中考数学总复习第一篇教材知识梳理篇第2章方程组与不等式组第1节一次方程组及应用精练课件

合集下载

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

则可列方程组为
( A)
A.yx++2231xy==5500,B.xy--1223yx==5500,C.2xx++23yy==5500,D.2xx--23yy==5500,
10.(2021·成都第 26 题 8 分)为改善城市人居环境,《成都市生活垃圾 管理条例》(以下简称《条例》)于 2021 年 3 月 1 日起正式施行.某区域 原来每天需要处理生活垃圾 920 吨,刚好被 12 个 A 型和 10 个 B 型预处 置点位进行初筛、压缩等处理.已知一个 A 型点位比一个 B 型点位每天 多处理 7 吨生活垃圾. (1)求每个 B 型点位每天处理生活垃圾的吨数;
x=1,则 a+m 的值为
( C)
A.9 B.8 C.5 D.4
x=1 6.(2021·凉山州第 14 题 4 分)已知y=3,是方程 ax+y=2 的解,则 a 的值为__--11__. 7.(2020·泸州第 14 题 3 分)若 xa+1y3 与12x4y3 是同类项,则 a 的值是__33__.
3.(RJ 七下 P111 复习题 T7 改编)用 1 块 A 型钢板可制成 4 件甲种产品和 1 件乙种产品.用 1 块 B 型钢板可制成 3 件甲种产品和 2 件乙种产品;要 生产甲种产品 37 件,乙种产品 18 件,则恰好需用 A,B 两种型号的钢板 共 1 111 块.
4.(RJ 七下 P106 习题 T3 改编)一个两位数,十位数字比个位数字大 3, 若将十位数字和个位数交换位置,所得的新两位数比原两位数的13多 15, 则这个两位数是 6 633.
∵w 随 m 的增大而减小,∴费用越少,m 越大. 故方案③费用最少.
重难点 1:从实际问题中抽象一次方程(组)
我国古代数学名著《孙子算经》中记载:“今有木,不知长短.引绳

