第一章 计数原理 单元测试(含解析)

合集下载

2019-2020年高中数学第一章计数原理单元测评1含解析新人教A版

2019-2020年高中数学第一章计数原理单元测评1含解析新人教A版

2019-2020年高中数学第一章计数原理单元测评1含解析新人教A 版一、选择题:本大题共10小题,共50分.1.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( )A .70种B .112种C .140种D .168种解析:方法一(直接法): 分类完成:第1类,甲参加或乙参加,有C 12C 38种挑选方法; 第2类,甲、乙都参加,有C 22C 28种挑选方法. 所以不同的挑选方法共有C 12C 38+C 22C 28=140种. 方法二(间接法):从甲、乙等10人中挑选4人共有C 410种挑选方法,甲、乙两人都不参加挑选方法有C 48种,所以甲、乙两人中至少有1人参加的不同的挑选方法有C 410-C 48=140种.答案:C2.五本不同的书在书架上排成一排,其中甲,乙两本必须连排,而丙,丁两本不能连排,则不同的排法共有( )A .12种B .20种C .24种D .48种解析:甲,乙看作一本,除去丙,丁后排列,再将丙,丁插入,共有A 22A 23A 22=2×3×2×2=24种.答案:C3.在二项式⎝⎛⎭⎪⎫x 2-1x 5的展开式中,含x 4的项的系数是( )A .-5B .5C .-10D .10解析:T k +1=C k5·(x 2)5-k·⎝ ⎛⎭⎪⎫-1x k =C k 5·x 10-2k ·⎝ ⎛⎭⎪⎫1x k ·(-1)k =C k 5·x 10-3k ·(-1)k . 由10-3k =4知k =2,即含x 4的项的系数为C 25(-1)2=10. 答案:D4.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为( )A.320 B.160C.96 D.60解析:按③→①→②→④的顺序涂色,有C15×C14×C14×C14=5×4×4×4=320种不同的方法.答案:A5.一次考试中,要求考生从试卷上的9个题目中选出6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是( )A.40 B.74C.84 D.200解析:可按包括前5个题的个数分类,共有不同的选法C35C34+C45C24+C55C14=74种.答案:B6.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24 B.18C.12 D.6解析:若选0,则0只能在十位,此时组成的奇数的个数是A23=6;若选2,则2只能在十位或百位,此时组成的奇数的个数是2×A23=12,根据分类加法计数原理得总个数为6+12=18.答案:B7.若(2x+3)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( ) A.1 B.-1C.0 D.2解析:(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+3)4×(-2+3)4=1.答案:A8.4名男歌手和2名女歌手联合举行一场音乐会,出场的顺序要求两名女歌手之间恰有一名男歌手,共有出场方案的种数是( )A .6A 33 B .3A 33 C .2A 33D .A 22A 14A 44解析:先选一名男歌手排在两名女歌手之间,有A 14种选法,这两名女歌手有A 22种排法,把这三人作为一个元素,与另外三名男歌手排列有A 44种排法,根据分步乘法计数原理,有A 14A 22A 44种出场方案.答案:D9.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,则不同的站法有( )A .24种B .36种C .60种D .66种解析:先排甲、乙外的3人,有A 33种排法,再插入甲、乙两人,有A 24种方法,又甲排在乙的左边和甲排在乙的右边各占12,故所求不同的站法有12A 33A 24=36(种).答案:B10.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A .72B .96C .108D .144解析:从2,4,6三个偶数中选一个数放在个位,有C 13种方法,将其余两个偶数全排列,有A 22种排法,当1,3不相邻且不与5相邻时有A 33种方法,当1,3相邻且不与5相邻时有A 22·A 23种方法,故满足题意的偶数个数有C 13·A 22(A 33+A 22·A 23)=108个.答案:C第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.从甲、乙、丙、丁四名同学中选出三名同学,分别参加三个不同科目的竞赛,其中甲同学必须参赛,则不同的参赛方案共有__________种.解析:从除甲外的乙,丙,丁三名同学中选出两人有C 23种选法,再将3人安排到三个科目,有A 33种不同排法,因此共有C 23A 33=18种不同方案.答案:1812.⎝ ⎛⎭⎪⎫x 2+1x +25的展开式中的常数项为__________(用数字作答). 解析:(化简三项为二项):原式=⎝ ⎛⎭⎪⎫x 2+22x +22x 5=132x 5·[(x +2)2]5=132x 5·(x +2)10.求原式的展开式中的常数项,转化为求(x +2)10的展开式中含x 5项的系数,即C 510·(2)5.所以所求的常数项为C 5102532=6322.答案:632213.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有__________种不同的方法(用数字作答).解析:只需找到不同颜色的球所在的位置即可,有C 29C 37C 44=1 260种. 答案:1 26014.某校邀请6位学生的父母共12人,请这12位家长中的4位介绍其对子女的教育情况,如果这4位家长中恰有一对是夫妻,那么不同的选择方法有__________种.解析:先从6对夫妻中任选出一对,有C 16种不同的选法,再从其余的10人中任选出2人,有C 210种选法,其中这2人恰好是一对夫妻的选法有C 15种,所以共有C 16(C 210-C 15)=240种不同选法.答案:240三、解答题:本大题共4小题,满分50分. 15.(12分)已知二项式⎝⎛⎭⎪⎫5x -1x n展开式中各项系数之和比各二项式系数之和大240,(1)求n ;(2)求展开式中含x 项的系数; (3)求展开式中所有含x 的有理项.解:(1)由已知得:4n -2n =240,2n=16,n =4. (2分)(2)二项展开式的通项为:C r4(5x )4-r ⎝⎛⎭⎪⎫-1x r =C r 454-r (-1)r x 4-32r ,令4-32r =1⇒r =2所以含x 项的系数:C 2452(-1)2=150.(7分) (3)由(2)得:4-32r ∈Z ,(r =0,1,2,3,4),即r =0,2,4.所以展开式中所有含x 的有理项为: 第1项625x 4,第3项150x ,第5项x -2. (12分)16.(12分)一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,求满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况的种数.解:由题意知需要分两类:第1类,甲上7楼,乙和丙在2,3,4,5,6层楼每个人有5种下法,共有52种;(5分)第2类,甲不上7楼,则甲有4种下法,乙和丙选一人上7楼,另一人有5种下法,共有4×2×5种.(10分)根据分类加法计数原理知,共有52+4×2×5=65种可能情况.(12分)17.(12分)现有0、1、2、3、4、5、6、7、8、9共十个数字.(1)可以组成多少个无重复数字的三位数?(2)组成无重复数字的三位数中,315是从小到大排列的第几个数?(3)可以组成多少个无重复数字的四位偶数?(4)选出一个偶数和三个奇数,组成无重复数字的四位数,这样的四位数共有多少个?(5)如果一个数各个数位上的数字从左到右按由大到小的顺序排列,则称此正整数为“渐减数”,那么由这十个数字组成的所有“渐减数”共有多少个?解:(1)可以组成无重复数字的三位数A19A29=648(个);(2分)(2)组成无重复数字的三位数中,315是从小到大排列的第A12A29+A18+A14=156(个);(4分)(3)可以组成无重复数字的四位偶数A39+A14A18A28=2 296(个).(分0占个位和0不占个位两种情况).(6分)(4)选出一个偶数和三个奇数,组成无重复数字的四位数,这样的四位数有A13A35+C14C35A44=1 140(个).(分选出的偶数是0和不是0两种情况)(9分)(5)由这十个数字组成的所有“渐减数”共有C210+C310+C410+…+C1010=210-C010-C110=1 013(个).(12分)18.(14分)10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求出现如下结果时,各有多少种情况?(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋子有2只成双,另两只不成双.解:(1)从10双鞋子中选取4双,有C410种不同的选法,每双鞋子各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410·24=3 360(种).(4分)(2)从10双鞋子中选取2双有C210种取法,即45种不同取法.(8分)(3)先选取一双有C110种选法,再从9双鞋子中选取2双鞋有C29种选法,每双鞋只取一只各有2种取法,根据分步乘法计数原理,不同取法为N=C110C29·22=1 440(种).(14分)。

2021-2022学年高中数学 第一章 计数原理测评(含解析)新人教A版选修2-3

2021-2022学年高中数学 第一章 计数原理测评(含解析)新人教A版选修2-3

第一章测评(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分)1.若A m4=18C m3,则m等于()A.9B.8C.7D.6,得m-3=3,m=6.A m4=m(m-1)(m-2)(m-3)=18·m(m-1)(m-2)3×2×12.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.15:分有两个对应位置、有一个对应位置及没有对应位置上的数字相同,可得N=C42+C41+1=11.3.若实数a=2-√2,则a10-2C101a9+22C102a8-…+210等于()A.32B.-32C.1 024D.512,得a10-2C101a9+22C102a8-…+210=C100(-2)0a10+C101(-2)1a9+C102(-2)2a8+…+C10(-2)10=(a-2)10=(-√2)10=25=32.104.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( ) A.A 43种B .A 33A 31种C .C 42A 33种D .C 41C 31A 33种4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 42A 33种.5.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,位于第一、第二象限不同点的个数是( ) A.18B.16C.14D.10N 1=2×2+2×2=8(个),第二象限的不同点有N 2=1×2+2×2=6(个), 故N=N 1+N 2=14(个). 故答案为C .6.将A,B,C,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球,且A,B 不能放入同一个盒子中,则不同的放法有( ) A.15种B.18种C.30种D.36种A,B 放入不同盒中,有3×2=6(种)放法,再放C,D,若C,D 在同一盒中,有1种放法;若C,D 在不同盒中,则有2×2=4(种)放法. 故共有6×(1+4)=30(种)放法.故答案为C .7.为支持地震灾区的灾后重建工作,某公司决定分四天每天各运送一批物资到A,B,C,D,E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B,C 两地相邻,安排在同一天上午、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同的运送顺序),且运往这两地的物资算作一批;D,E 两地可随意安排在其余两天送达.则安排这四天运送物资到五个受灾地点的不同运送顺序的种数为( ) A.72B.18C.36D.24.第1步,安排运送物资到受灾地点A,有C 21种方法;第2步,在余下的3天中任选1天,安排运送物资到受灾地点B,C,有C 31A 22种方法;第3步,在余下的2天中安排运送物资到受灾地点D,E,有A 22种方法.由分步乘法计数原理得,不同的运送顺序共有C 21·(C 31A 22)·A 22=24(种).8.将数字1,2,3,4,5,6排成一列,记第i 个数为a i (i=1,2,…,6),若a 1≠1,a 3≠3,a 5≠5,a 1<a 3<a 5,则不同的排列方法种数为( )A.30B.18C.36D.48a 1,a 3,a 5的大小顺序已定,且a 1≠1,a 3≠3,a 5≠5,所以a 1可取2,3,4,若a 1=2或3,则a 3可取4,5,当a 3=4时,a 5=6,当a 3=5时,a 5=6;若a 1=4,则a 3=5,a 5=6.而其他的三个数字可以任意排列,因而不同的排列方法共有(2×2+1)A 33=30(种).9.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是()A.6C82 B.720C82C.30C82 D.20C822人有C82种方法,再插空.由题意知先在4人形成的5个空当中插入1人,有5种方法,余下的1人要插入前排5人形成的6个空当中,有6种方法,即为30种方法.故共有30C82种调整方法.10.设(2-x)5=a0+a1x+a2x2+…+a5x5,那么a0+a2+a4a1+a3的值为()A.-122121B.-6160C.-244241D.-1x=1,可得a0+a1+a2+a3+a4+a5=1,再令x=-1可得a0-a1+a2-a3+a4-a5=35.两式相加除以2求得a0+a2+a4=122,两式相减除以2可得a1+a3+a5=-121.又由条件可知a5=-1,故a0+a2+a4a1+a3=-6160.11.形如45 132的数称为“波浪数”,即十位数字、千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为()A.20B.18C.16D.11,十位和千位数字只能是4,5或3,5,若十位和千位排4,5,则其他位置任意排1,2,3,这样的数有A 22A 33=12(个);若十位和千位排5,3,这时4只能排在5的一边且不能和其他数字相邻,1,2在其余位置上任意排列,这样的数有A 22A 22=4(个).综上,共有16个.故答案为C .12.若自然数n 使得竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.则小于1 000的“可连数”的个数为( ) A.27 B.36C.39D.48,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时,有C 31=3(个);当“可连数”为两位数时,个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C 31C 31=9(个);当“可连数”为三位数时,有C 31C 41C 31=36(个);故共有3+9+36=48(个).二、填空题(本题共4小题,每小题5分,共20分)13.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 .(用数字作答).第1类,每级台阶只站一人,则有A 73种站法;第2类,若有一级台阶有2人,另一级有1人,则有C 31A 72种站法,因此共有不同的站法种数是A 73+C 31A 72=336.14.若(x +√x3)8的展开式中x 4的系数为7,则实数a= .(x √x 3)8的通项为C 8rx 8-r a r(x -13)r=C 8r a r x8-r x -r3=C 8r a r x8-43r,令8-43r=4,解得r=3. ∴C 83a 3=7,得a=12.15.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)个人排成一行,其中甲、乙两人不相邻的不同排法:先排列好除甲、乙两人外的4人,有A 44种方法,再把甲、乙两人插入4个人的5个空当,有A 52种方法,所以共有A 44·A 52=480(种).16.(1+sin x )6的二项展开式中,二项式系数最大的一项的值为52,则x 在[0,2π]内的值为 .,得T 4=C 63sin 3x=20sin 3x=52,∴sin x=12.∵x ∈[0,2π], ∴x=π6或x=5π6.5π6三、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)有6个除颜色外完全相同的球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?.(1)若取1个黑球,和另外3个球排成一列,不同的排法种数为A 44=24;(2)若取2个黑球,和从另外3个球中选的2个排成一列,2个黑球是相同的,所以不同的排法种数为C 32C 42A 22=36;(3)若取3个黑球,和从另外3个球中选的1个排成一列,不同的排法种数为C 31C 41=12.综上,不同的排法种数为24+36+12=72.18.(12分)一个口袋内有4个不同的红球,6个不同的白球. (1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?将取出的4个球分成三类:①取4个红球,没有白球,有C 44种;②取3个红球1个白球,有C 43C 61种;③取2个红球2个白球,有C 42C 62种,故有C 44+C 43C 61+C 42C 62=115(种).(2)设取x 个红球,y 个白球,则{x +y =5,2x +y ≥7,0≤x ≤4,0≤y ≤6,故{x =2,y =3或{x =3,y =2或{x =4,y =1.因此,符合题意的取法种数有C 42C 63+C 43C 62+C 44C 61=186(种).19.(12分)已知(x +2√x )n展开式中的前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项.由题意,得C n 0+14C n 2=2×12C n 1, 即n 2-9n+8=0,解得n=8或n=1(舍去).故n=8. (2)设第r+1项的系数最大,则{12r C 8r ≥12r+1C 8r+1,12r C 8r ≥12r -1C 8r -1, 即{18-r≥12(r+1),12r≥19-r.解得2≤r ≤3.∵r ∈N *,∴r=2或r=3.∴系数最大的项为T 3=7x 5,T 4=7x 72.20.(12分)设1+12x m =a 0+a 1x+a 2x 2+a 3x 3+…+a m x m,若a 0,a 1,a 2成等差数列. (1)求1+12x m 展开式的中间项;(2)求1+12x m展开式中所有含x 的奇次幂的系数和. 解(1)依题意a 0=1,a 1=m 2,a 2=C m2122.由2a 1=a 0+a 2,求得m=8或m=1(应舍去),所以1+12x m展开式的中间项是第五项, T 5=C 8412x 4=358x 4.(2)因为1+12x m =a 0+a 1x+a 2x 2+…+a m x m, 即1+12x 8=a 0+a 1x+a 2x 2+…+a 8x 8. 令x=1,则a 0+a 1+a 2+a 3+…+a 8=328, 令x=-1,则a 0-a 1+a 2-a 3+…+a 8=128,所以a 1+a 3+a 5+a 7=38-129=20516,所以展开式中所有含x 的奇次幂的系数和为20516.21.(12分)把n 个正整数全排列后得到的数叫做“再生数”,“再生数”中最大的数叫做最大再生数,最小的数叫做最小再生数.(1)求1,2,3,4的再生数的个数,以及其中的最大再生数和最小再生数; (2)试求任意5个正整数(可相同)的再生数的个数.的再生数的个数为A 44=24,其中最大再生数为4321,最小再生数为1234.(2)需要考查5个数中相同数的个数. 若5个数各不相同,有A 55=120(个);若有2个数相同,则有A 55A 22=60(个);若有3个数相同,则有A 55A 33=20(个);若有4个数相同,则有A 55A 44=5(个);若5个数全相同,则有1个.22.(12分)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n 的展开式中x 的系数为7. (1)对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数; (2)利用上述结果,求f (0.003)的近似值;(精确到0.01)(3)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求ba .根据题意得C m 1+C n 1=7,即m+n=7,①f (x )中的x 2的系数为C m 2+C n 2=m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n=7-m 代入上式得x 2的系数为m 2-7m+21=m-722+354, 故当m=3或m=4时,x 2的系数的最小值为9.当m=3,n=4时,x 3的系数为C 33+C 43=5;当m=4,n=3时,x 3的系数为C 43+C 33=5.(2)f (0.003)=(1+0.003)4+(1+0.003)3≈C 40+C 41×0.003+C 30+C 31×0.003≈2.02.(3)由题意可得a=C 84=70,再根据{C 8k ·2k≥C 8k+1·2k+1,C 8k ·2k ≥C 8k -1·2k -1,即{k ≥5,k ≤6, 求得k=5或6,此时,b=7×28,∴b a =1285.2021-2022学年高中数学第一章计数原理测评(含解析)新人教A版选修2-311 / 1111。

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试卷(答案解析)(3)

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试卷(答案解析)(3)

