作流执行服务是工作流管理系统的核心部件,它的功能包括创建、管理流程定义,创建、管理和执行流程实例;在执行上述功能的同时,应用程序可能会通过编程接口同工作流执行服务交互;一个工作流执行服务可能包含有多个分布式工作的工作流引擎。

▪工作流引擎是为流程实例提供运行环境并解释执行流程实例的软件部件。

▪流程定义工具是管理流程定义的工具,它可能通过图形方式把复杂的流程定义显示出来并加以操作;流程定义工具同工作流执行服务交互。

▪客户端应用是通过请求的方式同工作流执行服务交互的应用,也就是说是客户端应用调用工作流执行服务;客户端应用同工作流执行服务交互。

▪调用应用是被工作流执行服务调用的应用;调用应用同工作流执行服务交互。

为了协作完成一个流程实例的执行,不同的工作流执行服务之间进行交互。

▪管理监控工具主要指组织机构、角色等数据的维护管理和流程执行情况的监控;管理监控工具同工作流执行服务交互。

[编辑]参考模型中的接口▪接口一(工作流定义交换),用于在建模和定义工具与执行服务之间交换工作流定义。

主要是数据交换格式和API。

数据交换通过XPDL,API通过WAPI。

▪接口二(工作流客户端应用接口),用于工作流客户端应用访问工作流引擎和工作列表,通过WAPI完成。

▪接口三(被调用的应用接口)用于调用不同的应用系统。

▪接口四(工作流系统互操作接口),用于不同工作流系统之间的互操作。

ADAMTSL5与银屑病

ADAMTSL5与银屑病

ADAMTSL5与银屑病发表时间:2018-04-19T13:10:31.387Z 来源:《医药前沿》2018年4月第12期作者:袁育林杨霞芳[导读] 可以成为银屑病中产生IL-17的CD8+ T细胞的活化抗原。

对ADAMTSL5的深入研究为阐明银屑病发病机制及靶向治疗带来了新希望。

(南宁市广西壮族自治区人民医院检验科广西南宁 530021)【中图分类号】R758.63 【文献标识码】A 【文章编号】2095-1752(2018)12-0014-03银屑病是一种常见的慢性复发性炎症性皮肤病。

其发病机制非常复杂,包括遗传、环境、免疫等多种因素参与其中。

虽然基于广泛的遗传,免疫和药理学证据,T细胞在银屑病发病机制中的作用已被广泛接受,但免疫系统在银屑病中被触发的机制仍然是一个迷。

银屑病易感基因座PSORS1上的HLA-C*06:02(6p21.33)是银屑病主要风险等位基因。

最近的研究显示ADAMTS样蛋白5(ADAMTSL5)作为Vα3S1/Vβ13S1TCR的HLA-C*06:02呈递的黑素细胞自身抗原,可导致产生IL-17的T细胞的活化,从而引起银屑病发病。

本文将对这一新鉴定的银屑病的自身抗原作简要综述。

1.ADAMTSL5 的结构与功能1.1 ADAMTSL5结构含凝血酶敏感蛋白-1(TSP-1)基序的解聚蛋白样金属蛋白酶(a disintegrin-like and metalloproteinase with thrombospondin motifs,ADAMTS)超家族是一类整合于细胞外基质或游离于血浆中的基质金属蛋白酶亚家族,包括19种不同的ADAMTS蛋白[1]和至少7种ADAMTS-like(ADAMTSL)蛋白(ADAMTSL1-6和papilin)[2-3]。

ADAMTSL5是具有独特结构域的分泌型蛋白质,其包含N-末端TSR,富含半胱氨酸的模块,间隔基模块和C末端NTR模块,其通过富含脯氨酸的片段连接到间隔区(见图1)。

非生物胁迫诱导的棉花酵母双杂交文库构建及GhJAZ1互作蛋白筛选

非生物胁迫诱导的棉花酵母双杂交文库构建及GhJAZ1互作蛋白筛选

核农学报2023,37(11):2158~2165Journal of Nuclear Agricultural Sciences非生物胁迫诱导的棉花酵母双杂交文库构建及GhJAZ1互作蛋白筛选蔡肖李兴河王海涛刘存敬唐丽媛张素君张建宏*(河北省农林科学院棉花研究所/农业农村部黄淮海半干旱区生物学与遗传育种重点实验室/国家棉花改良中心河北分中心,河北石家庄050051)摘要:非生物胁迫导致棉花生长发育受到抑制,严重影响棉花的产量和品质。

为了深入探究棉花非生物逆境响应的分子作用机制并鉴定GhJAZ1的互作蛋白,本研究以陆地棉标准系TM-1为材料,采用Gateway重组技术构建了非生物胁迫诱导的陆地棉酵母双杂交cDNA文库,获得的初级文库总克隆数为1.2×107 CFU,次级文库总克隆数为1.6×107 CFU,重组阳性率100%,酵母文库滴度为5.0×107 cells·mL-1,酵母克隆平均插入片段>1 000 bp,符合建库标准,可用于后续酵母双杂交筛选。

以GhJAZ1为诱饵,构建pGBKT7-GhJAZ1诱饵蛋白表达载体,经毒性检测及自激活活性检测,明确了诱饵质粒在酵母系统中无毒性和自激活活性,可直接用于酵母文库筛选。

利用酵母双杂交筛选构建的非生物胁迫诱导的酵母cDNA文库,得到72个初筛阳性克隆,经测序、序列比对和酵母回转验证,获得11个与GhJAZ1相互作用的候选蛋白。

选取其中4个候选蛋白,利用酵母双杂交进一步确认了GhJAZ1与候选蛋白的相互作用关系。

本研究结果为深入分析棉花非生物胁迫响应的调控网络奠定了良好的基础,为解析GhJAZ1低温应答分子机理提供了重要参考。

关键词:棉花;互作蛋白;酵母双杂交;非生物胁迫;GhJAZ1DOI:10.11869/j.issn.1000‑8551.2023.11.2158JAZ(Jasmonate ZIM-domain)蛋白作为E3泛素连接蛋白降解复合体SCF COI1的靶蛋白,是茉莉素(jasmonic acid,JA)信号转导途径中重要的转录抑制因子之一[1-2]。

小麦条锈菌和叶锈菌的复合PCR检测

小麦条锈菌和叶锈菌的复合PCR检测

Ke o d :C e ci ; uc i s iom s .s.tt i P cii tt i yw rs P R dt t n P ci a tir i f p ri ; uc a rin e o n r f ic n ic a 由专 性寄 生 的小麦 条 锈 菌 ( uc i s iomi P ci a ti r s n r f fs.ri ) 叶锈 菌 ( uc i ttia 引 起 的 条 .p tt i 和 ic P ci a ri n ) n ic 锈病 和叶锈病 在西北 、 南 、 西 华北 、 东北和 长江 中下 游麦 区发生普遍 , 重 影 响 中国小 麦 的安 全生 产 . 严 综合 治理西北 和西南锈 菌越夏易 变区 , 减少 菌源 的 传播扩 散 ; 在全 国各 大 麦 区进 行种 植结 构 调整 , 提 小 麦锈病 的预测 预报 主要 基于定期 、 大规模 的 田间
第 4 4卷 第 1期
2 0焦 01
河 南 农 业 大 学 学 报
J u n lo n n Ag iu u a i e st o r a fHe a rc h r lUn v riy
Vo . 4 No. 14 1 Fe b. 2 0 01
2月
文章 编 号 :00— 30 2 1 ) 1 0 7 O 10 2 4 (00 0 — 0 4一 4
b p和 叶锈 茵 2 6 b 2 p的特 异 性 D A 片段 , 检 测 灵敏 度 可 达到 5 g・ 模 板 D A 浓 度 水 平 . 此基 础 上 , N 其 0t L x N 在 可
进 一 步 制备 小麦 锈 菌 不 同种 的 分 子诊 断 、 测试 剂 盒 . 检
关 键 词 :C P R检 测 ; 小麦 条锈 菌 ; 麦叶 锈 菌 小 中图 分类 号 :4 2 4 S 3 . 文献 标 志 码 : A

国内外菌种保藏机构名称与缩写

国内外菌种保藏机构名称与缩写

国内菌种保藏机构名称与缩写ACCC 中国农业微生物菌种保藏管理中心ISF 中国农业科学院土壤肥料研究所SH 上海市农业科学院食用菌研究所CACC 抗菌素菌种保藏管理中心IA 中国医学科学院抗菌素研究所SIA 四川抗菌素工业研究所CGMCC 普通微生物菌种保藏管理中心AS 中国科学院微生物研究所AS-IV 中国科学院武汉病毒研究所CFCC 林业微生物菌种保藏管理中心CAF 中国林业科学院菌种保藏管理中心CICC 工业微生物菌种保藏管理中心IFFI 轻工业部食品发酵工业科学研究所CMCC 医学微生物菌种保藏管理中心ID 中国医学科学院皮肤病研究所NICPB 卫生部药品生物制品监察所IV 中国医学科学院病毒研究所CVCC 兽医微生物菌种保藏管理中心CIVBP 中国兽医药品监察所YM 云南省微生物研究所GIMCC 广东省微生物研究所微生物菌种保藏中心CCTCC 中国典型培养物保藏中心,武汉大学CCDM 华中农业大学菌种保藏中心,华中农业大学CMBGCAS 海洋微生物中心HKUCC 香港大学保藏中心,香港大学CUHK 香港中文大学保藏中心,香港中文大学BCRC 台湾生物资源保藏研究中心,台湾新竹国外菌种保藏机构名称与缩写1.A TCC(American Type Culture Collection)美国典型菌种保藏中心ATCC 主要从事农业、遗传学、应用微生物、免疫学、细胞生物学、工业微生物学、菌种保藏方法、医学微生物学、分子生物学、植物病理学、普通微生物学、分类学、食品科学等的研究。

该中心保藏有藻类111株,细菌和抗生素16865株,细胞和杂合细胞4300株,丝状真菌和酵母46000株,植物组织79株,种子600株,原生动物1800株,动物病毒、衣原体和病原体2189株,植物病毒1563种。

另外,该中心还提供菌种的分离、鉴定及保藏服务。

该中心保藏的菌种可出售。

2.NBRC (NITE Biological Resource Center)日本技术评价研究所生物资源中心NBRC(IFO)是由日本经济部、商业部、工业部支持的半政府性质菌种保藏中心。

Petri网的OA工作流模型的研究与设计_陈立

Petri网的OA工作流模型的研究与设计_陈立

4)dom(F)∪ cod(F)=S ∪ T 其中 dom(F)={x| y: (x,y) F}、cod (F)={y| x: (x y) F}分别为 F 的定义域和 值域。 S 和 T 分别称为 N 的库所(P l a c e )集 和变迁(Transition)集,F 为流关系(Flow Relation) 。库所和变迁又称为 S 元素和 T 元素, 或 S 元和 T 元。X = S ∪ T 称为 N 的元 素集。F 是 由 一 个 S 元 素 和 一 个 T 元素组 成 的 有 序 偶 的 集 合 , 称为 N 的 流 关 系 。
97
一线技术
始模型图。 图 8 :第一步化简结果
W F _ L O G I C 肯定是 畅通的。 图 4 :工作流原始模型图 从实际的业务流程来看,这个流程还 只是一个基本流程,还需要进一步完善。 第一:在 实 际 流 程 中 一 份 公 文 拟 稿 交 部 门 领 导 审 核 批 阅 中 ,可 能 不 合 格 ,则 要 求 回 到 t 1 重新拟稿,这里需要加一条 t 2 到 t 1 的 路由。第二:该公文可能与其它部门无关, 则 t 2 不需要其它部门会签,也有可能不要 提交办公室主任审核而直接提交领导签 发,因此这里需要加一条 t 2 到 t 8 的路由和 一条 t 2 到 t 9 的路由。第三:会签可能不能 通 过 ,则 要 返 回 到 部 门 领 导 , 因 此 要 添 加 一条 t 7 到 t 2 的路由。第四:办公室主任审 核可能不通过,则要返回到部门领导 t 2 重 新审核拟稿,这里也要加一条 t 8 到 t 2 的路 由。第五:领 导 审 核 不 通 过 ,同 样 需 要 回 到 t 8 重新审核,也要加一条 t 9 到 t 8 的路由。 经过上述完善,图 4 的工作流原始模型发 展 为 完 整 工 作 流 模 型 , 如图 5 所 示 。本文 中仅对一个基本的工作流程模型设计作了 介 绍 ,对 于 完 整 的 复 杂 的 工 作 流 程 可 以 以 本例为基础,结合 P r / T _ 系统、有色网系 统等高级 P e t r i 网技术来实现。 下面我们就来验证我们前面设计的工 作 流 模 型 的 逻 辑 的 正 确 性 ,证 明 之 前 ,我 们先了解几个要用到的化简规则[ 4 ]: 规则 1:若 p 1 =(T 1 ,T, (a,a 1 )和 p 2 = (T ,T 2 , (b 1 ,b ) )满足 a 1 = b 1 ,则可以化 简为 p = (T 1 , T 2 , (a , b ) ) 。 规则 2 :若变迁 t 和库所 p 1 ,p 2 满足 t ∈ p 1 ・∧{t}= ・p 2 且 p 2 ・≠Φ∨ p 1 ・={t} , 则 p 1 和 p 2 可以完全合并为 p , ・p = ・p 1 ,p ・ =p 1 ・∪ p 2 ・-{t} 。若 p1 中有托肯,则 p 中 也对应存在。 规则 3:同步器 pi=({t}, {ti}, (1,1) ) , i = 1 ,2 ,…,a ,则可以合并为同步器 p = ({t}, {t 1 ,t2 ,…,t a}, (1,a) ) 。 同步器 pi=({t i}, {t}, (1,1) ) ,i=1, 2 ,…,a ,则可以合并为同步器 p = ({ t 1 , t2 ,…,t a }, {t}, (a,1) ) 。 了解这些规则后,我们对前面的工作 流逻辑进行验证,根据前面的 W F _ N E T , 其对应的 W F _ L O G I C 如图 6 所示。 在图 7 中,我 们 根 据 前 面 的 化 简 规 则 进行化简: 第一 步,我们 根 据 前 面 叙 述 的规则 3 对 t3 ,t4 , t5,t6,t7 进 行 化 简,如图 7 第一步 图 5 :完整工作流网模型 三、工作流模型的正确性分析 对于设计好的工作流模型的工作流逻 辑,如 何 保 证 其 正 确 性 呢 , 在 这 里 我 们 必 须了解一个正确 W F _ L O G I C 的性质:畅通 性。一个正确的 W F _ L O G I C 应该保证入口 库 所 中 的 托 肯 经 过 传 递 、复 制 及 合 并 能 流 动 到 一 个 终 点 库 所 ,而 且 与 冲 突 消 解 方 案 无关,这被称之为畅通性(t r o u g h n e s s ) 。 因此,我 们 只 需 证 明 W F _ L O G I C 是畅通 性。那 么 我 们 如 何 来 证 明 其 畅 通 性 呢 ? 对 于一个树或者图我们有很多证明畅通的方 法,在 W F - L O G I C 中,我们可以利用 W F _ L O G I C 的结构,在 W F _ L O G I C 中找 出 局 部 畅 通 结 构 ,通 过 不 改 变 畅 通 性 的 方 式 将 其 化 简 ,最 后 如 果 能 逐 步 化 简 成 为 一 个没有变迁的结构:一个库所,则 图 7 :第一步化简图 图 6 :发文工作流逻辑图 所示;然后根据规则 1 ,将工作流逻辑再 进 一 步 化 简 ,可 以 得 到 图 8 。

