高中选修2-3第一章计数原理知识点总结与训练
高二数学(选修2-3人教B版)-计数原理全章总结
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式
(
Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).
选修2-3第一章计数原理归纳整合
别属于不同类的两种方法是不同的方法.分步乘法计数原理的
关键是“步”,分步时首先要根据问题的特点确定一个分步的标 准;其次,分步时还要注意满足完成一件事必须并且只有连续
完成这n个步骤后,这件事才算完成,只有满足了上述条件,才
能用分步乘法计数原理.
网络构建 专题归纳 解读高考
【例1】 有3封信,4个信筒. (1)把3封信都寄出,有多少种寄信方法? (2)把3封信都寄出,且每个信筒中最多一封信,有多少种
专题二
排列组合的应用
排列组合应用题是高考的一个重点内容,常与实际问题相结 合进行考查.要认真阅读题干,明确问题本质,利用排列组 合的相关公式与方法解题.
(1)在求解排列与组合应用问题时,应注意:
①把具体问题转化或归结为排列或组合问题; ②通过分析确定运用分类计数原理还是分步计数原理;
③分析题目条件,避免“选取”时重复和遗漏;
④列出式子计算并作答. (2)处理排列组合的综合性问题,一般思想方法是先选元素(组 合),后排列,按元素的性质“分类”和按事件发生的连续过程 “分步”,始终是处理排列组合问题的基本方法和原理,通过
网络构建 专题归纳 解读高考
解题训练注意积累分类和分步的基本技能. (3)解排列组合应用题时,常见的解题策略有以下几种: ①特殊元素优先安排的策略; ②合理分类和准确分步的策略; ③排列、组合混合问题先选后排的策略; ④正难则反、等价转化的策略; ⑤相邻问题捆绑处理的策略;
本章归纳整合
知识网络
网络构建
专题归纳
解读高考
要点归纳
1.两个计数原理
分步乘法计数原理与分类加法计数原理是排列组合中解决
问题的重要手段,也是基础方法,尤其是分类加法计数原 理与分类讨论有很多相通之处,当遇到比较复杂的问题 时,用分类的方法可以有效的将之分解,达到求解的目 的.正确地分类与分步是用好两个原理的关键,即完成一 件事到底是“分步”进行还是“分类”进行,这是选用计数原 理的关键.注意有些复杂的问题往往在分步中有分类,分 类中有分步,两个原理往往交错使用.
高中数学苏教版选修2-3第1章《计数原理》ppt章末总结课件
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识 逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
A、B 都在内,一人当钳工,一人当车工的选法
有:C22A22C35C34=80(种); A、B 有一人在内当钳工的选派方法有: C12C35C44=20(种); A、B 有一人在内当车工的选派方法有:
C12C45C34=40(种).
∴一共有 C45C44+C22C25C44+C22C45C24+C22A22C35C34+
例2 一条长椅上有七个座位,四个人坐,要求 三个空位中,有两个空位相邻,另一个空位与这 两个相邻空位不相邻,共有几种坐法? 【分析】 先把两个相邻空位看成一个整体,与 另一个空位看作两个元素插入另外四个座位产生 的五个空当中,即可解决问题.
【解】 把两个相邻空位看成一个整体,另一个 空位与这个整体不相邻,则是用四个人把两个元 素隔开的典型问题.基于这种考虑,就可先让四 人坐在四个位置上,再让后两个“元素 ”(一个 是两个作为一个整体的空位,另一个是单独的空 位)选择被四人形成的五个“空隙”中的两个.这 样就有 A44A25=480 种坐法. 【名师点评】 优先安排人入坐,再让空位去 “插队”,使问题得解.
例5 已知(1+x)6(1-2x)5=a0+a1x+a2x2+…+ a11x11,那么a1+a2+a3+…+a11=________. 【分析】 令x=1与x=0即可解决问题.