一、选择题1.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭2.已知离散型随机变量X 的分布列为则D (X )的最大值是( ) A .29B .59C .89D .2093.已知随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<.令随机变量|()|E ηξξ=-,则( )A .()()E E ηξ>B .()()E E ηξ<C .()()D D ηξ>D .()()D D ηξ<4.已知随机变量X 服从正态分布()100,4N ,若()1040.1359P m X <<=,则m 等于 ( )[附:()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=] A .100B .101C .102D .D .1035.在三次独立重复试验中,事件A 在每次试验中发生的概率相同,若事件A 至少发生一次的概率为6364,则事件A 发生次数ξ的期望和方差分别为 ( ) A .94和916 B .34和316C .916和364D .94和9646.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p ,若该同学本次测试合格的概率为0.784,则p =( )A . 0.4B .0.6C .0.1D .0.27.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率是( )A .0.72B .0.8C .89D .0.98.抛掷一枚均匀的硬币4次,则出现正面的次数多于反面的概率( ) A .38B .12C .516D .7169.当σ取三个不同值123,,σσσ时,正态曲线()20,N σ的图象如图所示,则下列选项中正确的是( )A .123σσσ<<B .132σσσ<<C .213σσσ<<D .321σσσ<<10.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( ). A .80243B .100243C .80729D .10072911.已知随机变量X 服从正态分布2(2,)N σ,(4)0.84P X ≤=,则(02)P X ≤≤=( ) A .0.64B .0.16C .0.32D .0.3412.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.若有一个不透明的袋子内装有大小、质量相同的6个小球,其中红球有2个,白球有4个,每次取两个,取后放回,连续取三次,设随机变量ξ表示取出后都是白球的次数,则()E ξ=______ .14.数轴上有一质点,从原点开始每次等可能的向左或向右移动一个单位,则移动4次后,该质点的坐标为2的概率为________.15.在一个袋中放入四种不同颜色的球,每种颜色的球各两个,这些球除颜色外完全相同.现玩一种游戏:游戏参与者从袋中一次性随机抽取4个球,若抽出的4个球恰含两种颜色,获得2元奖金;若抽出的4个球恰含四种颜色,获得1元奖金;其他情况游戏参与者交费1元.设某人参加一次这种游戏所获得奖金为X ,则()E X =________. 16.小王做某个试验,成功的概率为23,失败的概率为13,成功一次得2分,失败一次得-1分,求100次独立重复试验的总得分的期望______.17.随机变量ξ服从正态分布()240,N σ,若()300.2P ξ<=,则()3050P ξ<<=______.18.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X 的均值EX=_____. 19.甲、乙两人投篮命中的概率分别为p,q,他们各投2次,若p=12,且甲比乙投中次数多的概率为736,则q 的值为____. 20.已知某次数学考试中,学生的成绩X 服从正态分布,即()~N 85,225X ,则这次考试中,学生成绩落在区间[]100,130之内的概率为____________.(注:()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=)三、解答题21.某知名电脑品牌为了解客户对其旗下的三种型号电脑的满意情况,随机抽取了一些客户进行回访,调查结果如表:满意度是指,回访客户中,满意人数与总人数的比值.用满意度来估计每种型号电脑客户对该型号电脑满意的概率,且假设客户是否满意相互独立.(1)从型号Ⅰ和型号Ⅱ电脑的所有客户中各随机抽取1人,记其中满意的人数为X ,求X 的分布列和期望;(2)用“11ξ=”,“21ξ=”,“31ξ=”分别表示Ⅰ,Ⅱ,Ⅲ型号电脑让客户满意,“10ξ=”,“20ξ=”,“30ξ=”分别表示Ⅰ,Ⅱ,Ⅲ型号电脑让客户不满意,比较三个方差()1D ξ、()2D ξ、()3D ξ的大小关系.22.某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为23,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.(1)求乙同学答对2个题目的概率;(2)若甲、乙两位同学答对题目个数分别是m,n,分别求出甲、乙两位同学答对题目个数m,n的概率分布和数学期望.23.某单位选派甲、乙、丙三人组队参加知识竞赛,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是34,甲、丙两人都答错的概率是112,乙、丙两人都答对的概率是14,规定每队只要有一人答对此题则该队答对此题.(1)求该单位代表队答对此题的概率;(2)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错得10分.若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其他题没有影响,求该单位代表队必答题得分的均值(精确到1分).24.某种工业机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金700元,在延保的两年内可免费维修2次,超过2次每次收取维修费200元;方案二:交纳延保金1000元,在延保的两年内可免费维修4次,超过4次每次收取维修费100元.某工厂准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率.记X表示这2台机器超过质保期后延保的两年内共需维修的次数.(1)求X的分布列;(2)以所需延保金及维修费用的期望值为决策依据,工厂选择哪种延保方案更合算?25.数学是研究数量、结构、变化、空间以及信息等概念的一门科学.在人类历史发展和社会生活中,数学发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具.(1)为调查大学生喜欢数学命题是否与性别有关,随机选取50名大学生进行问卷调查,当被调查者问卷评分不低于80分则认为其喜欢数学命题,当评分低于80分则认为其不喜欢数学命题,问卷评分的茎叶图如下:依据上述数据制成如下列联表:请问是否有90%的把握认为大学生是否喜欢数学命题与性别有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++. 20()P K k ≥0.100 0.050 0.010 0.0010k2.7063.841 6.635 10.828A (01)p p <<,各轮命题相互独立,若该同学在3轮命题中恰有2次成功的概率为49,记该同学在3轮命题中的成功次数为X ,求()E X .26.某选修课的考试按A 级、B 级依次进行,只有当A 级成绩合格时,才可继续参加B 级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A 级考试成绩合格的概率为23,B 级考试合格的概率为12.假设各级考试成绩合格与否均互不影响. (1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,求他一共参加3次考试的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==. 故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.2.C解析:C 【分析】根据分布列中概率和为1可得a 的范围和b 的值,再求出,EX DX 的表达式,转化成求二次函数在闭区间的最值问题. 【详解】12133b a a b +-+=⇒=,又110033a a -≥⇒≤≤, 1242()3333EX b a a a b a =+⨯-+⨯=++=+,2221(1)(2)()(3)3DX EX b EX a EX a =-⋅+-⋅-+-⋅2221215()()()()3333a b a a a a =--⋅+-⋅-+-⋅22212215()()()()33333a a a a a =--⋅+-⋅-+-⋅27239a a =-++,对称轴为7163a =>,∴max 1728()9999DX =-++=, 故选:C. 【点睛】本题考查标准差的最值求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将问题转化为函数的最值问题.3.D解析:D 【分析】根据题意,列表求得随机变量ξ及η的分布列,可知均为两点分布.由两点分布的均值及方差表示出()(),E D ξξ和()E η()D η,根据01p <<比较大小即可得解.【详解】随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<. 则随机变量ξ的分布列为:所以,1E p D p p ==- 随机变量|()|E ηξξ=-,所以当0ξ=时,()E p ηξξ=-=,当1ξ=时,()1E p ηξξ=-=-所以随机变量|()|E ηξξ=-的分布列如下表所示(当0.5p =时,η只有一个情况,概率为1):则1121E p p p p p p η=-+-=-()()()()22211121D p p p p p p p p η=--⋅-+---⋅⎡⎤⎡⎤⎣⎦⎣⎦()()2121p p p =--当()()E E ξη=即()21p p p =-,解得12p =.所以A 、B 错误. ()()D D ξη-()()()21121p p p p p =----()22410p p =->恒成立.所以C 错误,D 正确 故选:D 【点睛】本题考查了随机变量的分布列,两点分布的特征及均值和方差求法,属于中档题.4.C解析:C 【分析】 由()()0.1322259P X P X μσμσμσμσ-<<+--<<+=,再根据正态分布的对称性,即可求解. 【详解】由题意,知()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=,则()()220.95440.682620.13592P X P X μσμσμσμσ-<<+--<<+-==,所以要使得()1040.1359P m X <<=,则102m =,故选C. 【点睛】本题主要考查了正态分布的应用,其中解答中熟记正态分布的对称性,以及概率的计算方法是解答的关键,着重考查了运算与求解能力,属于基础题.5.A解析:A 【分析】根据独立重复试验的概率计算公式,求得34p =,再根据二项分布的期望与方差的公式,即可求解. 【详解】由题意,设事件A 在每次试验中发生的概率为P , 因为事件A 至少发生一次的概率为6364,即333631(1)64C p --=,解得34p =, 则事件A 发生的次数ξ服从二项分布3(3,)4B ξ~, 所以事件A 发生的次数ξ的期望为39()344E ξ=⨯=,方差为339()3(1)4416D ξ=⨯⨯-=,故选A. 【点睛】本题主要考查了独立重复试验的概率的计算,以及二项分布的期望与方差的计算,其中解答中熟记独立重复试验的概率的计算公式,以及二项分布的性质是解答的关键,着重考查了推理与运算能力,属于基础题.6.A解析:A 【解析】 【分析】根据合格的情况列方程:()()2110.784p p p p p +-+-=,解方程求出结果. 【详解】由题意可得:()()2110.784p p p p p +-+-= 整理可得:()()22212330.784p p p p p pp -+-+=-+=解得:0.4p = 本题正确选项:A【点睛】本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.7.A解析:A 【分析】设一批种子的发芽率为事件A ,则()0.9P A =,出芽后的幼苗成活率为事件B ,则()|0.8P B A =,根据条件概率公式计算即可,【详解】设一批种子的发芽率为事件A ,则()0.9P A =, 出芽后的幼苗成活率为事件B ,则()|0.8P B A =,∴这粒种子能成长为幼苗的概率()()()|0.90.80.72P P AB P A P B A ===⨯=. 故选:A . 【点睛】本题主要考查了条件概率的问题,关键是分清是在什么条件下发生的,属于基础题.8.C解析:C 【分析】掷一枚均匀的硬币4次,则出现正面的次数多于反面的次数包含出现4次正面和出现3次正面一次反面,由此能求出出现正面的次数多于反面的次数的概率. 【详解】掷一枚均匀的硬币4次,则出现正面的次数多于反面的次数包含出现4次正面和出现3次正面一次反面,∴出现正面的次数多于反面的次数的概率:4433441115()()22216p C C =+⋅=. 故选C . 【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率计算公式的合理运用.9.A解析:A 【解析】分析:由题意结合正态分布图象的性质可知,σ越小,曲线越“瘦高”,据此即可确定123,,σσσ的大小.详解:由正态曲线的性质知,当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,所以1230σσσ<<<.本题选择A 选项.点睛:本题主要考查正态分布图象的性质,系数对正态分布图象的影响等知识,意在考查学生的转化能力和计算求解能力.10.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭. 故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.11.D解析:D 【解析】∵随机变量ξ服从正态分布2(2,)N σ,2μ=,得对称轴是2x =,(4)0.84P ξ=≤, ∴(4)(0)0.16P P ξξ≥=<=,∴(02)0.50.160.34P ξ≤≤=-=,故选D .12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34, 故选B .二、填空题13.【分析】计算出从袋中随机抽取两个球都是白球的概率可知然后利用二项分布的期望公式可计算出的值【详解】从袋中随机抽取两个球都是白球的概率为由题意可知由二项分布的期望公式得故答案为:【点睛】本题考查二项分5【分析】计算出从袋中随机抽取两个球都是白球的概率p ,可知()3,B p ξ,然后利用二项分布的期望公式可计算出()E ξ的值. 【详解】从袋中随机抽取两个球都是白球的概率为242625C p C ==,由题意可知,23,5B ξ⎛⎫⎪⎝⎭,由二项分布的期望公式得()26355E ξ=⨯=.故答案为:65. 【点睛】本题考查二项分布期望的计算,解题时要弄清随机变量满足的分布列类型,考查计算能力,属于中等题.14.【分析】由题意分析可知质点4次运动中有1次向左3次向右根据独立事件的概率公式求解【详解】由题意可知质点移动4次后位于坐标为2的位置说明4次中有1次向左3次向右并且每次向左或向右的概率都是所以移动4次解析:14【分析】由题意分析可知质点4次运动中有1次向左,3次向右,根据独立事件的概率公式求解. 【详解】由题意可知质点移动4次后位于坐标为2的位置,说明4次中有1次向左,3次向右,并且每次向左或向右的概率都是12,所以移动4次后,该质点的坐标为2的概率314111224p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故答案为:14【点睛】本题考查独立事件概率的实际应用问题,属于基础题型,本题的关键是抽象出质点运动方向,以及概率类型.15.【分析】首先根据题意判断出的可取值有并利用概率公式求得对应的概率最后利用离散型随机变量的期望公式求得结果【详解】由已知1又所以故答案为:【点睛】该题考查的是有关离散型随机变量的期望的求解问题涉及到的7【分析】首先根据题意,判断出X 的可取值有2,1,1-,并利用概率公式求得对应的概率,最后利用离散型随机变量的期望公式求得结果. 【详解】由已知2X =,1,1-, 又()22242486(2)70C C P X C ===,()441424816(1)70C C P X C ===,()22114224848(1)70C C C P X C =-==,所以12164827070707EX =+-=-, 故答案为:27-. 【点睛】该题考查的是有关离散型随机变量的期望的求解问题,涉及到的知识点有古典概型概率公式,离散型随机变量的期望公式,属于简单题目.16.100【分析】计算得到答案【详解】设一次实验得分为根据题意:故100次独立重复试验的总得分的期望为故答案为:【点睛】本题考查了数学期望意在考查学生的计算能力和应用能力解析:100 【分析】 计算()2121133E X =⨯-⨯=,得到答案. 【详解】设一次实验得分为X ,根据题意:()2121133E X =⨯-⨯=, 故100次独立重复试验的总得分的期望为()100100E X =. 故答案为:100. 【点睛】本题考查了数学期望,意在考查学生的计算能力和应用能力.17.6【解析】【分析】根据随机变量服从正态分布知正态曲线的对称轴是且依据正态分布对称性即可求得答案【详解】解:根据随机变量服从正态分布知正态曲线的对称轴是利用正态分布的对称性可得所以故答案为06【点睛】解析:6 【解析】 【分析】根据随机变量ξ服从正态分布,知正态曲线的对称轴是40ξ=,且()300.2P ξ<=,依据正态分布对称性,即可求得答案. 【详解】解:根据随机变量ξ服从正态分布,知正态曲线的对称轴是40ξ=, 利用正态分布的对称性可得()()50300.2P P ξξ>=<=, 所以()()()30501503010.40.6P P P ξξξ⎡⎤<<=->+<=-=⎣⎦ 故答案为0.6 【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,考查运算求解能力,属于基础题.18.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.19.【分析】由题意根据甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投中2次乙投中1次或0次再由概率的加法公式即可列出方程求解答案【详解】甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投解析:23【分析】由题意,根据甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再由概率的加法公式,即可列出方程,求解答案. 【详解】甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次.由题意得p(1-p)·(1-q)2+p 2[(1-q)2+q(1-q)]=,解得q=或q=(舍). 【点睛】本题主要考查了相互独立事件的概率的计算,其中认真审题,根据甲比乙投中次数多的可能情形:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再根据概率的加法公式求解是解答的关键,着重考查了推理与运算能力.20.【解析】【分析】已知X~N (σ2)则正态曲线关于x=85对称根据与所求区间的关系和已知概率求解【详解】:∵学生的成绩服从正态分布X~N (85225)即=85=15∴P(70<X<100)=06826 解析:0.1574【解析】 【分析】已知X~N (μ ,σ2),则正态曲线关于x=85对称.根据[,μσμσ-+],[2,2μσμσ-+][3,3μσμσ-+] 与所求区间的关系,和已知概率求解. 【详解】:∵学生的成绩X 服从正态分布X~N (85,225) 即μ=85,σ=15∴P(70<X<100)=0.6826 ,P(40<X<130)=0.9974 ∴P(100<X<130)=()10.99740.68260.15742-= 【点睛】在实际问题中进行正态分布条件下的概率计算时,关键是确定正态分布的两个重要参数μ和σ,以及三个范围[,μσμσ-+],[2,2μσμσ-+][3,3μσμσ-+]与所求区间的关系,结合已知概率,进行求解。

高中数学第一章计数原理本章测评(含解析)新人教A版选修2_3

高中数学第一章计数原理本章测评(含解析)新人教A版选修2_3

第一章测评(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从4双不同鞋中任取4只,结果都不成双的取法有( )A.24种B.16种C.44种D.192种解析:取4只不成双的鞋分4步完成:(1)从第一双鞋任取一只,有2种取法;(2)从第二双鞋任取一只,有2种取法;(3)从第三双鞋任取一只,有2种取法;(4)从第四双鞋任取一只,有2种取法.由分步乘法计数原理,共有24=16种取法.答案:B2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b,组成复数a+b i,其中虚数有( )A.36个B.42个C.30个D.35个解析:由于a,b互不相等且a+b i为虚数,所以b只能从1,2,3,4,5,6中选一个,共6种方法,a 从剩余的6个数中选一个有6种方法,根据分步乘法计数原理知,虚数的个数为6×6=36.答案:A3.将(x-q)(x-q-1)(x-q-2)…(x-19)写成的形式是( )A.B.C.D.解析:由式子的形式可以看出(x-q)为最大因式,共有20-q个因式连乘.答案:D4.将7名学生分配到甲、乙两间宿舍中,每间宿舍至少安排2名学生,那么互不相同的分配方案共有( )A.252种B.112种C.70种D.56种解析:分两类:甲、乙两间宿舍中一间住4人、另一间住3人或一间住5人、另一间住2人,所以不同的分配方案共有=35×2+21×2=112种.答案:B5.从长度分别为1,2,3,4的4条线段中任取3条,不同取法共有n种.在这些取法中,以取出的3条线段为边可组成三角形的个数为m,则=( )A.0B.C.D.解析:由题意知,n==4,由三角形的三边关系知,可组成三角形的只有长度分别为2,3,4的一组线段,即m=1,所以.答案:B6.若x+x2+…+x n能被7整除,则x,n的值可能为( )A.x=4,n=3B.x=4,n=4C.x=5,n=4D.x=6,n=5解析:由于x+x2+…+x n=(1+x)n-1,分别将选项A,B,C,D中的值代入检验知,仅有选项C适合.答案:C7.在数字1,2,3与符号“+”“-”五个元素的所有全排列中,任意两个数字都不相邻的全排列的个数是( )A.6B.12C.18D.24解析:先排1,2,3,有=6种排法,再将“+”“-”两个符号插入,有=2种排法,共有6×2=12种排法.答案:B8.(1+2)3(1-)5的展开式中x的系数是( )A.-4B.-2C.2D.4解析:(1+2)3(1-)5=(1+6+12x+8x)(1-)5,故(1+2)3(1-)5的展开式中含x的项为1×(-)3+12x=-10x+12x=2x,所以x的系数为2.答案:C9.某大型运动会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( )A.36种B.12种C.18种D.48种解析:分两类:若小张或小赵入选,则选法种数为=24;若小张、小赵都入选,则选法种数为=12,所以,共有36种不同的选派方案.答案:A10.从正方体ABCD-A1B1C1D1的8个顶点中选取4个作为四面体的顶点,可得到的不同四面体的个数为( )A.-12B.-8C.-6D.-4解析:在正方体中,6个面和6个对角面上的四个点不能构成四面体.答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.如图所示为一电路图,若只闭合一条线路,从A处到B处共有条不同的线路可通电.解析:按上、中、下三条线路可分为三类,上线路中有3种,中线路中有一种,下线路中有2×2=4种.根据分类加法计数原理,共有3+1+4=8种不同的线路.答案:812.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).解析:可分类讨论:第一类,7级台阶上每一级只站一人,则有种;第二类,若有一级台阶有2人,另一级有1人,则共有种,因此共有不同的站法种数是=336.答案:33613.若(ax-1)5的展开式中x3的系数是80,则实数a的值是.解析:设通项公式为T r+1=a5-r x5-r(-1)r,令5-r=3,得r=2,a5-2(-1)2=80,解得a=2.答案:214.设a∈Z,且0≤a<13,若512014+a能被13整除,则a=.解析:∵52能被13整除,∴512014可化为(52-1)2014,其展开式的通项为T r+1=522014-r·(-1)r.故(52-1)2014被13除余数为·(-1)2014=1,则当a=12时,512014+12能被13整除.答案:1215.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是.把符合条件的所有数按从小到大的顺序排列,则321是第个数(用数字作答).解析:由题意知,不含0的三位数有2个,含0的三位数中,0只能作为个位数,有个,共有满足条件的三位数2=204(个);百位为1的数共有=28个,百位为2的数共有+1=22(个),百位为3的数从小到大排列为310,320,321,…,故321是第53个数.答案:204 53三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)有大小、形状、质地相同的6个球,其中3个一样的黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?分析:可按取1个、2个、3个黑球进行分类求解.解:分三类:(1)若取1个黑球,和另三个球排4个位置,不同的排法为=24种;(2)若取2个黑球,从另三个球中选2个排4个位置,2个黑球是相同的,自动进入,不需要排列,即不同的排法种数为=36;(3)若取3个黑球,从另三个球中选1个排4个位置,3个黑球是相同的,自动进入,不需要排列,即不同的排法种数为=12.综上,不同的排法种数为24+36+12=72.17.(15分)已知的展开式中前三项的系数成等差数列.(1)求n的值;(2)求展开式中系数最大的项.分析:可用通项公式写出前三项的系数,利用等差中项的性质即可求出n的值;所谓系数最大的项,即只要某一项的系数不小于与它相邻的两项的系数即可,这是由二项式系数的增减性决定的.解:(1)由题意,得=2×,即n2-9n+8=0,解得n=8,n=1(舍去).(2)设第r+1项的系数最大,则即解得r=2或r=3.所以系数最大的项为T3=7x5,T4=7.。

高中数学第一章计数原理1.1分类加法计数原理与分步乘法计数原理练习含解析新人教版

高中数学第一章计数原理1.1分类加法计数原理与分步乘法计数原理练习含解析新人教版

1.1分类加法计数原理与分步乘法计数原理一、选择题1.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,甲到丙地再无其他路可走,则从甲地去丙地可选择的旅行方式有()A.5 种B.6种C.7种D.8种【答案】B【解析】由分步计数原理可知,可选方式有2×3=6种.故选B.2.将三封信投入三个信箱,可能的投放方法共有种( )A. 3B.6 C.9 D.27【答案】D【解析】将三封信投入三个信箱,由于信投入的信箱不指定,则每封信都有3种选择,所以总的投放方法33 种.故选D.有273.将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法为()A.6种B.12种C.18种D.24种【答案】A【解析】∵每一行从左到右,每一列从上到下分别依次增大,1、2、9只有一种填法,5只能填在右上角或左下角,5填后与之相邻的空格可填6、7、8任一个;余下两个数字按从小到大只有一种方法.共有2×3=6种结果,故选A.4.下表为第29届奥运会奖牌榜前10名:F C表示从“金牌、银牌、铜牌、总数”4项中任取不同两项构成的一个排列,按下面的方式对10个设(,)国家进行排名:首先按F由大至小排序(表格中从上至下),若F值相同,则按C值由大至小排序,若C值也相同,则顺序任意,那么在所有的排序中,中国的排名之和是()A .15B .20C .24D .27【答案】D【解析】分类讨论:若F 为金牌,3种排序中,中国均第1;若F 为银牌,在银牌-金牌,银牌-总数两种排序中,中国均第2,在银牌-铜牌的排序中,中国排第2或第3;若F 为铜牌,在铜牌-金牌,铜牌-总数的排序中,中国均第2,在铜牌-银牌的排序中,中国排第2或第3;若F 为总数,则3种排列中国均第2.故在所有的排序中,中国的排名之和为3×1+(2×2+2+3)+(2×2+2+3)+3×2=27,故选D5.方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A.28条B.32条C.36条D.48条【答案】B【解析】方程22ay b x c =+变形得222b c y b a x -=,若表示抛物线,则0,0≠≠b a ,所以分2,1,2,3b =-四种情况:(1)当2b =-时,1,0,2,3,2,0,1,3,3,0,1,2;a c a c a c ==⎧⎪==⎨⎪==⎩或或或或或或(2)当2b =时,2,0,1,3,1,2,0,3,3,2,0,1,a c a c a c =-=⎧⎪==-⎨⎪==-⎩或或或或或或以上两种情况下有4条重复,故共有9+5=14条;同理,若b=1,共有9条;若b=3时,共有9条.综上,共有14+9+9=32条.7.某团支部进行换届选举,从甲、乙、丙、丁四人中选出三人分别担任书记、副书记、组织委员,规定上届任职的甲、乙、丙三人不能连任原职,则不同的任职方案有()A .10B .11C .12D .13【答案】B【解析】当丁不入选时,由甲乙丙三个人担任,甲有2种选择,余下的乙和丙只有一种选择;当丁入选时,有3种结果,丁担任三个人中没有入选的人的职务时,只有一种结果,丁担任入选的两个人的职务时,有2种结果,共有()3219⨯+=种,综上可知,共有9+2=11种结果,故选B.二、填空题7.若a ,b ∈N *,且a +b ≤5,则复数a +b i 的个数为______.【答案】10【解析】按a 分类,当a 取1,2,3,4时,b 的值分别有4个、3个、2个、1个,由分类计数原理,得复数a +b i 共有4+3+2+1=10(个).8.n 个人参加某项资格考试,能否通过,有种可能的结果?【答案】2n【解析】每个人都有通过或不通过2种可能,共计有22...2(2)2n n ⨯⨯⨯=个三、解答题9.某班新年联欢晚会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这2个节目插入原节目单中,那么有多少种不同的插法?【解析】5个节目排好后,有6个空可插入第一个节目,共6种不同的插法,再插第二个节目时有7个空,所以共有6×7=42种不同的插法.10.现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?【解析】(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以共有不同的选法有7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法有7×8×9×10=5 040(种). (3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法,所以共有不同的选法有7×8+7×9+7×10+8×9+8×10+9×10=431(种).。

(必考题)高中数学选修三第一单元《计数原理》测试(有答案解析)(4)

(必考题)高中数学选修三第一单元《计数原理》测试(有答案解析)(4)
【详解】
从5本书中取出两本看做一个元素共有 种不同的取法,
这一元素与其他三个元素分给四个同学共有 种不同的分法,
根据分步乘法计数原理,共有 种不同的分法.
故答案为240
【点睛】
本题主要考查了排列组合的综合应用,分步乘法计数原理,属于中档题.
14.8和9【分析】根据求得利用二项式系数的性质可得展开式中二项式系数的最大【详解】解:由题意可得即解得∵故展开式中二项式系数的最大的项为第8项或第9项故答案为:8和9【点睛】本题主要考查二项式定理的应用
一、选择题
1. 的展开式中,含 的项的系数是()
A. B. C.25D.55
2.已知(x ﹣ )5的展开式中,常数项为10,则a=()
A.﹣1B.1C.﹣2D.2
3.已知 的展开式中没有 项, ,则 的值可以是()
A.5B.6C.7D.8
4.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有( )
【详解】
由题意二项式 的展开式中,当且仅当第5项的二项式系数最大,

二项式展开式的通项为
要系数最小,则 为奇数
当 时,
当 时,
当 时,
当 时,
故当当 时系数最小
则系数最小的项是第4项
故选
【点睛】
本题主要考查了二项式展开式的应用,结合其通项即可计算出系数最小的项,较为基础
9.D
解析:D
【解析】
分析:直接利用排列数计算公式即可得到答案.
【详解】
由题意可得二项式系数和2n=64,解得n=6.
∴ 的通项公式为: ,
∴当r=2时,含x6项的系数为 ,
当r=3时,含x3项的系数为 ,