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

中考数学总复习 第一篇 教材知识梳理篇 第2章 方程(组

中考数学总复习 第一篇 教材知识梳理篇 第2章 方程(组

第一节 一次方程(组)及应用,遵义五年中考命题规律)填空题,解答的解法,还牵涉到列,遵义五年中考真题及模拟)一元一次方程及其解法1.(2017遵义中考)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有__46__两.(注:明代时1斤=16两,故有“半斤八两”这个成语)2.(2016遵义中考)六一期间,小明、小亮等同学随家长一同到某公园游玩,如图是购买门票时,小明与他爸爸的对话,设去了x 个成人,则根据图中的信息,下面所列方程中正确的是( A )A .40x +20(12-x)=400B .40(12-x)+20x =400C .24(12-x)+20x =400D .24x +12(12-x)=4003.(2016遵义十一中一模)希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x 人,则下列方程中,正确的是( A )A .2(x -1)+x =49B .2(x +1)+x =49C .x -1+2x =49D .x +1+2x =49二元一次方程组及其解法4.(2016遵义二中二模)小明在解关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =△, 2x -3y =5时,解得⎩⎪⎨⎪⎧x =4,y =⊗,则△和⊗代表的数分别是( B )A .△=1,⊗=5B .△=5,⊗=1C .△=-1,⊗=3D .△=3,⊗=-15.(2013遵义中考)解方程组:⎩⎪⎨⎪⎧x -2y =4,① 2x +y -3=0.②解:由①得x =2y +4.将x =2y +4代入②,得2(2y +4)+y -3=0.解得y =-1.∴x=2y +4=2×(-1)+4=2.∴方程组的解是⎩⎪⎨⎪⎧x =2,y =-1.6.(2016遵义二中三模)某地为了打造风光带,将一段长为360 m 的河道整治任务交由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m ,乙工程队每天整治16 m .求甲、乙两个工程队分别整治了多长的河道.解:设甲工程队整治河道x m ,则乙工程队整治河道(360-x)m .由题意,得x 24+360-x16=20,解得x =120.当x =120时,360-x =240.答:甲工程队整治河道 120 m ,乙工程队整治河道240 m .7.(2017改编)已知关于x ,y 的二元一次方程ax +by =10(ab≠0)的两个解分别为⎩⎪⎨⎪⎧x =-1, y =2和⎩⎪⎨⎪⎧x =-2,y =-4,求1-a 2+4b 2的值.解:把⎩⎪⎨⎪⎧x =-1, y =2代入方程ax +by =10中,得-a +2b =10,把⎩⎪⎨⎪⎧x =-2,y =-4代入方程ax +by =10中,得-a -2b =5,∴(-a +2b)(-a -2b)=a 2-4b 2=50,∴1-a 2+4b 2=1-50=-49.一元一次方程组的应用8.(2017遵义中考)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A ,B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A ,B 两型自行车各50辆,投放成本共计7 500元,其中B 型车的成本单价比A 型车高10元,A ,B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1 000人投放a 辆“小黄车”,乙街区每1 000人投放8a +240a 辆“小黄车”,按照这种投放方式,甲街区共投放1 500辆,乙街区共投放1 200辆,如果两个街区共有15万人,试求a 的值.解:问题1:设A 型车的成本单价为x 元,则B 型车的成本单价为(x +10)元.依题意,得 50x +50(x +10)=7 500, 解得x =70,∴x +10=80,答:A 、B 两型自行车的单价分别是70元和80元; 问题2:由题意可得1 500a ×1 000+1 2008a +24a×1 000=150 000,解得a =15.经检验,a =15是所列方程的解.故a 的值为15.9.(2016遵义中考)上网流量、语音通话是手机通信消费的两大主体.日前,某通信公司推出消费优惠新招——“定制套餐”.消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.0.[小提示:阶梯定价收费计算方法,如600 min 语音通话费=0.15×500+0.12×(600-500)=87元] (1)甲定制了600 MB 的月流量,花费48元;乙定制了2 GB 的月流量,花费120.4元.求a ,b 的值;(注:1GB =1 024 MB )(2)甲的套餐费用为199元,其中含600 MB 的月流量;丙的套餐费用为244.2元,其中包含 1 GB 的月流量.二人均定制了超过1 000 min 的每月通话时间,并且丙的语音通话时间比甲多300 min ,求m 的值.解:(1)由题意,得⎩⎪⎨⎪⎧100a +(500-100)×0.07+(600-500)b =48,100a +(500-100)×0.07+(1 024×2-500)b =120.4, 解得⎩⎪⎨⎪⎧a =0.15, b =0.05;(2)设甲每月定制x(x >100)min 通话时间,则丙定制(x +300)min 通话时间,丙定制了1 GB 月流量套餐需花费100×0.15+(500-100)×0.07+(1 024-500)×0.05=69.2(元),由题意得⎩⎪⎨⎪⎧48+500×0.15+(1 000-500)×0.12+(x -1 000)m =199,69.2+500×0.15+(1 000-500)×0.12+(x +300-1 000)m =244.2. ∴m =0.08.,中考考点清单)方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解. 3.