人教版高中数学选修2-3知识点汇总
人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
高中数学选修2-3知识点
高中数学选修2-3知识点高中数学选修2-3知识点第一章:计数原理1.分类加法计数原理:完成一件事情,有N类方法,第一类方法有M1种不同的方法,第二类方法有M2种不同的方法,以此类推,第N类方法有MN种不同的方法。
那么完成这件事情共有M1+M2+。
+MN种不同的方法。
2.分步乘法计数原理:完成一件事情需要分成N个步骤,第一步有m1种不同的方法,第二步有M2种不同的方法,以此类推,第N步有MN种不同的方法。
那么完成这件事情共有XXX种不同的方法。
3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的m个排列。
从n个不同元素中取出m个元素的一个排列数,用符号An表示。
An=m!/(n-m)!(m≤n,n,m∈N)。
5.公式:A(n+m)=An+Am*m!(m≤n,n,m∈N);An=m*(m-1)*。
*(n-m+1)=n!/(n-m)。
6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
7.公式:C(m,n)=C(n,n-m)=m!/[(n-m)!*m!];C(m,n)=C(n-1,m-1)+C(n-1,m);C(n,m)=C(n-1,m-1)*(n-m+1)/m。
8.二项式定理:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+。
+C(n,n)*a^0*b^n。
9.二项式通项公式展开式的通项公式:T=C(n,r)*a^(n-r)*b^r (r=0,1.n),其中C(n,r)为二项式系数。
10.二项式系数Cn:C(n,r)=C(n,n-r)=n!/(r!(n-r)!),其中r为从n个元素中取出的元素个数。
11.杨辉三角:杨辉三角是一种数学图形,由二项式系数构成,XXX的数为C(n,0),C(n,1)。
人教版高二数学选修2-3第一章计数原理《《计数原理》小结与复习》
第一章 计数原理《计数原理》小结与复习班级:高二( )班 学号: 姓名:一.知识点整理1、两个基本计数原理: (1)分类计数原理:完成一件事,有n 类办法,完成这件事共有 N=m 1+m 2+…+m n 种不同的方法。
(2)分步计数原理:完成一件事,需要分成n 个步骤,完成这件事有N=m 1×m 2×…×m n 种不同的方法。
2、排列(1)排列:一般地,从n 个不同的元素中取出m (m ﹤n )个元素,并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
(2)排列数公式: )!(!)1()2()1(m n n m n n n n A m n -=+-⋅⋅⋅-⋅-⋅=, 3、组合(1)组合:一般地,从n 个不同元素中取出m 个不同元素并成一组,叫做从n 个不同元素中取出m 个不同元素的一个组合。
(2)组合数公式: (3)组合数公式性质: 性质1: m n nm n C C -= 性质2: 111+++=+k n k n k n C C C 推论1: t n t n k k k C C C C C 122110+++=+⋅⋅⋅+++ 推论2: 1121++++=+⋅⋅⋅+++k n k n k k k k k k C C C C C4、二项式定理:(1)二项式定理:011222()n n n n r n r r n n n n n n n a b C a C a b C a b C a b C b ---+=++++++(2)通项是展开式的第 项,即:2、二项展开式的特点:(1)项数:共n +1项;(2)指数:a 按降幂排列,b 按升幂排列,每一项中a 、b 的指数和为n(3)系数:第r +1项的二项式系数为C n r (r =0,1,2,…,n )二.巩固练习 1.(西安)4个男生与3个女生站成一排,如果两端不站女生且3(A)144种 (B)288种 (C)432种 (D)576种2.(海淀)某科技小组有6名同学,现从中选出3人去参观展览,至少有1名女生入选时的不同选法有16种,则小组中的女生数目为( )。
2019年人教版 高中数学 第一章 计数原理本章小结 选修2-3