高中数学第一章计数原理章末综合检测一含解析新人教A版选修2_3

高中数学第一章计数原理章末综合检测一含解析新人教A版选修2_3

章末综合检测(一)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(1-x )10展开式中x 3项的系数为( ) A .-720 B .720 C .120D .-120解析:选D .由T r +1=C r10(-x )r=(-1)r C r10x r,因为r =3,所以系数为(-1)3C 310=-120. 2.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A .8种B .10种C .12种D .32种解析:选B .此人从A 到B ,路程最短的走法应走2纵3横,将纵用0表示,横用1表示,则一种走法就是2个0和3个1的一个排列,只需从5个位置中选2个排0,其余位置排1即可,故共有C 25=10种.3.从4台甲型和5台乙型电视机中任意取出2台,其中甲型与乙型电视机各1台,则不同的取法种数为( )A .60B .40C .30D .20解析:选D .根据题意,分2步进行分析:①先在4台甲型电视机中取出1台,有4种取法;②再在5台乙型电视机中取出1台,有5种取法.则有4×5=20种不同的取法.故选D .4.(2019·郑州高二检测)将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),则不同的排列方法有( )A .12种B .20种C .40种D .60种解析:选C .五个元素没有限制,全排列数为A 55,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ),故所求排列数为A 55A 33×2=40.5.已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8等于( ) A .-5 B .5 C .90D .180解析:选D .因为(1+x )10=[2-(1-x )]10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,所以a 8=C 810·22=180.6.圆周上有8个等分圆周的点,以这些等分点为顶点的锐角三角形或钝角三角形的个数A .16B .24C .32D .48解析:选C .圆周上8个等分点共可构成4条直径,而直径所对的圆周角是直角,又每条直径对应着6个直角三角形,共有C 14C 16=24个直角三角形.斜三角形的个数为C 38-C 14C 16=32个.7.设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为( )A .-2B .-1C .1D .2解析:选A .令x =-1,即得a 0+a 1+a 2+…+a 11=-2.8.若(x 2+m )⎝ ⎛⎭⎪⎫x -2x 6的展开式中x 4的系数为30,则m 的值为( )A .-52B .52C .-152D .152解析:选B .⎝ ⎛⎭⎪⎫x -2x 6展开式的通项公式为T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫-2x r=(-2)r C r 6x 6-2r ,令6-2r =2,得r =2,所以x 4项的系数为(-2)2C 26=60,令6-2r =4,得r =1,所以x 4项的系数为(-2)1C 16=-12,所以(x 2+m )·⎝ ⎛⎭⎪⎫x -2x 6的展开式中x 4的系数为60-12m =30,解得m =52.故选B .9.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23 B .C 26A 66 C .C 28A 25D .C 28A 26解析:选D .第一步可先从后排8人中选2人共有C 28种;第二步可认为前排放6个座位,先选出2个座位让后排的2人坐,由于其他人的顺序不变,所以有A 26种坐法.综上知“不同”调整方法的种数为C 28A 26.10.(2019·福州高二检测)为参加校园文化节,某班推荐2名男生3名女生参加文艺技能培训,培训项目及人数分别为:乐器1人,舞蹈2人,演唱2人.若每人只参加1个项目,并且舞蹈和演唱项目必须有女生参加,则不同推荐方案的种数为( )A .12B .36C .48D .24解析:选D .法一:(直接法)3名女生各参加1项,2名男生在舞蹈、演唱中各参加1项,有A 33A 22=12种方案;有2名女生参加同一项,有C 23A 12A 22=12种方案,所以共有12+12=24种法二:(间接法)2名男生同时参加舞蹈或演唱,有C 23A 12=6种方案,而所有不同的推荐方案共有C 15C 24C 22=30种,故满足条件的推荐方案种数为30-6=24.11.将18个参加青少年科技创新大赛的名额分配给3所学校,要求每所学校至少有1个名额且各校分配的名额互不相等,则不同的分配方法种数为( )A .96B .114C .128D .136解析:选B .由题意可得每所学校至少有1个名额的分配方法种数为C 217=136,分配名额相等的有22种(可以逐个数),则满足题意的方法有136-22=114种.12.已知(2x 2+x -y )n 的展开式中各项系数的和为32,则展开式中x 5y 2的系数为( ) A .120 B .30 C .240D .60解析:选A .由题意,(2x 2+x -y )n的展开式中各项系数的和为32,即(2+1-1)n=32,解得n =5.已知(2x 2+x -y )5=[(2x 2+x )-y ]5的通项公式为T r +1=C r 5·(-y )r (2x 2+x )5-r,由展开式中含有x 5y 2,可知r =2,且(2x 2+x )3的展开式中有含x 5的项,由通项公式,可得T t +1=C t 3(2x 2)3-t x t=23-t C t 3x 6-t ,令t =1得,含x 5项的系数为22C 13.所以展开式中,x 5y 2的系数为C 25×C 13×22=120.二、填空题:本题共4小题,每小题5分.13.(2019·长沙高二检测)将5名志愿者分成4组,其中一组有2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方法有________种.(用数字作答)解析:分配方法数为C 25C 13C 12C 11A 33·A 44=240. 答案:24014.(2019·青岛高二检测)设(2x -1)6=a 6x 6+a 5x 5+…+a 1x +a 0,则|a 0|+|a 1|+|a 2|+…+|a 6|=________.解析:因为(2x -1)6=a 6x 6+a 5x 5+…+a 1x +a 0, 由二项式定理可知a 0,a 2,a 4,a 6均为正数,a 1,a 3,a 5均为负数,令x =-1可得|a 0|+|a 1|+|a 2|+…+|a 6|=a 0-a 1+a 2-a 3+a 4-a 5+a 6=(-2-1)6=729.答案:72915.若二项式⎝⎛⎭⎪⎫x -1x n 的展开式中只有第4项的二项式系数最大,则展开式中常数项为________.解析:第4项的二项式系数C 3n 最大,所以n =6,展开式通项T k +1=C k 6x 6-k·⎝⎛⎭⎪⎫-1x k=(-1)k C k6x6-32k ,令6-32k =0,则k =4,所以常数项为(-1)4C 46=15.答案:1516.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有________种.解析:先把A ,B 放入不同盒中,有3×2=6种放法,再放C ,D , 若C ,D 在同一盒中,只能是第3个盒,1种放法;若C ,D 在不同盒中,则必有一球在第3个盒中,另一球在A 或B 的盒中,有2×2=4种放法.故共有6×(1+4)=30种放法. 答案:30三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)⎝ ⎛⎭⎪⎫x +2x 2n的展开式中只有第6项二项式系数最大,求展开式中的常数项.解:因为⎝⎛⎭⎪⎫x +2x 2n的展开式中只有第6项二项式系数最大,所以n =10,所以展开式的通项为T r +1=C r 10(x )10-r ⎝ ⎛⎭⎪⎫2x 2r =2r ·C r10x 5-52r ,令5-52r =0,得r =2.所以展开式中的常数项为T 3=4C 210=180.18.(本小题满分12分)如图有4个编号为A ,B ,C ,D 的小三角形,要在每一个小三角形中涂上红、黄、蓝、白、黑五种颜色中的一种,并且相邻的小三角形颜色不同,共有多少种不同的涂色方法?解:分为两类:第一类:若A ,C 同色,则A 有5种涂法,B 有4种涂法,C 有1种涂法(与A 相同),D 有4种涂法.故N 1=5×4×1×4=80.第二类:若A ,C 不同色,则A 有5种涂法,B 有4种涂法,C 有3种涂法,D 有3种涂法. 故N 2=5×4×3×3=180种.综上可知不同的涂法共有N =N 1+N 2=80+180=260种.19.(本小题满分12分)一个口袋内有4个不同的红球,6个不同的白球.(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?解:(1)将取出的4个球分成三类情况: ①取4个红球,没有白球,有C 44种; ②取3个红球,1个白球,有C 34C 16种; ③取2个红球,2个白球,有C 24C 26种, 故有C 44+C 34C 16+C 24C 26=115种.(2)设取x 个红球,y 个白球,则⎩⎪⎨⎪⎧x +y =5,2x +y ≥7,0≤x ≤4,x ∈N *,0≤y ≤6,y ∈N *,故⎩⎪⎨⎪⎧x =2,y =3或⎩⎪⎨⎪⎧x =3,y =2或⎩⎪⎨⎪⎧x =4,y =1. 因此,符合题意的取法种数有C 24C 36+C 34C 26+C 44C 16=186种.20.(本小题满分12分)设(2x -1)10=a 0+a 1x +a 2x 2+…+a 10x 10,求下列各式的值. (1)a 0+a 1+a 2+…+a 10; (2)a 6.解:(1)令x =1,得a 0+a 1+a 2+…+a 10=(2-1)10=1. (2)a 6即为含x 6项的系数,T r +1=C r 10(2x )10-r·(-1)r =C r 10(-1)r 210-r·x10-r,所以当r =4时,T 5=C 410(-1)426x 6=13 440x 6,即a 6=13 440.21.(本小题满分12分)由数字1,2,3,4,5组成无重复数字的五位数. (1)共可以组成多少个五位数? (2)其中奇数有多少个?(3)如果将所有的五位数按从小到大的顺序排列,43 125是第几个数?说明理由. 解:(1)由数字1,2,3,4,5组成无重复数字的五位数,共可以组成A 55=120(个)五位数.(2)由1,2,3,4,5组成的无重复数字的五位数奇数中, 个位数字必须从1,3,5中选出,共有C 13种结果.其余四个位置可以用其他四个数字在四个位置进行全排列,共有A 44种结果, 根据分步乘法计数原理得到共有奇数C 13A 44=72(个). (3)考虑大于43 125的数,分四类讨论:①5在首位,将其他4个数字全排列即可,有A 44=24个.②4在首位,5在千位,将其他3个数字全排列即可,有A 33=6个.③4在首位,3在千位,5在百位,将其他2个数字全排列即可,共有A 22=2个.④除上述情况,还有43 215,43 251,43 152共3个数.由(1)知共可以组成120个五位数,则不大于43 125的五位数有120-(24+6+2+3)=85个.所以43 125是第85个数.22.(本小题满分12分)设有编号为1,2,3,4,5的5个小球和编号为1,2,3,4,5的5个盒子,现将这5个小球放入5个盒子中.(1)没有一个盒子空着,但球的编号与盒子的编号不全相同,有多少种投放方法?(2)每个盒子内投入1个球,并且至少有2个球的编号与盒子的编号是相同的,有多少种投放方法?解:(1)先把5个小球放到5个盒子中,没有空盒,有A55种投放方法,球的编号与盒子的编号完全相同的投放方法有1种,故满足题意的投放方法有A55-1=119(种).(2)可分为三类.第一类:5个球的编号与盒子的编号完全相同,有1种投放方法.第二类:3个球的编号与盒子的编号相同,有C35种投放方法.剩下的2个球的投放方法只有1种,所以投放方法有C35×1=10(种).第三类:2个球的编号与盒子的编号相同,有C25种投放方法,剩下的3个球的投放方法有2种,所以投放方法有C25×2=20(种).根据分类加法计数原理得,满足题意的投放方法有1+10+20=31(种).。

高中数学第一章计数原理检测(B)(含解析)新人教A版选修23

高中数学第一章计数原理检测(B)(含解析)新人教A版选修23

高中数学第一章计数原理检测(B)(含解析)新人教A版选修23第一章计数原理检测(B)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b,组成复数a+b i,其中虚数有() A.36个 B.42个C.30个D.35个解析:因为a,b互不相等且a+b i为虚数,所以b只能从1,2,3,4,5,6中选一个,共6种方法,a从剩余的6个数中选一个有6种方法,根据分步乘法计数原理知,虚数的个数为6×6=36.答案:A2从长度分别为1,2,3,4的4条线段中任取3条,不同取法共有n种.在这些取法中,以取出的3条线段为边可组成三角形的个数为m,A.0BC解析:由题意知,n,可组成三角形的只有长度分别为2,3,4的一组线段,即m=1,所答案:B3A.1B.2C.3D.4解析:由T k+1a9-kk=8,故展开式中x3的系数a a=4.答案:D4在数字1,2,3与符号“+”“-”五个元素的所有全排列中,任意两个数字都不相邻的全排列的个数是()A.6B.12C.18D.24解析:先排1,2,3,,再将“+”“-”两个符号插入,,共有6×2=12种排法.答案:B5已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.-4B.-3C.-2D.-1解析:因为(1+x)5的二项展开式的通项r≤5,r∈Z),则含x2的项10+5a=5,a=-1.答案:D6设函数f(x)A.-20B.20C.-15D.15解析:当x>0时,f(x)=则f[f(x)]T r+1令3-r=0,得r=3,此时T4=(-1)答案:A74名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()AC解析:(方法一)由题意知基本事件总数为24=16,对4名同学平均分组共),对4名同学按1,3分组共,所以周六、周日都有同学参加共有3).由古典概型得所求概率(方法二)周六没有同学参加公益活动即4名同学均在周日参加公益活动,此时只有一种情况;同理周日没有同学参加公益活动也只有一种情况,所以周六、周日均有同学参加公益活动的情况共有16-2=14(种).故所求概率D.答案:D8(1+A.-4B.-2C.2D.4解析:因为(1+(1+x的项为1x的系数为2.答案:C9某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168解析:解决该问题分为两类:第一类分两步,第一步排歌舞3个节目排入左边或右边3个空,故不同排法,第一步排歌舞3个节目放入中间两空排法72+48=120种不同排法,故选B.答案:B10“2021”中含有数字0,1,2,且数字2有两个,则含有0,1,2,且有两个相同数字的四位数的个数是()A.18B.24C.27D.36解析:有两个数字相同时,共有三类:0,0,1,2;0,1,1,2;0,1,2,2.第一类:由0,0,1,2组成四位数时,千位有2种选法,再将剩余的非零数字填入个位、十位、百位中的一个位置,有3种方法,再将0,0填入其余位置有一种方法,共有6个不同的四位数.第二类:当千位是2时,将0填入个位、十位、百位中的一个位置有3种方法,再将1,1填入其余位置有一种方法,所以当千位是2时有3个不同的四位数.当千位是1时,将0,1,2填入个位、十位、百位有6种方法.当由0,1,1,2组成四位数时,共有9个.第三类,同第二类,由0,1,2,2组成四位数时,共有9个.所以符合条件的四位数有6+9+9=24个.答案:B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有个.解析:答案:32125n+13n(n∈N)除以3的余数是.解析:5n+13n=(6-1)n+(12+1)n+(-1)当n为奇数时,5n+13n(-1)n-13整除,则余数为0.当n为偶数时,5n+13n(-1)n-1(-1)n-13除余数为2.答案:0或213将三个分别标有A,B,C的球随机放入编号为1,2,3,4的四个盒子中,则1号盒子中有球的不同放法种数为.解析:分三类,1号盒子中有1个球、2个球、3个球.当有1个球时,放法;有2个球时,放法;有3个球时,放法有1种,故共有27+9+1=37种.答案:3714若(x+1)3+(x-2)8=a0+a1(x-1)+a2(x-1)2+…+a8(x-1)8,则a6=.解析:因为(x+1)3+(x-2)8=[(x-1)+2]3+[(x-1)-1]8,所以a6(x-1)6所以a6=28.答案:2815二项解析:T r+1当r=2时,x3的系数A=(-a)当r=4时,常数项B=(-a)因为B=4A,得15a4=4×15a2,所以a=2(负值舍去).答案:2三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)平面上有9个点,其中有4个点共线,除此外无3点共线.(1)用这9个点可以确定多少条直线?(2)用这9个点可以确定多少个三角形?(3)用这9个点可以确定多少个四边形?解: (1)确定一条直线需要两个点,因为有4个点共线,所以这9个点所确定直线的条数(2)确定一个三角形需要三个不共线的点,所以这9个点确定三角形的个数(3)确定一个四边形需要四个不共线的点(且任意三点不共线),所以这9个点确定四边形的个数17(8分)已知(1)求n;(2)求含x2的项的系数;(3)求展开式中所有的有理项.解: (1)通项公式为T k+1因为第6项为常数项,所以k=5时n=10.(2)k因此所求的系数(3)根据通项公式,由题意Z),则10-2k=3r,即k=5因为k∈Z,所以r应为偶数.于是r可取2,0,-2,即k可取2,5,8.故第3项、第6项与第9项为有理项,它们分别18(9分)从7名男生5名女生中选出5人,分别求符合下列条件的选法数.(1)A,B必须被选出;(2)至少有2名女生被选出;(3)选出5名同学,让他们分别担任体育委员、文娱委员等5种不同工作,但体育委员由男生担任,文娱委员由女生担任.解: (1)除A,B选出外,从其他10个人中再选3人,共有选法种数(2)按女生的选取情况分类:选2名女生3名男生;选3名女生2名男生;选4名女生1名男生;选5名女生.所有选法种数(3)选出1名男生担任体育委员,再选出1名女生担任文娱委员,剩下的10人中任选3人担任其他3个班委.由分步乘法计数原理可得到所有选法种数200.19(10分)在杨辉三角形中,每一行除首末两个数之外,其余每个数都等于它肩上的两数之和.(1)试用组合数表示这个一般规律;(2)在数表中试求第n行(含第n行)之前所有数之和;(3)试探究在杨辉三角形的某一行能否出现三个连续的数,使它们的比是3∶4∶5,并证明你的结论.解: (1(2)1+2+22+…+2n=2n+1-1.(3)即3n-7r+3=0.①即4n-9r-5=0.②解①②联立方程组,得n=62,r=27,20(10分)用0,1,2,3,4这五个数字组成无重复数字的自然数.(1)在组成的三位数中,求所有偶数的个数;(2)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301,423等都是“凹数”,试求“凹数”的个数;(3)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.解: (1)将所有的三位偶数分为两类:①若个位数为0,则共;②若个位数为2或4,则共有2×3×3=18个.所以,共有30个符合题意的三位偶数.(2)将这些“凹数”分为三类:①若十位数字为0,则共;②若十位数字为1,则共;③若十位数字为2,则共所以,共有20个符合题意的“凹数”.(3)将符合题意的五位数分为三类:①若两个奇数数字在百位和万位,则共;②若两个奇数数字在十位和千位,则共;③若两个奇数数字在个位和百位,则共所以,共有28个符合题意的五位数.。

新人教版高中数学选修三第一单元《计数原理》测试(有答案解析)

新人教版高中数学选修三第一单元《计数原理》测试(有答案解析)