冰冻切片技术在小麦条锈菌研究中的应用初探

冰冻切片技术在小麦条锈菌研究中的应用初探

文章编号:1673-887X(2023)06-0065-04冰冻切片技术在小麦条锈菌研究中的应用初探徐晨1,殷水宁2,丁利1(1.西北大学生命科学学院,陕西西安710127;2.中国科学院分子植物科学卓越创新中心,上海200032)摘要小麦条锈病是小麦生产上的重要病害,其病原菌为Puccinia striiformis West.f.sp.tritici即条形柄锈菌(小麦专化型)。

目前主要利用石蜡切片、半薄切片和超薄切片等技术从细胞学方面对该菌生长发育进行研究,或利用整叶固定透明技术从组织学方面进行研究。

文章应用冰冻切片技术研究小麦条锈菌在寄主细胞内的生长发育,结果表明该技术操作简便快速,结果准确,在小麦条锈病及其他植物病害的快速诊断和鉴定中有着广阔的应用前景。

关键词小麦条锈菌;冰冻切片技术;应用中图分类号S512.1文献标志码A doi:10.3969/j.issn.1673-887X.2023.06.022Application of Frozen Section Technology in the Study of Wheat Stripe Rust FungusXu Chen1,Yin Shuining2,Ding Li1(1.The College of Life Sciences,Northwest University,Xi'an710127,Shaanxi,China;2.CAS Center for Excellence in Molecular Plant Sciences,Shanghai200032,China)Abstract:Wheat stripe rust caused by Puccinia striiformis West.f.sp.tritici was one of the most important epidemic diseases of wheat in the world.The growth and development of this fungi was studied mainly through cytology via the methods of paraffin sec‐tion,semi-thin section and ultra-thin section etc.and histology via the whole leaf fixing transparent method.These methods were complex and time-consuming in the process of sample preparation.Frozen section technology was applied to the research of wheat stripe rust fungi in this study.The results indicated that the frozen section technology was simple in operation,quick in sample prepa‐ration,accurate in results which made this technology had a broad prospects in the study of wheat stripe rust and other plant diseases. Key words:wheat stripe rust,frozen section technique,apply小麦条锈病是世界小麦生产上的一种重要病害,尤其在高纬度或高海拔的冷凉地区为害严重。

湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测

湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测

麦类作物学报 2024,44(4):432-441J o u r n a l o fT r i t i c e a eC r o ps d o i :10.7606/j.i s s n .1009-1041.2024.04.04网络出版时间:2024-03-19网络出版地址:h t t ps ://l i n k .c n k i .n e t /u r l i d /61.1359.S .20240319.0900.002湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测收稿日期:2023-09-18 修回日期:2023-12-22基金项目:国家自然科学基金(青年)项目(32101803);湖北省农业科学院粮食作物研究所创新基金(2022Z Z C X 001)第一作者E -m a i l :395045924@q q .c o m (徐晴)通讯作者E -m a i l :d o n g j i n gs i r 061@163.c o m (董静)徐晴1,郑丹2,许甫超1,秦丹丹1,董建辉3,葛双桃1,朱展望1,董静1(1.湖北省农业科学院粮食作物研究所/种质创新与遗传改良湖北省重点实验室,湖北武汉430064;2.湖北省农业科学院农业质量标准与检测技术研究所,湖北武汉430064;3.湖北省农业科学院,湖北武汉430064)摘 要:赤霉病是由禾谷镰刀菌引起的小麦穗部病害,严重危害小麦生产,抗赤霉病品种选育是减轻其危害的重要途径之一㊂本研究以湖北省不同时期审定的59个小麦品种和选育的7份优异品系为材料,采用喷雾接种对其进行田间赤霉病抗性鉴定,并利用抗性基因F h b 1功能性分子标记和主效抗性基因(F h b 2㊁F h b 4㊁F h b 5和Q F h s .c r c -2D L )连锁分子标记对供试材料进行检测,分析其遗传分布和利用状况;同时分析湖北小麦品种(系)赤霉病抗性㊁株高和小穗密度等性状年代间的差异㊂结果表明,16份供试材料赤霉病抗性水平达到中抗,占比24.2%,以810619品系抗性最好,病情指数略低于苏麦3号;42份材料达到中感,占63.6%㊂分子检测结果显示,仅鄂T 45048携带F h b 1;鄂麦11㊁鄂麦18和810619等29份材料(43.9%)可能携带F h b 5和Q F -h s .c r c -2D L 单个或2个抗性基因,说明这2个抗性基因在湖北小麦赤霉病抗性育种中得到了较多应用㊂赤霉病抗性与株高的相关性分析结果显示,近15年湖北小麦品种株高持续降低,但其与赤霉病抗性无显著相关㊂研究结果为明确湖北小麦品种赤霉病抗性水平和分子遗传基础提供了参考㊂关键词:小麦;赤霉病抗性鉴定;分子检测;株高中图分类号:S 512.1;S 330 文献标识码:A 文章编号:1009-1041(2024)04-0432-10F u s a r i u m H e a dB l i g h tR e s i s t a n c eE v a l u a t i o na n dM o l e c u l a rC h a r a c t e r i z a t i o n o f 66W h e a tM a t e r i a l s f r o m H u b e i P r o v i n c eX U Q i n g 1,Z H E N GD a n 2,X UF u c h a o 1,Q I ND a n d a n 1,D O N GJ i a n h u i 3,G ES h u a n g t a o 1,Z H UZ h a n w a n g 1,D O N GJ i n g1(1.F o o dC r o p I n s t i t u t e o fH u b e iA c a d e m y o fA g r i c u l t u r a l S c i e n c e s /H u b e iK e y L a b o r a t o r y o f F o o dC r o p G e r m p l a s m s a n dG e n e t i c I m p r o v e m e n t ,W u h a n ,H u b e i 430064,C h i n a ;2.I n s t i t u t e o fA g r i c u l t u r a lQ u a l i t y S t a n d a r d s a n dT e s t i n g T e c h n o l o g y R e s e a r c h ,H u b e iA c a d e m y o fA g r i c u l t u r a l S c i e n c e sW u h a n ,H u b e i 430064,C h i n a ;3.H u b e iA c a d e m y o fA gr i c u l t u r a l S c i e n c e s ,W u h a n ,H u b e i 430064,C h i n a)A b s t r a c t :F u s a r i u mh e a db l i g h t (F H B )i s a s e r i o u s s p i k e d i s e a s e c a u s e db y Fu s a r i u m g r a m i n e a r u m i n w h e a t ,s e r i o u s l y a f f e c t i n g t h e p r o d u c t i o no fw h e a t .T h e a p pl i c a t i o no f r e s i s t a n t c u l t i v a r i s o n eo f t h e c r u c i a lw a y s t o r e l i e v e t h e d a m a g e o f t h e d i s e a s e .I n t h i s s t u d y ,59w h e a t c u l t i v a r s a n d 7e l i t e b r e e d i n gl i n e sw e r eu s e d t o i n v e s t i g a t e t h eF H Br e s i s t a n c e i n f i e l db y s p r a y i n o c u l a t i o n ,a n d t h em a jo r r e s i s t -a n c e g e n e s a n d g e n e l o c i ,s u c h a s F h b 1,F h b 2,F h b 4,F h b 5a n d Q F h s .c r c -2D L w e r e d e t e c t e db y f u n c -t i o n a l o r c l o s e l y l i n k e dm a r k e r s .B e s i d e s ,t h e d i f f e r e n c e s o f F H Br e s i s t a n c e a n d p l a n t h e i gh t b e t w e e n t h ew h e a t v a r i e t i e sr e l e a s e d i n2008o re a r l i e ra n dt h ev a r i e t i e sr e l e a s e d i n2009o r l a t e rw e r ec o m -pa r e d .T h e r e s u l t s s h o w e d t h a t 16w h e a tm a t e r i a l sw e r e i d e n t i f i e da sm o d e r a t e r e s i s t a n c e ,w h i c ha c -c o u n t e d f o r 24.2%.S p e c i f i c a l l y ,t h e l i n e 810619s h o w e d t h e l o w e s t d i s e a s e i n d e x a m o n g al l t h e e v a l u -a t e d l i n e s ,a n dw a s o n l y a l i t t l eb i th i g h e r t h a nt h e r e s i s t a n c e c o n t r o l v a r i e t y ofS u m a i 3.T h e r e f o r et h e l i n e810619c a nb e c o n s i d e r e da sa ne l i t en e ws o u r c e f o rF H Bb r e e d i n g.M o r e o v e r,42m a t e r i a l s w e r e i d e n t i f i e da sm o d e r a t es u s c e p t i b i l i t y t oF H B,w h i c hc o u n t e df o r63.6%o f t h e t o t a l e x a m i n e d m a t e r i a l s.M o l e c u l a rm a r k e ra n a l y s i ss h o w e dt h a to n l y T45048c o n t a i n e dt h e F h b1r e s i s t a n c e g e n e, w h e r e a s29w h e a tm a t e r i a l s s u c ha sE m a i11,E m a i18,a n d810619c o n t a i n e d i n d i v i d u a l o rb o t ho f t h e t w o r e s i s t a n c e l o c i F h b5a n d Q F h s.c r c-2D L,s u g g e s t i n g t h a t t h e s e t w o l o c iw e r em o r e f r e q u e n t l y u s e d i n t h e F h b r e s i s t a n c e b r e e d i n g p r o g r a mi nH u b e i P r o v i n c e.C o r r e l a t i o n a n a l y s i s b e t w e e n t h e F H B d i s e a s e i n d e xa n d p l a n t h e i g h t o f t h e t e s t e dw h e a t l i n e s f r o md i f f e r e n t y e a r s s h o w e d t h a t e v e n t h o u g h t h e p l a n t h e i g h t c o n t i n u o u s l y d e c r e a s e du p o nt h e t i m e,t h eF H Bs e v e r i t y w a sn o t i n c r e a s i n g s i g n i f i-c a n t l y.N os i g n i f i c a n tc o r r e l a t i o n w a so b s e r v e db e t w e e nt h eF H Bs e v e r i t y a n d p l a n th e i g h t i nt h e w h e a t v a r i e t i e s s i n c e2009.T h i ss t u d yp r o v i d e sn e wi n s i g h t s f o ru n d e r s t a n d i n g t h eF H Br e s i s t a n c e a n dm o l e c u l a r b a s i s o f t h e c u l t i v a r s b r e d i nH u b e i P r o v i n c e.K e y w o r d s:W h e a t;F H Br e s i s t a n c e e v a l u a t i o n;M o l e c u l a r d e t e c t i o n;P l a n t h e i g h t赤霉病(F u s a r i u m h e a db l i g h t)主要是由禾谷镰刀菌引起的小麦真菌病害,温暖湿润的气候条件利于病害的发生,特别是小麦扬花期若遇阴雨天气,病原菌可在麦穗上迅速侵染和扩展,给小麦生产带来灾难性威胁[1-2]㊂中国长江中下游麦区和东北春麦区是赤霉病的重发区[3]㊂近年来,受气候变化和秸秆还田等耕作措施影响,赤霉病的发生范围逐渐扩大,已成为黄淮麦区和北方麦区小麦生产的重要威胁[4]㊂中国赤霉病流行年份的发生面积可达300多万h m2,2016和2018年发生面积分别为680万h m2和570万h m2[5]㊂赤霉病发生除造成严重的产量损失外,病原菌侵染还可产生脱氧雪腐镰刀菌烯醇(D O N)等真菌毒素,降低籽粒品质,威胁食品安全[6]㊂虽然使用化学药剂和栽培措施等可以降低病害风险,但是抗性品种利用是减轻小麦赤霉病危害最绿色环保的措施[7]㊂根据抗性类型的不同,小麦赤霉病抗性可以分为5类[8-10]㊂第一类为抗侵染(T y p e I:r e s i s t-a n c e t o i n v a s i o n),反映植株抵抗病原菌初始侵染的能力,通常采用喷雾接种,以病穗率或病情指数表示;第二类为抗扩展(T y p eⅡ:r e s i s t a n c et o s p r e a d i n g),反映病害在穗部侵染后扩展程度,采用单花滴注方式接种鉴定,以病小穗率表示;第三类为抗毒素积累能力(T y p eⅢ:r e s i s t a n c e t o t o x-i n s a c c u m u l a t i o n),一般指降解毒素的能力,通过测定染病籽粒中毒素含量进行评价;第四类为籽粒抗感染能力(T y p eⅣ:r e s i s t a n c e t ok e r n e l i n-f e c t i o n),一般用病粒率(F D K:f u s a r i u m-d a m a g e d k e r n a l s)表示;第五类为耐病性(T y p e V:t o l e r-a n c e),以产量损失进行评价㊂鉴于抗性鉴定的复杂性,目前研究以前3种抗性类型研究居多㊂开展小麦种质抗性评价是赤霉病抗性育种的前提㊂胡文静等[11]利用单花滴注的方法对93份小麦栽培及地方品种(系)的赤霉病抗扩展能力进行评价,筛选出可用于赤霉病育种的扬麦23等9份综合性状优异的材料㊂蒋正宁等[12]对扬麦系材料进行赤霉病抗扩展鉴定,并利用相关分子标记推测了扬麦系小麦品种抗性分子基础,为合理利用赤霉病抗源提供了参考㊂由于赤霉病抗性是多基因控制的数量性状,抗性鉴定易受环境条件影响,其抗性分子遗传解析和基因克隆进展缓慢㊂目前被正式命名的赤霉病抗性基因有8个(F h b1 ~F h b8)㊂F h b1和F h b2分别位于3B和6B染色体,为抗扩展类型基因,在苏麦3号等抗性品种中发现[13-14];F h b4和F h b5分别位于4B和5A染色体,为抗侵染类型基因,在地方品种望水白中发现[15-16]㊂F h b3㊁F h b6和F h b7来源于小麦近缘属物种大赖草㊁日本披碱草和长穗偃麦草[17-18]㊂F h b8来源于望水白,位于7D染色体,与籽粒病粒率抗性相关[19]㊂这些基因中,仅F h b1和F h b7被克隆,F h b1编码一个富含组氨酸的钙结合蛋白T a H R C[20-21](h i s t i d i n e-r i c h c a l c i u m-b i n d i n g);F h b7编码谷胱甘肽转移酶基因[22]㊂F h b1是目前在育种应用最多的抗性基因[23]㊂此外,对赤霉病抗性种质的遗传解析定位到数百个赤霉病抗性相关Q T L,多数位点由于遗传效应有限,尚未在生产上得到广泛应用[24]㊂武汉1号㊁扬麦158等品种中定位到Q T L位点Q F h s.c r c-2D L,是目前长江中下游麦区小麦育种中应用较多的抗性位点[23,25-28]㊂在小麦品种冀5265中定位到另一个位于2D染色体的Q T L位点,表型贡献率高达㊃334㊃第4期徐晴等:湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测30%,也具有较高育种利用潜力[29]㊂这些基因位点的发掘极大地丰富了小麦赤霉病抗性基因资源㊂湖北省地处长江中游,小麦扬花期易遭遇阴雨天气,是小麦赤霉病的重发区,但同时也蕴含着丰富的小麦赤霉病抗性资源,育成品种常具有较好的赤霉病抗性[30]㊂本研究收集湖北省历年审定小麦品种及选育高代品系66份,采取喷雾接种对供试材料进行田间赤霉病抗性鉴定,筛选优异抗性种质;利用赤霉病主效抗性基因功能性分子标记和连锁标记对供试材料进行分子检测,解析其抗性遗传位点组成;同时分析不同年代间小麦品种(系)赤霉病抗性㊁株高和小穗密度等性状的差异,为湖北省小麦抗赤霉病育种提供参考㊂1材料与方法1.1试验材料供试材料为湖北省不同时期审定小麦品种59份及选育优异高代品系7份㊂苏麦3号㊁鄂恩1号和安农8455分别为高抗㊁中抗和高感赤霉病对照品种㊂抗性鉴定所用赤霉病菌株为保存于湖北省农业科学院植保土肥所的 