求方程__解__的过程叫解方程.等式的基本性质4.性质1:等式两边同时加上(或减去)同一个数或同一个式子,所得的结果仍__相等__.如果a =b ,那么a±c __=__b±c.性质2:等式两边同时乘以(或除以)同一个数(除数不为0),所得结果仍__相等__,如果a =b ,那么ac =bc(c≠0),a c =bc(c≠0).一次方程(组)5.概念与解法 (1)一元一次方程概念:含有__一个__未知数且未知数的次数是__1__,这样的方程叫做一元一次方程.解法:解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1. (2)二元一次方程概念:含有两个__未知数__,并且含有未知数的项的__次数__都是1的方程叫做二元一次方程. 解法:一般需找出满足方程的整数解即可. (3)二元一次方程组概念:两个__二元一次方程__所组成的一组方程,叫做二元一次方程组.解法:解二元一次方程组的基本思路是__消元__.基本解法有:__代入__消元法和__加减__消元法. (4)三元一次方程组概念:三个一次方程组成的含有三个未知数的一组方程叫三元一次方程组. 解法:解三元一次方程组的基本思想是:三元――→转化二元――→转化一元一次方程. 【温馨提示】(1)解一元一次方程去分母时,常数项不要漏乘,移项一定要变号;(2)二元一次方程组的解应写成⎩⎪⎨⎪⎧x =a ,y =b 的形式.列方程(组)解应用题的一般步骤6.(1)审:审清题意,分清题中的已知量、未知量;(2)设:设__未知数__,设其中某个量为未知数,并注意单位,对含有两个未知数的问题,需设两个未知数; (3)列:弄清题意,找出__相等关系__;根据__相等关系__,列方程(组); (4)解:解方程(组);(5)验:检验结果是否符合题意; (6)答:答题(包括单位).【方法点拨】一次方程(组)用到的思想方法:(1)消元思想:将二元一次方程组通过消元使其变成一元一次方程;(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷;(3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程; (4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题; (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破)一元一次方程及解法【例1】(1)(2017瑞安中考模拟)关于x 的方程2x -m3=1的解为2,则m 的值是( )A .2.5B .1C .-1D .3 (2)(河池中考)解方程:2x +13-5x -16=1.【解析】(1)把x =2代入方程,得4-m3=1,解得m =1.(2)按去分母→去括号→移项→合并同类项→系数化为1来解.【答案】(1)B ;(2)x =-3.1.(2017滨州中考)解方程:2-2x +13=1+x2.解:去分母,得12-2(2x +1)=3(1+x), 去括号,得12-4x -2=3+3x , 移项、合并同类项,得7x =7, 系数化为1,得x =1.二元一次方程组及解法【例2】(2017宝安中考)若方程mx +ny =6的两个解是⎩⎪⎨⎪⎧x =1, y =1和⎩⎪⎨⎪⎧x =2,y =-1,则m ,n 的值为( ) A .⎩⎪⎨⎪⎧m =4, n =2 B .⎩⎪⎨⎪⎧m =2, n =4 C .⎩⎪⎨⎪⎧m =-2, n =-4 D .⎩⎪⎨⎪⎧m =-4,n =-2 【解析】此题考查二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 【答案】A2.(2017天门中考)已知⎩⎪⎨⎪⎧x =2, y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,则2m -n 的算术平方根是( B )A .4B .2C . 2D .±23.(2017乐山中考)二元一次方程组x +y 2=2x -y3=x +2的解是__⎩⎪⎨⎪⎧x =-5, y =-1__.一次方程(组)的应用【例3】(2017宁阳中考)某服装店用6 000元购进A ,B 两种新式服装,按标价售出后可获得毛利润3 800元(毛利润=售价-进价),这两种服装的进价,标价如表所示.(1)求这两种服装各购进的件数;(2)如果A 种服装按标价的八折出售,B 种服装按标价的七折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?【解析】(1)设A 种服装购进x 件,B 种服装购进y 件,由总价=单价×数量,利润=售价-进价建立方程组求出其解即可;(2)分别求出打折后的价格,再根据少收入的利润=总利润-打折后A 种服装的利润-打折后B 种服装的利润,求出其解即可.【答案】解:(1)设A 种服装购进x 件,B 种服装购进y 件.由题意,得⎩⎪⎨⎪⎧60x +100y =6 000, (100-60)x +(160-100)y =3 800, 解得⎩⎪⎨⎪⎧x =50,y =30.答:A 种服装购进50件,B 种服装购进30件; (2)由题意,得3 800-50(100×0.8-60)-30(160×0.7-100) =3 800-1 000-360 =2 440(元).答:服装店比按标价售出少收入2 440元.4.(2017新泰中考模拟)某商场经销一种商品,由于进货时价格比原进价降低了 6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是__17__%.(注:利润率=销售价-进价进价×100%)5.(安顺中考)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满,求该校的大小寝室每间各住多少人.解:设该校大寝室每间住x 人,小寝室每间住y 人.由题意,得⎩⎪⎨⎪⎧55x +50y =740, 50x +55y =730,解得⎩⎪⎨⎪⎧x =8,y =6.答:该校大寝室每间住8人,小寝室每间住6人.。