一、选择题1.从5名志愿者中选出4人分别到A 、B 、C 、D 四个部门工作,其中甲、乙两名志愿者不能到A 、B 二个部门工作,其他三人能到四个部门工作,则选派方案共有( ) A .120种B .24种C .18种D .36种2.关于6212x x ⎛⎫- ⎪⎝⎭的展开式,下列说法中正确的是( ) A .展开式中二项式系数之和为32B .展开式中各项系数之和为1C .展开式中二项式系数最大的项为第3项D .展开式中系数最大的项为第4项3.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( ) A .448B .448-C .672D .672-4.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思不变,而且颇具趣味.相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成4位“回文数”的个数为( ) A .30B .36C .360D .12965.根据中央对“精准扶贫”的要求,某市决定从3名男性党员、2名女性党员中选派2名去甲村调研,则既有男性又有女性的不同选法共有( ) A .7种B .6种C .5种D .4种6.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则: ①若开启3号,则必须同时开启4号并且关闭2号; ②若开启2号或4号,则关闭1号; ③禁止同时关闭5号和1号. 则阀门的不同开闭方式种数为( ) A .7B .8C .11D .147.若m 是小于10的正整数,则()()()151620m m m ---等于( )A .515m P -B .1520mm P --C .520m P - D .620m P -8.已知*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,若992M N -=,则展开式中x 的系数为( )A .-250B .250C .-500D .5009.若0,0a b >>,二项式6()ax b +的展开式中3x 项的系数为20,则定积分22abxdx xdx +⎰⎰的最小值为( )A .0B .1C .2D .310.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为 A .18B .200C .2800D .3360011.如图,用6种不同的颜色把图中A,B,C,D 四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为( )A .400B .460C .480D .49612.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.()3621()x x x-+的展开式中的常数项为_____.(用数字作答)14.有2个不同的红球和3个不同的黄球,将这5个球放入4个不同的盒子中,要求每个盒子至少放一个球,且同色球不能放在同一个盒子中,则不同的放置方法有________种.(用数字作答)15.已知33210n n A A =,那么n =__________.16.若251(3)(2)x a x x--的展开式中3x 的系数为80,则a =_______.17.把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有____种.(用数字作答)18.25(32)x x ++的展开式中3x 的项的系数是________.19.如图所示,在杨辉三角中,斜线AB 上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n 项和为S (n ),则S (16)的值为_____.20.()()611ax x -+的展开式中,3x 项的系数为10-,则实数a =___________.三、解答题21.已知nx x ⎛+ ⎝的展开式中只有第五项的二项式系数最大.(1)求该展开式中有理项的项数; (2)求该展开式中系数最大的项. 22.设()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅.(1)求0a 的值;(2)求1232n a a a a +++⋯+的值; (3)求13521n a a a a -+++⋯+的值.23.从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.试问: (1)五位数中,两个偶数排在一起的有几个?(2)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示) 24.已知i ,m ,n 是正整数,且1i m n <≤<. (1)证明:i i i im n n A m A <;(2)证明:(1)(1)m nn m +<+.25.已知n的二项展开式的各二项式系数的和与各项系数的和均为256. (1)求展开式中有理项的个数; (2)求展开式中系数最大的项.26.为弘扬我国古代的“六艺”文化,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程.(1)若体验课连续开设六周,每周一门,求其中“射”不排在第一周,“数”不排在最后一周的所有可能排法种数;(2)甲、乙、丙、丁、戊五名教师在教这六门课程,每名教师至少任教一门课程,求其中甲不任教“数”的课程安排方案种数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,分两种情况讨论:①、甲、乙中只有1人被选中,②、甲、乙两人都被选中,根据分类计数原理可得 【详解】解:根据题意,分两种情况讨论:①、甲、乙中只有1人被选中,需要从甲、乙中选出1人,到C ,D 中的一个部门,其他三人到剩余的部门,有113223··24C C A =种选派方案. ②、甲、乙两人都被选中,安排到C ,D 部门,从其他三人中选出2人,到剩余的部门,有2223·12A A =种选派方案, 综上可得,共有24+12=36中不同的选派方案, 故选D . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中档题.2.B解析:B 【分析】直接利用二项式展开式的应用求出结果. 【详解】 解:关于621(2)x x-的展开式,根据二项式的展开式的应用:61621(2)()r rr r T C x x -+=-, 对于选项A :展开式中二项式系数之和6264=,故错误.对于选项B :利用赋值法的应用,当1x =时,各项的系数的和为6(21)1-=,故正确.对于选项C :展开式中二项式系数最大的项为第4项3620C =,故错误. 对于选项D :展开式中系数最大的项为第2项,系数为2462240C ⨯=.故错误.故选:B . 【点睛】本题考查的知识要点:二项展开式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.3.B解析:B 【分析】求出展开式的通项公式,利用x 的次数为5进行求解即可. 【详解】展开式的通项公式77727171(2)(1)2rr rr r r r rx T C x C x ---+⎛⎫=-=- ⎪⎝⎭, 由725r -=得1r =,所以展开式中5x 的系数为1717(1)2764448C --⋅=-⨯=-,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求二项展开式指定项的系数,属于简单题目.4.B解析:B【分析】依据回文数对称的特征,可知有两种情况:1、在6个数字中任取1个组成16C 个回文数;2、在6个数字中任取2个26C 种取法,又由两个数可互换位置22A 种,即2262C A 个回文数;结合两种情况即可求出组成4位“回文数”的个数 【详解】由题意知:组成4位“回文数”∴当由一个数组成回文数,在6个数字中任取1个:16C 种 当有两组相同的数,在6个数字中任取2个:26C 种又∵在6个数字中任取2个时,前两位互换位置又可以组成另一个数 ∴2个数组成回文数的个数:22A 种故,在6个数字中任取2个组成回文数的个数:2262C A综上,有数字1,2,3,4,5,6可以组成4位“回文数”的个数为:2262C A +16C =36 故选:B 【点睛】本题考查了排列组合,根据回文数的特征—对称性,先由分类计数得到取数的方法数,再由分步计数得到各类取数中组成回文数的个数,最后加总即为所有组成4位“回文数”的个数5.B解析:B 【分析】根据题意可得选出的2人必为一男—女,分别求出选出1名男性党员和1名女性党员的选法数目,由分步乘法计数原理计算可得答案. 【详解】根据题意,选出的2人中既有男性又有女性,必为一男一女,在3名男性党员中任选1人,有3种选法,在2名女性党员中任选1人,有2种选法,则既有男性又有女性的不同选法有3×2=6种, 故选:B 【点睛】本题主要考查排列组合的应用,涉及分步乘法计数原理的应用,属于基础题.6.A解析:A 【分析】分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果. 【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号, 此时有1种方法; 第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号, 此时有种3方法;综上所述,共有1337++=种方式. 故选:A. 【点睛】本题考查分类加法计数原理,属于中档题.7.D解析:D 【分析】利用排列数的定义可得出正确选项. 【详解】()()()()()()()()()()1231415162020!1516201231414!m m m m m m m m m m ⋅⋅--------==⋅⋅--()()20!206!m m -=--⎡⎤⎣⎦,由排列数的定义可得()()()620151620m m m m P ----=. 故选D. 【点睛】本题考查排列数的表示,解题的关键就是依据排列数的定义将代数式表示为阶乘的形式,考查分析问题和解决问题的能力,属于中等题.8.A解析:A 【分析】分别计算各项系数之和为M ,二项式系数之和为N ,代入等式得到n ,再计算x 的系数. 【详解】215nx x ⎛⎫- ⎪⎝⎭的展开式取1x =得到4n M = 二项式系数之和为2n N = 429925n n M N n -=-=⇒=5251031551(5)()5(1)r r r r r r r r T C x C x x---+=-=- 取3r = 值为-250故答案选A【点睛】本题考查了二项式定理,计算出n 的值是解题的关键.9.C解析:C 【分析】由二项式定理展开项可得1ab =,再22022abxdx xdx a b +=+⎰⎰利用基本不等式可得结果.【详解】二项式()6ax+b 的展开式的通项为6616r r r rr T C a b x --+= 当63,3r r -==时,二次项系数为3336201C a b ab =∴=而定积分2202222abxdx xdx a b ab +=+≥=⎰⎰当且仅当a b =时取等号 故选C 【点睛】本题考查了二项式定理,定积分和基本不等式综合,熟悉每一个知识点是解题的关键,属于中档题.10.C解析:C 【分析】根据组合定义以及分布计数原理列式求解. 【详解】从5种主料中选2种,有2510C =种方法, 从8种辅料中选3种,有3856C =种方法,根据分布计数原理得烹饪出不同的菜的种数为10565=2800⨯⨯,选C. 【点睛】求解排列、组合问题常用的解题方法:分布计数原理与分类计数原理,具体问题可使用对应方法:如 (1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.11.C解析:C 【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有31116321C C C C 种方法,用四种颜色涂色时,有41126322C C C A 种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有31116321120C C C C =种方法, 用四种颜色涂色时,有41126432360C C C A =种方法,根据分类计数原理得不同涂法的种数为120+360=480. 故答案为C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解. 【详解】有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.180【分析】根据二项式定理结合展开式通项即可确定的指数形式将多项式展开即可确定常数项【详解】的展开式中的通项公式而分别令解得或∴的展开式中的常数项故答案为:180【点睛】本题考查了二项式定理通项展解析:180 【分析】根据二项式定理,结合展开式通项即可确定x 的指数形式.将多项式展开,即可确定常数项. 【详解】62x ⎫⎪⎭的展开式中的通项公式 363216622kkkk k k k T C C x x --+⎛⎫==⋅⋅ ⎪⎝⎭,而()666332221)x x x x x =-⎫⎫⎫-⎪⎪⎪⎭⎭⎭ 分别令3332k -=-,3302k -=, 解得4k =,或2k =.∴()6321x x ⎫-⎪⎭的展开式中的常数项44226622180C C -=.故答案为:180. 【点睛】本题考查了二项式定理通项展开式的应用,多项式的乘法展开式,常数项的求法,属于中档题.14.【分析】由题意可得一个盒子里有2个球一定为1红1黄其余盒子每个盒子放一个根据分步计数原理可得【详解】解:这5个球放入4个不同的盒子中要求每个盒子至少放一个球且同色球不能放在同一个盒子中则一个盒子里有 解析:144【分析】由题意可得一个盒子里有2个球,一定为1红1黄,其余盒子每个盒子放一个,根据分步计数原理可得. 【详解】解:这5个球放入4个不同的盒子中,要求每个盒子至少放一个球, 且同色球不能放在同一个盒子中,则一个盒子里有2个球,一定为1红1黄,其余盒子每个盒子放一个,故有11134233144C C C A =种,故答案为:144. 【点睛】本题考查了分步计数原理,运用组合数的运算,理解题目意思是关键..15.8【详解】分析:利用排列数公式展开解方程即可详解:解得即答案为8点睛:本题考查排列数公式的应用属基础题解析:8 【详解】分析:利用排列数公式展开,解方程即可. 详解:33210n n A A = ,()()()()221221012,n n n n n n ∴--=--()()22152,n n -=-解得8n =. 即答案为8.点睛:本题考查排列数公式的应用,属基础题.16.【解析】分析:中的系数与的积加上中的系数与的系数的积就是展开式的系数详解:展开式通项为令则令则∴解得故答案为-2点睛:二项式的展开式的通项为由此通项公式可求展开式中的特定项如果是两个(或多个)式子相 解析:2-【解析】分析:31(2)x x -中3x 的系数与a -的积,加上31(2)x x-中x 的系数与23x 的系数的积就是展开式3x 的系数.详解:51(2)x x-展开式通项为55521551(2)()2r rr r r r r T C x C x x---+=-=, 令523-=r ,则1r =,令521r -=,则2r,∴41325523280a C C -⨯+⨯=,解得2a =-,故答案为-2.点睛:二项式()n a b +的展开式的通项为1C r n r rr n T a b -+=,由此通项公式可求展开式中的特定项.如果是两个(或多个)式子相乘,可在第个式子中取一项相乘,只要未知数的次数满足要求,这时要注意不能遗漏.17.8【解析】当在最右边位置时由种排法符合条件;当在从右数第二个位置时由种排法符合条件把件不同的产品摆成一排若其中的产品与产品都摆在产品的左侧则不同的摆法有种故答案为解析:8 【解析】当C 在最右边位置时,由336A = 种排法符合条件;当C 在从右数第二个位置时,由222A =种排法符合条件,把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有6+2=8种,故答案为8.18.1560【分析】把转化为再利用二项式的展开式的通项公式可求出答案【详解】由题意因为的展开式的通项公式为的展开式的通项公式为所以的展开式中的项的系数是故答案为:1560【点睛】关键点点睛:本题考查二项解析:1560 【分析】把25(32)x x ++转化为()()5512x x ++,再利用二项式的展开式的通项公式,可求出答案.【详解】由题意,()()2555(32)12x x x x =++++,因为()51x +的展开式的通项公式为15r rr T C x +=,()52x +的展开式的通项公式为5152k k k k T C x -+=,所以25(32)x x ++的展开式中3x 的项的系数是305214123032555555552222C C C C C C C C +++320800*********=+++=.故答案为:1560. 【点睛】关键点点睛:本题考查二项式定理的应用,考查三项展开式的系数问题.解决本题的关键是把25(32)x x ++转化为()()5512x x ++,进而分别求出()51x +、()52x +的展开式的通项公式,令3r k +=,可求出25(32)x x ++的展开式中3x 的项的系数.考查学生的逻辑推理能力,计算求解能力,属于中档题.19.164【分析】根据图形可知从第三行起每一行取第二和第三个数字再根据组合数的性质即可计算求出【详解】由图可知这十六个数的和为故答案为:164【点睛】本题主要考查组合数的性质的应用解题关键是凑出的形式反解析:164 【分析】根据图形可知,从第三行起每一行取第二和第三个数字,再根据组合数的性质,即可计算求出. 【详解】由图可知,这十六个数的和为2112121222334499C C C C C C C C ++++++++()()1112223493493C C C C C C =++++++++()()21113222334933491C C C C C C C C =+++++++++-2310101451201164C C =+-=+-=.故答案为:164. 【点睛】本题主要考查组合数的性质的应用,解题关键是凑出1m m n n C C -+的形式,反复利用组合数性质求和,属于基础题.20.【分析】由分别写出和的展开式通项分别令的指数为求出对应的参数值代入通项可得出关于的等式进而可求得实数的值【详解】的展开式通项为所以的展开式通项为令可得由题意可得解得故答案为:【点睛】方法点睛:对于求 解析:2【分析】由()()()()6661111ax x x ax x -+=+-+,分别写出()61x +和()61ax x +的展开式通项,分别令x 的指数为3,求出对应的参数值,代入通项可得出关于a 的等式,进而可求得实数a 的值. 【详解】()()()()6661111ax x x ax x -+=+-+,()61x +的展开式通项为16kkk T C x +=⋅,所以,()61ax x +的展开式通项为1166r r r r r A axC x aC x ++=⋅=⋅,令313k r =⎧⎨+=⎩,可得32k r =⎧⎨=⎩,由题意可得3266201510C aC a -=-=-,解得2a =. 故答案为:2. 【点睛】方法点睛:对于求多个二项式的和或积的展开式中某项的系数问题,要注意排列、组合知识的运用,还要注意有关指数的运算性质.对于三项式问题,一般是通过合并其中的两项或进行因式分解,转化成二项式定理的形式去求解.三、解答题21.(1)5;(2)121792x和11792x - 【分析】(1)先求出8n =,再写出二项式展开式的通项382182k kkk T C x-+=⨯⨯,令382kZ -∈即可求解;(2)设第1k +项系数最大,则118811882222k k k k k k k k C C C C --++⎧⨯≥⨯⎨⨯≥⨯⎩,即可解得k 的值,进而可得展开式中系数最大的项. 【详解】(1)由题意可得:152n+=,得8n =,8x ⎛+ ⎝的展开式通项为138********k k k k k k kk T C x x C x ---+=⨯⨯=⨯⨯,()08k ≤≤,要求展开式中有理项,只需令382kZ -∈, 所以0,2,4,6,8k = 所以有理项有5项,(2)设第1k +项系数最大,则118811882222k k k k kk k k C C C C --++⎧⨯≥⨯⎨⨯≥⨯⎩ , 即()()()()()()118!8!22!8!1!81!8!8!22!8!1!81!k k k k k k k k k k k k -+⎧⨯≥⨯⎪---+⎪⎨⎪⨯≥⨯⎪-+--⎩,即2191281k k k k ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,解得:56k ≤≤,因为k Z ∈, 所以5k =或6k =所以1155226821792T C x x =⨯⨯=,166127821792T C x x -=⨯⨯=所以展开式中系数最大的项为121792x 和11792x -.【点睛】解二项式的题关键是求二项式展开式的通项,求有理项需要让x 的指数位置是整数,求展开式中系数最大的项需要满足第1k +项的系数大于等于第k 项的系数,第1k +项的系数大于等于第2k +项的系数,属于中档题22.(1)1;(2)231n-;(3)2312n -.【分析】(1)赋值0x =即可得解;(2)赋值1x =,结合(1)即可得解; (3)赋值1x =-,结合(2)即可得解. 【详解】(1)0x =代入()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅可得:01a =; (2)1x =代入()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅可得:032122=3n n a a a a a ++++⋯+,所以: 13222=31n n a a a a +++⋯-+;(3)1x =-代入()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅可得:01232=1n a a a a a -+-+⋯+,又032122=3n n a a a a a ++++⋯+,、两式相减可得:5221312()31n na a a a -+++⋯=-+,所以221351312n n a a a a -+=+⋯-++. 【点睛】本题考查了二项展开式中项的系数和项的系数和,主要方法是赋值法,属于基础题. 23.(1)576;(2)144 【分析】(1)先从3个偶数抽取2个偶数和从4个奇数中抽取3个奇数,利用捆绑法把两个偶数捆绑在一起,再和另外三个奇数进行全排列;(2)利用插空法,先排两个偶数,再从两个偶数形成的3个间隔中,插入三个奇数,即可得出结果. 【详解】解:可知从1到7的7个数字中,有3个偶数,4个奇数, (1)五位数中,偶数排在一起的有:23413442576C C A A =个,(2)两个偶数不相邻且三个奇数也不相邻的五位数有:23233423144C C A A =个. 【点睛】本题考查数字的排列问题,涉及排列和组合的实际应用以及排列数和组合数的运算公式,考查利用捆绑法解决相邻问题,利用插空法解决不相邻问题,考查运算能力.24.(1)证明过程见解析;(2)证明过程见解析. 【分析】(1)根据排列数的公式,结合不等式的性质进行证明即可;(2)根据二项式定理,结合(1)中的结论、排列数、组合数的公式进行证明即可. 【详解】(1)由排列数的公式得:(1)(2)(1)121i m i A m m m m i m m m m i m mmm m m m m m---+---+==⋅⋅, (1)(2)(1)121i n i A n n n n i n n n n i n nnn n n n n n---+---+==⋅⋅, 当1i m n <≤<,1,2,31k i =-时,()()()=0m k n k n m k m n k k m n m k n km n mn mn m n ---------=<⇒<, 由不等式的性质可知:121m m m m i m m m m ---+⋅⋅<121n n n n i n n n n---+⋅⋅, 即i m i A m <i i i m ni i n i n A nm A A <⇒; (2)由二项式定理可知:0(1),(1)mnmi i ni imn i i n n Cm m C ==+=⋅+=⋅∑∑,因为,!!i iiim n mn A A C C i i ==,由(1)知:i i i i m n n A m A <, 所以有i i i im n n C m C <,又因为000011111,,0i in m n m n m C n C m C n C nm m C ====>(1)i m n <≤<,所以(1)(1)n mii ii n m nm i i m C n Cm n ==⋅>⋅⇒+>+∑∑.【点睛】本题考查了排列数、组全数公式的应用,考查了二项式定理,考查了不等式的性质,考查推理论证能力和数学运算能力. 25.(1)3;(2)70x 或1220412x - 【分析】(1)根据二项式系数和的性质,以及二项式系数和为256,可得2256n =,解出8n =,再由通项公式163418k kk k Ta C x-+=,0,1,2,,8k =,分析即得;(2)根据各项系数的和均为256,可得()81256a +=,解出3a =-或1a =,再由通项公式分情况进行计算即得. 先通过二项展开式的各二项式系数的和与各项系数的和均为256求出n . 【详解】(1)n的二项展开式的各二项式系数的和为2n,各项系数的和为()1n a +,由已知得2256n =,故8.n =此时n展开式的通项为:163418k k k k T a C x -+=,0,1,2,,8k =,当0,4,8k =时,该项为有理项,故有理项的个数为3. (2)由()81256a +=,得3a =-或 1.a = 当1a =时,展开式通项为163418k kk TC x-+=,0,1,2,,8k =,故二项式系数最大时系数最大,即第5项系数最大,即系数最大的项为45870T C x x ==;当3a =-时,163418(3)k kk k TC x-+=-,0,1,2,,8k =,展开式系数最大的项是奇数项,其中41T x =,523252T x =,55670T x =,12720412T x-=,296561T x -=,故展开式中系数最大的项为第7项,即系数最大的项为12720412T x-=.综上,展开式中系数最大的项为70x 或1220412x -. 【点睛】本题考查二项式系数的性质,以及通项公式的应用,要注意二项式系数与各项的系数的区别,考查分析计算能力,属于中档题. 26.(1)504种;(2)1440种. 【分析】(1)由题意,分“射”排在最后一周,剩下的课程没有限制和“射”不排在最后一周从中间四周选一周,再选一门课程排在最后一周,其他没有限制,然后与加法计数原理求解. (2)由题意,分甲只任教1科和甲任教2科,然后与加法计数原理求解. 【详解】(1)当“射”排在最后一周时,5554321120A =⨯⨯⨯⨯=, 当“射”不排在最后一周时,114444444321384C C A =⨯⨯⨯⨯⨯=,120384504+=,所以“射”不排在第一周,“数”不排在最后一周的排法有504种.(2)当甲只任教1科时,11121454325433554341200C C C C C A A =⨯⨯⨯⨯=, 当甲任教2科时,245454432124021C A ⨯=⨯⨯⨯⨯=⨯, 12002401440+=,所以甲不任教“数”的课程安排方案有1440种. 【点睛】本题主要考查排列组合的应用以及分步,分类计数原理的应用,属于中档题.。

高中数学第一章计数原理测评含解析北师大版选修2_30416261.doc

高中数学第一章计数原理测评含解析北师大版选修2_30416261.doc

第一章计数原理测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是()A.8B.12C.16D.24解析:∵=n(n-1)=132.∴n=12.故选B.答案:B2.若=6,则m等于()A.9B.8C.7D.6解析:由m(m-1)(m-2)=6·,解得m=7.答案:C3.(1+2x)5的展开式中,x2的系数等于()A.80B.40C.20D.10解析:(1+2x)5的展开式的通项为T r+1=(2x)r=2r x r,令r=2,则22=4×10=40.答案:B4.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是()A.40B.74C.84D.200解析:分三类:第一类,前5个题目的3个,后4个题目的3个,第二类,前5个题目的4个,后4个题目的2个,第三类,前5个题目的5个,后4个题目的1个,由分类加法计数原理得=74.答案:B5.有1,2,3,4共四个数字,排成2行2列,要求每行数字之和不能为5,则排法的种数为()A.8B.10C.12D.16答案:D6.某校园有一椭圆形花坛,分成如图四块种花,现有4种不同颜色的花可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种同一种颜色,则不同的种植方法共有()A.48种B.36种C.30种D.24种解析:由于相邻两块不能种同一种颜色,故至少应当用三种颜色,故分两类.第一类,用4色有种,第二类,用3色有4种,故共有+4=48种.答案:A7.(2016·浙江宁波效实中学第一学期期末)在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C在实施时必须相邻,则在该实验中程序顺序的编排方法共有()A.144种B.96种C.48种D.34种解析:首先将B,C捆绑在一起作为整体,共有两种,又A只能出现在第一步或者最后一步,故总的编排方法为×2=96种,故选B.答案:B8.现有三种类型的卡片各10张,这些卡片除类型不同外其他全部相同,现把这三种类型的卡片分给5个人,每人一张,要求三种类型的卡片都要用上,则分法的种数为()A.30B.75C.150D.300解析:分为两类:第一类,5人中有3人卡片类型相同,则分法有=60种;第二类,5人中各有2人卡片类型相同,则分法有=90种.所以由分类加法计数原理得,分法的种数为60+90=150.答案:C9.(2016·湖北孝感高中高二上学期期中考试)已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,则a8=()A.-180B.45C.-45D.180解析:由于(1+x)10=[2-(1-x)]10,因此其展开式的通项为T k+1=(-1)k210-k·(1-x)k,令k=8,得a8=4=180,故答案:为D.答案:D10.(2016·山东莱芜一中高三1月自主考试)在(ax+1)7的展开式中,x3项的系数是x2项系数和x5项系数的等比中项,则实数a的值为()A.B.C.D.解析:展开式的通项为T r+1=(ax)7-r,∴x3项的系数是a3,x2项的系数是a2,x5项的系数是a5,∵x3项的系数是x2的系数与x5项系数的等比中项,∴(a3)2=a2×a5,∴a=.故选A.答案:A11.有4位同学在同一天的上、下午参加“身高与体重”“立定跳远”“肺活量”“握力”“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式有()A.264种B.240种C.200种D.120种解析:由条件上午不测“握力”,则4名同学测四个项目,有;下午不测“台阶”但不能与上午所测项目重复,如下午甲测“握力”,乙、丙、丁所测不与上午重复有2种,甲测“身高与体重”“立定跳远”“肺活量”中一种有3×3=9(种),故(2+9)=264种.答案:A12.有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有()A.70个B.80个C.82个D.84个解析:分两类,第一类:从直线a上任取一个点,从直线b上任取两个点,共有种方法;第二类:从直线a上任取两个点,从直线b上任取一个点,共有种方法.所以满足条件的三角形共有=70个.故选A.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.(2016·湖北孝感高中高二上学期期中考试)回文数是指从左到右读与从右到左都是一样的正整数.如121,94 249是回文数,则4位回文数有个.解析:4位回文数的特点为中间两位数相同,千位和个位数字相同但不能为零,第一步,选千位和个位数字,共有9种选法;第二步,选中间两位数字,共有10种选法.故4位回文数有9×10=90(个).答案:9014.某公园现有甲、乙、丙三只小船,甲船可乘3人,乙船可乘2人,丙船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由成人陪同方可乘船,则分乘这些船只的方法有种.解析:分两类:第一类,两个儿童同坐甲船,则三个成人应分别坐到三个船上,有种坐法;第二类,两个儿童分别坐甲船和乙船,有种坐法,三个成人应分别坐到三个船上,有种坐法,共有=12种坐法,所以由分类加法计数原理得,分乘这些船只的方法共有6+12=18种.答案:1815.(2016·辽宁沈阳高中高二上学期期中考试)设a,b是两个整数,若存在整数d,使得b=ad,称“a整除b”,记作a|b.给出命题:①2|(n2+n+1);②100|(9910-1);③5|(24n-1)(n∈N+).其中正确命题的序号是.解析:对于①,∵n2+n=n(n+1)必为偶数,∴n2+n+1为奇数,即2|(n2+n+1)不正确.对于②,9910-1=(100-1)10-1=·10010-·1009+…-·100,∴②正确.对于③,24n-1=(15+1)n-1=·15n+·15n-1+…+·15,∴③正确.答案:②③16.在()100的展开式中,无理项的个数是.解析:T r+1=)100-r·()r=.若第r+1项为有理项,则50-均为整数,故r为6的倍数时,第r+1项为有理项,又0≤r≤100,∴r=0,6,12,…,96,∴有理项共有17个,从而无理项共有101-17=84(个).答案:84三、解答题(本大题共6小题,共70分)17.(本小题满分10分)(2016·山东青岛高二联考)从-1,0,1,2,3这5个数中选3个不同的数组成二次函数y=ax2+bx+c(a≠0)的系数.(1)开口向上的抛物线有多少条?(2)开口向上且不过原点的抛物线有多少条?解(1)要使抛物线的开口向上,必须a>0,∴=36(条).(2)开口向上且不过原点的抛物线,必须a>0,c≠0,∴=27(条).18.(本小题满分12分)设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子,现将这五个小球放入5个盒子中.(1)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?(2)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?解(1)间接法:-1=119种.(2)分为三类:第一类,五个球的编号与盒子的编号完全相同的投放方法有1种;第二类,三个球的编号与盒子的编号相同,球的编号与盒子的编号相同的投放方法有种,球的编号与盒子的编号不同的投放方法有1种,所以投放方法有×1=10种;第三类,两个球的编号与盒子的编号相同,球的编号与盒子的编号相同的投放方法有种,球的编号与盒子的编号不同的投放方法有2种,所以投放方法有×2=20种.根据分类加法计数原理得,所有的投放方法有1+10+20=31种.19.(本小题满分12分)已知,i是虚数单位,x>0,n∈N+.(1)如果展开式中的倒数第3项的系数是-180,求n的值;(2)对(1)中的n,求展开式中系数为正实数的项.解(1)由已知,得(2i)2=-180,即4=180,所以n2-n-90=0,又n∈N+,解得n=10.(2)展开式的通项为T k+1=·(2i)10-k x-2k=(2i)10-k.因为系数为正实数,且k∈{0,1,2,…,10},所以k=2,6,10.所以所求的项为T3=11 520,T7=3 360x-10,T11=x-20.20.导学号43944023(本小题满分12分)(2016·浙江宁波效实中学第一学期)设n≥2,n∈N,=a0+a1x+a2x2+…+a n x n.(1)求a0+a1+a2+…+a n.(2)记|a k|(0≤k≤n)的最小值为T n.①求T8;②若n为奇数,求T n.解(1)令x=1,即可得a0+a1+a2+…+a n=;(2)①由题意得|a k|=|22k-8-32k-8|,∴当k=4时,T8=|a4|=0;②由①可知|a k|=|22k-n-32k-n|,∴当k<时,|a k|=(22k-n-32k-n),记b k=22k-n-32k-n,则b k≥b k-1⇔22k-n-32k-n≥22k-n-2-32k-n-2⇔k≤-1,∴当k<时b k递增,而也递增,因此最小值为|a0|=,当k>时,|a k|=(32k-n-22k-n)≥>|a0|,综上T n=.21.导学号43944024(本小题满分12分)在(x-y)11的展开式中,求:(1)通项T r+1;(2)二项式系数最大的项;(3)项的系数绝对值最大的项;(4)项的系数最大的项;(5)项的系数最小的项;(6)二项式系数的和.解(1)T r+1=(-1)r x11-r y r.(2)二项式系数最大的项为中间两项:T6=-x6y5,T7=x5y6.(3)项的系数绝对值最大的项也是中间两项:T6=-x6y5,T7=x5y6.(4)因为中间两项系数的绝对值相等,一正一负,第7项为正,故项的系数最大的项为T7=x5y6.(5)项的系数最小的项为T6=-x6y5.(6)二项式系数的和为+…+=211.22.导学号43944025(本小题满分12分)已知(x2+1)n展开式中的各项系数之和等于的展开式的常数项,若(x2+1)n的展开式中系数最大的项等于54,求x的值.解的展开式的通项为T r+1=.令=0,得r=4,∴展开式的常数项为T5==16.∵(x2+1)n展开式中的各项系数之和等于2n,∴2n=16,∴n=4.又(x2+1)n展开式中系数最大的项是中间项,即第3项,∴x4=54,∴x=±.精美句子1、善思则能“从无字句处读书”。