黄冈1号 ㊂1.2田间种植供试小麦材料分别于2021-2022和2022-2023年度在湖北省农业科学院南湖试验田种植㊂播种日期分别为2021年10月31日和2022年11月2日㊂试验采用完全随机区组设计,2次重复,每小区行长1m,行距0.25m,每行播种65粒㊂1.3赤霉病抗性鉴定赤霉病抗性鉴定依据‘中华人民共和国农业行业标准N Y/T2954-2016:小麦区域试验品种抗赤霉病鉴定技术规程“实施㊂每试验小区开花期标记10个始花麦穗,使用浓度为1ˑ105个㊃m L-1分生孢子液对标记穗子进行喷雾接种㊂从接种后到调查结束采用弥雾装置进行增湿处理以保证发病充分㊂接种后21d,调查标记麦穗的发病穗数及每个病穗发病小穗数和总小穗数,计算病情指数(d i s e a s e i n d e x,D I)㊂其中,发病率=发病穗数/调查总穗数;严重度=发病总小穗数/总小穗数;病情指数=发病率ˑ严重度ˑ100㊂根据病情指数对供试小麦品种抗性进行划分(表1)㊂1.4D N A提取及分子标记分析苗期取植株幼嫩叶片,采用C T A B法提取植物基因组D N A[31]㊂F h b1基因检测采用朱展望等[32]设计的诊断性H i s-I n D e l标记,F h b2(Wm c398和G w m644)[15]㊁F h b4(G w m149和G w m513)[33]㊁F h b5(X b a r c180和G w m186)[34]和Q F h s.c r c-2D L(G w m539和Wm c41)[25]检测根据文献报道采用上述紧密连锁S S R标记,引物序列来源于网站h t t p://202.194.139.32/[35]㊂其中,苏麦3号为F h b1基因阳性对照,望水白为F h b2㊁F h b4和F h b5阳性对照,武汉1号为Q F h s.c r c-2D L位点阳性对照㊂P C R反应体系为20μL,2ˑT a q M a s t e rm i x(P C0902,北京艾德莱生物科技有限公司)10μL,上下游引物(10μm o l㊃L-1)各1.2μL,D N A模板(50n g㊃μL-1)2μL,d d H2O 5.6μL㊂P C R扩增程序:94ħ预变性3m i n;94ħ变性30s,55ħ退火30s(退火温度根据不同引物确定),72ħ延伸1m i n(延伸时间由片段大小确定),35个循环;72ħ延伸8m i n,4ħ保存㊂除F h b1基因用1%琼脂糖电泳检测外,其余S S R 标记P C R产物均采用8%(W/V)的非变性聚丙烯酰胺凝胶检测,1ˑT B E缓冲液180V电压下电泳1.5~2h,然后银染显色检测㊂当目标基因条带与阳性对照一致时,认为该品种(系)可能含有该基因㊂表1小麦赤霉病喷雾接种抗性鉴定标准T a b l e1E v a l u a t i o n c r i t e r i a u s e d f o r t h e r e s i s t a n c ec l a s s i f i c a t i o nb y s p r a y i n o c u l a t i o n病情指数D i s e a s e i n d e x抗性评价R e s i s t a n c e e v a l u a t i o nD I=0免疫I mm u n i t y(I)0<D IɤD I C K-R抗病R e s i s t a n c e(R)D I C K-R<D IɤD I C K-M R中抗M o d e r a t e r e s i s t a n c e(M R) D I C K-M R<D IɤD I C K-S中感M o d e r a t e s u s c e p t i b i l i t y(M S)D IȡD I C K-S高感H i g h s u s c e p t i b i l i t y(S)1.5数据分析采用S P S S软件进行数据统计和方差分析㊂2结果与分析2.1供试材料赤霉病抗性鉴定与评价供试小麦材料赤霉病抗性鉴定结果显示,抗性对照苏麦3号病情指数最低,2年平均值为0.79;中抗对照鄂恩1号和感病对照安农8455分别为14.03和44.82㊂2021-2022年度不同品种(系)病情指数范围为0.17~66.16,2022-2023年度病情指数范围为1.41~75.00,两年度病情指数平均值范围为0.79~64.87(表2)㊂根据对照品㊃434㊃麦类作物学报第44卷表2供试小麦材料不同年份的赤霉病抗性鉴定结果T a b l e2F H Br e s i s t a n c e o f t h e e v a l u a t e dw h e a tm a t e r i a l s i nd i f f e r e n t y e a r s编号C o d e材料名称M a t e r i a l病情指数D i s e a s e i n d e x20222023平均M e a n抗性类型R e s i s t a n c et y p e1苏麦3号S u m a i3(C K)0.171.420.79R 28106192.512.692.60M R 3长辐麦22C h a n g f u m a i222.328.165.24M R 4华麦8号H u a m a i82.9910.586.78M R 5鄂麦14E m a i144.719.797.25M R 6鄂麦12E m a i126.5810.548.56M R 7金乐1号5.9012.619.26M R 8鄂2133E21331.1618.439.79M R 9荆州66J i n g z h o u6616.174.1210.14M R 10710818-10.6310.63M R 11鄂T45048E T4504812.029.3710.69M R 12鄂麦21E m a i2115.916.4311.17M R 13汉麦008H a n m a i00812.0210.9011.46M R 14荆麦103J i n g m a i1032.5023.4012.95M R 15鄂麦007E m a i00713.0313.1413.09M R 16鄂麦11E m a i119.8717.3413.61M R 17鄂恩6号E e n618.119.9714.04M R 18鄂恩1号E e n1(C K)10.4017.6814.04M R 19鄂麦17E m a i1722.396.8914.64M S 20鄂麦9号E m a i932.323.4417.88M S 21龙麦30L o n g m a i3016.3920.6918.54M S 22鄂麦170E m a i17015.8521.9118.88M S 23鄂麦398E m a i39816.2222.2519.23M S 24宜麦1号Y i m a i116.0722.6019.34M S 25鄂麦596E m a i59622.6816.6519.66M S 26鄂麦006E m a i00616.0223.4719.75M S 27华1609H u a160918.7221.4620.09M S 28810148-20.2320.23M S 29郑麦9023Z h e n g m a i902319.8820.6520.26M S 30华麦211H u a m a i21133.188.3120.75M S 31鄂麦23E m a i2319.6422.2720.96M S 32华麦2668H u a m a i266819.6622.5921.12M S 33鄂T81855E T8185522.7319.9021.31M S 34襄麦D51X i a n g m a iD518.8535.2422.05M S 35810145-22.3622.36M S 36鄂麦805E m a i80526.9218.9022.91M S 37荆州47J i n g z h o u4726.1020.5223.31M S 38鄂恩4号E e n439.028.8923.96M S 39鄂麦580E m a i58028.1720.1524.16M S 40华麦1223H u a m a i122319.9528.4424.20M S 41华1369H u a136917.6830.7224.20M S 42华1337H u a133737.3113.6225.46M S 43鄂麦803E m a i80327.8123.1825.49M S 44鄂麦18E m a i1832.4618.6725.57M S ㊃534㊃第4期徐晴等:湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测(续表2C o n t i n u e d t a b l e2)编号C o d e材料名称M a t e r i a l病情指数D i s e a s e i n d e x20222023平均M e a n抗性类型R e s i s t a n c et y p e45鄂麦6号E m a i625.6027.1126.35M S 46扶麦1369F u m a i136922.4630.2626.36M S 47鄂麦590E m a i59034.5518.8426.69M S 48襄麦25X i a n g m a i2525.0033.3529.18M S 49龙麦176L o n g m a i17642.4016.7229.56M S 50鄂麦608E m a i60837.3422.0029.67M S 51川麦1566C h u a n m a i156629.6230.2329.93M S 52豫麦51Y u m a i5142.7518.5930.67M S 53宛麦369W a n m a i36934.7727.9431.35M S 54鄂麦25E m a i2545.2320.5132.87M S 55鄂麦572E m a i57228.1639.0033.58M S 56鄂麦15E m a i1551.7419.7735.76M S 57G21658.4721.4539.96M S 58荆麦202J i n g m a i20243.5540.2241.88M S 59华麦2152H u a m a i215237.9549.9743.96M S 60襄麦35X i a n g m a i3556.1431.8243.98M S 61安农8455A n n o n g8455(C K)42.9746.6844.82S 62鄂麦426E m a i42644.8046.3245.56S 63鄂麦24E m a i2452.1947.6149.90S 64鄂麦352E m a i35250.3350.7250.53S 65鄂麦251E m a i25152.3354.1953.26S 66鄂麦22E m a i2266.1642.2254.19S 67鄂麦174E m a i17460.8759.4160.14S 68华1607H u a160748.5775.0261.80S 69810416-64.8764.87S -代表无数据;M R㊁M S㊁S㊁R同表1㊂-r e p r e s e n t sm i s s i n g d a t a.M R,M S,S,a n dRa r e t h e s a m e i n t a b l e1.种病情指数,对供试材料进行抗性划分,810619㊁长辐麦22和华麦8号等16个材料抗性达到中抗水平,占比24.2%;鄂麦17㊁鄂麦9号和龙麦30等42个材料(63.6%)赤霉病抗性水平为中感;抗性水平低于感病对照安农8455的品种(系)有8个(12.1%);没有发现抗性水平高于苏麦3号的材料㊂不同类型抗性材料之间病情指数差异达极显著水平(图1)㊂供试材料赤霉病病情指数年度间相关系数为0.58㊂方差分析结果(表3)表明,环境㊁基因型以及环境与基因型互作对该地区赤霉病病性指数的影响均达到显著水平㊂2.2赤霉病抗性相关基因的分子检测分子标记检测结果表明(表4,图2),66份供试小麦材料中,仅T45048携带F h b1;鄂麦18㊁鄂麦398和鄂麦426等18个材料可能携带F h b5基因;鄂麦11㊁鄂麦12和810619等15个材料可能 **表示不同抗性类型间赤霉病病情指数差异极显著(P< 0.01)㊂**r e p r e s e n t ss i g n i f i c a n td i f f e r e n c eb e t w e e nt h e g r o u p s w i t hd i f f e r e n tF H Br e s i s t a n c e(P<0.01).图1供试材料赤霉病不同抗性类型病情指数差异F i g.1D i s e a s e i n d e xd i f f e r e n c e s a m o n g t h eg r o u p sw i t hd i f f e r e n t F H Br e s i s t a n c e㊃634㊃麦类作物学报第44卷表3供试小麦材料在不同年份赤霉病抗性方差分析T a b l e3A n a l y s i s o f t h eF H Br e s i s t a n c e o f t h e s e l e c t e dw h e a tm a t e r i a l s i nd i f f e r e n t y e a r s源S o u r c eⅢ型平方和S u mo f s q u a r e s自由度D e g r e e o f f r e e d o m均方M e a n s q u a r e F值F v a l u e 差异显著性S i g n i f i c a n c e环境E n v i r o n m e n t850.001850.007.620.01基因型G e n o t y p e53505.1369775.446.950.00环境ˑ基因型E n v i r o n m e n tˑG e n o t y p e13239.9763210.161.880.00误差E r r o r14949.02134111.56表4供试材料赤霉病抗性相关基因分子标记检测结果T a b l e4M o l e c u l a r a n a l y s i s o f t h eF H Br e s i s t a n c e g e n e s i n t h e t e s t e dw h e a tm a t e r i a l s基因G e n e/Q T L品种c u l t i v a r sF h b1T45048,苏麦3号,望水白T45048,S u m a i3,W a n g s h u i b a iF h b2苏麦3号,望水白S u m a i3,W a n g s h u i b a iF h b4望水白W a n g s h u i b a iF h b5鄂麦18,鄂麦398,鄂麦23,鄂麦25,豫麦51,金乐1号,华1369,鄂麦426,龙麦176,荆麦202,龙麦30,华1609,荆州47,鄂2133,810619,710818,810148,810145,武汉1号,望水白E m a i18,E m a i398,E m a i23,E m a i25,Y u m a i51,J i n l e1,H u a1369,E m a i426,L o n g m a i176,J i n g m a i202, L o n g m a i30,H u a1609,J i n g z h o u47,E2133,810619,710818,810148,810145,W u h a n1,W a n g s h u i b a iQ F h s.c r c-2D L 鄂麦11,鄂麦12,鄂麦398,鄂麦14,鄂麦22,荆麦103,襄麦D51,汉麦008,川麦1566,华麦211,华麦211,长辐麦22,鄂麦6号,鄂麦9号,810619,710818,苏麦3号,武汉1号E m a i11,E m a i12,E m a i398,E m a i14,E m a i22,J i n g m a i103,X i a n g m a i D51,H a n m a i008,C h u a n m a i1566,H u a-m a i211,C h a n g f u m a i22,E m a i6,E m a i9,810619,710818,S u m a i3,W u h a n1携带Q F h s.c r c-2D L基因㊂其中,华麦211㊁810619和710818等3个材料同时携带F h b5和Q F h s.c r c-2D L基因㊂鉴定为中抗的16个材料中,75%(12个)至少携带1个抗性基因㊂仅鄂麦007㊁鄂麦21㊁华麦8号和鄂恩6号没有检测出已知抗性基因㊂2.3不同年份选育小麦品种(系)赤霉病抗性与株高和小穗密度的相关性分析株高和小穗密度是影响小麦赤霉病抗性的重要农艺性状㊂将供试材料根据选育年份进行划分,分析年代间选育小麦品种(系)株高㊁赤霉病病情指数和小穗密度的变化趋势,以及赤霉病抗性与株高和小穗密度的相关性㊂结果显示,2008年以前选育品种(系)平均株高95.7c m,2009年及以后选育品种(系)株高显著降低,平均株高为81.5c m;赤霉病病情指数和小穗密度年代间差异不显著(表5)㊂性状相关性分析结果显示(表5),2008年以前选育小麦品种(系)赤霉病病情指数与株高呈显著负相关(-0.52),2009年以后选育小麦品种(系)赤霉病病情指数则与株高和小穗密度没有显著相关性㊂以上结果表明,湖北省不同年代间小麦品种(系)小穗密度对赤霉病抗性影响不大㊂小麦株高虽然近15年来显著降低,但是其对赤霉病抗性的影响却并未显著增加㊂表5不同年份供试小麦材料赤霉病病情指数与株高和小穗密度的相关性分析T a b l e5C o r r e l a t i o n s a n a l y s i s b e t w e e nF H Bd i s e a s ei n d e x a n d p l a n t h e i g h t o r s p i k e c o m p a c t n e s s项目I n t e m赤霉病病情指数D i s e a s ei n d e x株高P l a n th e i g h t/c m相关性C o r r e l a t i o n小穗密度S p i k ec o m p a c t n e s s相关性C o r r e l a t i o n2008年及之前品种(系)C u l t i v a r(l i n e)b r e de a r l i e rt h a n20082009年及之后品种(系)C u l t i v a r(l i n e)b r e dl a t e rt h a n200919.6895.7-0.52**2.09-0.0826.0681.5-0.022.1-0.29**表示显著相关(P<0.01)㊂**r e p r e s e n t s s i g n i f i c a n t c o r r e l a t i o n(P<0.01).