2019年编·人教版高中数学高中数学第一章计数原理本章小结新人教A版选修2-3知识点一两个计数原理的应用(1)“分类”表现为其中任何一类均可独立完成所给事件.“分步”表现为必须把各步骤均完成,才能完成所给事件,所以准确理解两个原理的关键在于弄清分类加法计数原理强调完成一件事件的几类办法互不干扰,不论哪一类办法中的哪一种方法都能够独立完成事件.(2)分步乘法计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法.例1 某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)任选1个班的学生参加社会实践,有多少种不同的选法?(2)三个年级各选1个班的学生参加社会实践,有多少种不同的选法?(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?解析:(1)分三类:第一类从高一年级选1个班,有6种不同方法;第二类从高二年级选1个班,有7种不同方法;第三类从高三年级选1个班,有8种不同方法.由分类加法计数原理,共有6+7+8=21(种)不同的选法.(2)每种选法分三步:第一步从高一年级选1个班,有6种不同方法;第二步从高二年级选1个班,有7种不同方法;第三步从高三年级选1个班,有8种不同方法.由分步乘法计数原理,共有6×7×8=336(种)不同的选法.(3)分三类,每类又分两步.第一类从高一、高二两个年级各选1个班,有6×7种不同方法;第二类从高一、高三两个年级各选1个班,有6×8种不同方法;第三类从高二、高三年级各选1个班,有7×8种不同的方法,故共有6×7+6×8+7×8=146(种)不同选法.知识点二排列组合问题在解决一个实际问题的过程中,常常遇到排列、组合的综合性问题,而解决问题的第一步是审题,只有认真审题,才能把握问题的实质,分清是排列问题、组合问题,还是综合问题,分清分类与分步的标准和方式,并且要遵循两个原则:一是按元素的性质进行分类;二是按事情发生的过程进行分步.现由五个人排在周一至周五的五天中值班,每人一天,按下列条件各有多少种不同的排法?(1)甲不值周一且乙不值周二;(2)甲、乙不排在连续的两天;(3)甲排在乙的前面(不一定相邻).解析:(1)法一(直接法) 分“甲值周二”和“甲不值周二”两类:甲值周二,则有A44种排法;甲不值周二,则周二有A13种排法,周一有A13种排法,后三天有A33种排法,所以甲不值周二的排法有A13·A13·A33种,由分类加法计数原理,满足条件的排法种数为A44+A13·A13·A33=78(种).法二(间接法) 五个人的排法总数为A55种,甲值周一和乙值周二各有A44种排法,甲值周一且乙值周二有A33种排法,所以甲不值周一且乙不值周二的排法种数为A55-2A44+A33=78(种).(2)法一(直接法) 甲、乙之外的其他三个人的排法种数为A 33种,甲、乙不相邻有A 24种排法,所以排法种数为A 33·A 24=72(种).法二(间接法) 五个人的排法总数为A 55种,甲、乙相邻的排法种数为A 44·A 22种,所以排法种数为A 55-A 44·A 22=72(种).(3)甲排在乙之前的排法种数为A 55A 22=60(种).知识点三 二项式定理的应用(1)确定二项式中的有关元素:一般是根据已知条件,列出等式,从而可解得所要求的二项式中的有关元素.(2)确定二项展开式中的常数项:先写出其通项公式,令未知数的指数为零,从而确定项数,然后代入通项公式,即可确定常数项.(3)求二项式展开式中条件项的系数:先写出其通项公式,再由条件确定项数,然后代入通项公式求出此项的系数.(4)求二项展开式中各项系数的和差:赋值代入.(5)确定二项展开式中的最大或最小项:利用二项式系数的性质.(2015·全国课标卷Ⅱ)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.解析:由已知得(1+x )4=1+4x +6x 2+4x 3+x 4,故(a +x )(1+x )4的展开式中x 的奇数次幂项分别为4ax ,4ax 3,x ,6x 3,x 5,其系数之和为4a +4a +1+6+1=32,解得a =3.答案:3一、选择题1.3名学生报名参加艺术体操、美术、计算机、航模课外兴趣小组,每人选报一种,则不同的报名种数有(D )A .3种B .12种C .34种 D .43种解析:每位学生都有4种报名方法,因此有4×4×4=43种.2.(2014·高考湖北卷)若二项式⎝⎛⎭⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =(C )A .2 B.54 C .1 D.24解析:因为C r7·(2x )r·⎝⎛⎭⎫a x 7-r=C r7·2r·a7-r·x-7+2r,令-7+2r =-3,得r =2,所以C 27·22·a7-2=84,解得a =1,故选C.3.设集合A ={1,2,3,4},m ,n ∈A ,则关于x ,y 的方程x 2m +y 2n=1表示焦点在x 轴上的椭圆有(A )A .6个B .8个C .12个D .16个解析:法一 因为椭圆的焦点在x 轴上,所以当m =4时,n =1或2或3;当m =3时,n =1或2;当m =2时,n =1,即所求的椭圆共有3+2+1=6(个).