(易错题)高中数学选修三第一单元《计数原理》测试卷(含答案解析)(1)

(易错题)高中数学选修三第一单元《计数原理》测试卷(含答案解析)(1)

一、选择题1.2020年12月1日,大连市开始实行生活垃圾分类管理.某单位有四个垃圾桶,分别是一个可回收物垃圾桶、一个有害垃圾桶、一个厨余垃圾桶、一个其它垃圾桶.因为场地限制,要将这四个垃圾桶摆放在三个固定角落,每个角落至少摆放一个,则不同的摆放方法共有(如果某两个垃圾桶摆放在同一角落,它们的前后左右位置关系不作考虑)( ) A .18种B .24种C .36种D .72种2.2020是全面实现小康社会目标的一年,也是全面打赢脱贫攻坚战的一年.复旦大学团委发起了“跟着驻村第一书记去扶贫”的实践活动,其中学生小明与另外3名学生一起分配到某乡镇甲、乙、丙3个贫困村参与扶贫工作,若每个村至少分配1名学生,则小明恰好分配到甲村的方法数是( ) A .3B .8C .12D .63.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是( ).A .420B .180C .64D .254.已知8281239(1)x a a x a x a x +=++++,若数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,则k 的最大值是( ) A .6B .5C .4D .35.根据中央对“精准扶贫”的要求,某市决定从3名男性党员、2名女性党员中选派2名去甲村调研,则既有男性又有女性的不同选法共有( ) A .7种 B .6种C .5种D .4种6.若()352()x x a -+的展开式的各项系数和为32,则实数a 的值为( )A .-2B .2C .-1D .17.在二项式()12nx -的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为( ) A .960-B .960C .1120D .16808.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中1,3至少选一个,若1,3都选则0不选,这样的五位数中偶数共有( ) A .144个B .168个C .192个D .196个9.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C10.杨辉三角是二项式系数在三角形中的一种几何排列,是中国古代数学的杰出研究成果之一.在欧洲,左下图叫帕斯卡三角形,帕斯卡在1654年发现的这一规律,比杨辉要迟393年,比贾宪迟600年.某大学生要设计一个程序框图,按右下图标注的顺序将表上的数字输出,若第5次输出数“1”后结束程序,则空白判断框内应填入的条件为( )A .3n >B .4n <C .3n <D .4n >11.在二项式(2n x x的展开式中,当且仅当第5项的二项式系数最大,则系数最小的项是 A .第6项B .第5项C .第4项D .第3项12.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.若二项式(x xn 的展开式中只有第5项的二项式系数最大,则展开式中含x 2项的系数为__.14.化简:()()()1231223312131n n n n nn n n n C p p C p p C p p nC p ----+-+-++=______.15.已知[0,3]a ∈,若62a x x ⎛⎫+ ⎪⎝⎭展开式的常数项的值不大于15,则a 取值范围为________.16.4名志愿者被随机分配到、、A B C 三个不同的岗位服务,每个岗位至少有一名志愿者,则甲、乙两名志愿者没有分配到同一个岗位服务的概率为______.17.若投掷一枚质地均匀的骰子,第一次投掷的点数为a ,第二次投掷的点数为b ,则b a >的概率为______.18.若()316*2323C n n C n N ++=∈,()20123nn n x a a x a x a x -=++++且,则()121nn a a a -+-+-的值为____________.19.设n 为正整数,32nx x ⎛⎫- ⎪⎝⎭展开式中仅有第5项的二项式系数最大,则展开式中的常数项为__________.20.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______. 三、解答题21.求值:(1)333364530C C C C +++⋅⋅⋅+; (2)12330303030302330C C C C +++⋅⋅⋅+.22.(1)3本不同的书分给甲、乙两人,每人至少一本,共有多少种不同分法? (2)()102100121021...x a a x a x a x -=++++,求下列各式的值: ①01210...a a a a ++++; ②0210...a a a +++.23.为提高学生学习的数学的兴趣,南京港师范大学附属中学拟开设《数学史》、《微积分先修课程》、《数学探究》、《数学建模》四门校本选修课程,甲、乙、丙三位同学打算在上述四门课程中随机选择一门进行学习,已知三人选择课程时互不影响,且每人选择每一门课程都是等可能的.(1)求三位同学选择的课程互不相同的概率:(2)求甲、乙两位同学不能选择同一门课程,求三人共有多少种不同的选课种数; (3)若至少有两位同学选择《数学史》,求三人共有多少种不同的选课种数.24.已知57A 56C n n =,且()23012312nn n x a a x a x a x a x -=+++++.(1)求n 的值; (2)求122222nn a a a +++的值.25.已知n(其中15n <,*n ∈N )的展开式中第9项、第10项、第11项的二项式系数成等差数列. (1)求n 的值;(2)写出展开式中的所有有理项.26.按照下列要求,分别求有多少种不同的方法?(用数字作答) (1) 6个不同的小球放入4个不同的盒子;(2) 6个不同的小球放入4个不同的盒子,每个盒子至少一个小球; (3) 6个相同的小球放入4个不同的盒子,每个盒子至少一个小球; (4) 6个不同的小球放入4个不同的盒子,恰有1个空盒.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分析题意,得到有一个固定点放着两个垃圾桶,先选出两个垃圾桶,之后相当于三个元素分配到三个地方,最后利用分步乘法计数原理,求得结果.【详解】根据题意,有四个垃圾桶放到三个固定角落,其中有一个角落放两个垃圾桶,先选出两个垃圾桶,有246C=种选法,之后与另两个垃圾桶分别放在三个不同的地方有33A种放法;所以不同的摆放方法共有23436636C A⋅=⨯=种,故选:C.【点睛】思路点睛:该题考查的是有关排列组合综合题,解题方法如下:(1)首先根据题意,分析出有两个垃圾桶分到同一个地方,有246C=种选法;(2)之后就相当于三个元素的一个全排;(3)利用分步乘法计数原理求得结果.2.C解析:C【分析】对甲村分配的学生人数进行分类讨论,结合分类加法计数原理可求得结果.【详解】若甲村只分配到1名学生,则该学生必为小明,此时分配方法数为22326C A=种;若甲村分配到2名学生,则甲村除了分配到小明外,还应从其余3名学生中挑选1名学生分配到该村,此时分配方法数为12326C A=种.综上所述,不同的分配方法种数为6612+=种.故选:C.【点睛】方法点睛:不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.3.B解析:B【分析】由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A 有5种涂法,B 有4种涂法,讨论A ,D 同色和异色,根据乘法原理可得结论. 【详解】由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行 区域A 有5种涂法,B 有4种涂法,A ,D 不同色,D 有3种,C 有2种涂法,有5432120⨯⨯⨯=种, A ,D 同色,D 有1种涂法,C 有3种涂法,有54360⨯⨯=种, 共有180种不同的涂色方案. 故选:B . 【点睛】本题考查计数原理的应用,解题关键是分步和分类的方法选取,属于中等题.4.B解析:B 【分析】可得结论.写出各项的系数,由组合数性质知123456789a a a a a a a a a <<<<>>>>,结合数列123,,,,k a a a a ⋅⋅⋅是一个单调递增数列,可得结论. 【详解】由二项式定理,得98ii a C -=()*19,i i N≤≤∈,所以根据组合数性质知123456789a a a a a a a a a <<<<>>>>, 又数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,所以k 的最大值为5. 故选:B 【点睛】本题主要考查二项式定理的运用,考查学生分析解决问题的能力,属于基础题.5.B解析:B 【分析】根据题意可得选出的2人必为一男—女,分别求出选出1名男性党员和1名女性党员的选法数目,由分步乘法计数原理计算可得答案. 【详解】根据题意,选出的2人中既有男性又有女性,必为一男一女,在3名男性党员中任选1人,有3种选法,在2名女性党员中任选1人,有2种选法,则既有男性又有女性的不同选法有3×2=6种, 故选:B 【点睛】本题主要考查排列组合的应用,涉及分步乘法计数原理的应用,属于基础题.6.D【分析】根据题意,用赋值法,在()352()x x a -+中,令1x =可得()521(1)32a -+=,解可得a的值,即可得答案. 【详解】 根据题意,()352()xx a -+的展开式的各项系数和为32,令1x =可得:()521(1)32a -+=, 解可得:1a =, 故选:D . 【点睛】本题考查二项式定理的应用,注意特殊值的应用.7.C解析:C 【分析】先根据条件求出8n =,再由二项式定理及展开式通项公式,即可得答案. 【详解】由已知可得:2256n =,所以8n =,则展开式的中间项为44458(2)1120T C x x =-=,即展开式的中间项的系数为1120. 故选:C . 【点睛】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.8.B解析:B 【分析】根据条件分选1不选3、选3不选1、选1和3三种情况分别计算五位数中偶数的个数. 【详解】解:当选1不选3时,五位数中偶数有4113432360A C C A +=个; 当选3不选1时,五位数中偶数有4113432360A C C A +=个; 当选1和3时,五位数中偶数有142448C A =个, 所以这样的五位数中偶数共有60+60+48=168个. 故选:B . 【点睛】本题考查了排列、组合与简单的计算原理,考查了分类讨论思想,属中档题.9.D【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,00C C C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.10.C解析:C 【分析】利用()!!!i n n C i n i =-,执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出的值为22C ,即可得到输出条件. 【详解】利用()!!!in n C i n i =-,执行程序框图,当0n =时,输出的是00C ; 当1n =时,输出的是0111,C C ; 当2n =时,012222,,C C C ;当3n =时,输出的是01233333,,,C C C C ,因为第5次输出数“1”,即2n =,输出22C 后结束程序, 所以3n =时不满足条件,结束程序,所以,空白判断框内应填入的条件为3n <,故选C. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.11.C解析:C 【分析】由已知条件先计算出n 的值,然后计算出系数最小的项 【详解】由题意二项式n的展开式中,当且仅当第5项的二项式系数最大,故8n =二项式展开式的通项为8821881122rrrrrrr r T C C ---+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭要系数最小,则r 为奇数 当1r =时,18142C ⎛⎫-⨯=- ⎪⎝⎭当3r =时,338172C ⎛⎫-⨯=- ⎪⎝⎭当5r =时,5581724C ⎛⎫-⨯=- ⎪⎝⎭当7r =时,77811216C ⎛⎫-⨯=- ⎪⎝⎭故当当3r =时系数最小 则系数最小的项是第4项 故选C 【点睛】本题主要考查了二项式展开式的应用,结合其通项即可计算出系数最小的项,较为基础12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解. 【详解】有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.1120【解析】由题意可得:n=8∴通项公式令=2解得r=4∴展开式中含x2项的系数为故答案为1120点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项可依据条件写出第r +1项再解析:1120 【解析】 由题意可得:n =8. ∴通项公式3882188((2)r r rr r rr T C x C x --+==-,令382r -=2,解得r =4. ∴展开式中含x 2项的系数为448(2)C -.故答案为1120.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.14.【分析】由将原式转化为再由二项式定理可得答案【详解】∴故答案为:【点睛】本题考查组合数公式和二项式定理的应用考查转化思想属于中档题 解析:np【分析】由11=kk n n kC nC --将原式转化为()()()1232311110121111n n n n nn n n n nC p p nC p p nC p p nC p ---------+-+-++,再由二项式定理可得答案. 【详解】()()()()111!1!!=!()!1!()!1!()!kk n n nk n n n kn kC nC k n k k k n k k n k ----===-----,∴()()()1231223312131n n n n nn n n n C p p C p p C p p nC p ----+-+-++()()()123212311111=111n n n n nn n n n nC p p nC p p nC p p nC p ---------+-+-++()()11211111=11n n n n n n n np C p C p C p p -------+⎦+⎡⎤-+-⎣1[(1)]n np p p -=-+ 11n np -=⋅np =故答案为:np 【点睛】本题考查组合数公式和二项式定理的应用,考查转化思想,属于中档题.15.【分析】由二项式定理及展开式通项得:又所以又时展开式无常数项即a 取值范围为得解【详解】由二项式定理可得:展开式的常数项为又展开式的常数项的值不大于15则又所以又时展开式无常数项即a 取值范围为故答案为 解析:(]0,1【分析】由二项式定理及展开式通项得:41515a ≤,又[]0,3a ∈,所以01a ≤≤,又0a =时,展开式无常数项,即a 取值范围为01a <≤,得解. 【详解】由二项式定理可得:26()a x x+展开式的常数项为422446()()15a C x a x=, 又26()a x x+展开式的常数项的值不大于15, 则41515a ≤, 又[]0,3a ∈, 所以01a ≤≤,又0a =时,展开式无常数项, 即a 取值范围为01a <≤, 故答案为:(]0,1. 【点睛】本题考查了二项式定理及展开式通项,属中档题.16.【分析】要保证每个岗位至少一人人所以首先将四个人分成三组在将三组全排列求出总事件数然后再将甲乙分到不同两组得出甲乙不在同一岗位的基本事件数总而得出概率【详解】因为每个岗位至少有一人所以要将四个人分成解析:56【分析】要保证每个岗位至少一人人,所以首先将四个人分成三组,在将三组全排列求出总事件数,然后再将甲乙分到不同两组,得出甲乙不在同一岗位的基本事件数,总而得出概率. 【详解】因为每个岗位至少有一人,所以要将四个人分成三组,则只能是211、、所以总事件数为: 2113421322=36C C C A A ⋅⋅⋅,甲乙不在同一岗位的基本事件数:()11232223+=30C C C A ⋅⋅所以甲、乙两名志愿者没有分配到同一个岗位服务的概率305=366P =, 故答案为:56. 【点睛】本题考查等可能性事件的概率,利用排列组合公式求出基本事件的总数和满足某个事件的基本事件个数是解答本题的关键. 17.【分析】将两次点数表示成有序数对分别求出基本事件总数和包含的基本事件个数即可求解概率【详解】将两次点数表示成有序数对根据基本计数原理得:基本事件总数为包含的基本事件个数为所以的概率故答案为:【点睛】 解析:512【分析】将两次点数表示成有序数对(),a b ,分别求出基本事件总数和b a >包含的基本事件个数即可求解概率.【详解】将两次点数表示成有序数对(),a b ,根据基本计数原理得:基本事件总数为6636⨯=,b a >包含的基本事件个数为5432115++++=,所以b a >的概率1553612P ==. 故答案为:512【点睛】此题考查古典概型,关键在于准确求出基本事件总数和某一事件包含的基本事件个数. 18.175【分析】先利用二项式系数的性质求得n =4再令x =﹣1可得a0﹣a1+a2﹣…+(﹣1)nan 的值再令x =0可得a0=81即可求解【详解】由C233n+1=C23n+6(n ∈N*)可得3n+1+解析:175【分析】先利用二项式系数的性质求得n =4,再令x =﹣1可得 a 0﹣a 1+a 2﹣…+(﹣1)n a n 的值,再令x =0可得a 0=81,即可求解.【详解】由C 233n +1=C 23n +6(n ∈N *)可得 3n +1+(n +6)=23,或 3n +1=n +6,解得 n =4 或n 52=(舍去).故(3﹣x )4=a 0+a 1x +a 2x 2+…+a 4 x 4,令x =﹣1可得 a 0﹣a 1+a 2﹣…+(﹣1)n a n =44=256, 再令x =0可得a 0=81,∴﹣a 1+a 2﹣…+(﹣1)n a n =256-81=175,故答案为 175.【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和问题,属于中档题.19.112【解析】由展开式中仅有第5项的二项式系数最大得则令则展开式中的常数项为解析:112【解析】由展开式中仅有第5项的二项式系数最大得8n =则()884188322rr r r r r r T C xC x x --+⎛⎫=-=- ⎪⎝⎭,令840r -=,2r =则展开式中的常数项为()2282112C -=20.【分析】先求出展开式中的常数项与含的系数再求展开式中的常数项【详解】展开式的通项公式为: 令解得 令解得 展开式中常数项为: 故答案为:【点睛】本题考查二项展开式常数项的求解属于基础题解析:25-【分析】 先求出61x x ⎛⎫- ⎪⎝⎭展开式中的常数项与含21x 的系数,再求()6212x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项.【详解】61x x ⎛⎫- ⎪⎝⎭展开式的通项公式为: 6621661(1)rr r r r r r T C x C x x --+⎛⎫=⋅⋅-=-⋅⋅ ⎪⎝⎭, 令620r -=,解得3r =,33316(1)20T C +∴=-⋅=-, 令622r -=-,解得4r =,444162211(1)15T C x x +∴=-⋅⋅=⋅, ()6212x x x ⎛⎫∴+- ⎪⎝⎭展开式中常数项为: 2(20)1525⨯-+=-. 故答案为:25-.【点睛】本题考查二项展开式常数项的求解,属于基础题.三、解答题21.(1)31464;(2)29302⋅.【分析】(1)根据组合数性质11m m m n n n C C C -++=即可得结果;(2)根据组合数性质0122n n n n n n C C C C ++++=即可得结果;【详解】(1)333343333456304456301C C C C C C C C C +++⋅⋅⋅+=++++⋅⋅⋅+-4311C =-31464=(2)()12330012293030303029292929233030C C C C C C C C +++⋅⋅⋅+=+++⋅⋅⋅+ 29302=⋅【点睛】本题主要考查了通过组合数的性质计算式子的值,熟练掌握运算性质是解题的关键,属于中档题.22.(1)6;(2)①1;②10132+ 【分析】(1)先把书分成两堆,再分给甲乙两人可得.(2)①赋值令1x =可得,②赋值令1x =-,两式相加可得【详解】(1)第一步先把书分成两堆有13C 种,第二步再分给甲乙两人有22A 种,则12326C A ⨯= (2)(1)令1x =,则0110...1a a a +++=①(2)令1x =-,则10012310...3a a a a a -+-++=②①+②得:10021013 (2)a a a ++++= 【点睛】二项展开式中系数和的问题(1)利用赋值法求解时,注意各项的系数是指某一项的字母前面的数值(包括符号);(2)在求各项的系数的绝对值的和时,首先要判断各项系数的符号,然后将绝对值去掉,再进行赋值.23.(1)38;(2)48;(3)10. 【分析】(1)先计算出三位同学选择课程的选法种数以及三位同学选择的课程互不相同的选法种数,利用古典概型的概率公式可求得结果;(2)考虑甲、乙两位同学不选同一门课程的选法种数,并求出丙选课程的选法种数,利用分步乘法计数原理可求得结果;(3)分两种情况讨论:①有两位同学选择《数学史》;②三位同学都选择《数学史》.分别计算出两种情况下不同的选课种数,利用分类加法计数原理可得结果.【详解】(1)三位同学选择课程共有3464=种情况;三位同学选择的课程互不相同共有3424A =种情况,所求概率为243648=; (2)甲、乙两位同学不选择同一门课程共有2412A =种情况,丙有4种不同的选择,所以甲、乙两位同学不能选择同一门课程共有12448⨯=种情况;(3)分两种情况讨论:①有两位同学选择《数学史》,共有21339C C ⨯=种不同的情况; ②有三位同学选择《数学史》共有1种情况.综上所述,总共有9110+=种不同的选课种数.【点睛】本题主要考查了等可能事件的概率,分步计数原理分类计数原理,排列组合的基本应用,属于中等题.24.(1)15.(2)1-【分析】(1)根据!!,()!!()!m m n n n n A C n m m n m ==--,即可求解57A 56C n n =,即可求得答案; (2)采用赋值法,令1x =求出所有项系数的和,再令0x =,求0a ,即可求得答案.【详解】(1)57A 56C n n =()()()()()()()()()()1234561234567654321n n n n n n n n n n n n ------∴----=⋅⋅⋅⋅⋅⋅ 整理可得:(5)(6)190n n --= 即211600n n --=,故(15)(4)0n n -+=解得:15n =或4n =-(舍去)(2)由(1)15n =152315012315(12)x a a x a x a x a x -=++++⋯⋯+令0x =,可得01a = 令12x =,可得15101515221(12)2222a a a a -⋅=++++ ∴101512522202a a a a ++++= 可得12215151222a a a +++=-【点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,属于基础题.25.(1)14n =. (2)077114T C x x ==,66714T C x =,1255131491T C x x ==. 【解析】分析:(1)利用二项式展开式的通项公式求出各项的二项式系数,利用等差数列的定义列出方程可得结果;(2)先求得展开式的通项公式,在通项公式中令x 的幂指数为有理数,求得r 的值,即可求得展开式中有理项.详解:(1)因为n (其中15n <,*n N ∈)的展开式中第9项、第10项、第11项的二项式系数分别为8n C ,9n C ,10n C .依题意得81092n n n C C C +=.可化为()()()!!!=28!810!109!9n n n n n n +⋅---!!!, 化简得2373220n n -+=,解得14n =或23n =,∵15n <,∴14n =.(2)展开式的通项1432114r r rr T C x x -+=,所以展开式中的有理项当且仅当r 是6的倍数,又014r ≤≤,*r N ∈,∴0r =或6r =或12r =,∴展开式中的有理项共3项是077114T C x x ==,66714T C x =,1255131491T C x x ==.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r r r n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.. 26.(1)4096(2)1560(3)10(4)2160【解析】试题分析:解 (1)46=4 096; 3分 (2)2211346421642222C C C C C A A A ⎛⎫+ ⎪⎝⎭=1 560; 6分 (3) 24C +4=10;或25C =10; 9分 (4) 222321236426315433C C C C C C C A A ⎛⎫++ ⎪⎝⎭=2 160. 12分 考点:排列组合的运用点评:主要是考查了排列组合的运用,属于中档题.。