㊃734㊃第4期徐晴等:湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测(1)F h b 1基因标记H i s -I n D e l 检测结果;(2)和(3)分别为Q F h s .c r c -2D L 基因位点连锁标记G w m 539和Wm c 41检测结果;(4)和(5)分别为F h b 5基因位点连锁标记G w m 186和X b a r c 180检测结果㊂箭头为目标条带位置㊂T h e a m p l i f i c a t i o n s a r e d e r i v e d f r o m (1)F h b 1a m p l i f i e dw i t hm a r k e r H i s -I n D e l ;(2)a n d (3)f o r Q F h s .c r c -2D L a m pl i f i e dw i t hm a r k -e r s G w m 539a n d Wm c 41,r e s p e c t i v e l y ;(4)a n d (5)f o r F h b 5a m p l i f i e dw i t hm a r k e r s G w m 186a n d X b a r c 180,r e s p e c t i v e l y.A r r o w i n d i -c a t e s t h e t a r ge t b a n d .图2 部分参试材料分子标记检测结果F i g .2 M o l e c u l a r d e t e c t i o n f o r F h b 1,QF h s .c r c -2D L a n d F h b 5g e n e s i n s o m e o f t h e t e s t e dw h e a tm a t e r i a l s ㊃834㊃麦 类 作 物 学 报 第44卷3讨论3.1赤霉病抗性鉴定赤霉病抗性是典型的数量性状,抗性鉴定易受环境影响㊂本研究于2021-2023两年度对湖北省不同时期审定的59份小麦品种和7份高代品系进行田间赤霉病抗性鉴定,供试材料年度间赤霉病病情指数显著相关(相关系数0.58,P<0.01),说明本试验参试材料抗性较为稳定,受环境影响有限,抗病对照和感病对照鉴定结果与预期一致,说明试验结果有效㊂本研究筛选出810619㊁长辐麦22等中抗赤霉病材料16份,占比24.2%;鄂麦17等中感材料42份,占比63.6%;感病水平材料8份,占比12.1%,说明湖北省历史和当前主要小麦品种(系)赤霉病抗性水平主要介于中抗到中感之间㊂虽然没有鉴定到赤霉病抗性超过苏麦3号的高抗材料,但是810619㊁长辐麦22和华麦8号等材料的赤霉病病情指数仅略低于苏麦3号,这些材料可作为赤霉病抗性种质进行育种利用㊂3.2抗赤霉病基因/Q T L分析小麦赤霉病抗性受多基因控制,F h b1是目前已知遗传效应最大的抗性基因,已在育种中得到广泛应用,但有研究表明其抗性遗传效应受遗传背景影响㊂本项目对湖北省主要审定品种(系)的F h b1基因进行检测,结果显示仅T45048含有该基因,说明湖北省小麦育种中对F h b1基因的利用并不广泛,不同于扬麦系列品种,其赤霉病抗性可能由其它抗性基因决定㊂对F h b2㊁F h b4㊁F h b5和Q F h s.c r c-2D L位点的检测结果显示鄂麦18号㊁鄂麦398等18份材料(27.2%)可能携带F h b5基因位点;鄂麦11等15个材料(22.7%)可能携带Q F h s.c r c-2D L抗性基因位点,说明这2个基因可能在湖北省小麦的赤霉病抗性育种中得到了较多应用;没有检测到携带F h b2和F h b4位点的材料,说明这2个基因在湖北小麦育种中利用有限㊂进一步分析发现,同时携带F h b5和Q F h s.c r c-2D L 基因位点的3份材料中,2份为中抗(810619和710818),1份为中感(鄂麦398);仅携带F h b5位点的小麦材料有3份材料鉴定为感病,说明不同遗传背景下抗性基因遗传效应的差异,因此,赤霉病抗病育种中,要充分考虑亲本材料的遗传背景,当背景材料抗性较差时,聚合多个抗性基因可能才能达到预期的育种目标㊂同时,本研究鉴定为中抗的16份小麦材料中,75%至少携带一个已知抗性基因(位点),仅鄂麦007㊁鄂麦21㊁华麦8号和鄂恩6号等4份材料没有检测到已知抗性基因,推测可能含有新的抗性基因位点㊂3.3抗性品种(系)抗性来源分析系谱分析结果显示,中抗品系810619和710818均为 扬辐麦5号/荆麦103 杂交组合后代,其亲本之一荆州103在本研究中赤霉病抗性鉴定为中抗;分子标记检测结果显示810619和710818携带F h b5和Q F h s.c r c-2D L基因位点;而荆州103被检测出携带Q F h s.c r c-2D L位点,推测810619和710818携带的Q F h s.c r c-2D L位点可能来自于荆麦103,根据荆州103(扬麦158/90-309)的系谱,其抗性基因可能源于扬麦158㊂鄂麦12系谱为 750025-12/鄂麦6号 ,本研究检测出其携带抗性位点Q F h s.c r c-2D L,与鄂麦6号分子检测结果一致,鄂麦6号赤霉病抗性鉴定为中感,因此鄂麦12的抗性及抗性基因位点可能来源于鄂麦6号㊂汉麦008为 扬麦15/华2566 杂交系选后代,携带Q F h s.c r c-2D L位点,其抗性及抗性基因可能源于扬麦15㊂华麦8号(南大2419/ B91-80//华早2号)和鄂2133(毛颖阿夫/宜麦1号)2个中抗品种的系谱分析显示,华麦8号亲本含有南大2419,鄂2133的亲本之一宜麦1号为南大2419系选品种[36]㊂已有研究表明,南大2419在2B染色体上存在一个稳定的抗赤霉病位点[37],因此这两个品种抗性可能与南大2419相关㊂鄂麦14㊁鄂麦007㊁鄂麦21和鄂恩6号等中抗品种因亲本材料抗性不明,无法推测其抗性来源,需要进一步的遗传研究㊂系谱分析结果说明湖北省赤霉病抗性较好品种(系)以江苏材料和湖北省早期育种材料抗性来源为主,辅以未知抗性新基因㊂3.4赤霉病抗性与农艺性状相关性株高和小穗密度是影响小麦赤霉病抗性的重要农艺性状,高秆和较稀小穗密度可以降低小麦赤霉病的发生,为小麦避病性状[38]㊂现有研究表明,小麦株高与赤霉病抗性呈显著负相关,大约40%的株高Q T L与赤霉病抗性相关Q T L共定位,目前利用较多的矮秆基因R h t-B1㊁R h t-D1㊁R h t8和R h t24中,仅R h t24矮秆基因被报道对赤霉病抗性无负效应[39]㊂徐晴等[40]对中国不同麦区小麦品种矮秆基因分布及其与赤霉病抗性关系的研究中发现,携带R h t2和R h t8矮秆基因的小麦材料赤霉病抗性显著低于不带有该位点的小麦㊃934㊃第4期徐晴等:湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测材料㊂本研究根据选育年代对供试小麦材料进行划分,比较不同年代间赤霉病病情指数㊁株高和小穗密度的变化,结果显示近15年来湖北省小麦品种株高显著降低,平均降低14.2c m,赤霉病病情指数和小穗密度年代间变化不大㊂对不同年代间选育品种的株高与赤霉病抗性相关性分析结果显示,较早期选育小麦品种(2008年及以前)赤霉病病情指数与株高呈显著负相关,而2009年及以后选育小麦品种(系)株高和赤霉病抗性间则没有显著相关性,这种差异说明近十多年来湖北省小麦品种改良可能利用了不同的降秆基因,这些矮秆基因对赤霉病抗性没有或者仅有较小负遗传效应,进一步挖掘这些株高控制基因将为小麦抗赤霉病育种提供帮助㊂参考文献:[1]B A IG.S c a bo fw h e a t:P r o s p e c t s f o r c o n t r o l[J].P l a n tD i s-e a s e,1994,78(8):760.[2]P A R R Y D W,J E N K I N S O N P,M C L E O D L.F u s a r i u m e a rb l i g h t(sc a b)i ns m a l l g r a i n c e r e a l s a r e v i e w[J].P l a n tP a-t h o l o g y,1995,44(2):207.[3]程顺和,张勇,别同德,等.中国小麦赤霉病的危害及抗性遗传改良[J].江苏农业学报,2012,28(5):938.C H E N GSH,Z H A N G Y,B I E T D,e ta l.D a m a g eo fw h e a t F u s a r i u mh e a db l i g h t(F H B)e p i d e m i c sa n d g e n e t i c i m p r o v e-m e n t o fw h e a t f o r s c a b r e s i s t a n c e i nC h i n a[J].J i a n g s uJ o u r-n a l o f A g r i c u l t u r a l S c i e n c e s,2012,28(5):938.[4]张爱民,阳文龙,李欣,等.小麦抗赤霉病研究现状与展望[J].遗传,2018,40(10):858.Z H A N G A M,Y A N G W L,L IX,e ta l.C u r r e n ts t a t u sa n d p e r s p e c t i v eo n r e s e a r c h a g a i n s t F u s a r i u mh e a db l i g h t i nw h e a t [J].H e r e d i t a s,2018,40(10):858.[5]黄冲,姜玉英,吴佳文,等.2018年我国小麦赤霉病重发特点及原因分析[J].植物保护,2019,45(2):160.HU A N GC,J I A N G Y Y,WUJ W,e t a l.O c c u r r e n c e c h a r a c-t e r i s t i c s a n dr e a s o na n a l y s i so fw h e a th e a db l i g h t i n2018i nC h i n a[J].P l a n tP r o t e c t i o n,2019,45(2):160.[6]F E R R I G O D,R A I O L A A,C A U S I N R.F u s a r i u m t o x i n s i nc e r e a l s:O c c u r r e n c e,l e g i s l a t i o n,f a c t o r s p r o m o t i n g t h e a p p e a r-a n c e a n d t h e i rm a n a g e m e n t[J].M o l e c u l e s,2016,21(5):627.[7]J I F,H ED,O L A N I R A NAO,e t a l.O c c u r r e n c e,t o x i c i t y,p r o-d u c t i o na n dde t e c t i o nof F u s a r i u m m y c o t o x i n:Ar e v i e w[J].F o o dP r o d u c t i o n,P r o c e s s i n g a n d N u t r i t i o n,2019,1(1):6.[8]M C MU L L E N M,B E R G S T R OM G,D E WO L FE,e t a l.Au-n i f i e d e f f o r t t o f i g h t a ne n e m y o fw h e a t a n db a r l e y:F u s a r i u mh e a db l i g h t[J].P l a n tD i s e a s e,2012,96(12):1712.[9]M E S T E R HÁZ Y A.T y p e sa n dc o m p o n e n t so fr e s i s t a n c et oF u s a r i u mh e a db l i g h to fw h e a t[J].P l a n tB r e e d i n g,1995, 114(5):377.[10]M I L L E RJD,Y O U N GJC,S AM P S O NDR.D e o x y n i v a l e n o la n dF u s a r i u m h e a db l i g h tr e s i s t a nc e i ns p r i n g c e r e a l s[J]. J o u r n a l o f P h y t o p a t h o l o g y,1985,113(4):359. [11]胡文静,张春梅,吴迪,等.长江中下游小麦抗赤霉病品种的筛选与部分农艺性状分析[J].中国农业科学,2020,53(21): 4313.HU WJ,Z HA N G C M,WU D,e t a l.S c r e e n i n g f o r r e s i s t a n c e t oF u s a r i u mh e a d b l i g h t a n d a g r o n o m i c t r a i t s o fw h e a t g e r m-p l a s m s f r o m Y a n g t z eR i v e r r e g i o n[J].S c i e n t i aA g r i c u l t u r a S i n i c a,2020,53(21):4313.[12]蒋正宁,吕国锋,王玲,等.扬麦品种(系)赤霉病抗扩展性基因分子检测及其抗性评价[J].麦类作物学报,2019,39(12): 1406.J I A N G ZN,LÜG F,WA N G L,e ta l.E v a l u a t i o no fF u s a r i-u mh e a db l i g h t r e s i s t a n c e a n dm o l e c u l a r d e t e c t i o no f t y p eⅡr e s i s t a n c e g e n e si n Y a n g m a i w h e a tc u l t i v a r s(l i n e s)[J]. J o u r n a l o f T r i t i c e a eC r o p s,2019,39(12):1406. [13]C U T H B E R T P A,S OM E R S DJ,T HOMA SJ,e ta l.F i n e m a p p i n g F h b1,a m a j o r g e n e c o n t r o l l i n g F u s a r i u m h e a d b l i g h t r e s i s t a n c ei n b r e a d w h e a t(T r i t i c u m a e s t i v u m L.) [J].T h e o r e t i c a l a n dA p p l i e dG e n e t i c s,2006,112(8):1465.