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

人教版中考数学复习第一部分考点讲解 第二章 方程(组)与不等式(组) 第一节 一次方程与一次方程组

人教版中考数学复习第一部分考点讲解 第二章 方程(组)与不等式(组) 第一节 一次方程与一次方程组

问题 追及问题 同地不同时出发:前者走的路程=追者走的路程
同时不同地出发:前者走的路程+两地间距离=
追者走的路程 3.工程问题:工作量=工作效率×_工__作__时__间_
第一节 一次方程与一次方程组
返回目录
重难点突破
一次方程(组)的实际应用
例 《郑州市城市生活垃圾分类管理办法》于2019年12月起施行,某社区要投放A,B
两种垃圾桶,负责人小李调查发现:
种类
购买数量
A B
购买数量少于100个 购买数量不少于100个
原价销售 原价销售
以原价的7.5折销售 以原价的8折销售
若购买A种垃圾桶80个,B种垃圾桶120个,则共需付款6880元①;若购买A种垃圾 桶100个,B种垃圾桶100个,则共需付款6150元②.求A,B两种垃圾桶的单价各为 多少元?
返回思 维导图
返回 目录
第一节 一次方程与一次方程组
返回思 维导图
返回 目录
【课标要求】 掌握等式的基本性质; 能解一元一次方程;掌握代入消元法和加减消元法,能解二元一次方程组; *能解简单的三元一次方程组; 能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系
的有效模型; 能利用一次方程解决实际应用问题,并能根据具体问题的实际意义,检验方
第一节 一次方程与一次方程组
返回目录
2. (数学文化)(2020内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:
“一条竿子一条索,索比竿子长一托;折回索子却量竿,却比竿子短一托.”其大意
为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后
再去量竿,就比竿短5尺,设绳索长x尺,则符合题意的方程是( A )

中考总复习数学第1节 一次方程(组)及其应用

中考总复习数学第1节 一次方程(组)及其应用

【自主作答】(1)x=1;(2)xy==12,.
类型3:列一次方程(组)解实际问题
►例3(2020·绍兴)有两种消费券:A 券,满 60 元减 20
元;B 券,满 90 元减 30 元,即一次购物大于等于 60 元、
90 元,付款时分别减 20 元、30 元.小敏有一张 A 券,
小聪有一张 B 券,他们都购了一件标价相同的商品,各
【自主作答】100 或 85
►例4某一天,蔬菜经营户老李用了 145 元从蔬菜批
发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄
子当天的批发价与零售价如下表所示:
品名
黄瓜
茄子
批发价/(元/千克)
3
4
零售价/(元/千克)
4
7
当天他卖完这些黄瓜和茄子共赚了 90 元,这天他批 发的黄瓜与茄子分别是多少千克?
(1)请求出 A,B 两个品种去年平均亩产量分别是多 少.
(2)今年,科技小组加大了小麦种植的科研力度,在 A,B 种植亩数不变的情况下,预计 A,B 两个品种平均 亩产量将在去年的基础上分别增加 a%和 2a%,由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础 上上涨 a%,而 A 品种的售价不变.A,B 两个品种全部 售出后总收入将在去年的基础上增加290a%.求 a 的值.
自付款,若能用券时用券,这样两人共付款 150 元,则
所购商品的标价是
元.
分析:设所购商品的标价是 x 元,由题意,得
①所购商品的标价小于 90 元, x-20+x=150 ,
解得 x= 85
;②所购商品的标价大于 90 元,
x-20+x-30=150 ,解得 x= 100 .故所购商品
的标价是 100 或 85 元.