海口市选修三第一单元《计数原理》测试(答案解析)

海口市选修三第一单元《计数原理》测试(答案解析)

一、选择题1.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种B .48种C .60种D .72种2.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的概率是( ) A .166B .155C .566D .5113.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思不变,而且颇具趣味.相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成4位“回文数”的个数为( ) A .30B .36C .360D .12964.已知(a x)5的展开式中,常数项为10,则a =( ) A .﹣1B .1C .﹣2D .25.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( )A .320B .720C .316D .256.在某次体检中,学号为i (1,2,3,4i =)的四位同学的体重()f i 是集合{45,48,52,57,60}kg kg kg kg kg 中的元素,并满足(1)(2)(3)(4)f f f f ≤≤≤,则这四位同学的体重所有可能的情况有( ) A .55种B .60种C .65种D .70种7.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C8.已知*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,若992M N -=,则展开式中x 的系数为( )A .-250B .250C .-500D .5009.若0,0a b >>,二项式6()ax b +的展开式中3x 项的系数为20,则定积分22abxdx xdx +⎰⎰的最小值为( )A .0B .1C .2D .310.杨辉三角是二项式系数在三角形中的一种几何排列,是中国古代数学的杰出研究成果之一.在欧洲,左下图叫帕斯卡三角形,帕斯卡在1654年发现的这一规律,比杨辉要迟393年,比贾宪迟600年.某大学生要设计一个程序框图,按右下图标注的顺序将表上的数字输出,若第5次输出数“1”后结束程序,则空白判断框内应填入的条件为( )A .3n >B .4n <C .3n <D .4n >11.在二项式3nx x ⎫⎪⎭的展开式中,各项系数之和为A ,二项式系数之和为B ,若72A B +=,则n =( )A .3B .4C .5D .6 12.899091100⨯⨯⨯⨯可表示为( )A .10100AB .11100AC .12100AD .13100A第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.代数式2521(2)(1)x x+-的展开式的常数项是________(用数字作答) 14.设06126201262m m m m x a x a x a x a x x ⎛⎫-=++++ ⎪⎝⎭,则0126m m m m ++++=_________________.15.有2个不同的红球和3个不同的黄球,将这5个球放入4个不同的盒子中,要求每个盒子至少放一个球,且同色球不能放在同一个盒子中,则不同的放置方法有________种.(用数字作答)16.如图,将标号为1,2,3,4,5的五块区域染上红、黄、绿三种颜色中的一种,使得相邻区域(有公共边)的颜色不同,则不同的染色方法有______种.17.有4位同学参加学校组织的政治、地理、化学、生物4门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有2人报名的方案有______.18.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)19.若二项式nx x ⎛⎝展开式中各项系数的和为64,则该展开式中常数项为____________.20.已知()1121011012101112x a a x a x a x a x +=+++++ ,则12101121011a a a a -+-+=_____.三、解答题21.(1)3本不同的书分给甲、乙两人,每人至少一本,共有多少种不同分法? (2)()102100121021...x a a x a x a x -=++++,求下列各式的值: ①01210...a a a a ++++; ②0210...a a a +++. 22.已知3()()n f x x x=,()f x 的展开式的各二项式系数的和等于128,(1)求n 的值;(2)求()f x 的展开式中的有理项;(3)求()f x 的展开式中系数最大的项和系数最小的项. 23.有7本不同的书:(1)全部分给6个人,每人至少一本,有多少种不同的分法? (2)全部分给5个人,每人至少一本,有多少种不同的分法?.24.在二项2nx x ⎫⎪⎭的展开式中,前三项的系数和为73. (1)求正整数n 的值;(2)求出展开式中所有x 的有理项.25.设(nx 的展开式中,第二项与第四项的系数比为1:2,试求2x 项的系数.26.已知22)nx 的展开式中,只有第六项的二项式系数最大 (1)求该展开式中常数项;(2)求展开式中系数最大的项为第几项?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。

上海华育中学选修三第一单元《计数原理》测试卷(含答案解析)

上海华育中学选修三第一单元《计数原理》测试卷(含答案解析)

一、选择题1.已知()272901291(21)(1)(1)(1)()x x a a x a x a x x R +-=+-+-++-∈.则1a =( ) A .-30B .30C .-40D .402.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A 层班级,生物在B 层班级,该校周一上午课程安排如表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有( )A .8种B .10种C .12种D .14种3.某县政府分派4名干部到甲、乙、丙三个贫困村开展“精准扶贫”工作,要求每名干部只去一个贫困村,且每个贫困村至少安排一名干部,则不同的分配方案种数有( ) A .24种B .36种C .48种D .72种4.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种 B .48种C .60种D .72种5.若2021220210122021(12)x a a x a x a x -=++++,则1232021a a a a ++++=( )A .1B .1-C .2D .2-6.两名老师和3名学生站成两排照相,要求学生站在前排,老师站在后排,则不同的站法有( ) A .120种 B .60种C .12种D .6种7.若()()()()()201923201901232019122222x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-,则01232019a a a a a -+-+⋅⋅⋅-的值为( )A .-2B .-1C .0D .18.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( ) A .48B .72C .84D .1689.有m 位同学按照身高由低到高站成一列,现在需要在该队列中插入另外n 位同学,但是不能改变原来的m 位同学的顺序,则所有排列的种数为( )A .mm n C +B .mm n A +C .nm n A +D .m nm n A A +10.已知*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,若992M N -=,则展开式中x 的系数为( )A .-250B .250C .-500D .50011.若从0,1,2,3,4,5这六个数字中选3个数字,组成没有重复数字的三位偶数,则这样的三位数一共有( ) A .20个B .48个C .52个D .120个12.设40cos2t xdx π=⎰,若20182012(1)x a a x a x t-=++20182018a x ++,则1232018a a a a +++=( )A .-1B .0C .1D .256二、填空题13.代数式2521(2)(1)x x+-的展开式的常数项是________(用数字作答) 14.设06126201262m m m m x a x a x a x a x x ⎛⎫-=++++ ⎪⎝⎭,则0126m m m m ++++=_________________.15.某老师安排甲、乙、丙、丁4名同学从周一至周五值班,每天安排1人,每人至少1天,若甲连续两天值班,则不同的安排方法种数为______.(请用数字作答)16.对于无理数x ,用x 表示与x 最接近的整数,如3π=2=.设n *∈N ,对于区间11,22n ⎛⎫-+ ⎪⎝⎭的无理数x ,定义x x m m C C =,我们知道,若m *∈N ,()n m n *∈N ≤和()r r n *∈N ≤,则有以下两个恒等式成立:①m n m n n C C -=;②11r r r m m m C C C -+=+,那么对于正整数n 和两个无理数()0,m n ∈,()1,r n ∈,以下两个等式依然成立的序号是______;①m n m n n C C -=;②11r r r n n n C C C -+=+.17.8的展开式中常数项为_________.18.若251(3)(2)x a x x--的展开式中3x 的系数为80,则a =_______.19.()()42x y x y ++的展开式中32x y 的系数为______________.20.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有______种.三、解答题21.已知nx ⎛⎝的展开式中,奇数项的二项式系数的和等于128. (1)求展开式中所有项的系数和; (2)求展开式中所有的有理项. 22.设()52501252x 1a a x a x a x -=++++,求:(1)015a a a +++;(2)015a a a +++;(3)135a a a ++;(4)()()22024135a a a a a a ++-++.23.已知二项式n⎛⎝的展开式中各项二项式系数的和为256,其中实数a 为常数.(1)求n 的值;(2)若展开式中二项式系数最大的项的系数为70,求a 的值. 24.若某一等差数列的首项为112225113nn nnCA----,公差为52mx ⎛ ⎝展开式中的常数项,其中m 是777715-除以19的余数,则此数列前多少项的和最大?并求出这个最大值.25.在二项式nx ⎛⎝的展开式中,前三项系数的绝对值成等差数列. ()1求项数n ;()2求展开式中的常数项与二项式系数最大的项.26.已知二项式)22nx-.(1)若展开式中第二项系数与第四项系数之比为1:8,求二项展开式的系数之和. (2)若展开式中只有第6项的二项式系数最大,求展开式中的常数项.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令1t x =-,得29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,进而得含t 的项为767722(2)tC C t +,从而得解.【详解】令1t x =-,则有:27290129[(1)1][2(1)1]()t t a a t a t a t x R +++-=++++∈,即29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,7(21)t +展开式的通项公式为:77(2)r r C t -,所以29012927(22)(21)()a a t t t t a t a t x R =++++++∈+中含t 的项为:767722(2)30tC C t t +=.故选:B. 【点睛】关键点点睛:本题解题的关键是令1t x =-,转化为求27(22)(21)t t t +++的展开中含t 的项.2.B解析:B 【分析】由课程表可知:物理课可以上任意一节,生物课只能上第2、3节,政治课只能上第1、3节,而自习课可以上任意一节.故以生物课(或政治课)进行分类,再分步排其他科目.由计数原理可得张毅同学不同的选课方法. 【详解】由课程表可知:物理课可以上任意一节,生物课只能上第2、3节,政治课只能上第1、3、4节,而自习课可以上任意一节.若生物课排第2节,则其他课可以任意排,共有336A =种不同的选课方法.若生物课排第3节,则政治课有12C 种排法,其他课可以任意排,有22A 种排法,共有12224C A =种不同的选课方法.所以共有6410+=种不同的选课方法. 故选:B . 【点睛】本题考查两个计数原理,考查排列组合,属于基础题.3.B解析:B 【分析】根据题意,利用分步计数原理:首先4名干部中任选2名作为一组,其它各自成组,再随机分派到3个村,即可知分配方案的种数; 【详解】由题意,按分步计数原理:4名干部中任选2名为一组,其它2名各为一组,即共三组,有24C 种选法;将三组干部随机分派到甲、乙、丙三个贫困村,有33A 种分法;∴不同的分配方案种数有:234336C A =种;故选:B 【点睛】本题考查了分步计数原理,先分组后分派求分配方案种数;4.A解析:A 【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。

(易错题)高中数学选修三第一单元《计数原理》检测卷(含答案解析)(2)

(易错题)高中数学选修三第一单元《计数原理》检测卷(含答案解析)(2)