[14]C U T H B E R TPA,S OM E R SDJ,B R U LÉ-B A B E L A.M a p-p i n g o f F h b2o n c h r o m o s o m e6B S:A g e n e c o n t r o l l i n g F u s a r i-u m h e a db l i g h tf i e l dr e s i s t a n c ei n b r e a d w h e a t(T r i t i c u m a e s t i v u m L.)[J].T h e o r e t i c a l a n dA p p l i e dG e n e t i c s,2007, 114(3):429.[15]X U ES,L IG,J I A H,e t a l.F i n em a p p i n g F h b4,am a j o rQ T Lc o nd i t i o n i n g re s i s t a n c e t oF u s a r i u mi nf e c t i o n i nb r e a dw h e a t (T r i t i c u ma e s t i v u m L.)[J].T h e o r e t i c a la n d A p p l i e dG e-n e t i c s,2010,121(1):147.[16]X U ES,X U F,T A N G M,e t a l.P r e c i s em a p p i n g F h b5,am a-j o r Q T L c o n d i t i o n i n g r e s i s t a n c et o F u s a r i u m i n f e c t i o ni n b r e a dw h e a t(T r i t i c u m a e s t i v u m L.)[J].T h e o r e t i c a la n dA p p l i e dG e n e t i c s,2011,123(6):1055.[17]Q ILL,P UM P H R E Y M O,F R I E B EB,e t a l.M o l e c u l a r c y-t o g e n e t i cc h a r a c t e r i z a t i o no fa l i e ni n t r o g r e s s i o n s w i t h g e n e F h b3f o r r e s i s t a n c e t oF u s a r i u mh e a db l i g h t d i s e a s e o fw h e a t [J].T h e o r e t i c a l a n dA p p l i e dG e n e t i c s,2008,117(7):1155.[18]WA N GSL,Q I LL,C H E NPD,e t a l.M o l e c u l a r c y t o g e n e t i ci d e n t i f i c a t i o n o f w h e a t-E l y m u s t s u k u s h i e n s e i n t r o g r e s s i o n l i n e s[J].E u p h y t i c a,1999,107(3):217.[19]WA N G X,L IG,J I A H,e ta l.B r e e d i n g e v a l u a t i o na n d p r e-c i s em a p p i n g o f F h b8f o rF u s a r i u m h e a db l i g h t r e s i s t a n c e i n w h e a t(T r i t i c u m a e s t i v u m)[J].P l a n tB r e ed i n g,2023,h t-t p s://d o i.o r g/10.1111/p b r.13113.[20]S UZ,B E R N A R D O A,T I A NB,e t a l.Ad e l e t i o nm u t a t i o n i nT a H R C c o n f e r s F h b1r e s i s t a n c e t oF u s a r i u m h e a db l i g h t i n w h e a t[J].N a t u r eG e n e t i c s,2019,51:1099.[21]L IG,Z H O UJ,J I A H,e t a l.M u t a t i o no f a h i s t i d i n e-r i c h c a l-c i u m-b i nd i n g-p r o te i n g e n e i nw h e a t c o nf e r s r e s i s t a n c e t o F u-s a r i u m h e a db l igh t[J].N a t u r eG e n e ti c s,2019,51:1106.[22]WA N G H,S U NS,G E W,e t a l.H o r i z o n t a l g e n e t r a n s f e ro fF h b7f r o mf u n g u s u n d e r l i e sF u s a r i u m h e a db l i g h t r e s i s t a n c e㊃044㊃麦类作物学报第44卷i nw h e a t[J].S c i e n c e,2020,368(6493):e a b a5435.[23]MAZ,X I E Q,L IG,e t a l.G e r m p l a s m s,g e n e t i c s a n d g e n o m-i c sf o rb e t t e rc o n t r o lo fd i s a s t r o u s w h e a t F u s a r i u m h e a d b l i g h t[J].T h e o r e t i c a l a n dA p p l i e dG e n e t i c s,2020,133(5): 1541.[24]H.B U E R S TMA Y R,T.B A N,J.A.A N D E R S O N.Q T L m a p p i n g a n d m a r k e r-a s s i s t e ds e l e c t i o nf o r F u s a r i u m h e a d b l i g h t r e s i s t a n c ei n w h e a t:ar e v i e w[J].P l a n tB r e e d i n g, 2009,128:1.[25]S OM E R SDJ,F E D A K G,S A V A R D M.M o l e c u l a rm a p p i n g o fn o v e l g e n e sc o n t r o l l i n g F u s a r i u m h e a db l i g h tr e s i s t a n c e a n dd e o x y n i v a l e n o la c c u m u l a t i o ni ns p r i n g w h e a t[J].G e-n o m e,2003,46(4):555.[26]Y A N H,L IG,S H I J,e t a l.G e n e t i c c o n t r o l o f F u s a r i u mh e a db l i g h tr e s i s t a nc ei nt w o Y a n g m a i158-de r i v e dr e c o m b i n a n t i n b r e d l i n e p o p u l a t i o n s[J].T h e o r e t i c a l a n dA p p l i e dG e n e t-i c s,2021,134(9):3037.[27]Z H A N G P,G U O C,L I U Z,e ta l.Q u a n t i t a t i v et r a i t l o c i f o rF u s a r i u mh e a db l i g h t r e s i s t a n c e i nw h e a t c u l t i v a r sY a n g m a i 158a n dZ h e n g m a i9023[J].T h eC r o p J o u r n a l,2021,9(1): 143.[28]胡文静,张勇,陆成彬,等.小麦品种扬麦16赤霉病抗扩展Q T L定位及分析[J].作物学报,2020,46(2):157.HU WJ,Z HA N G Y,L U CB,e t a l.M a p p i n g a n d g e n e t i c a-n a l y s i so fQ T L s f o rF u s a r i u m h e a db l i g h t r e s i s t a n c e t od i s-e a s e s p r e a di n Y a n g m a i16[J].A c t a A g r o n o m i c aS i n i c a, 2020,46(2):157.[29]L IH,Z H A N G F,Z H A O J,e ta l.I d e n t i f i c a t i o no fan o v e l m a j o rQ T L f r o mC h i n e s ew h e a t c u l t i v a r J i5265f o r F u s a r i u m h e a db l i g h tr e s i s t a n c ei n g r e e n h o u s e[J].T h e o r e t i c a la n dA p p l i e dG e n e t i c s,2022,135(6):1867.[30]朱展望,杨立军,佟汉文,等.湖北省小麦品种(系)的赤霉病抗性分析[J].麦类作物学报,2014,34(1):137.Z HUZ W,Y A N G LJ,T O N G H W,e ta l.A n a l y s i so f t h e r e s i s t a n c e t oF u s a r i u mh e a d b i g h t i nw h e a t v a r i e t i e s a n d l i n e s f r o m H u b e i[J].J o u r n a l o f T r i t i c e a eC r o p s,2014,34(1): 137.[31]E DWA R D SK,J O H N S T O N EC,T H OM P S O N C.As i m p l ea n d r a p i dm e t h o d f o r t h e p r e p a r a t i o no f p l a n t g e n o m i cD N A f o rP C Ra n a l y s i s[J].N u c l e i cA c i d sR e s e a r c h,1991,19(6): 1349.[32]朱展望,徐登安,程顺和,等.中国小麦品种抗赤霉病基因F h b1的鉴定与溯源[J].作物学报,2018,44(4):473.Z HUZ W,X U D A,C H E N GS H,e t a l.C h a r a c t e r i z a t i o no f F u s a r i u mh e a db l i g h t r e s i s t a n c e g e n e F h b1a n di t s p u t a t i v e a n c e s t o r i nC h i n e s ew h e a t g e r m p l a s m[J].A c t aA g r o n o m i c a S i n i c a,2018,44(4):473.[33]廖森,方正武,胡文静,等.59份江苏小麦品种(系)的抗赤霉病评价与农艺性状分析[J].麦类作物学报,2022,42(3): 297.L I A OS,F A N GZ W,HU WJ,e t a l.E v a l u a t i o n o f r e s i s t a n c e t oF u s a r i u m h e a db l i g h t a n da n a l y s i so f a g r o n o m i c t r a i t so f 59w h e a t g e r m p l a s m s i nJ i a n g s uP r o v i n c e[J].J o u r n a lo f T r i t i c e a eC r o p s,2022,42(3):297.[34]J I A H,Z H O U J,X U E S,e ta l.A j o u r n e y t ou n d e r s t a n d w h e a tF u s a r i u mh e a db l i g h t r e s i s t a n c e i n t h eC h i n e s ew h e a t L a n d r a c eW a n g s h u i b a i[J].T h eC r o p J o u r n a l,2018,6(1): 48.[35]MA S,WA N G M,WU J,e ta l.W h e a to m i c s:A p l a t f o r mc o m b i n i n g m u l t i p l eo m i c sd a t at oa c ce l e r a t ef u n c t i o n a lg e-n o m i c ss t u d i e si n wh e a t[J].M o l e c u l a r P l a n t,2021,14 (12):1965.[36]敖立万.湖北小麦[M].武汉:湖北科学技术出版社,2002:61.A OL W.W h e a t i n H u b e i[M].W u h a n:H u b e iS c i e n c e& T e c h n o l o g y P r e s s,2002:61.[37]L I NF,K O N GZX,Z HU HL,e t a l.M a p p i n g Q T La s s o c i a t-e dw i t h r e s i s t a n c e t oF u s a r i u mh e a d b l i g h t i n t h eN a n d a2419ˑW a n g s h u i b a i p o p u l a t i o n.T y p e I I r e s i s t a n c e[J].T h e o r e t i-c a l a n dA p p l i e dG e n e t i c s,2004,109(7):1504.[38]B U E R S T MA Y R M,S T E I N E R B,B U E R S T MA Y R H.B r e e d i n g f o rF u s a r i u m h e a db l i g h tr e s i s t a n c ei n w h e a tP r o g r e s sa n dc h a l l e n g e s[J].P l a n t B r e e d i n g,2020,139(3):429.[39]H E R T E R,C.P.,E B M E Y E R,E.,K O L L E R,S.e t a l.R h t24 r e d u c e sh e i g h t i nt h e w i n t e r w h e a t p o p u l a t i o n S o l i tärˑB u s s a r d w i t h o u t a d v e r s e e f f e c t s o nF u s a r i u mh e a d b l i g h t i n-f e c t i o n[J].T h e o r e t i c a lA p p l l i e dG e n e t i c s,2018,131:1263.[40]徐晴,许甫超,秦丹丹,等.矮秆基因在中国不同麦区小麦品种中的分布及其对赤霉病抗性的影响[J].麦类作物学报, 2022,42(7):790.X U Q,X U F C,Q I N D D,e ta l.D i s t r i b u t i o no f t h ew h e a t d w a r f i n gg e n e s i nC h i n aa n dt h e i r e f f e c t so nF u s a r i u m h e a db l i g h t r e s i s t a nc e[J].J o u r n a lo f T r i t i c e a eC r o p s,2022,42(7):790.㊃144㊃第4期徐晴等:湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测。