法二 由题意知m >n ,则应有C 24=6(个)焦点在x 轴上的不同椭圆.故选A.4.(2014·高考重庆卷)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是(B)A.72种 B.120种 C.144种 D.168种解析:将所有的安排方法分成两类:第一类,歌舞类节目中间不穿插相声节目,有A33A22A11=6×2×2=24(种);第二类,歌舞类节目中间穿插相声节目,有A33A12A12A14=6×2×2×4=96(种).根据分类加法计数原理,共有96+24=120种不同的排法.故选B.能力提升5.12名同学合影,站成了两排,前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是(C)A.C28A23种 B.C28A66种 C.C28A26种 D.C28A25种解析:从后排8人中选2人的方法有C28种.设选出的2人为A、B,安排A到前排有A15种方法,再安排B到前排有A16种方法.∴共有C28A15A16=C28A26种方法.故选C.6.如果C3n=C3n-1+C4n-1,则n的值为(B)A.8 B.7 C.6 D.不存在7.(2013·山东济宁模拟)某科技小组有六名学生(男生多于女生),现从中选出三人去参观展览,若至少有一名女生入选的不同选法有16种,则该小组中的女生人数为(A) A.2名 B.3名 C.4名 D.5名解析:若选出的三个人都是女生,则不合题意.设男生人数为x,则女生有6-x人.依题意可得C1x C26-x+C2x C16-x=16,即x(6-x)(5-x)2+x(x-1)(6-x)2=16,化简得x2-6x+8=0,解得x=4或x=2.因为男生多于女生,所以该小组中女生有2人.故选A.8.如图,一圆形花圃内有5块区域,现有4种不同颜色的花.从4种花中选出若干种植入花圃中,要求相邻两区域不同色,种法有(D)A.324种 B.216种 C.244种 D.240种解析:若1、4同色,共有C14×3×3×2=72(种).若1、4不同色(里面分2与4同色不同色),共有A24×2×(1×3+2×2)=168(种).所以一共有168+72=240(种).9.(2014·高考浙江卷)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).解析:不同的获奖分两种,一是有一人获两张奖券,一人获一张,共有C23A24=36,二是有三人各获得一张,共有A34=24,因此不同的获奖情况有60种.答案:6010.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有________种(用数字作答).解析:分2步完成:第一步,将4名大学生按2,1,1分成三组,其分法有C 24C 12C 11A 22种;第二步,将分好的三组分配到3个乡镇,其分法有A 33种.所以满足条件的分配方案有C 24C 12C 11A 22A 33=36种.答案:3611.已知(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,若a 1+a 2+…+a 6=63,则实数m =________. 解析:由题设知,a 0=1,令x =1,得a 0+a 1+a 2+…+a 6=(1+m )6,即(1+m )6=64. 故1+m =±2,m =1或-3. 答案:1或-312.一直线和圆相离,这条直线上有6个点,圆周上有4个点,通过任意两点作直线,最少可作直线的条数是________.解析:为了作的直线条数最少,应出现3点或更多点共线的情况,由于直线与圆相离,应让圆上任意两点都与直线上的一点共线.圆周上有4点能连成C 24=6条直线,而直线上恰有6个点,故这10个点中最多有6个三点共线和1个六点共线的情况,因此最少可作直线C 210-6C 23-C 26+6+1=19(条).答案:1913.一个口袋里有6封信,另一个口袋里有5封信,各封信内容均不相同. (1)从两个口袋中任取一封信,有多少种不同的取法? (2)从两个口袋里各取一封信,有多少种不同的取法?(3)把这两个口袋里的11封信,分别投入4个邮筒,有多少种不同的投法?解析:(1)任取一封信,不论从哪个口袋里取,都能单独完成这件事,因此是两类办法.用分类加法计数原理,共有6+5=11(种).(2)各取一封信,不论从哪个口袋中取,都不能算完成了这件事,因此应分两个步骤完成,由分步乘法计数原理,共有6×5=30(种).(3)第一封信投入邮筒有4种可能,第二封信仍有4种可能,…,第11封信还有4种可能.由分步乘法计数原理可知,共有411种不同的投法.14.(2013·昆明高二检测)二项式⎝⎛⎭⎫x -2x n的展开式中:(1)若n =6,求倒数第二项.(2)若第5项与第3项的系数比为56∶3,求各项的二项式系数和. 