一、选择题1.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A 层班级,生物在B 层班级,该校周一上午课程安排如表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有( )A .8种B .10种C .12种D .14种2.关于6212x x ⎛⎫- ⎪⎝⎭的展开式,下列说法中正确的是( ) A .展开式中二项式系数之和为32B .展开式中各项系数之和为1C .展开式中二项式系数最大的项为第3项D .展开式中系数最大的项为第4项 3.某景观湖内有四个人工小岛,为方便游客登岛观赏美景,现计划设计三座景观桥连通四个小岛,且每个小岛最多有两座桥连接,则设计方案的种数最多是( )A .8B .12C .16D .244.对任意正整数n ,定义n 的双阶乘!!n 如下:当n 为偶数时,()()!!24642n n n n =--⨯⨯;当n 为奇数时,()()!!24531n n n n =--⨯⨯.现有四个命题:①()()2009!!2008!!2009!=;②2008!!21004!=⨯;③2008!!个位数为0;④2009!!个位数为5.其中正确的个数为( ) A .1B .2C .3D .45.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则: ①若开启3号,则必须同时开启4号并且关闭2号; ②若开启2号或4号,则关闭1号; ③禁止同时关闭5号和1号. 则阀门的不同开闭方式种数为( ) A .7B .8C .11D .146.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有( ) A .35种B .38种C .105种D .630种7.有m 位同学按照身高由低到高站成一列,现在需要在该队列中插入另外n 位同学,但是不能改变原来的m 位同学的顺序,则所有排列的种数为( ) A .mm n C +B .mm n A +C .nm n A +D .m nm n A A +8.设5nx x ⎛- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,若M N -=240,则展开式中x 的系数为( )A .300B .150C .-150D .-3009.在下方程序框图中,若输入的a b 、分别为18、100,输出的a 的值为m ,则二项式342()(1)x m x x x+⋅-+的展开式中的常数项是A .224B .336C .112D .56010.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为 A .18B .200C .2800D .3360011.若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-=,则012020a a a +++=( )A .1B .0C .20202D .2021212.疫情期间,上海某医院安排5名专家到3个不同的区级医院支援,每名专家只去一个区级医院,每个区级医院至少安排一名专家,则不同的安排方法共有( ) A .60种B .90种C .150种D .240种二、填空题13.已知13nx x ⎛⎫- ⎪⎝⎭的展开式中第6项与第8项的二项式系数相等,则含10x 项的系数是___________.14.已知[0,3]a ∈,若62a x x ⎛⎫+ ⎪⎝⎭展开式的常数项的值不大于15,则a 取值范围为________.15.4名志愿者被随机分配到、、A B C 三个不同的岗位服务,每个岗位至少有一名志愿者,则甲、乙两名志愿者没有分配到同一个岗位服务的概率为______.16.若投掷一枚质地均匀的骰子,第一次投掷的点数为a ,第二次投掷的点数为b ,则b a >的概率为______.17.计算546101011C C C +-的结果为__________.18.已知02a π=⎰,若2020220200122020(1)()ax b b x b x b x x R -=+++⋯+∈,则20201222020222b b b ++⋯+的值为__. 19.若102100121013x a a x a x a x -+++⋯+=(),则12310a a a a +++⋯+=_____.20.高中学生要从物理、化学、生物、政治、历史、地理这6个科目中,依照个人兴趣、未来职业规划等要素,任选3个科目构成“选考科目组合”参加高考.已知某班37名学生关于选考科目的统计结果如下:为“历史+地理+政治”的学生一定不超过9人;③在选考化学的所有学生中,最多出现10种不同的选考科目组合;④选考科目组合为“生物+历史+地理”的学生人数一定是所有选考科目组合中人数最少的.其中所有正确结论的序号是_______.三、解答题21.在二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式中. (1)求该二项展开式中所有项的系数和的值; (2)求该二项展开式中含4x 项的系数; (3)求该二项展开式中系数最大的项.22.在二项式32(*)n x n N x ⎛⎫+∈ ⎪⎝⎭的展开式中,第三项的系数与第四项的系数相等. (1) 求n 的值,并求所有项的二项式系数的和;(2) 求展开式中的常数项.23.(1)3个人坐在有八个座位的一排椅子上,若每个人的左右两边都要有空位,则不同坐法的种数为多少?(2)某高校现有10个保送上大学的名额分配给7所高中学校,若每所高中学校至少有1个名额,则名额分配的方法共有多少种?24.已知多项式12nx ⎫⎪⎭的展开式中,第3项与第5项的二项式系数之比为2:5. (1)求n 的值;(2)求展开式中含x 项的系数.25.(1)已知()727012712x a a x a x a x -=++++.求:①127a a a +++;②0127a a a a ++++;(2)在522x ⎫⎪⎭的展开式中,求: ①展示式中的第3项;②展开式中二项式系数最大的项.26.已知二项式()23nx x +.(1)若它的二项式系数之和为128.求展开式中二项式系数最大的项; (2)若3,2016x n ==,求二项式的值被7除的余数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由课程表可知:物理课可以上任意一节,生物课只能上第2、3节,政治课只能上第1、3节,而自习课可以上任意一节.故以生物课(或政治课)进行分类,再分步排其他科目.由计数原理可得张毅同学不同的选课方法. 【详解】由课程表可知:物理课可以上任意一节,生物课只能上第2、3节,政治课只能上第1、3、4节,而自习课可以上任意一节.若生物课排第2节,则其他课可以任意排,共有336A =种不同的选课方法.若生物课排第3节,则政治课有12C 种排法,其他课可以任意排,有22A 种排法,共有12224C A =种不同的选课方法.所以共有6410+=种不同的选课方法. 故选:B . 【点睛】本题考查两个计数原理,考查排列组合,属于基础题.2.B解析:B 【分析】直接利用二项式展开式的应用求出结果. 【详解】 解:关于621(2)x x -的展开式,根据二项式的展开式的应用:61621(2)()r rr r T C x x -+=-, 对于选项A :展开式中二项式系数之和6264=,故错误.对于选项B :利用赋值法的应用,当1x =时,各项的系数的和为6(21)1-=,故正确.对于选项C :展开式中二项式系数最大的项为第4项3620C =,故错误. 对于选项D :展开式中系数最大的项为第2项,系数为2462240C ⨯=.故错误.故选:B . 【点睛】本题考查的知识要点:二项展开式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.3.B解析:B 【分析】四个人工小岛记为ABCD ,用“-”表示桥,对A 分有一座桥相连和两座桥相连,一一列举,得到答案. 【详解】四个人工小岛记为ABCD ,对A 分有一座桥相连和两座桥相连,用“-”表示桥 (1) A 只有一座桥相连时,有A-B-D-C ,A-B-D-C ,A-C-B-D ,A-C-D-B , A-D-B-C ,A-D-C-B 共6种;(2) A 有两座桥相连时,有C-A-B-D ,D-A-B-C ,D-A-C-B ,B-A-C-D , B-A-D-C ,C-A-D-B 共6种; 故共有12种. 故选:B 【点睛】本题考查了分类计数原理的应用,考查了学生分析理解,逻辑推理的能力,属于中档题.4.C解析:C 【分析】利用双阶乘的定义以及阶乘的定义可判断①的正误;化简2008!!可判断②的正误;由2008!!能被10整除可判断③的正误;由2009!!能被5整除且为奇数可判断④的正误.综合可得出结论. 【详解】对于命题①,由双阶乘的定义得2009!!1352009=⨯⨯⨯⨯,2008!!2462008=⨯⨯⨯⨯,所以,()()2009!!2008!!1234200820092009!=⨯⨯⨯⨯⨯⨯=,命题①正确;对于命题②,()()()()=⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯10042008!!246200821222321004=⨯,21004!命题②错误;=⨯⨯⨯⨯⨯⨯,则2008!!能被10整除,则2008!!的对于命题③,2008!!2468102008个位数为0,命题③正确;=⨯⨯⨯⨯能被5整除,则2009!!的个位数为0或5,对于命题④,2009!!1352009由于2009!!为奇数,所以,2009!!的个位数为5,命题④正确.故选:C.【点睛】本题考查双阶乘的新定义,考查计算能力,属于中等题.5.A解析:A【分析】分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果.【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号,此时有1种方法;第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号,此时有种3方法;++=种方式.综上所述,共有1337故选:A.【点睛】本题考查分类加法计数原理,属于中档题.6.C解析:C【分析】根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果.【详解】根据题意,分2步进行分析:C种抽取方法,;①.从3件次品中抽取2件次品,有23②.从7件正品中抽取3件正品,有37C种抽取方法,则抽取的5件产品中恰好有2件次品的抽法有2337105C C ⨯=种; 故选:C .【点睛】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列.7.C解析:C 【分析】将问题转化为将这m n +个同学中新插入的n 个同学重新排序,再利用排列数的定义可得出答案. 【详解】问题等价于将这m n +个同学中新插入的n 个同学重新排序,因此,所有排列的种数为n m n A +,故选C.【点睛】本题考查排列问题,解题的关键就是将问题进行等价转化,考查转化与化归数学思想的应用,属于中等题.8.B解析:B 【分析】分别求得二项式展开式各项系数之和以及二项式系数之和,代入240M N -=,解出n 的值,进而求得展开式中x 的系数. 【详解】令1x =,得4n M =,故42240n n M N -=-=,解得4n =.二项式为45x⎛ ⎝,展开式的通项公式为()()134442244515rr r r r r rC x x C x ----⎛⎫⋅⋅-=-⋅⋅⋅ ⎪⎝⎭,令3412r -=,解得2r,故x 的系数为()2422415150C --⋅⋅=.故选B. 【点睛】本小题主要考查二项式展开式系数之和、二项式展开式的二项式系数之和,考查求指定项的系数,属于中档题.9.D解析:D 【分析】由程序图先求出m 的值,然后代入二项式中,求出展开式中的常数项 【详解】由程序图可知求输入18100a b ==,的最大公约数,即输出2m =则二项式为())348332812161x xx x x x x ⎛⎫⎛⎫+⋅-=+++ ⎪ ⎪⎝⎭⎝⎭)81的展开通项为()82181r rr r T C x-+=-要求展开式中的常数项,则当取38x 时,令832r-= 解得2r =,则结果为288224C =,则当取12x 时,令812r-=,解得6r =,则结果为6812336C =,故展开式中的常数项为224336560+=,故选D【点睛】本题考查了运用流程图求两个数的最大公约数,并求出二项式展开式中的常数项,在求解过程中注意题目的化简求解,属于中档题10.C解析:C 【分析】根据组合定义以及分布计数原理列式求解. 【详解】从5种主料中选2种,有2510C =种方法, 从8种辅料中选3种,有3856C =种方法,根据分布计数原理得烹饪出不同的菜的种数为10565=2800⨯⨯,选C. 【点睛】求解排列、组合问题常用的解题方法:分布计数原理与分类计数原理,具体问题可使用对应方法:如 (1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.11.C解析:C 【分析】 由()202011x x =+-⎡⎤⎣⎦结合二项式定理可得出2020kk a C =,利用二项式系数和公式可求得012020a a a +++的值.【详解】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+.故选:C. 【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式0122nn n n n n C C C C ++++=,考查学生的转化能力与计算能力,属于基础题.12.C解析:C 【分析】先分组1,2,2和1,1,3再安排得解 【详解】5名专家到3个不同的区级医院,分为1,2,2和1,1,3两种情况;分为1,2,2时安排有1223542322C C C A A ;分为1,1,3时安排有1133543322C C C A A 所以一共有12211333542543332222150C C C C C C A A A A += 故选:C 【点睛】本题考查排列组合问题,先分组再安排是解题关键.二、填空题13.【分析】首先由二项式系数相等求再根据通项公式求指定项的系数【详解】由条件可知所以所以的通项公式是令解得:所以函数的系数是故答案为:-4【点睛】易错点睛:本题考查二项式定理求指定项系数其中二项式系数与 解析:4-【分析】首先由二项式系数相等求n ,再根据通项公式求指定项的系数. 【详解】由条件可知57n n C C =,所以5712n =+=,所以1213x x ⎛⎫- ⎪⎝⎭的通项公式是12122112121133r rr r r rr T C x C x x --+⎛⎫⎛⎫=⋅⋅-=-⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 令12210r -=,解得:1r =, 所以函数10x 的系数是112143C ⎛⎫-⋅=- ⎪⎝⎭. 故答案为:-4 【点睛】易错点睛:本题考查二项式定理求指定项系数,其中二项式系数与项的关系是第1r +项的系数是rn C ,这一点容易记错,需注意.14.【分析】由二项式定理及展开式通项得:又所以又时展开式无常数项即a 取值范围为得解【详解】由二项式定理可得:展开式的常数项为又展开式的常数项的值不大于15则又所以又时展开式无常数项即a 取值范围为故答案为 解析:(]0,1【分析】由二项式定理及展开式通项得:41515a ≤,又[]0,3a ∈,所以01a ≤≤,又0a =时,展开式无常数项,即a 取值范围为01a <≤,得解. 【详解】由二项式定理可得:26()a x x+展开式的常数项为422446()()15a C x a x=, 又26()a x x+展开式的常数项的值不大于15, 则41515a ≤, 又[]0,3a ∈, 所以01a ≤≤,又0a =时,展开式无常数项, 即a 取值范围为01a <≤, 故答案为:(]0,1. 【点睛】本题考查了二项式定理及展开式通项,属中档题.15.【分析】要保证每个岗位至少一人人所以首先将四个人分成三组在将三组全排列求出总事件数然后再将甲乙分到不同两组得出甲乙不在同一岗位的基本事件数总而得出概率【详解】因为每个岗位至少有一人所以要将四个人分成解析:56【分析】要保证每个岗位至少一人人,所以首先将四个人分成三组,在将三组全排列求出总事件数,然后再将甲乙分到不同两组,得出甲乙不在同一岗位的基本事件数,总而得出概率. 【详解】因为每个岗位至少有一人,所以要将四个人分成三组,则只能是211、、所以总事件数为: 2113421322=36C C C A A ⋅⋅⋅, 甲乙不在同一岗位的基本事件数:()11232223+=30C C C A ⋅⋅ 所以甲、乙两名志愿者没有分配到同一个岗位服务的概率305=366P =, 故答案为:56. 【点睛】本题考查等可能性事件的概率,利用排列组合公式求出基本事件的总数和满足某个事件的基本事件个数是解答本题的关键.16.【分析】将两次点数表示成有序数对分别求出基本事件总数和包含的基本事件个数即可求解概率【详解】将两次点数表示成有序数对根据基本计数原理得:基本事件总数为包含的基本事件个数为所以的概率故答案为:【点睛】 解析:512【分析】将两次点数表示成有序数对(),a b ,分别求出基本事件总数和b a >包含的基本事件个数即可求解概率. 【详解】将两次点数表示成有序数对(),a b ,根据基本计数原理得: 基本事件总数为6636⨯=,b a >包含的基本事件个数为5432115++++=,所以b a >的概率1553612P ==. 故答案为:512【点睛】此题考查古典概型,关键在于准确求出基本事件总数和某一事件包含的基本事件个数.17.【分析】利用组合数的性质来进行计算可得出结果【详解】由组合数的性质可得故答案为【点睛】本题考查组合数的计算解题的关键就是利用组合数的性质进行计算考查计算能力属于中等题 解析:0【分析】利用组合数的性质111k k k n n n C C C ++++=来进行计算,可得出结果.【详解】由组合数的性质可得5465655101011111111110C C C C C C C +-=-=-=,故答案为0.【点睛】本题考查组合数的计算,解题的关键就是利用组合数的性质进行计算,考查计算能力,属于中等题.18.【分析】根据题意由定积分公式求出的值进而在中分别令和分析可得答案【详解】解:根据题意则令可得:即令可得:又由则;故答案为:【点睛】本题考查二项式定理的应用涉及特殊值的应用关键是求出的值属于基础题 解析:1-【分析】根据题意,由定积分公式求出a 的值,进而在20202020(1)(12)ax x -=-中,分别令0x =和1x =,分析可得答案. 【详解】解:根据题意,20221(2)24a πππ==⨯⨯⨯=, 则20202020220200122020(1)(12)()ax x b b x b x b x x R -=-=+++⋯+∈,令0x =可得:202001b =,即01b =,令12x =可得:20202020120220201(12)02222b b b b -⨯=+++⋯+=, 又由01b =,则202012220201222b b b++⋯+=-; 故答案为:1- 【点睛】本题考查二项式定理的应用,涉及特殊值的应用,关键是求出a 的值,属于基础题.19.1023【分析】赋值法令得:;令得:再两式相减可得【详解】解:∵令得:;①令得:;②由①②可得:;故答案为:【点睛】赋值法在求各项系数和中的应用(1)形如()的式子求其展开式的各项系数之和常用赋值法解析:1023 【分析】赋值法 令0x =得:01a =;令1x = 得:10012310131024a a a a a =++⋯+-=++(),再两式相减可得.【详解】解:∵102100121013x a a x a x a x -+++⋯+=(),令0x =得:01a = ;①令1x = 得:10012310131024a a a a a =++⋯+-=++(); ②由①②可得:12310102411023a a a a +++⋯+-==; 故答案为:1023. 【点睛】赋值法在求各项系数和中的应用(1)形如()n ax b +,2()m ax bx c ++ (a b c R ∈,,)的式子求其展开式的各项系数之和,常用赋值法,只需令1x =即可.(2)对形如()()n ax by a b R +∈,的式子求其展开式各项系数之和,只需令1x y ==即可. (3)若()2012nn f x a a x a x a x +++⋯+=,则()f x 展开式中各项系数之和为()1f .20.①②③【分析】①根据所有选的总数来确定即可;②需要一定的推理能力由化学人数有人来断定选考科目组合为历史+地理+政治的学生一定不超过9人;③五选二可据组合知识求解;④根据政治地理人数都不确定无法判断结解析:①②③ 【分析】①根据所有选的总数来确定b 即可;②需要一定的推理能力,由化学人数有28人,来断定选考科目组合为“历史+地理+政治”的学生一定不超过9人; ③五选二,可据组合知识求解;④根据政治,地理人数都不确定,无法判断结论. 【详解】①所有学生选的科目总数为373111⨯=,则1112428141530a b +=----=,若19=a ,则11b =,故①对;②选化学的学生有28人,37289-=人,则选考科目组合为“历史+地理+政治”的学生一定不超过9人,故②对;③在选考化学的所有学生中,学生还须选另外两科,则从五种里面选两种,共有2510C =,最多出现10种不同的选考科目组合,故③对;④因为地理,政治人数不确定,选考科目组合为“生物+历史+政治”的学生人数不一定比 选考科目组合为“生物+历史+地理”的学生人数多.故④错. 故答案为:①②③ 【点睛】该题不仅考查了组合知识,还需要学生具备一定的常识和逻辑推理能力. 组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.三、解答题21.(1)123(2)7920(3)20126720x 【分析】(1)令1x =,即可得该二项展开式中所有项的系数和的值;(2)在通项公式中,令x 的幂指数等于4,求得r 的值,可得含4x 项的系数;(3)根据1211312121211112122222r r r r r r r rC C C C ----+-⎧⎨⎩,求得r 的值,可得结论; 【详解】(1)令1x =,可得该二项展开式中所有项的系数和的值为123;(2)二项展开式中,通项公式为123641122r rr r T C x --+=,令3644r -=,求得8r =, 故含4x 项的系数为841227920C =.(3)第1r +项的系数为12122r rC-,由1211312121211112122222r r r r r r r rC C C C ----+-⎧⎨⎩,求得4r =, 故该二项展开式中系数最大的项为 384201421(2)()126720C x x x=.【点睛】本题考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题. 22.(1)8,256;(2)1792. 【分析】(1)由题意利用二项展开式的通项公式,求出n 的值,可得所有项的二项式系数的和;(2)在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项. 【详解】(1) ∵ 二项式32(*)nx n N x ⎛⎫+∈ ⎪⎝⎭的展开式的通项公式为()312n rrr r nT C x x -+⎛⎫= ⎪⎝⎭,由已知得332222n n n n C C --=,即322n n C C =,解得8n =,所有二项式系数的和为012825622nn n n n n C C C C ++++===;(2)展开式中的通项公式()838838481888222rrr r r r r r r r r T C x C x x C x x -----+⎛⎫=== ⎪⎝⎭,若它为常数项时480,2r r -==.所以常数项是263821792.T C ==【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.23.(1)24;(2)84 【分析】(1)根据题意,使用插空法,把3个人看成是坐在座位上的人,往5个空座的空档插,由组合知识,分析可得答案;(2)分析题意,可将原问题转化为10个元素之间有9个间隔,要求分成7份,每份不空,使用插空法,相当于用6块档板插在9个间隔中,计算可得答案. 【详解】解:(1)由题意知有5个座位都是空的,我们把3个人看成是坐在座位上的人,往5个空座的空档插, 由于这5个空座位之间共有4个空,3个人去插,共有3424A =(种).(2)根据题意,将10个名额,分配给7所学校,每校至少有1个名额, 可以转化为10个元素之间有9个间隔,要求分成7份,每份不空; 相当于用6块档板插在9个间隔中,共有6984C =种不同方法.所以名额分配的方法共有84种. 【点睛】本题考查排列、组合的综合运用,要求学生会一些特殊方法的使用,如插空法、倍分法等;但首先应该会转化为对应问题的模型.24.(1)8;(2)7. 【分析】(1)根据二项式系数的比值列式求解n ;(2)先求出展开式的通项,然后求解所求项的系数. 【详解】(1)因为多项式12nx ⎫⎪⎭的展开式中第3项、第5项二项式系数分别为2n C ,4n C ,又第3项与第5项的二项式系数之比为2:5.所以,2425n n C C =,.即()()()()122112354321n n n n n n -⨯=---⨯⨯⨯, 化简得25240n n --=,解得8n =或3n =-(舍去); 故n 的值为8.(2)又因为展开式通项83821881122rx rr r rr T C C xx --+⎛⎫⎛⎫=⋅-=- ⎪ ⎪⎝⎭⎝⎭, 当8312r-=时,解得2r ;.所以2238172T C x x ⎛⎫=-= ⎪⎝⎭, 所以展开式中含x 项的系数为7. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有给定项的二项式系数,利用通项求特定项的系数,属于简单题目.25.(1)①2-;②2187;(2)①5240x -;②5240x -或580x -. 【分析】(1)①运用赋值法,令0x =,求得01a =,令1x =,求得012345671a a a a a a a a +++++++=-,由此可求得答案.②由二项式的展开式判断0a 、2a 、4a 、6a 都大于零,而1a 、3a 、5a 、7a 都小于零,令1x =-,可求得答案;(2)先求出展开式的通项公式,①令2r 时,求展示式中的第3项;②令2r 或3时,求得二项式系数最大项.【详解】解:(1)令0x =,则01a =,令1x =,则()7012345671211a a a a a a a a +++++++=-⨯=-.①∴12372a a a a ++++=-.②∵()712x -展开式中,0a 、2a 、4a 、6a 都大于零,而1a 、3a 、5a 、7a 都小于零, ∴()()012702461357a a a a a a a a a a a a ++++=+++-+++,令1x =-,则7012345673a a a a a a a a -+-+-+-=.所以01272187a a a a ++++=.(2)522x ⎫⎪⎭的展开式中第1r +项为()()551225215522rrrrr r r T C x x C x---+==⋅⋅,①当2r 时,所以展示式中的第3项为55222235240T C x x --=⋅⋅=.②2r或3时,二项式系数5rC 最大,2r时,由(1)知52340T x -=,3r =时,445545280T C x x --==.【点睛】方法点睛:求最大二项式系数时:如果n 是奇数,最大的就是最中间一个,如果n 是偶数,最大的就是最中间两个;求系数的最大项时:设第r +1项为系数最大项,需列出不等式组+1+2+1r r r rT T T T ≥⎧⎨≥⎩,解之求得r .26.(1)()()34342104321147573945,32835T C x x x T C x xx ====;(2)1【分析】(1)根据二项式性质可求n 的值,再根据通项公式可得展开式中二项式系数最大的项.(2)由题意得二项式2016201630(282)=+,按二项式定理展开转化为20162被7除的余数,再由20166722(71)=+,再展开可解.【详解】 (1)2128,7n n =∴=∴展开式中二项式系数最大的项为第4,5项,()()34342104321147573945,32835T C x x x T C x x x ====.(2)2016201620161201520152015201620162016201630(282)282822822282C C K =+=+⋅⋅+⋯+⋅⋅+=+转化为20162被7除的余数,201667267228(71)71k ==+=+,即余数为1.【点睛】考查二项式定理和二项式通项公式.二项式定理:011222n ()+C n n n n r n r r n n n n n n a b C a C a b C a b C a b b ---+=+++++…………. 二项式通式:1(0,1n)r n r rr n T C a b r -+==…….。

拉萨市选修三第一单元《计数原理》测试卷(含答案解析)

拉萨市选修三第一单元《计数原理》测试卷(含答案解析)