基于G-KRA模型框架的工作流建模

基于G-KRA模型框架的工作流建模

基于G-KRA模型框架的工作流建模王楠;孙利;孙善武;李慧【摘要】Knowledge Reformulation and Abstraction (KRA) model has been introduced to formalize the workflow abstraction modeling process which is an iterative learning process of "Perception-Abstraction". Compared to KRA model, the general KRA (G-KRA) model is more general and flexible to represent the world which can represent the world from different abstraction granularity. We provided the workflow modeling process on the basis of the G-KRA model. Particularly, we introduced the concept of function perception according to functional knowledge to automatically construct the workflow abstraction objects database WfOa. The mapping relation between the primary activity perception and the function-based workflow abstraction object of WJDa was constructed to realize the replacement of the primary activity perceptions with corresponding mappings. With the aidrnof these mapping relations, we generated the function-based workflow abstraction model to simplifyrnthe representation of the primary workflow model.%基于广义知识重构与抽象(G-KRA)模型框架给出了工作流建模的一般过程,根据功能知识引入了功能感知的概念,自动构造工作流抽象对象库wfOa.构造基本行为感知和WfOa中的基于功能的工作流抽象对象之间的映射关系,实现基本行为感知与相应关系的替换操作.通过这些映射关系,生成了基于功能的工作流抽象模型以简化基本工作流模型的表示.【期刊名称】《吉林大学学报(理学版)》【年(卷),期】2013(051)002【总页数】6页(P279-284)【关键词】G-KRA模型;工作流模型;功能感知;工作流抽象对象库【作者】王楠;孙利;孙善武;李慧【作者单位】吉林财经大学管理科学与信息工程学院,长春 130117;吉林财经大学物流产业经济与智能物流省重点实验室,长春 130117【正文语种】中文【中图分类】TP391工作流是整体或部分上的商业过程自动化, 在工作流执行期间, 文档、信息或任务根据一个过程化的规则集从一个参与者传递到另一个参与者[1]. 对于工作流的执行, 构建一个定义好的工作流模型时十分重要. 在开发工作流管理系统(workflow management system, WfMS)的过程中, 目前已提出了很多探索描述商业过程的形式化方法[2-3], 同时也从不同角度分析了工作流的建模过程[4-5], 并基于各种模型框架构造了工作流模型[6], 但这些方法都没有给出一个一般的、统一的抽象框架形式化地表示工作流建模过程. 抽象是人类感知、概念化和推理的普遍行为. 在人工智能领域内的抽象问题目前已有许多研究结果, 如问题求解[7-8]、问题重构[9]、机器学习[10]和基于模型的诊断[11]等. 文献[12-15]提出了表示改变的模型, 既包括语法重构也包括抽象过程, 该模型称为KRA模型(knowledge reformulation and abstraction, KRA), 设计帮助问题的概念化阶段及抽象算子的自动应用过程. 文献[16-17]已将KRA模型引入到形式化工作流抽象建模的过程中,将工作流作为一个“感知-抽象”的迭代学习过程. 与KRA模型相比, 广义KRA模型(genera KRA model, G-KRA)[18]在表示客观世界时更一般和灵活, 它可从不同的抽象粒度表示世界.本文给出了基于G-KRA模型的工作流建模过程, 根据功能知识引入功能感知的概念, 自动构造工作流抽象对象库WfOa. 构建基本行为感知和WfOa中的基于功能的工作流抽象对象之间的映射关系实现基本行为感知与相应映射的替换过程. 通过这些映射关系, 生成了基于功能的抽象模型, 简化了基本工作流模型的表示并帮助实现对应的分层推理.1 广义KRA模型定义1[18] 一个基本感知P是一个五元组, 即P=(OBJ,ATT,FUNC,REL,OBS), 其中: OBJ包含W中的对象类型; ATT表示对象属性的类型; FUNC确定一个函数集; REL是对象类型间的关系集合.图1 G-KRA模型框架Fig.1 G-KRA model framework定义2[18] 令P是一个基本感知, A是一个感知者, Oa是一个数据库且Oa中具有某种抽象类型的对象由A预先定义, 则A的一个抽象感知定义为P*=δa(P,Oa), 其中δa表示抽象感知映射.定义3[18] 给定基本感知P、抽象对象库Oa和抽象感知映射δa, 则一个广义表示框架R*是一个四元组(P*,D*,L*,T*), 其中: P*=δa(P,Oa)表示一个抽象感知; D*表示数据库; L*表示语言; T*表示理论.数据库Oa是某些抽象对象构成的相当一般化的集合, 可在某个特定的世界中实现具体化. 在G-KRA模型框架下构造抽象模型的过程如图1所示.2 工作流建模本文先基于文献[19]提出几个概念, 然后给出一个过程GeneWfOa表示基于功能的工作流抽象对象库WfOa的生成过程. 构造了基本行为感知和基于功能的工作流抽象对象库WfOa之间的映射关系, 最后用相应的映射替换基本行为感知, 生成了给予功能的工作流抽象模型, 并引入文献[16]中的工作流实例描述提出的概念和建模结果.定义4[19] 一个基本行为感知ActP是一个五元组, 即PriActP=(PriActType,PriAgentsType,PriResourceIN,PriResourceOUT,PriCond s), 其中: PriActType表示行为类型; PriAgentsType表示该行为参与者的类型; PriResourceIN是该行为处理的资源类型; PriResourceOUT是通过执行该行为生成的结果资源; PriConds表示行为得以执行的约束条件.基本行为感知与文献[19]中的行为感知构造过程相同, 通过使用基本知识直观地确定了所感知到的工作流Wf的基本模型. 要注意从某些特定领域中相同工作流获得的信息根据基于本体和约束条件的不同而不同.定义5[19] 假设PriActP1和PriActP2是两个基本行为感知, 则它们之间的关系定义为一个四元组PriActRelP=(PriActP1,PriActP2,PriActRelType,PriActRelConds), 即表示当条件集合PriActRelConds中包含的条件成立时, PriActP1和PriActP2之间拥有类型为PriActRelType的关系. 与行为关系感知类似, 可使用如下表示理解基本行为关系感知PriActRelP的定义:该表示说明了两个基本行为感知之间的执行顺序, 根据文献[19], PriActP1的输入资源PriResourceIN可定义为PriActRelP的输入资源, 而PriActP2的输出资源PriResourceOUT可定义为PriActRelP的输出资源.定义6[19] 一个基本工作流感知是一个四元组, 即PriWfP=(PriWfField,PriActPSet,PriActRelPSet,PriWfCondSet), 其中:PriWfField表示工作流所属的工作域; PriActPSet是构成基本工作流感知的基本行为感知集合, 即表示基本行为关系感知集合, 即表示作为全局条件必须为真的约束条件集合.引入两个标识符: START和END, 表示基本工作流感知的起始行为感知和终止行为感知, 详细内容可参考文献[19]. 为了构造抽象工作流行为库, 引入功能感知的概念表示基本行为感知和基本行为关系感知的行为抽象.定义7[19] 一个功能感知是对一个行为感知或一个行为关系感知所完成的动作的抽象描述, 用形式FuncName(ResType1,ResType2)表示, 即功能感知FuncName 处理资源ResType1, 同时生成结果资源ResType2.基于功能的工作流抽象对象库WfOa定义为由不同功能感知构成的集合, 该集合可手动预生成或通过自动推导得出.G-KRA模型中定义抽象对象时丢弃了对象的一些属性信息, 但本文中定义的基于功能的工作流抽象对象库WfOa中功能感知基于功能知识生成, 并可根据它们所处理的资源类型而自动推导生成. 本文用算法GeneWfOa表示基于功能的工作流抽象对象库WfOa的生成过程. 虽然这样生成的功能感知非常一般, 语义信息很弱, 但却可极大简化模型表示, 并完全保证推理能力不受损失. 也可用更复杂的表示, 根据真实的功能语义信息手工定义功能感知.Procedure GeneWfOaInput a specific workflow perception WfP; //假设S表示被感知工作流WfP 处理的可区分类型资源的集合, 每个行为感知只有一个输入资源和一个输出资源S={ }; //S是通过对WfP 中的行为感知分类自动构造生成的集合For every activity per ception ActPi∈WfP{If (TYPEIN(ActPi)∉S) S+=TYPEIN(ActPi);If (TYPEOUT(ActPi)∉S) S+=TYPEOUT(ActPi);} // TYPEIN(ActPi)和TYPEOUT(ActPi)分别表示ActPi处理的输入/输出资源类型k=1;For(i=1; i≤|S|; i++)For(j=1; j≤|S|; j++)//|S|表示S中不同资源类型的数量WfOa+=Fk(Si, Sj); //Si,Sj∈S, Fk定义为输入资源为Si, 输出资源为Sj的抽象功能感知假设WfP中行为感知数量为n, 不同类型的资源数量为m, 则算法GeneWfOa从渐近意义上的复杂性可表示为max{n,m2}×O(1), 生成m2个功能感知.例1 本文以文献[20]中的工作流“Write travel report”为例, 基本工作流模型可如文献[16]中描述的过程生成, 结果如图2所示.图2 “Write travel report”的基本工作流模型Fig.2 Primary workflow model priWfM of write travel report图2中的基本行为感知描述如下:PriAct1=(WriteReport,Employee,TravelResource,Report,{ });PriAct2=(RequestDetails,Employee,Report,Report,{if needed Details}); PriAct3=(ProvideDetails,Sectary,Report,Detail,{if has details});PriAct4=(FillInDetails,Employee,Detail,Report,{if has details});PriAct5=(SubmitReport,Employee,Report,Report,{if not need details}); PriAct6=(CheckAndSign,{Manager,Vice Manager},Report,Report,{if no objections});PriAct7=(CheckAndSubmitObjections,Manager,Report,Objections,{if has objections});PriAct8=(ReceiveObjection,Employee,Objections,Objections,{ });PriAct9=(ReviseReport,Employee,Objections,Report,{if has objections}).根据算法GeneWfOa, 首先生成图2中工作流的不同资源类型, 即{REPORT,INFO,ADVICE}, 然后根据行为处理的资源类型得到功能感知集合作为基于功能的工作流抽象对象库WfOa: F1(REPORT,INFO), F2(REPORT,ADVICE), F3(INFO,REPORT), F4(INFO,ADVICE), F5(ADVICE,REPORT), F6(ADVICE,INFO), F7(REPORT,REPORT), F8(INFO,INFO), F9(ADVICE,ADVICE).本文先构造基本行为感知集合与WfOa中的基于功能的工作流抽象对象之间的映射关系, 再用相应的映射关系替换PriWfM中的基本行为感知, 生成基于功能的抽象模型AbsWfM, 该过程用算法GeneAbsWfM描述. 通过基本行为感知集合与WfOa之间的映射关系, 可简化基本工作流模型的表示.Procedure GeneAbs WfM//假设PriActS是包含在基本工作流模型PriWfM中的基本行为感知集合For every primary activity perception PriActi in PriActSif (∃Fk∈WfOa and the types of the input and output resources of Fk match with that of PriActi){Mapping S+=Mi (PriActi,Fk);Replace PriActi in PriWfM with Mi;}显然, 通过分析算法GeneAbsWfM可将渐近的时间复杂性表示为O(nm2), 其中n 和m含义与前面定义相同.例2 根据算法GeneAbsWfM, 可生成例1中构造的基本行为感知集合PriActS与WfOa之间的映射关系, 同时进一步生成图2中工作流“write travel report”基于功能的抽象模型AbsWfM. PriActS与WfOa之间的映射关系如图3所示. 工作流“write travel report”基于功能的抽象模型AbsWfM如图4所示.图3 PriActS与WfOa之间的映射关系Fig.3 Mapping relations between PriActS and WfOa图4 基于功能的抽象模型AbsWfMFig.4 Function-based abstraction model AbsWfM综上可见, 本文提出了基于G-KRA模型的工作流建模过程, 并根据功能知识引入功能感知的概念, 自动生成了工作流抽象对象库WfOa. 虽然生成的功能感知非常一般, 语义信息较弱, 但能极大简化模型表示, 并能完全保证模型的推理能力.参考文献【相关文献】[1] WfMC. Workflow Management Coalition Terminology & Glossary, Document Number WFMC-TC-1011 [R]. Brussels, Belgium: Workflow Management Coalition, 1999.[2] Salimifard K, Wright M. Petri Net-Based Modeling of Workflow Systems: An Overview [J]. European Journal of Operational Research, 2001, 134(3): 664-676.[3] Bajaj A, Ram S. SEAM. A State-Entity-Activity-Model for a Well-Defined Workflow Development Methodology [J]. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(2): 415-431.[4] Aalst W M P, Van Der, Hee K M, Van. Workflow Management-Models, Methods, and Systems [M]. London: MIT Press, 2002.[5] Tick J. Workflow Model Representation Concepts [C]//Proceedings of 7th International Symposium of Hungarian Researchers on Computational Intelligence. Budapest, Hungary: IEEE, 2006: 329-337.[6] Tick J. Workflow Modeling Based on Process Graph [C]//Proceedings of 5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics. Poprad, Slovakia: IEEE, 2007: 419-426.[7] Ellman T. Synthesis of Abstraction Hierarchies for Constraint Satisfaction by Clustering Approximatively Equivalent Objects [C]//Proceedings of International Conference on Machine Learning. Washington: MA, 1993: 104-111.[8] Holte R, Mkadmi T, Zimmer R, et al. Speeding Up Problem-Solving by Abstraction: A Graph-Oriented Approach [J]. Art Intelligence, 1996, 85: 321-361.[9] Subramanian D. A Theory of Justified Reformulations [C]//Change of Representation and Inductive Bias. Boston: Kluwer Academic Publishers, 1990: 147-167.[10] Bredeche N, SHI Zhong-zhi, Zucker J D. Perceptual Learning and Abstraction in Machine Earning: An Application to Autonomous Robotics [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2006, 36(2): 172-181. [11] Chittaro L, Ranon R. Hierarchical Model-Based Diagnosis Based on Structural Abstraction [J]. Art Intell, 2004, 155(1/2): 147-182.[12] Saitta L, Zucker J. Semantic Abstraction for Concept Representation and Learning[C]//Proceedings of SARA. California: Springer, 1998: 103-120.[13] Saitta L, Zucker J D. A Model of Abstraction in Visual Perception [J]. Applied Artificial Intelligence, 2001, 5(8): 761-776.[14] Saitta L, Zucker J. Abstraction and Complexity Measures [C]//Proceedings of SARA. Whistler: Springer, 2007: 375-390.[15] Saitta L, Torasso P, Torta G. Formalizing the Abstraction Process in Model Based Diagnosis [C]//Proceeding of SARA. Whistler: Springer, 2007: 314-328.[16] WANG Nan, SUN Shan-wu. Workflow Modeling Process: A Novel Perspective [J]. International Journal of Digital Content Technology and Its Applications, 2011, 5(7): 455-468.[17] SUN Shan-wu, WANG Nan, ZHANG Fu-wei. Ontology-Based Workflow Abstraction Modeling [J]. Journal of Jilin University: Science Edition, 2012, 50(2): 299-304. (孙善武, 王楠, 张福威. 基于本体的工作流抽象模型 [J]. 吉林大学学报: 理学版, 2012, 50(2): 299-304.)[18] SUN Shan-wu, WANG Nan, OUYANG Dan-tong. General KRA Abstraction Model [J]. Journal of Jilin University: Science Edition, 2009, 47(3): 537-542. (孙善武, 王楠, 欧阳丹彤. 广义KRA抽象模型 [J]. 吉林大学学报: 理学版, 2009, 47(3): 537-542.)[19] WANG Nan, SUN Shan-wu. Formalizing the Process of Hierarchical Workflow Abstraction Modeling [J]. Journal of Convergence Information Technology, 2011, 6(6): 98-105.[20] Hallvard Trtteberg. Modeling Work: Workflow and Task Modeling [C]//Proceedings of the Third International Conference on Computer-Aided Design of User Interfaces. Norwell: Kluwer Academic Publishers, 1999: 275-280.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The Workflow Management Coalition SpecificationWorkflow Management CoalitionTerminology & GlossaryDocument Number WFMC-TC-1011Document Status - Issue 3.0Feb 99Workflow Management Coalition2 Crown WalkWinchesterHampshire SO23 8BBUnited KingdomTel: +44 1962 873401Fax: +44 1962 868111Email:wfmc@Web Copyright 1994 - 1999 Workflow Management Coalition Page 1 of 65 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photographic, recording or otherwise without the prior written permission of the Workflow Management Coalition, except that reproduction, storage or transmission for non-commercial purposes may beTable of Contents1.INTRODUCTION (5)1.1B ACKGROUND (5)1.2.P URPOSE (5)1.3.S COPE (5)1.4.C ROSS R EFERENCES (5)1.5.R EVISION H ISTORY (6)2 - BASIC CONCEPTS (7)W ORKFLOW G LOSSARY - R ELATIONSHIPS BETWEEN BASIC TERMINOLOGY (7)W ORKFLOW (8)W ORKFLOW M ANAGEMENT S YSTEM (9)B USINESS P ROCESS (10)P ROCESS D EFINITION (11)A CTIVITY (13)A UTOMATED A CTIVITY (14)M ANUAL A CTIVITY (15)I NSTANCE (AS IN P ROCESS OR A CTIVITY I NSTANCE) (15)P ROCESS I NSTANCE (16)A CTIVITY I NSTANCE (17)W ORKFLOW P ARTICIPANT (18)W ORK I TEM (19)W ORKLIST (20)W ORKLIST H ANDLER (21)P ROCESSES AND W ORKLIST S TRUCTURES - O VERVIEW (22)W ORKFLOW R EFERENCE M ODEL (23)WAPI (24)3- PROCESS CONCEPTS & STRUCTURE (25)P ROCESS D EFINITION M ODE (25)P ROCESS (26)S UB P ROCESS (27)A CTIVITY B LOCK (27)D EADLINE (28)P ARALLEL R OUTING (29)S EQUENTIAL R OUTING (29)AND-S PLIT (30)AND-J OIN (31)OR-S PLIT (32)OR-J OIN (33)I TERATION (34)P RE-C ONDITION (35)P OST-C ONDITION (36)T RANSITION (37)T RANSITION C ONDITION (38)4 - WIDER WORKFLOW CONCEPTS & TERMINOLOGY (39)G ENERIC W ORKFLOW P RODUCT S TRUCTURE (39)W ORKFLOW P RODUCT C OMPONENTS & I NTERFACES (40)W ORKFLOW A PPLICATION (41)C LIENT A PPLICATION (42)I NVOKED A PPLICATION (43)W ORKFLOW D ATA S TRUCTURES - O VERVIEW (44)A PPLICATION D ATA (44)W ORKFLOW R ELEVANT D ATA (45)W ORKFLOW C ONTROL D ATA (46)P ROCESS S TATE (47)A CTIVITY S TATE (48)S TATE T RANSITION (49)D UMMY A CTIVITY (49)E VENT (50)A UDIT D ATA (51)W ORKFLOW D EFINITION (52)P ROCESS E XECUTION (52)O RGANIZATIONAL R OLE (53)O RGANIZATIONAL M ODEL (53)P ROCESS R OLE (54)E SCALATION (55)C ONSTRAINT (56)W ORKFLOW M ONITORING (56)W ORKFLOW E NGINE (57)W ORKFLOW I NTEROPERABILITY (58)W ORKFLOW I NTEROPERABILITY C ONTRACT (59)W ORKFLOW E NACTMENT S ERVICE (59)W ORKFLOW D OMAIN (60)W ORK I TEM P OOL (61)A DMINISTRATOR (61)INDEX OF ENTRIES (62)1.INTRODUCTION1.1BackgroundThe Workflow Management Coalition is a non profit organisation with the objectives of advancing the opportunities for the exploitation of workflow technology through the development of common terminology and standards. It has been recognised that all work flow management products have some common characteristics, enabling them potentially to achieve a level of interoperability through the use of common standards for various functions.The WFM Coalition has been established to identify these functional areas and develop appropriate specifications for implementation in workflow products. Such specifications will enable interoperability between heterogeneous workflow products and improved integration of workflow applications with other IT services such as electronic mail and document management, thereby improving the opportunities for the effective use of workflow technology within the IT market, to the benefit of both vendors and users of such technology.1.2.PurposeThis document contains technical definitions for terms used in the workflow management coalition specifications and discussions. The definitions themselves will help in establishing a consistency in the use of terminology across the industry.1.3.ScopeThis document identifies the terminology used to describe the concepts and general structure of a workflow management system, its major functional components and their interfaces. It also provides a list of synonyms variously used within the industry as alternative terms to the preferred WfMC terminology It may be read in conjunction with the Workflow Reference Model, which describes the architecture used by the WfMC within its standardisation programme.1.4.Cross ReferencesWfMC-TC-1003 Workflow Reference ModelWfMC-TC-1009 Workflow Client Application APIs (WAPI)WfMC-TC-1012 Workflow Interoperability SpecificationsWfMC-TC-1013 WAPI - Naming ConventionsWfMC-TC-1015 Workflow Audit Data SpecificationsWfMC-TC-1016 Workflow Process Definition InterchangeWfMC-TC-1020 Workflow Security Considerations - White PaperWfMC-TC-1022 A Common Object Model - Discussion Paper1.5.Revision HistoryIssue 1 was the first issue (1994) providing an initial definition of industry standard terminology relating to workflow systemsIssue 2, June 1996, was a significant update of version 1, incorporating:•standard background material describing the W f MC•the standard W f MC document structure•revised terminology in some areas to improve clarity•new terminology in various areas•an index of terms and cross referencesThis issue, 3.0, February 1999, is a further update introducing new material covering:•Events and related terminology•Organisation Model and related terminology•Additional Workflow interoperability materialplus minor revisions to existing material in certain areas.2 - BASIC CONCEPTSThis section identifies basic concepts and terminology associated with workflow as a general topic.Workflow Glossary - Relationships between basic terminologyFigure 1 - Relationships between basic terminologyWorkflowDefinitionThe automation of a business process, in whole or part, during which documents, information or tasks are passed from one participant to another for action, according to a set of procedural rules.Usage•The automation of a business process is defined within a Process Definition, which identifies the various process activities, procedural rules and associated control data used to manage the workflow during process enactment•Many individual process instances may be operational during process enactment, each associated with a specific set of data relevant to that individual processinstance (or workflow "Case")• A loose distinction is sometimes drawn between production workflow, in which most of the procedural rules are defined in advance, and ad-hoc workflow, in which the procedural rules may be modified or created during the operation of the process. Synonyms•Workflow Management•Workflow Computing•Case ManagementWorkflow Management SystemDefinitionA system that defines, creates and manages the execution of workflows through the use of software, running on one or more workflow engines, which is able to interpret the process definition, interact with workflow participants and, where required, invoke the use of IT tools and applications.Usage• A Workflow Management System consists of software components to store and interpret process definitions, create and manage workflow instances as they are executed, and control their interaction with workflow participants and applications.•Such systems also typically provide administrative and supervisory functions, for example to allow work reassignment or escalation, plus audit and management information on the system overall or relating to individual process instances.•The WfMC have published an architectural Reference Model, describing the structure and interfaces of a Workflow Management System..Synonyms•Workflow Automation•Workflow Manager•Workflow Computing System•Case ManagementBusiness ProcessDefinitionA set of one or more linked procedures or activities which collectively realise a business objective or policy goal, normally within the context of an organisational structure defining functional roles and relationships.Usage• A business process is typically associated with operational objectives and business relationships, for example an Insurance Claims Process, or EngineeringDevelopment Process. A process may be wholly contained within a singleorganisational unit or may span several different organisations, such as in acustomer-supplier relationship.• A business process has defined conditions triggering its initiation in each new instance (e.g. the arrival of a claim) and defined outputs at its completion.• A business process may involve formal or relatively informal interactions between participants; its duration may also vary widely.