解析:(1)二项式⎝⎛⎭⎫x -2x n的通项是T r +1=C r n(x )n -r⎝⎛⎭⎫-2x r,当n =6时,倒数第二项是 T 6=C 56(x )6-5⎝⎛⎭⎫-2x 5=-192x -92.(2)二项式⎝⎛⎭⎫x -2x n 的通项T r +1=C r n (x )n -r ·⎝⎛⎭⎫-2x r,则第5项与第3项分别为T 5=C 4n (x )n-4·⎝⎛⎭⎫-2x 4,T 3=C 2n (x )n -2·⎝⎛⎭⎫-2x 2,所以它们的系数分别为16C 4n 和4C 2n .由于第5项与第3项的系数比为56∶3,则16C 4n ∶4C 2n =56∶3,解得n =10,所以各项的二项式系数和为C 010+C 110+…+C 1010=210=1 024.15.一个口袋内有4个不同的红球、6个不同的白球, (1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?解析:(1)将取出4个球分成三类情况: ①取4个红球,没有白球,有C 44种; ②取3个红球1个白球,有C 34C 16种; ③取2个红球2个白球,有C 24C 26种, 故有C 44+C 34C 16+C 24C 26=115种. (2)设取x 个红球,y 个白球,则⎩⎪⎨⎪⎧x +y =5,0≤x ≤4,2x +y ≥7,0≤y ≤6, 故⎩⎪⎨⎪⎧x =2,y =3,⎩⎪⎨⎪⎧x =3,y =2或⎩⎪⎨⎪⎧x =4,y =1.因此,符合题意的取法种数有 C 24C 36+C 34C 26+C 44C 16=186(种).16.用0,1,2,3,4,5这六个数字,完成下面三个小题. (1)若数字允许重复,可以组成多少个不同的五位偶数?(2)若数字不允许重复,可以组成多少个能被5整除的且百位数字不是3的不同的五位数? (3)若直线方程ax +by =0中的a 、b 可以从已知的六个数字中任取2个不同的数字,则直线方程表示的不同直线共有多少条?解析:(1)5×6×6×6×3=3 240(个). (2)当首位数字是5,而末位数字是0时,有 A 13A 23=18(个);当首位数字是3,而末位数字是0或5时,有A 12A 34=48(个);当首位数字是1或2或4,而末位数字是0或5时,有A 13A 12A 13A 23=108(个). 故共有18+48+108=174(个).(3)a ,b 中有一个取0时,有2条;a ,b 都不取0时,有A 25=20(条);a =1,b =2与a =2,b =4重复,a =2,b =1,与a =4,b =2重复.故共有2+20-2=20(条).。
第一章计数原理章末归纳总结(人教A版选修2-3)
• [例5] 在二项式(x-1)11的展开式中,系 数最小的项的系数为 ________.(结果用数 值表示)
• [点评] 二项式定理是一个恒等式,对一切x 的允许值都能成立.当求展开式的系数或者 证明有关组合数的恒等式时,常常用此方 法.
• [例7] 求(1+2x)12展开式中系数最大的项.
[解析] ∵原式不是(a+b)n 的标准二项式,因此不一定是 中间项系数最大.
设 Tk+1 项系数最大,有TTkk+ +11系 系数 数≥ ≥TTkk系 +2系数数,.
• [例3] 6个女同志(其中有一个领唱)和2个 男同志,分成两排表演.
• (1)每排4人,问共有多少种不同排法?
• (2)领唱站在前排,男同志站在后排,还是 每排4人,问有多少种不同的排法?
• [分析] 排队问题与排数问题相似,首先 要看有无特殊元素,特殊位置;进而是如 何安排特殊元素等.
[解析] (1)要完成这件事,必须分三步: 第一步:前面 8 人中选 4 人站在前面,另 4 人站在后面, 共有 C48·C44=C48种不同的排法; 第二步:前面 4 人进行排列,有 A44种排法; 第三步:后面 4 人也进行排列,有 A44种排法. 三步依次完成,这件事才算完成,故由分步乘法计数原 理有 N=C84A44A44种不同的排法. (2)同理 N=C35A44A44种不同的排法.
(1)若第三块田放 c;
abc 第四、五块田分别有 2 种方法,共 2·2 种方法. (2)若第三块田放 a:
高中数学选修2-3(人教A版)第一章计数原理1.4知识点总结含同步练习及答案
描述:例题:高中数学选修2-3(人教A版)知识点总结含同步练习题及答案第一章计数原理 1.4 计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。
2014年人教A版选修2-3课件 第一章小结(计数原理)
返回目录
2. 分步乘法计数原理
完成一件事, 如果需要 n 个步骤 做第 1 步有 m1 种不同的方法, 做第 2 步有 m2 种不同 的方法, …, 做第 n 步有 mn 种不同的方法. 那么完成这件事共有 N=m1m2…mn 种不同的方法.
