22章 二次函数的图像和性质教案
二次函数图像和性质教学设计【优秀3篇】
二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。
二次函数图像和性质教学设计(3篇)
二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。
学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。
之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。
重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。
教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。
4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。
观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。
(指名学生回答)。
师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。
师:这个猜想是否正确呢?这节课我们一起来验证一下。
(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。
22.1.2二次函数的图像和性质(教案)
最后,我意识到在课堂上,对于学生的疑问和困惑,我需要更加耐心和细致地进行解答。有时候,一个简单的解释就能帮助学生跨越理解的障碍。在今后的教学中,我会更加注重与学生的互动,鼓励他们提出问题,并及时给予反馈。
-重点三,利用图示和计算,说明二次函数与x轴的交点即为二次方程的实数根;
-重点四,通过图像和数学推导,让学生理解二次函数最值的含义及其计算方法。
2.教学难点
-理解二次函数图像的对称性,特别是对称轴的概念及其与顶点的关系;
-掌握顶点坐标计算公式的应用,尤其是对于含有绝对值、分式等复杂二次函数的顶点求解;
-学会求解二次函数与坐标轴的交点,理解这些交点与二次方程解的关系;
-掌握二次函数的最值问题,明确当a>0时,函数有最小值;当a<0时,函数有最大值。
举例解释:
-对于重点一,强调a的符号决定了图像的形状,并通过实例展示a的正负对图像的影响;
-重点二,通过具体函数示例,演示如何计算顶点坐标,并解释顶点即为对称轴上的点;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“22.1.2二次函数的图像和性质”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体抛高后落地的情况?”(如抛球游戏)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数图像和性质的奥秘。
3.二次函数图像的顶点坐标计算,顶点公式为(-b/2a,4ac-b²/4a);
4.二次函数图像的对称轴,即x = -b/2a;
二次函数的图像与性质教案
二次函数的图像与性质教案教案标题:二次函数的图像与性质教案教案目标:1. 理解二次函数的基本概念和性质;2. 掌握二次函数图像的绘制方法;3. 能够分析二次函数的图像特征和性质。
教案步骤:步骤一:引入二次函数的概念和性质(10分钟)1. 引导学生回顾一次函数的概念和性质,然后引入二次函数的概念,解释二次函数与一次函数的区别。
2. 介绍二次函数的一般形式:f(x) = ax^2 + bx + c,并解释各项的含义。
3. 解释二次函数的性质:对称性、开口方向、顶点、轴等。
步骤二:绘制二次函数的图像(20分钟)1. 通过给定不同的a、b、c值,绘制不同形态的二次函数图像。
2. 详细解释如何确定二次函数的顶点、轴和开口方向。
3. 引导学生观察图像的变化规律,总结二次函数图像与a、b、c值的关系。
步骤三:分析二次函数的图像特征和性质(15分钟)1. 引导学生观察不同形态的二次函数图像,分析其对称性、最值、零点等特征。
2. 引导学生发现二次函数图像的对称轴与一次函数图像的x轴有何关系。
3. 引导学生讨论二次函数图像的开口方向与a值的关系,并总结规律。
步骤四:应用二次函数的图像与性质(15分钟)1. 给定实际问题,引导学生建立与之对应的二次函数模型。
2. 利用二次函数图像的性质,解决实际问题,如求最值、零点等。