中考数学决胜一轮复习第2章方程组与不等式组第1节一次方程(组)及其应用

中考数学决胜一轮复习第2章方程组与不等式组第1节一次方程(组)及其应用
→ _合__并__(hé_bì_ng_)同__类__项__ →系__数__(xì_sh_ù)_化_为__1.
●考点四 二元一次方程组的解法 解二元一次方程组的基本思想是:“__消__元____”,即将二元一次方 程 组 转 化 为 一 元 一 次 方 程 . 常 见 方 法 有 : “___代_入____ 消 元 法 ” 和 “___加_减____消元法”.
+120(50-m)≤5 500,解得 m≥25.所以,至少购买 25 个篮球,则最多
购买 25 个足球.
12/8/2021
第二十一页,共三十九页。
12/8/2021
中考真题汇编
第二十二页,共三十九页。
1.(2018·安徽)《孙子算经》中有这样一道题,原文如下:今有 百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?
12/8/2021
第二十六页,共三十九页。
4.(2018·东营)小岩打算购买气球装扮学校“毕业典礼”活动会
∴打折后购买这批粽子比不打折节省了 3 640 元. 【点拨】 本题考查了列一次方程(组)解实际问题的运用,解答的
关键是抓住“总价=单价×数量”以及读懂生活中销售(xiāoshòu)商品时“打
折”的实际含义. 12/8/2021
第十七页,共三十九页。
1.若关于于 x,y 的二元一次方程 3x-ay=1 有一个解是xy==23,, 则 a=____4___.
12/8/2021
第二十页,共三十九页。
解 : (1) 设 每 个 篮 球 和 每 个 足 球 的 售 价 分 别 是 x , y 元 , 则 有
2x+y=320, 3x+2y=540,
解方程组,得xy==112000,,
即每个篮