3. 排列与排列数 从 n 个不同元素中取出 m ( m≤n )个元素, 按照一定的顺序排成一列, 叫做从 n 个不同元 素中取出 m 个元素的一个排列. 其所有排列的 个数叫做从 n 个不同元素中取出 m 个元素的排 m 表示: 列数, 用符号 An
第二类, 当第一堆放 2 个苹果时, 另两堆可以是
(2, 6), (3, 5), (4, 4), 有 3 种分法; 第三类, 当第一堆放 3 个苹果时, 另两堆只能是
(3, 4), 有 1 种放法.
∴不同的分法有 4+3+1= 8 种. 答: 有 8 种不同的分法.
例2. 有 6 项工程需要先后单独完成, 其中工程乙 必须在工程甲完成后才能进行, 工程丙必须在工程乙 完成后才能进行, 工程丁必须在工程丙完成后立即进 行. 这 6 项工程的不同排法有多少种? 分析: 这是一个排顺序的问题. ① 甲、乙、丙、丁 固定了顺序. ② 丙、丁固定了相邻. 可将丙、丁捆绑成一个元素, 6 个人的排序变成 五个位置. 按甲、乙、(丙丁)的顺序先安排这 4 项工程, 3 种方法. 在 5 个位置中取 3 个位置, 有C5 另两项工程排剩下的两 2 种方法. 甲 乙 丙丁 个位置, 有A2 3 A2=20种. ∴ 不同排法种数有 C5 (答略) 2
3C 3 2 =80 种. ∴ 总的走法有 2 C6 3
第三步, 由 D 到 B, 只有 2 种走法. 答: 机器人最近的走法有80种.
高中选修2-3第一章计数原理知识点总结与训练
第一章:计数原理
一、两个计数原理
3、两个计数原理的区别
二、排列与组合
1、排列:
叫做从n 2n
3其中 4出m 5从n 取出m 6、组合数公式:
其中 注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.
7、性质: .,,*n m N m n ≤∈并且m n n m n C C -=m n m n m n C C C 1
1+-=+
三、二项式定理
如果在二项式定理中,设a=1,b=x,则可以得到公式:
2、性质:
注意事项:
相邻问题,常用“捆绑法”
1、有4
(1
(2
(3
(4
2
3、(1)
(2)?
4、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?
5、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?
6、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?
7、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?
8、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?
9、求值与化简:。
高中数学选修2-3 第一章计数原理 章末高效整合
6.C16+C26+C36+C46+C56的值为________.
解析: ∵C06+C16+C26+C36+C46+C56+C66=26=64, ∴C16+C26+C36+C46+C56=64-2=62. 答案: 62
7.某校高中部,高一有6个班,高二有7个班,高三有 8个班,学校利用星期六组织学生到某厂进行社会实践活 动.
A.2
B.3
C.4
D.5
解析: ∵a0=a8=C80=1,a1=a7=C18=8, ∴a2=a6=C82=28,a3=a5=C38=56,a4=C48=70,∴奇 数个数为 2,故选 A. 答案: A
5.(1+3 x)61+41x10 展开式中的常数项为________. 解析: 先求(1+3 x)6 的展开式的通项. Tr+1=Cr6(x13)r=Cr6x3r,r=0,1,2,3,4,5,6. 再求1+41x10 的展开式的通项.
1 . 从 0,1,2,3,4,5 这 六 个 数 字 中 任 取 两 个 奇 数 和 两 个 偶
数,组成没有重复数字的四位数的个数为( )
A.300
B.216
C.180
D.162
解析: 分两类:第 1 类,含 0,有 C12C23C13A33=108 个 数;
第 2 类,不含 0,有 C23A44=72 个数. 共有 108+72=180(个),故选 C. 答案: C
④直接计数困难的问题,采用间接法,即从方法总数中 减去不符合条件的方法数.
⑤排列和组合的综合题,采用“先组后排”,即先选出 元素,再排序.
4.二项式定理及二项式系数的性质
(1)二项式定理:公式(a+b)n=C
0 n
an+C
1 n
高中数学选修2-3(人教B版)第一章计数原理1.3知识点总结含同步练习题及答案
a1 + a2 + ⋯ + a100 = 1 − 2 100 .