一、选择题1.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的概率是( ) A .166B .155C .566D .5112.在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a 、b 、c 三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有 A .96种 B .124种 C .130种D .150种3.在某次体检中,学号为i (1,2,3,4i =)的四位同学的体重()f i 是集合{45,48,52,57,60}kg kg kg kg kg 中的元素,并满足(1)(2)(3)(4)f f f f ≤≤≤,则这四位同学的体重所有可能的情况有( ) A .55种B .60种C .65种D .70种4.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有( ) A .35种B .38种C .105种D .630种5.212nx x ⎛⎫ ⎪⎝⎭-的展开式中二项式系数之和是64,含6x 项的系数为a ,含3x 项系数为b ,则a b -=( ) A .200 B .400 C .-200D .-4006.已知67017(1)()...x a x a a x a x +-=+++,若017...0a a a +++=,则3a =( )A .5-B .20-C .15D .357.在(nx的展开式中,各项系数与二项式系数和之比为128,则4x 的系数为( ) A .21 B .63C .189D .7298.若2132020x x C C -+=,则x 的值为( )A .4B .4或5C .6D .4或69.()6232x x ++展开式中x 的系数为( ) A .92B .576C .192D .38410.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( ) A .240种B .288种C .192种D .216种11.设(1+x )+(1+x )2+(1+x )3+…+(1+x )n =a 0+a 1x+a 2x 2+…+a n x n ,当a 0+a 1+a 2+…+a n =254时,n 等于( ) A .5B .6C .7D .812.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.二项式261(2)x x-的展开式中的常数项是_______.(用数字作答)14.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项是第________项..15.有7人站成一排照相,要求A ,B 两人相邻,C ,D ,E 三人互不相邻,则不同的排法种数为______.16.方程10x y z ++=的正整数解的个数__________.17.在(23)n x y -的二项展开式中,二项式系数的和是512,则各项系数的和是_____ . 18.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科,3门文科)中选择3门学科参加等级考试,小李同学受理想中的大学专业所限,决定至少选择一门理科学科,那么小李同学的选科方案有________种. 19.6名同学站成一排,甲、乙两人相邻,丙与丁不相邻,则共有______种不同的排法(用数字作答). 20.若()202022020012202032x a a x a x a x +=++++,则1352019a a a a ++++被12整除的余数为______.三、解答题21.用0,1,2,3,4,5这六个数字,完成下面三个小题. (1)若数字允许重复,可以组成多少个不同的五位偶数;(2)若数字不允许重复,可以组成多少个能被5整除的且百位数字不是3的不同的五位数;(3)若直线方程0ax by +=中的a ,b 可以从已知的六个数字中任取2个不同的数字,则直线方程表示的不同直线共有多少条?22.已知n的展开式中,前三项系数的绝对值成等差数列. (1)求n ;(2)求第三项的二项式系数及展开式中x 的系数;(3)求展开式中系数的绝对值最大的项.23.计算:(1)2490n n A A =;(2)383321nn nn C C -++.24.已知在)23nx的展开式中各项系数的和比它的二项式系数的和大992.(1)求n 的值; (2)求展开式中6x 的项; (3)求展开式中系数最大的项. 25.已知(2nx +的展开式中各项的二项式系数之和为32. ()1求n 的值;()2求(2nx 的展开式中2x 项的系数; ()3求(2nx x ⎛⎝展开式中的常数项. 26.在n的展开式中,前3项的系数的和为73. (1)求n 的值及展开式中二项式系数最大的项;(2)求展开式中的有理项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】对甲分甲选牛或羊作礼物、甲选马作礼物,利用分步计数原理和分类计数原理计算出事件“三位同学都选取了满意的礼物”所包含的基本事件数,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】若甲选牛或羊作礼物,则乙有3种选择,丙同学有10种选择,此时共有231060⨯⨯=种;若甲选马作礼物,则乙有4种选择,丙同学有10种选择,此时共有141040⨯⨯=种.因此,让三位同学选取的礼物都满意的概率为31260401005132066A +==. 故选:C. 【点睛】本题考查古典概型概率的计算,同时也涉及了分类计数和分步计数原理的应用,考查分析问题和解决问题的能力,属于中等题.2.D解析:D 【分析】根据题意,分2步进行分析:①把5个个参会国的人员分成三组,一种是按照1、1、3;另一种是1、2、2;由组合数公式可得分组的方法数目,②,将分好的三组对应三家酒店;由分步计数原理计算可得答案. 【详解】根据题意,分2步进行分析:①、五个参会国要在a 、b 、c 三家酒店选择一家,且这三家至少有一个参会国入住, ∴可以把5个国家人分成三组,一种是按照1、1、3;另一种是1、2、2 当按照1、1、3来分时共有C 53=10种分组方法;当按照1、2、2来分时共有22532215C C A = 种分组方法;则一共有101525+= 种分组方法;②、将分好的三组对应三家酒店,有336A = 种对应方法;则安排方法共有256150⨯= 种; 故选D . 【点睛】本题考查排列组合的应用,涉及分类、分步计数原理的应用,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.3.D解析:D 【分析】根据(1)(2)(3)(4)f f f f ≤≤≤中等号所取个数分类讨论,利用组合知识求出即可. 【详解】解:当(1)(2)(3)(4)f f f f ≤≤≤中全部取等号时,情况有155C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有两个取等号,一个不取等号时,情况有215330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有一个取等号,两个不取等号时,情况有315330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中都不取等号时,情况有455C =种;共560+60+5=70+种. 故选:D. 【点睛】本题考查分类讨论研究组合问题,关键是要找准分类标准,是中档题.4.C解析:C 【分析】根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果. 【详解】根据题意,分2步进行分析:①.从3件次品中抽取2件次品,有23C 种抽取方法,;②.从7件正品中抽取3件正品,有37C 种抽取方法, 则抽取的5件产品中恰好有2件次品的抽法有2337105C C ⨯=种; 故选:C .【点睛】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列.5.B解析:B 【分析】由展开式二项式系数和得n =6,写出展开式的通项公式,令r=2和r=3分别可计算出a 和b 的值,从而得到答案. 【详解】由题意可得二项式系数和2n =64,解得n =6.∴212nx x ⎛⎫ ⎪⎝⎭-的通项公式为:()()6261231661212rr r r r r rr T C x C x x ---+⎛⎫=-=- ⎪⎝⎭, ∴当r=2时,含x 6项的系数为()2262612240C a --==, 当r=3时,含x 3项的系数为()3363612160C b --=-=,则400a b -=, 故选B . 【点睛】本题考查二项式定理的通项公式及其性质,考查推理能力与计算能力,属于基础题.6.A解析:A 【分析】令1x =,可得66017...(11)(1)2(01)a a a a a ++++-=⨯-==,解得1a =,把二项式化为66(1)(1)x x x +--,再利用二项展开式的通项,即可求解. 【详解】由题意,令1x =,可得66017...(11)(1)2(01)a a a a a ++++-=⨯-==,解得1a =,所以二项式为666(1)(1)(1)(1)x x x x x =++---所以展开式中3x 的系数为332266(1)(1)20155C C -+-=-+=-,故选A .【点睛】本题主要考查了二项式定理的应用,其中解答熟练应用赋值法求得二项展开式的系数,以及二项展开式的通项是解答的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【解析】分析:令1x =得各项系数和,由已知比值求得指数n ,写出二项展开式通项,再令x 的指数为4求得项数,然后可得系数.详解:由题意41282n n =,解得7n =,∴3772177()3r r r r r rr T C x C x x --+==,令3742r-=,解得2r ,∴4x 的系数为2273189C =.故选C . 点睛:本题考查二项式定理,考查二项式的性质.在()n a b +的展开式中二项式系数和为2n ,而展开式中各项系数的和是在展开式中令变量值为1可得,二项展开式通项公式为1C r n r rr n T ab -+=. 8.D解析:D 【解析】 因为2132020x x C C -+=,所以213x x -=+ 或21320x x -++=,所以4x = 或6x =,选D.9.B解析:B 【解析】()6232xx ++展开式中含x 的项为15565(3)26332576C x C x x ⋅⋅=⨯⨯=,即x 的系数为576;故选B.点睛:本题考查二项式定理的应用;求三项展开式的某项系数时,往往有两种思路: (1)利用组合数公式和多项式乘法法则,如本题中解法;(2)将三项式转化成二项式,如本题中,可将26(32)x x ++化成66(1)(2)x x ++,再利用两次二项式定理进行求解.10.D解析:D 【详解】最前排甲,共有55A 120=种;最前排乙,最后不能排甲,有种,根据加法原理可得,共有种,故选D .考点:排列及计数原理的应用.11.C解析:C【解析】试题分析:观察已知条件a 0+a 1+a 2+…+a n =254,可令(1+x )+(1+x )2+(1+x )3+…+(1+x )n=a 0+a 1x+a 2x 2+…+a n x n 中的x=1,可得254=2n+1﹣2,解之即可.解:∵(1+x )+(1+x )2+(1+x )3+…+(1+x )n =a 0+a 1x+a 2x 2+…+a n x n ∴令x=1得2+22+23+…+2n =a 0+a 1+a 2+…+a n , 而a 0+a 1+a 2+…+a n =254==2n+1﹣2,∴n=7 故答案为C考点:数列的求和;二项式定理的应用.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解. 【详解】有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.60【分析】根据二项式展开式的通项公式求解【详解】有题意可得二项式展开式的通项为:令可得此时【点睛】本题考查二项式定理的应用考查通项公式考查计算能力属于基础题解析:60 【分析】根据二项式展开式的通项公式求解. 【详解】有题意可得,二项式展开式的通项为:()62612316612(1)2rrrr r r rr T C xC xx ---+⎛⎫=-=- ⎪⎝⎭令1230r -=可得4r = ,此时2456260T C ==.【点睛】本题考查二项式定理的应用,考查通项公式,考查计算能力,属于基础题.14.8和9【分析】根据求得利用二项式系数的性质可得展开式中二项式系数的最大【详解】解:由题意可得即解得∵故展开式中二项式系数的最大的项为第8项或第9项故答案为:8和9【点睛】本题主要考查二项式定理的应用解析:8和9 【分析】 根据21121n n n nn n C C C --++= 求得15n =,利用二项式系数的性质可得展开式中二项式系数的最大. 【详解】解:由题意可得,21121n n nn n n C C C --++=,即(1)11212n n n -++=,解得15n =, ∵1182n -+=, 1192n ++= 故展开式中二项式系数的最大的项为第8项或第9项, 故答案为:8和9. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.15.288【分析】将AB 捆绑作为一个整体排列再与剩余2人全排列三人插空排列即可【详解】将AB 捆绑作为一个整体排列为将AB 整体与剩余2人全排列则再将三人插入4个空位排列则所以总的排列方法有种故答案为:28解析:288 【分析】将A 、B 捆绑作为一个整体排列,再与剩余2人全排列,C 、D 、E 三人插空排列即可. 【详解】将A 、B 捆绑作为一个整体排列为22A , 将A 、B 整体与剩余2人全排列则33A ,再将C 、D 、E 三人插入4个空位排列,则34A ,所以总的排列方法有233234232432288A A A =⨯⨯⨯⨯⨯= 种,故答案为:288. 【点睛】本题考查了排列中相邻、不相邻问题的解法,属于中档题.16.【分析】本题转化为把10个球放在三个不同的盒子里有多少种方法利用隔板法即可求得答案【详解】问题中的看作是三个盒子问题则转化为把个球放在三个不同的盒子里有多少种方法将个球排一排后中间插入两块隔板将它们 解析:36【分析】本题转化为把10个球放在三个不同的盒子里,有多少种方法,利用隔板法,即可求得答案. 【详解】问题中的x y z 、、看作是三个盒子,问题则转化为把10个球放在三个不同的盒子里,有多少种方法.将10个球排一排后,中间插入两块隔板将它们分成三堆球,使每一堆至少一个球. 隔板不能相邻,也不能放在两端,只能放在中间的9个空内.∴共有2936C =种.故答案为:36 【点睛】本题解题关键是掌握将正整数解的问题转化为组合数问题,考查了分析能力和转化能力,属于中档题.17.【分析】根据二项式系数的和求解出的值求解各项系数的和时可考虑令由此可计算出各项系数的和【详解】因为二项式系数的和是所以所以又因为令可得:所以各项系数的和为:故答案为【点睛】本题考查根据二项式系数求参 解析:1-【分析】根据二项式系数的和求解出n 的值,求解各项系数的和时可考虑令1x y ==,由此可计算出各项系数的和. 【详解】因为二项式系数的和是512,所以01...2512n nn n n C C C +++==,所以9n =,又因为()()()()()()()998109129992323...2323C x y C x y C x y x y =-+-+-+-, 令1x y ==可得:()()()()()()()998191299912323...231C C C -=-+-++-=-,所以各项系数的和为:1-. 故答案为1-. 【点睛】本题考查根据二项式系数求参数以及求解各项系数和,难度一般.(1)求解形如()nax by +的展开式中的各项系数和时,可令1x y ==求得结果; (2)形如()nax by +的展开式中的二项式系数之和为2n .18.19【分析】6门学科(3门理科3门文科)中选择3门学科可以分为全为理科有理科有文科全为文科决定至少选择一门理科学科包括前两种考虑起来比较麻烦故用间接法:用总数减去全为文科的数量【详解】根据题意从物理解析:19 【分析】6门学科(3门理科,3门文科)中选择3门学科可以分为全为理科,有理科有文科,全为文科,决定至少选择一门理科学科包括前两种,考虑起来比较麻烦,故用间接法:用总数减去全为文科的数量.【详解】根据题意,从物理、化学、生物、政治、历史、地理6门学科任选3门,有3620C=种选取方法,其中全部为文科科目,没有理科科目的选法有331C=种,所以至少选择一门理科学科的选法有20-1=19种;故答案为19,【点睛】本题考查排列组合.方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.19.【分析】甲乙两人相邻用捆绑法丙与丁不相邻用插空法【详解】先排丙与丁以外的人且甲乙在一起有种排法再排丙丁两人有种排法∴共有种排法【点睛】本题考查了排列知识的应用求解排列问题的六种主要方法:直接法:把符解析:144【分析】甲、乙两人相邻用捆绑法,丙与丁不相邻用插空法.【详解】先排丙与丁以外的4人且甲、乙在一起,有323212A A=种排法,再排丙、丁两人有2 412A=种排法,∴共有1212144⨯=种排法.【点睛】本题考查了排列知识的应用.求解排列问题的六种主要方法:直接法:把符合条件的排列数直接列式计算;优先法:优先安排特殊元素或特殊位置;捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列;插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;定序问题除法处理:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列;间接法:正难则反、等价转化的方法.20.0【分析】根据题意给自变量赋值取和两个式子相减得到的值用二项展开式可以看出被12整除的结果得到余数【详解】在已知等式中取得取得两式相减得即因为能被12整除所以则被12整除余数是0故答案为:0【点睛】解析:0【分析】根据题意,给自变量x 赋值,取1x =和1x =-,两个式子相减,得到1352019a a a a +++的值,用二项展开式可以看出被12整除的结果,得到余数.【详解】在已知等式中,取1x =得202001220205a a a a ++++=,取1x =-得01220201a a a a -+-+=, 两式相减得202013520192()51a a a a +++=-,即()202013520191512a a a a +++=⨯-,因为()()()1010202010101111512512412222⨯-=⨯-=⨯+- ()01010110091010101010101010101124242422C C C C =⨯++++- ()0101011009110101010101012424242C C C =⨯+++能被12整除,所以则1352019a a a a ++++被12整除,余数是0.故答案为:0. 【点睛】本题考查二项式定理的应用和带余除法,本题解题的关键是利用赋值的方法、利用二项式定理得到式子的结果,属于中等题.三、解答题21.(1)3240个(2)174个(3)20条 【分析】(1)根据分步计数原理和题设条件,即可求得组成的不同的五位偶数;(2)依据能被5整除的数,其个位是0或5,分两类,利用分类计数原理,即可求解; (3)根据数字0,分为两类:当,a b 都不取0和当,a b 中有一个取0,结合分类计数原理,即可求解. 【详解】(1)由题意,数字允许重复,根据分步计数原理, 可得不同的五位偶数共有:566633240⨯⨯⨯⨯=(个).(2)当首位数字是5,而末位数字是0时,有233118A A =(个);当首位数字是3,而末位数字是0或5时,有132448A A =(个);当首位数字是1或2或4,而末位数字是0或5时,有11123233108A A A A =(个);故共有1848108174++=(个).(3)分两类:第一类:当,a b 都不取0时,有2520A =(条);当1,2a b ==与2,4a b ==重复,当2,1a b ==与4,2a b ==重复, 所以此时共有18条不同的直线;第二类:当,a b 中有一个取0时,则不同的直线仅有0x =和0y =,有2条; 由分类计数原理,可得共有18220+=(条). 【点睛】本题主要考查了分类计数原理和分布计算原理,以及排列与排列数的应用,其中解答中认真审题,合理分类、分步求解是解答的关键,着重考查了分析问题和解答问题的能力. 22.(1)8n =(2)28;358(3)527x 或747x - 【分析】(1)根据等差数列的知识及二项式系数的性质,列式求得n ;(2)直接求解第三项的二项式系数,然后写出二项展开式的通项,由x 的指数为1求得r ,则展开式中x 的系数可求;(3)根据二项式系数的性质,求得二项式系数最大的项. 【详解】(1)二项式n的展开式中,前三项系数的绝对值成等差数列,则 10211224n n n C C C ⋅=+⋅,解得:1n =(舍去)或8n =;(2)由(1)可得:8n=,所以展开式中第三项的二项式系数为2828C =,展开式的通项为1638418812r rrr r r r T C C x--+⎛⎛⎫=⋅⋅=-⋅⋅ ⎪ ⎝⎭⎝, 令16314r-=,解得4r =, 所以展开式中x 的系数为48135168C ⋅=; (3)由(2)可得:1188118811221122r r r r rr rr C C C C ++--⎧⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得23r ≤≤,所以展开式中系数的绝对值最大的项为16324825223172T C x x -⨯⎛⎫=-⋅⎭=⋅ ⎪⎝或37316344438127T C x x -⨯⎛⎫=-⋅⋅=- ⎪⎝⎭.【点睛】本题主要考查二项式定理的应用、二项展开式的通项公式、二项式系数的性质,考查理解辨析能力与运算求解能力,属于中档题. 23.(1)12;(2)466. 【分析】(1)由排列数公式化简后再解方程可得;(2)由组合数性质求得n 的范围,求得n ,再利用组合性质变形后计算. 【详解】(1)由2490n n A A =,得90(1)(1)(2)(3)n n n n n n -=---,且4n ≥,解得12n =;(2)由题意383321n nn n -≤⎧⎨≤+⎩,*n N ∈,解得10n =.∴383321n n n n C C -++283021303130313029314662C C C C ⨯=+=+=+=. 【点睛】本题考查排列数公式和组合数公式,掌握排列数和组合数性质是解题关键.在组合数中一定要注意上标不大于下标.24.(1)5n =;(2)6390T x =;(3)2635405T x=【分析】(1)代入1x =求得各项系数和为4n ,又二项式系数和为2n ,根据二者相差992可得方程,解方程求得n ;(2)根据展开式通项公式,令x 的幂指数等于6,求得r ,进而可得所求项;(3)由展开式通项可知系数通项为53r rC ,利用115511553333r r r r r r r r C C C C ++--⎧≥⎨≥⎩解得r ,进而求得系数最大的项. 【详解】(1))23nx展开式各项系数的和为:)2314nn ⨯=;二项式系数的和为:2n又各项系数的和比二项式系数的和大99242992nn∴-=,即()2229920n n --=,解得232n =5n ∴=(2))523x展开式的通项公式为:()10452315533r rrr r rr TCx C x+-+==令10463r+=,解得2r展开式中6x 的项为:226635390T C x x == (3)设第1r +项的系数为1r t +,则153r rr t C +=由121r r r r t t t t +++≥⎧⎨≥⎩,即115511553333r r r r r rr r C C C C ++--⎧≥⎨≥⎩ 解得:7922r ≤≤,所以4r = 展开式系数最大项为:26264433553405T C xx ==【点睛】本题考查二项式定理的应用,涉及到二项式系数和、各项系数和的求解、特定项系数的求解以及最大项的求解问题,关键在于能够熟练运用展开式的通项公式,属于常规题型. 25.(1)5. (2)80. (3)-30. 【解析】分析:(1)由二项展开式的二项式系数和为2n 求解即可.(2)由(1)得到二项展开式的通项后求解.(3)根据52x ⎛⎝展开式的通项并结合组合的方法求解.详解:(1)由题意结合二项式系数的性质可得232n =, 解得5n =.(2)由题意得52x ⎛+ ⎝的通项公式为()3555215522rrr r r r r T C x C x ---+==, 令3522r-=,解得2r =,所以52x ⎛+ ⎝的展开式中2x 项的系数为325280C ⨯=.(3)由(2)知,52x ⎛ ⎝的展开式的通项为3552152r r r r T C x --+=,令3512r-=-,解得4r =; 令31522r -=,解得3r =.故2nx x ⎛ ⎝展开式中的常数项为5445335522104030C C ---=-=-. 点睛:(1)求二项展开式的特定项问题,实质是考查通项1r n r rr n T C a b =-+的特点,一般需要建立方程求r ,再将r 的值代回通项求解,注意r 的取值范围(r =0,1,2,…,n ). (2)使用二项式的通项公式时要注意:①通项公式表示的是第r +1项,而不是第r 项;②通项公式中a 和b 的位置不能颠倒.26.(1)6n =,34160x ;(2)3x 和240.【分析】(1)根据前3项系数和,建立方程求出n ,结合二项式系数的性质进行求解即可. (2)求出展开式的通项公式,结合x 的次数进行求解即可. 【详解】 (1)依题意得:0122473n n n C C C ++=,即22173n +=,得236n =6n ∴=-或6n = *n N ∈∴6n =.∴展开式中二项式系数最大的项为第四项,即3333446=160T C x =.(2)展开式的通项公式为:33416=2(),(0,1,...,6)r r rr TC x r -+=,展开式的通项公式为:61662k k k k k T C C -+==334k k x -, 当0k =时,3334k-=,此时为有理项31T x =, 当1k =时,39344k -=,此时不是有理项, 当2k =时,33342k -=,此时不是有理项, 当3k =时,33344k -=,此时不是有理项, 当4k =时,3304k-=,此时为有理项5240T =, 当5k =时,33344k -=-,此时不是有理项, 当6k =时,33342k -=-,此时不是有理项, ∴展开式中的有理项为3x 和240.【点睛】本题主要考查二项式定理、有理项等基础知识,考查观察能力、运算求解能力、推理能力和函数与方程思想,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵阳市修文县华驿中学2015-2016学年度第二学期数学单元测试卷(一)班级:________ 姓名:________ 得分:________第Ⅰ卷(选择题)一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A .10种B .20种C .25种D .32种解析: 5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,故选D.答案: D2.在二项式⎝⎛⎭⎫x 2-1x 5的展开式中,含x 4的项的系数是( ) A .-5 B .5 C .-10D .10解析:T k +1=C k 5·(x 2)5-k ·⎝⎛⎭⎫-1x k =C k 5·x 10-2k ·⎝⎛⎭⎫1x k ·(-1)k =C k 5·x 10-3k·(-1)k . 由10-3k =4知k =2,即含x 4的项的系数为C 25(-1)2=10.答案:D3.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为( )A .320B .160C .96D .60解析: 不同的涂色方法种数为5×4×4×4=320种. 答案: A4.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种解析:先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有C 12C 24=12种安排方案.答案:A5.对于二项式⎝⎛⎭⎫1x +x 3n(n ∈N *),4位同学做出了4种判断: ①存在n ∈N *,展开式中没有常数项;②对任意n ∈N *,展开式中没有常数项; ③对任意n ∈N *,展开式中没有x 的一次项;④存在n ∈N *,使展开式中有x 的一次项. 上述判断中正确的是( ) A .①与③ B .②与③ C .②与④D .①与④解析: 二项式的通项公式为T r +1=C r n ⎝⎛⎭⎫1x n -r ·(x 3)r =C r n x 4r -n,0≤r ≤n ,r ∈N ,n ∈N *.若展开式中存在常数项,则4r -n =0,显然若n 为4的倍数则展开式中有常数项,若n 不是4的倍数,则展开式中没有常数项,故①正确②错误.若展开式中存在一次项,则有4r -n =1,r =n +14,若n =4k +3(k ∈N ),则r ∈N *即此时展开式中有一次项,否则没有一次项,故③错误,④正确,故选D.答案: D6.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种解析: 不同的选修方案共有C 24·C 34·C 34=96种. 故选C. 答案: C7.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( )A .70种B .112种C .140种D .168种解析:方法一(直接法): 分类完成:第1类,甲参加或乙参加,有C 12C 38种挑选方法; 第2类,甲、乙都参加,有C 22C 28种挑选方法. 所以不同的挑选方法共有C 12C 38+C 22C 28=140种.方法二(间接法):从甲、乙等10人中挑选4人共有C 410种挑选方法,甲、乙两人都不参加挑选方法有C 48种,所以甲、乙两人中至少有1人参加的不同的挑选方法有C410-C48=140种.答案:C8.已知3A x8=4A x-19,则x等于()A.6 B.13C.6或13 D.12解析:由排列数公式可将原方程化为3×8!(8-x)!=4×9!(10-x)!,化简可得x2-19x+78=0,解得x=6或x=13.又因为x≤8且x-1≤9,则x≤8且x∈N*,故x=6.答案: A9.一次考试中,要求考生从试卷上的9个题目中选出6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是()A.40 B.74C.84 D.200解析:可按包括前5个题的个数分类,共有不同的选法C35C34+C45C24+C55C14=74种.答案:B10.若(2x+3)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为()A.1 B.-1C.0 D.2解析:(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+3)4×(-2+3)4=1.答案:A11.某次文艺汇演,要将A,B,C,D,E,F这六个不同节目编排成节目单,如下表:如果A,B() A.192种B.144种C.96种D.72种解析:第一步,将C,D,E,F全排,共有A44种排法,产生5个空,第二步,将A,B捆绑有2种方法,第三步,将A,B插入除2号空位和3号空位之外的空位,有C13种.所以一共有144种方法.答案:B12.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m等于()A.5 B.6 C.7 D.8解析: 由二项式系数的性质知:二项式(x +y )2m 的展开式中二项式系数最大有一项C m 2m =a , 二项式(x +y )2m+1的展开式中二项式系数最大有两项C m 2m +1=C m +12m +1=b , 因此13C m 2m =7C m 2m +1,∴13·2m !m !m !=7·(2m +1)!m !(m +1)!,即13=7(2m +1)m +1,∴m =6.故选B. 答案: B第Ⅱ卷(非选择题)二、填空题(每小题5分,共20分)13.C 16+C 26+C 36+C 46+C 56的值为__________. 解析:∵C 06+C 16+C 26+C 36+C 46+C 56+C 66=26=64, ∴C 16+C 26+C 36+C 46+C 56=64-2=62.答案:6214.我校邀请6位学生的父母共12人参加五·四文艺汇演,并请这12位家长中的4位介绍其对子女的教育情况,如果这4位家长中恰有一对是夫妻,那么不同的选择方法有__________种.解析:先从6对夫妻中任选出一对,有C 16种不同的选法,再从其余的10人中任选出2人,有C 210种选法,其中这2人恰好是一对夫妻的选法有C 15种,所以共有C 16(C 210-C 15)=240种不同选法.答案:24015.六广臭豆腐“臭”名远扬,一外地学者来六广旅游,买了两盘臭豆腐,每盘3片.规定:每盘臭豆腐只能自上向下一片一片地吃,且两盘可以自由交替吃.请问:该学者将这两盘臭豆腐吃完,有________种不同的吃法.(用数字作答)解析: 如图所示,先吃A 的情况,共有10种,如果先吃D 情况相同,共有20种.答案: 2016.在(x-2)2 008的二项展开式中,含x的奇次幂的项之和为S,当x=2时S=________.解析:设(x-2)2008=a0+a1x+a2x2+a3x3+…+a2 008x2 008当x=2时,有a0+a1·2+a2·(2)2+…+a2 008·(2)2 008=0①当x=-2时,有a0-a1·2+a2·(2)2-…-a2 007(2)2 007+a2 008(2)2 008=(22)2 008②①-②得2[a1·2+a3·(2)3+a5·(2)5+…+a2 007(2)2 007]=-23 012,∴x=2时,S=a1·2+a3·(2)3+…+a2 007·(2)2 007=-23 011.答案:-23 011三、解答题(本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)华驿中学教职员工参加义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解析:从O型血的人中选1人有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,这件“任选1人去献血”的事情都能完成,所以由分类加法计数原理知,共有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以由分步乘法计数原理知,共有28×7×9×3=5 292种不同的选法.18.(本题满分12分)某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)任选1个班的学生参加社会实践,有多少种不同的选法?(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?解:(1)分三类:第一类从高一年级选1个班,有6种不同方法;第二类从高二年级选一个班,有7种不同的方法;第三类从高三年级选1个班,有8种不同方法.由分类加法计数原理,共有6+7+8=21种不同的选法.(4分)(2)每种选法分三步:第一步从高一年级选一个班,有6种不同方法;第二步从高二年级选1个班,有7种不同方法;第三步从高三年级选1个班,有8种不同方法.由分步乘法计数原理,共有6×7×8=336种不同的选法.(8分)(3)分三类,每类又分两步.第一类从高一、高二两个年级各选一个班,有6×7种不同方法;第二类从高一、高三两个年级各选1个班,有6×8种不同方法;第三类从高二、高三年级各选一个班,有7×8种不同的方法,故共有6×7+6×8+7×8=146种不同选法.(12分) 19.(本题满分12分)解方程:(1)C x +113=C 2x -313;(2)C x -2x +1+C x -3x +2=110A 3x +3. 解析: (1)由原方程得x +1=2x -3或x +1+2x -3=13, ∴x =4或x =5, 又由⎩⎪⎨⎪⎧0≤x +1≤130≤2x -3≤13x ∈N *得2≤x ≤8且x ∈N *,∴原方程的解为x =4或x =5.(注:上述求解过程中的不等式组可以不解,直接把x =4或x =5代入检验,这样运算量小得多)(2)原方程可化为C x -2x +3=110A 3x +3, 即C 5x +3=110A 3x +3, ∴(x +3)!5!(x -2)!=(x +3)!10·x !,∴1120(x -2)!=110·x (x -1)·(x -2)!.∴x 2-x -12=0,解得x =4或x =-3(舍去), 经检验,x =4是原方程的解. 20.(本题满分12分)已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992,求在⎝⎛⎭⎫2x -1x 2n 的展开式中,(1)二项式系数最大的项;(2)系数的绝对值最大的项. 解:由题意22n -2n =992,解得n =5.(1)⎝⎛⎭⎫2x -1x 10的展开式中第6项的二项式系数最大, 即T 6=T 5+1=C 510(2x )5⎝⎛⎭⎫-1x 5=-8 064.(6分)(2)设第r +1项的系数的绝对值最大,则T r +1=C r 10·(2x )10-r ⎝⎛⎭⎫-1x r =(-1)r C r 10210-r x 10-2r , ∴⎩⎪⎨⎪⎧C r 10210-r ≥C r -110210-r +1,C r 10210-r ≥C r +110210-r -1, 得⎩⎪⎨⎪⎧ C r 10≥2C r -110,2C r 10≥C r +110,即⎩⎪⎨⎪⎧11-r ≥2r ,2 r +1 ≥10-r , ∴83≤r ≤113,又r ∈N , ∴r =3,故系数的绝对值最大的是第4项,即 T 4=-15 360x 4.(14分) 21.(本题满分12分)某班要从5名男生3名女生中选出5人担任5门不同学科的课代表,请分别求出满足下列条件的方法种数:(1)所安排的女生人数必须少于男生人数;(2)其中的男生甲必须是课代表,但不能担任数学课代表;(3)女生乙必须担任语文课代表,且男生甲必须担任课代表,但又不能担任数学课代表.解:(1)所安排的女生人数少于男生人数包括三种情况,一是2个女生,二是1个女生,三是没有女生,依题意得(C 55+C 13C 45+C 23C 35)A 55=5 520种.(4分)(2)先选出4人,有C 47种方法,连同甲在内,5人担任5门不同学科的课代表,甲不担任数学课代表,有A 14·A 44种方法,∴方法数为C 47·A 14·A 44=3 360种.(8分)(3)由题意知甲和乙两个人确定担任课代表,需要从余下的6人中选出3个人,有C 36=20种结果,女生 乙必须担任语文课代表,则女生乙就不需要考虑,其余的4个人,甲不担任数学课代表,∴甲有3种 选择,余下的3个人全排列共有3A 33=18;综上可知共有20×18=360种.(12分) 22.(本题满分12分)22.(本小题满分13分)杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)若第n 行中从左到右第14与第15个数的比为23,求n 的值;(3)求n 阶(包括0阶)杨辉三角的所有数的和.解析: (1)C 320=1 140.(2)C 13nC 14n =23⇒14n -13=23,解得n =34. (3)1+2+22+…+2n =2n +1-1.。

相关文档
最新文档