河北省中考数学总复习 第一编 教材知识梳理篇 第2章

河北省中考数学总复习 第一编 教材知识梳理篇 第2章

第二章方程(组)与不等式(组) 第一节一次方程(组)及应用及应用在河北五年中考真题及模拟)一次方程(组)的应用1.(2015河北中考)利用加减消元法解方程组⎩⎪⎨⎪⎧2x+5y=-10,①5x-3y=6,②下列做法正确的是( D) A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×22.(2017张家口中考模拟)小明在解关于x,y的二元一次方程组⎩⎪⎨⎪⎧x+y=△,2x-3y=5时,解得⎩⎪⎨⎪⎧x=4y=则△和代表的数分别是( B)A.△=1,=5 B.△=5,=1C.△=-1,=3 D.△=3,=-13.(2016石家庄二模)希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是( A)A.2(x-1)+x=49 B.2(x+1)+x=49C.x-1+2x=49 D.x+1+2x=494.(2017原创)已知⎩⎪⎨⎪⎧x=3,y=-2是关于⎩⎪⎨⎪⎧ax+by=3,bx+ay=-7的解,则(a+b)(a-b)的值为__-8__.5.(2016河北中考)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n +x)边形,发现内角和增加了360°,用列方程的方法确定x. 解:(1)甲对,乙不对.∵θ=360°,∴(n -2)×180°=360°.解得n =4.∵θ=630°,∴(n -2)×180°=630°,解得n =112.∵n 为整数,∴θ不能取630°;(2)依题意,得(n -2)×180°+360°=(n +x -2)×180°.解得x =2.,中考考点清单方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解. 3.求方程__解__的过程叫解方程.等式的基本性质4.一次方程(组)5.次方程【易错警示】(1)解一元一次方程去分母时常数项不要漏乘,移项一定要变号;(2)二元一次方程组的解应写成⎩⎪⎨⎪⎧x =a ,y =b的形式.列方程(组)解应用题的一般步骤6.; (1)消元思想:将二元一次方程组通过消元使其变成一元一次方程;(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷;(3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程; (4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题; (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破一元一次方程及解法【例1】(1)(2017成都中考)已知|a +2|=1,则a =________.(2)解方程:0.5x +20.03-x =0.3(0.5x +2)0.2-13112.【解析】(1)注意绝对值等于1的数有两个;(2)先根据分式的基本性质把各分母变成整数,再由等式的性质去分母,小心不要把两者混为一谈.【答案】(1)-1或-3;(2)解:原方程可化为:50x +2003-x =3(x +4)4-13112,解得x =-5.1.若代数式x +3值是2,则x =__-1__. 2.(滨州中考)解方程:2-2x +13=1+x2.解:去分母,得12-2(2x +1)=3(1+x), 去括号,得12-4x -2=3+3x , 移项,得-4x -3x =3+2-12, 合并同类项,得-7x =-7, 系数化为1,得x =1.二元一次方程组及解法【例2】已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =m ,x +2y =-1的解互为相反数,则m =________.【解析】由解互为相反数可得x =-y ,而后把x =-y 代入方程组从而得到关于m ,y 的二元一次方程组,解之即可得m 的值.【答案】-13.(2017济南中考)如果13x a +2y 3与-3x 3y 2b -1是同类项,那么a ,b 的值分别是( A )A .⎩⎪⎨⎪⎧a =1,b =2B .⎩⎪⎨⎪⎧a =0,b =2C .⎩⎪⎨⎪⎧a =2,b =1D .⎩⎪⎨⎪⎧a =1,b =14.解方程组:⎩⎪⎨⎪⎧5x +10=10y , ①15x =20y +10. ②解:由①,得x -2y =-2.③由②,得3x -4y =2.④ ③×2-④,得x =6.把x =6代入③,得y =4,所以原方程组的解为⎩⎪⎨⎪⎧x =6,y =4.一元一次方程的应用【例3】(2017资阳中考)电器商城某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( A )A .562.5元B .875元C .550元D .750元【解析】本例涉及标价、打折后的新售价、进价、利润、利润率及它们之间的关系.进价为500÷20%=2 500(元).设标价为x 元,根据题意,得80%x -2 500=500,解得x =3 750.∴3 750×90%-2 500=875(元).【答案】B5.学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.求篮球和足球的单价.解:设一个篮球x 元,则一个足球(x -30)元. 由题意,得2x +3(x -30)=510. 解得x =120.x -30=90.答:一个篮球120元,一个足球90元.二元一次方程的应用【例4】(2017金华中考)某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4∶3,二楼售出与未售出的座位数比为3∶2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为( A )A .2∶1B .7∶5C .17∶12D .24∶17【解析】设一楼售出的座位数为4x ,未售出的座位数为3x ,二楼售出的座位数为3y ,未售出的座位数为2y.由题意,得3x =2y ,则x =2y 3.那么4x +3y3x +2y =4×23y +3y2y +2y=17∶12.【答案】C6.(2017新疆中考)某班级为筹建运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有多少种购买方案?解:设买甲种运动服x 套,乙种y 套. 由题意,得20x +35y =365,则x =73-7y 4,∵x ,y 必须为正整数, ∴73-7y 4>0,即0<y <737,∴当x =3时,x =13, 当y =7时,x =6. 答:有2种方案.二元一次方程组的应用【例5】(2017徐州中考)某景点的门票价格如下表:某校七年级50人且少于100人.如果两班都以班为单位单独购票,则一共支付 1 118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【解析】条件中只说(1)班学生人数少于50人,(2)班人数多于50人且少于100人.那么,两班共有人数是不到100人,还是比100人多,都不清楚,因此,需分类讨论是100多人,还是在50至100中.【答案】解:(1)设七年级(1)班有x 人、七年级(2)班有y 人.当50<x +y <100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,10(x +y )=816. ∴x +y =81.6,不是整数,不合题意. 当x +y >100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,8(x +y )=816.解得⎩⎪⎨⎪⎧x =49,y =53. 答:七年级(1)班有49人,七年级(2)班有53人;(2)七年级(1)班节约了(12-8)×49=196(元),七年级(2)班节约了(10-8)×53=106(元).7.(江西中考)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.解:设每支中性笔x 元,每盒笔芯y 元. 根据题意,得 ⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28,解得⎩⎪⎨⎪⎧x =2,y =8. 答:每支中性笔2元,每盒笔芯8元.8.(孝感中考)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级.经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种、B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.解:(1)设A 种树木每棵x 元,B 种树木每棵y 元.根据题意,得⎩⎪⎨⎪⎧2x +5y =600,3x +y =380.解得⎩⎪⎨⎪⎧x =100y =80.答:A 种树木每棵100元,B 种树木每棵80元;(2)设购买A 种树木为a 棵,则购买B 种树木为(100-a)棵. 则a≥3(100-a),∴a≥75. 设实际付款总金额为w 元.则w =0.9[100a +80(100-a)]=18a +7 200, ∵18>0,w 随a 的增大而增大, ∴当a =75时,w 最小.即a =75,w 最小值=18×75+7 200=8 550(元).∴当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少费用为8 550元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档