(3)令 x = −1 可得 a0 − a1 + a2 − a3 + ⋯ + a100 = 3 100 ⋯ ②,与 ① 式联立相减得
a1 + a3 + ⋯ + a99 =
1 − 3 100 . 2
3.二项式定理的应用 描述: 二项式定理一般应用在以下几个方面: ①进行近似计算.当 a 的绝对值与 1 相比很小且 n 不大时,常用近似公式 (1 + a)n ≈ 1 + na,因为这时展开式的后面 3 3 n n 很小,可以忽略不计;类似地,有 2 部分 C2 (1 − a)n ≈ 1 − na. n a + Cn a + ⋯ + Cn a ②证明某些整除性问题或求余数;
求证:对一切 n ∈ N ∗ ,都有 2 ⩽ (1 + 解:因为
1 n ) < 3. n
(1 +
1 n 1 1 2 1 3 1 n 1 3 n + C2 ) = C0 n + Cn ⋅ n ⋅ ( ) + Cn ⋅ ( ) + ⋯ + Cn ⋅ ( ) n n n n n 1 n−1 1 n−1 n−2 1 n−1 n−2 1 = 1+1+ ⋅ + ⋅ +⋯+ ⋅ ⋅ ⋯ . n n n n n n 2! 3! n!
= 120
(1)展开式的第 4 项的二项式系数为 C3 10 = 120. 3 (2)展开式的第 4 项的系数为 C10 ⋅ (−2)3 = −960 . 3 4 4 (3)展开式的第 4 项为:T4 = C3 10 ⋅ (−2) ⋅ x = −960x . 二项式 (x − y)11 的展开式中二项式系数最大的项为( ) A.第 3 项 B.第 6 项 C.第 6 、7 项 D.第 5 、7 项 解:C 展开式共有 12 项,故中间两项即第 6 、 7 项的二项式系数相等,且最大.
高中数学选修2-3计数原理概率知识点总结
选修 2-3 定理概念及公式总结第一章基数原理1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有m1种不同的方法,在第二类办法中有 m2种不同的方法,⋯⋯,在第n类办法中有 m n种不同的方法那么完成这件事共有N=m1+m2+⋯⋯ +m n种不同的方法2.分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有 m2种不同的方法,⋯⋯,做第 n 步有 m n种不同的方法,那么完成这件事有 N=m1× m2×⋯⋯ m n种不同的方法分类要做到“不重不漏” ,分步要做到“步骤完整”3.两个计数原理的区别 :如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事 ,用分类计数原理,如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理 .4.排列 :从n个不同的元素中取出m 个(m≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 .(1)排列数:从n个不同的元素中取出m 个 (m≤ n)元素的所有排列的个数.用符号A n m表示(2)排列数公式 : A m n(n1)(n2)( n m1)用于计算,nm n!n,m N,m n用于证明。
或 A nm)!(nA n n=n!= n n132 1 =n(n-1)!规定 0!=15.组合:一般地,从n个不同元素中取出m m n 个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合( 1)组合数 : 从n个不同元素中取出m m n 个元素的所有组合的个数,用 C n m表示(2)组合数公式 : C n m Anmn(n1)(n 2)(n m1)用于计算,A m m m!或 C m n n!( n, m N ,且m n)用于证明。
m! (n m)!( 3)组合数的性质:① C n m C n n m.规定: C n01;② C n m1= C n m + C n m 1 .③ C n n 1 C n1n④ C n n16.二项式定理及其特例:(1)二项式定理 a b n0n1n 1r n rbr n nn NC n a C n a b C n a C n b展开式共有 n+1 项,其中各项的系数C n r r0,1,2,, n叫做二项式系数。
高中数学选修2-3(人教A版)第一章计数原理1.2知识点总结含同步练习及答案
1 6 7 12 C0 12 < C12 < ⋯ < C12 > C12 > ⋯ > C12 ,所以 2x − 3 ⩾ 5 且 2x ⩽ 12 解得 4 ⩽ x ⩽ 6.
高考不提分,赔付1万元,关注快乐学了解详情。
− A5 9
= =
8 × 7 × 6 × 5 × (8 + 7) 8 × 7 × 6 × 5 × (24 − 9) = 1.
2×8×7×6×5×4+7×8×7×6×5 8×7×6×5×4×3×2×1−9×8×7×6×5
(3)根据原方程,可得
3x(x − 1)(x − 2) = 2(x + 1)x + 6x(x − 1).
0 10 (1)计算:C5 10 ⋅ C10 − C10 ; m−1 (2)证明:mCm n = nCn−1 .