• A business process may consist of automated activities, capable of workflow management, and/or manual activities, which lie outside the scope of workflow management.See also: Process, Process DefinitionSynonyms•Process (colloquial)Process DefinitionDefinitionThe representation of a business process in a form which supports automated manipulation, such as modelling, or enactment by a workflow management system. The process definition consists of a network of activities and their relationships, criteria to indicate the start and termination of the process, and information about the individual activities, such as participants, associated IT applications and data, etc. Usage•The process definition results from work during the process definition mode. and may include both manual and workflow (automated) activities.•The process definition may contain references to sub-processes, separately defined, which make up part of the overall process definition•The process definition may make reference to a separate Organisation or Resource Model to enable participants to be indirectly defined, for example by reference to attributes such as role or organisational position.•The WfMC Reference Model includes an interface for the import and export of Process Definitions; this incorporates the Process Definition Meta-Model, which identifies the top level entities within the Process DefinitionSynonyms•Model Definition•Routing Definition•Flow Diagram•State Transition Diagram•Flow Schematic•Workflow Script•Instruction Sheet Definition•Case TypeWfMC Process Definition Meta-ModelWorkflow Relevant DataWorkflow Application DeclarationWorkflow Participant SpecificationFigure 2 – WfMC Process Definition Meta-ModelActivityDefinitionA description of a piece of work that forms one logical step within a process. An activity may be a manual activity, which does not support computer automation, or a workflow (automated) activity. A workflow activity requires human and/or machine resources(s) to support process execution; where human resource is required an activity is allocated to a workflow participant.Usage• A process definition generally consists of many process activities which are logically related in terms of their contribution to the overall realisation of thebusiness process.•An activity is typically the smallest unit of work which is scheduled by a workflow engine during process enactment (e.g. using transition and pre/post-conditions), although one activity may result in several work items being assigned (to aworkflow participant)•Wholly manual activities may form part of a business process and be included within its associated process definition, but do not form part of the automatedworkflow resulting from the computer supported execution of the process.•An activity may therefore be categorised as “manual”, or “automated”. Within this document, which is written principally in the context of workflow management, the term is normally used to refer to an automated activity.Synonyms•Step•Node•Task•Work Element•Process Element•Operation•Instruction(Each may be further described as a manual .... , or as an automated or workflow ....)Automated ActivityDefinitionAn activity which is capable of computer automation using a workflow management system to manage the activity during execution of the business process of which it forms a part.UsageDuring process execution, an automated (or workflow) activity is managed by the Workflow Management System (WMS). This may result in:•an invoked application being activated directly by the workflow management system (with no workflow participant being involved)•one or more work items being assigned to a workflow participant, with supporting tools or applications being invoked and managed by the workflow management system•one or more work items being assigned for a workflow participant to process independently of the workflow management system, with the completion of the workitems being notified to the workflow management system by the workflow participant (within a workflow system these may sometimes be described asmanually executed work items)For other aspects of usage see ActivitySynonyms•Workflow Activity•Activity (colloquial)Manual ActivityDefinitionAn activity within a business process which is not capable of automation and hence lies outside the scope of a workflow management system. Such activities may be included within a process definition, for example to support modelling of the process, but do not form part of a resulting workflow.UsageSee ActivitySynonyms•Non-automated Activity•Manual Step•Human Task•Manual WorkInstance (as in Process or Activity Instance)DefinitionThe representation of a single enactment of a process, or activity within a process, including its associated data. Each instance represents a separate thread of execution1 of the process or activity, which may be controlled independently and will have its own internal state and externally visible identity, which may be used as a handle, for example, to record or retrieve audit data relating to the individual enactment.Usage(Common)• A process or activity instance is created and managed by a workflow management system for each separate invocation of the process or activity.1Where a process includes parallel activities, a process instance may include multiple concurrent threads of execution. See Parallel Routing, And-Split, And-JoinProcess InstanceDefinitionThe representation of a single enactment of a process. (See also general entry on Instance).Usage• A process instance is created, managed and (eventually) terminated by a workflow management system, in accordance with the process definition.•Each process instance represents one individual enactment of the process, using its own process instance data, and which is (normally) capable of independent control and audit as it progresses towards completion or termination. It represents the unit of work with respect to a business process which passes through a workflowmanagement system (for example, the processing of one insurance claim, or the production of one engineering design).•Each process instance exhibits internal state, which represents its progress towards completion and its status with respect to its constituent activities. (See Process State)(Some business processes may never “complete” within a defined timescale in the accepted sense of the word, but achieve a protracted, persistent dormant state, which may require the process instance to be placed in an archive state, for example to support legal requirements on the maintenance of process data.)Synonyms•Process Definition Instance•Case•Workflow Definition Instance•Instruction Sheet InstanceActivity InstanceDefinitionThe representation of an activity within a (single) enactment of a process, i.e. within a process instance. (See also general entry on Instance)Usage•An activity instance is created and managed by a workflow management system when required within the enactment of process, in accordance with the process definition.•Each activity instance represents a single invocation of an activity, relates to exactly one process instance and uses the process instance data associated with the process instance. Several activity instances may be associated with one process instance, where parallel activities exist within the process, but one activity instance cannot be associated with more than one process instance.•Each activity instance is normally capable of independent control and audit and exhibits internal state. (See Activity State)Synonyms•Step Instance•Node Instance•Task Instance•Work Element InstanceWorkflow ParticipantDefinitionA resource which performs the work represented by a workflow activity instance. This work is normally manifested as one or more work items assigned to the workflow participant via the worklist.Usage•Τhe term Workflow Participant is normally applied to a human resource but it could conceptually include machine based resources such as an intelligent agent.• A workflow participant may be identified directly within the business process definition, or (more normally) is identified by reference within the processdefinition to a role or organisational entity, which can then be filled by one or more of the resources available to the workflow system to operate in that role during process enactment.•Within the WfMC Process Definition Meta-Model, the workflow participant declaration may identify a participant as one of four types – human, (machine)resource, role, or organisational_unit. Alternatively reference may be may to an external Organisation Model which provides details of participants fitting theselected criteria. (See also Organisation Model)Synonyms•Actor•Agent•Player•User•Role Player•Work PerformerWork ItemDefinitionThe representation of the work to be processed (by a workflow participant) in the context of an activity within a process instance.Usage•An activity typically generates one or more work items which together constitute the task to be undertaken by the user (a workflow participant) within this activity (In certain cases an activity may be completely handled by an invoked application which can operate without a workflow participant, in which case there may be no work item assignment.)•The work item(s) are normally presented to the user via a work list, which maintains details of the work items allocated to a user, and a worklist handler, which interacts with the worklist on the behalf of the user•The control and progression of work items rests with the worklist handler and the user, rather than the workflow engine, which is notified of workitem status (e.g.completion) via the worklist handler interface. (The WfMC WAPI interfaceincludes standard API calls for this purpose.)•Tools or applications may be invoked to support the processing of a work item, or it may be processed independently by a workflow participant, with the workflow management system merely notified of the completion of particular work items Synonyms•Work (e.g. document review, fill-in form)•Work Object•Work Queue Item•Element•Work Pool Item•TaskWorklistDefinitionA list of work items associated with a given workflow participant (or in some cases with a group of workflow participants who may share a common worklist). The worklist forms part of the interface between a workflow engine and the worklist handlerUsage•Generally, a worklist handler will request work items from a workflow engine in order to create such a list. This is sometimes done via a query mechanism.•In some workflow management systems workitems may be placed in the worklist by a workflow engine for subsequently access and actioning by the worklisthandler.Synonyms•Work Queue•In-Tray•To-Do ListWorklist HandlerDefinitionA software component that manages the interaction between the user (or group of users) and the worklist maintained by a workflow engine. It enables work items to be passed from the workflow management system to users and notifications of completion or other work status conditions to be passed between the user and the workflow management system.Usage• A worklist handler may be vendor supplied as a component of the workflow management software, or may be developed as a standalone custom application. A worklist handler may communicate with several workflow systems, consolidating user work items into a single list of tasks for presentation to the user. This principle may be extended to include other external information sources such as mail in-tray items.•Possible functions that may be performed by the worklist handler include:•Selecting a work item•Reassigning a work item•Notifying completion of a work item.•Invocation of a tool or client application as part of the work itemprocessing•The W f MC WAPI interface includes standard API calls for worklist handler communication with a workflow engine.Synonyms•WFM Front End•WFM Application•Workflow To-Do List Application•Task Manager•Active Work PerformerWorkflow Reference ModelDefinitionAn architectural representation of a workflow management system, identifying the most important system interfaces, developed by the Workflow Management Coalition. UsageThe Reference Model provides the general architectural framework for the work of the WfMC. It identifies “interfaces” covering, broadly, five areas of functionality between a workflow management system and its environment.•The import and export of process definitions•Interaction with client applications and worklist handler software•The invocation of software tools or applications•Interoperability between different workflow management systems •Administration and monitoring functionsSynonymsNoneFigure 4 - The Workflow Reference ModelWAPIDefinitionWAPI is an abbreviation for W orkflow AP Is and I nterchange Formats, published by the Workflow Management Coalition, and incorporating specifications to enable interoperability between different components of workflow management systems and applicationsUsageWAPI includes• A range of API calls to support functions between a workflow engine and applications or other system components•Interchange formats and protocols to support interoperability between different workflow engines•Formats for the exchange of information such as process definitions and audit data between a workflow engine and other external repositories.Synonyms•Workflow API's•Workflow Management System API's3- PROCESS CONCEPTS & STRUCTUREThis section includes terminology used within the process definition and during process execution to describe the nature of the process flow and its interactions.Process Definition ModeDefinitionThe time period when manual and/or automated (workflow) descriptions of a process are defined and/or modified electronically.Usage•Process definitions are initially defined prior to workflow enactment, and may be •modified at a later date, or•modified during run time (usually under conditions of privilege or according to a particular user role).Synonyms•Process Modelling•Business Process Modelling•Build TimeProcessDefinitionA formalised view of a business process, represented as a co-ordinated (parallel and/or serial) set of process activities that are connected in order to achieve a common goal. UsageExample: An eight activity process••Activity Network•Directed Graph•Petri Net•Model•Instruction SheetSub ProcessDefinitionA process that is enacted or called from another (initiating) process (or sub process), and which forms part of the overall (initiating) process. Multiple levels of sub process may be supported.Usage• A sub process is useful for defining reusable components within other processes• A sub-process will have its own process definition, and may include parameters passed on its initiation and completion•The WfMC Interoperability scenarios identify various ways in which sub-processes may interact during workflow execution (e.g. nested sub-process, chained) Synonyms•Subflow•Sub WorkflowActivity BlockDefinitionA set of activities within a process definition which share one or more common properties which cause the workflow management software to take certain actions with respect to the block in total.. For example a group of activities may be classified as a block if they require a common resource allocation policy.Usage• A workflow system may support the concept of an activity block, which then initiates particular action by the workflow management systemSynonyms•Activity SetDeadlineDefinitionA time based scheduling constraint which requires that a certain activity (or work item) be completed by a certain time (the “deadline”).Usage•Activity scheduling by a workflow management system will attempt to meet deadline constraints set against particular activities.•The deadline may be expressed as an attribute of the process definition or within workflow relevant data.•Escalation procedures may be invoked if deadlines are not meant.Synonyms•Completion TimeParallel RoutingDefinitionA segment of a process instance under enactment by a workflow management system, where two or more activity instances are executing in parallel within the workflow, giving rise to multiple threads of control.Usage•Parallel routing normally commences with an AND-Split and concludes with an AND-Join•Example:Once the form filling activity is complete the three sections of form X, sections A, B and C, are processed in parallel by the corresponding activities, ProcessSection A activity, Process Section B activity and Process Section C activity. Synonyms•Parallel workflow processing•Concurrent ProcessingSequential RoutingDefinitionA segment of a process instance under enactment by a workflow management system, in which several activities are executed in sequence under a single thread of execution. (No AND-Split or AND-Join conditions occur during sequential routing.)Usage•Example:A purchase order is processed in three consecutive activities.Synonyms•Serial RoutingAND-SplitDefinitionA point within the workflow where a single thread of control splits into two or more threads which are executed in parallel within the workflow, allowing multiple activities to be executed simultaneously (see Parallel Routing).Usage•At an And-Split separate threads of control within the process instance are created;these threads will proceed autonomously and independently until reaching an And-Join condition.•Example•In certain workflow systems all the threads created at an And-Split must converge at a common And-Join point (Block Structure); in other systems convergence of a subset of the threads can occur at different And-Join points, potentially including other incoming threads created from other And-split points. (Free Graph Structure) Synonyms•SplitAND-JoinDefinitionA point in the workflow where two or more parallel executing activities converge into a single common thread of control (see Parallel Routing).Usage•Each parallel executing thread is held until the set of all thread transitions to the next activity is completed (Synchronisation), at which point the threads converge and the next activity is initiated.•Example•In certain workflow systems all the threads created at an And-Split must converge at a common And-Join point (Block Structure); in other systems convergence of a subset of the threads can occur at different And-Join points, potentially including other incoming threads created from other And-split points. (Free Graph Structure)•The AND-Join may be modelled as a Pre-condition of the joining activity.Synonyms•Join•Rendezvous•Synchronisation join。

相关文档
最新文档