解:(1)原式= (2)证明:因为
10 × 9 × 8 × 7 × 6 × 1 − 1 = 252 − 1 = 251 ; 5×4×3×2×1
Cm n =
n! , m!(n − m)! (n − 1)! n(n − 1)! n m−1 n n! ⋅ = = . Cn−1 = m m (m − 1)!(n − m)! m ⋅ (m − 1)!(n − m)! m!(n − m)!
正整数 1 到 n 的连乘积,叫做 n 的阶乘,用 n! 表示.另外,我们规定 0! = 1 .所以排列数公 式还可以写成
Am n =
(n − m)!
n!
.
组合的定义 一般地,从 n 个不同元素中取出 m (m ⩽ n )个元素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合(combination). 组合数及组合数的公式 从 n 个不同元素中取出 m (m ⩽ n )个元素的所有不同组合的个数,叫做从 n 个不同元素中取 出 m 个元素的组合数,用符号 Cm n 表示.
高二数学选修2-3第一章 计数原理
1.1 分类加法计数原理和分步乘法计数原理一、三维目标 1.知识与技能:(1)理解分类加法计数原理与分步乘法计数原理;(2)会利用两个原理分析和解决一些简单的应用问题; 2.过程与方法:(1)通过对两个原理概念的学习培养学生的理解能力、归纳概括能力和类比分析能力; (2)通过对两个原理的应用,提高学生对数学知识的应用能力; 3.情感态度与价值观:(1)了解学习本章的意义,激发学生的学习兴趣 ;(2)引导学生形成 “自主学习”与“合作学习”等良好的学习方式. 二、教学重点难点1.重点:理解两个原理,并能运用它们来解决一些简单的问题.2.难点:弄清楚“一件事”指的是什么,分清是“分类”还是“分步” 新知传授1 分类加法计数原理提出问题问题1.1:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗? 分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N +=种不同的方法.变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21 种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事. 2 分步乘法计数原理:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N ⨯=种不同的方法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21 种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事. 3.理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例题分析例1. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有 种不同的挂法?练习1.填空:( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从中选出 l 人来完成这件工作,不同选法的种数是____ ;( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有_____条.2.现有高一年级的学生 3 名,高二年级的学生 5 名,高三年级的学生 4 名. ( 1 )从中任选1 人参加接待外宾的活动,有____种不同的选法? ( 2 )从 3 个年级的学生中各选 1 人参加接待外宾的活动,有____种不同的选法?例2.电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有 O 或 1 两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由 8 个二进制位构成.问:(1)一个字节( 8 位)最多可以表示 个不同的字符?(2)计算机汉字国标码(GB 码)包含了6763 个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用 个字节表示?练习:1.乘积12312312345)()()a a a b b b c c c c c ++++++++(展开后共有 项? 2.某电话局管辖范围内的电话号码由八位数字组成,其中前四位的数字是不变的,后四位数字都是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中选修2-3第一章计数原理知识点总结与
训练
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第一章:计数原理
一、两个计数原理
3、两个计数原理的区别
二、排列与组合
1、排列:
一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。
用符号 表示.
3、排列数公式: 其中
4、组合:
一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
5、组合数:
从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做
从n 个不同元素中取出m 个元素的组合数。
用符号 表示。
6、组合数公式:
其中
注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.
7、性质: m
n A m n
A ()()()
()!
!
121m n n m n n n n A m
n -=
+---= .
,,*n m N m n ≤∈并且m
n
C ()()()
()!
!!
!121m n m n m m n n n n C m
n -=
+---=
.
,,*n m N m n ≤∈并且m
n n
m n C C -=m
n m n m n C C C 1
1+-=+
三、二项式定理
如果在二项式定理中,设a=1,b=x ,则可以得到公式:
2、性质:
0241351
2
n n n n
n n n
C C C C C C -=+++
=+++
=奇数项二项式系数和偶数项二项式系数和:
注意事项:
相邻问题,常用“捆绑法”
不相邻问题,常用“插空法”
巩固训练:
1、有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:
(1)男甲排在正中间;
(2)男甲不在排头,女乙不在排尾;
(3)三个女生排在一起;
(4)三个女生两两都不相邻;
2、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()
3、(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份
4件, 有多少种分法?
(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?
4、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法
5、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?
6、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?
7、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种
8、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?
9、求值与化简:
105
5845635425215222221)1(⋅+⋅+⋅+⋅+⋅+C C C C C 求值:。