3. 引导学生讨论二次函数图像在不同场景中的应用,如抛物线的运动轨迹、物体的抛射问题等。
步骤五:总结与拓展(10分钟)1. 让学生总结二次函数的图像特征和性质,包括对称性、开口方向、顶点、轴等。
2. 引导学生思考二次函数的应用领域,并拓展到其他数学知识的应用,如函数的复合、函数的逆运算等。
教学资源:1. 教材:包含二次函数相关知识的教材或教学参考书。
2. 白板、彩色笔等教学工具。
3. 实际问题的案例素材。
评估方式:1. 课堂练习:通过绘制二次函数图像、分析图像特征等练习,检查学生对二次函数的理解和应用能力。
二次函数图像和性质(教案)
教学过程一、复习预习回忆如何描绘一次函数的回忆如何描绘一次函数的图像,并在练习本上画出一次函数的图像1、启发学生回忆如何描绘一次函数的图像。
2、总结如何画函数图象:先列表格后描点画图.题目:画出y=2x+3函数图象。
学生思考如何画函数y=x²-2x+3的图象。
3 结合引入,指导学生对新问题的注意。
4 并观察学生画y=x²-2x+3图象的情况。
二、知识讲解本节课主要知识点解析,中高考考点、易错点分析考点/易错点1准确理解二次函数的定义及y=ax²+bx+c的性质,根据图像准确认识图像的开口方向,对称轴,顶点坐标考点/易错点2二次函数y=a(x+h)²+k及图像的(抛物线)其开口方向,顶点,对称轴。
三、例题精析【例题1】【题干】已知二次函数.(1) 求顶点坐标和对称轴方程;(2)求该函数图象与x标轴的交点坐标;(3)指出x为何值时,;当x为何值时,.【答案】(1)顶点坐标:(2,1) 对称轴:x=2(2) (1,0) (3,0)(3)当x<1,x>3时,y>0;当1<x<3时,y<0【解析】把二次函数配方成顶点式观察可得到答案,当y值为0时解二次方程可得到坐标再根据图像的增减性得到第三问答案【例题2】【题干】已知:二次函数的图象开口向上,并且经过原点.(1)求的值;(2)用配方法求出这个二次函数图象的顶点坐标.【答案】解:(1)a=1;(2)抛物线顶点坐标为【解析】把原点.代入得到a=1配方得到顶点坐标【例题3】【题干】、如图,已知抛物线的顶点为A(1,4)、抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式.(2)当PA+PB的值最小时,求点P的坐标.【答案】解:(1)∵抛物线顶点坐标为(1,4)∴设y=a(x-1)2+4由于抛物线过点B(0,3)∴3=a(0-1)2+4解得a=-1∴解析式为y=-(x-1)2+4即y=-x2+2x+3(2)作点B关于x轴的对称点E(0,-3),连接AE交x轴于点P. 设AE解析式y=k x+b,则解得∴y AE=7x-3当y=0时,x=∴点P坐标为(,0)【解析】设抛物线的顶点式的解析式,代入A(1,4)B(0,3)得到解析式为y=-(x-1)2+4再根据对称问题得到点P坐标为(,0)四、课堂运用【基础】1.已知抛物线y=x2-4x+3,求出它的对称轴和顶点坐标.答案解:y=x2-4x+3= x2-4x+4-4+3= x2-4x+4-1=(x-2)2-1∴抛物线的对称轴为x=2;顶点坐标为(2,-1)解析由二次函数配方可以得到顶点坐标和对称轴2.已知二次函数的图象对称轴为,且过点B(-1,0).求此二次函数的表达式.答案解:此二次函数图象的对称轴为解得:此二次函数的表达式为点B(-1,0)在此函数图象上,解得:此二次函数的表达式为解析由二次函数图象的对称轴为可以求得a的值,把a代入解析式可得c的值。
人教版九年级上册数学22章二次函数教案
第二十二章 二次函数 22.1 二次函数的图象和性质22.1.1 二次函数1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念. 2.能够表示简单变量之间的二次函数关系.▲重点结合具体情境体会二次函数的意义,掌握二次函数的有关概念. ▲难点1.能通过生活中的实际问题情境,构建二次函数关系. 2.重视二次函数y =ax 2+bx +c 中a ≠0这一隐含条件.◆活动1 新课导入1.一次函数的一般形式:__y =kx +b(k ≠0)__. 2.正比例函数的一般形式:__y =kx(k ≠0)__.3.想一想:正方体六个面是全等的正方形,设正方体的棱长为x ,表面积为y ,则y 与x 之间有什么关系呢?通过本节课的学习我们将能知道y 与x 的关系,并能用式子把它们之间的关系表达出来,下面就让我们进入本节课的学习.◆活动2 探究新知 1.教材P 28 问题1. 提出问题:(1)“n 个球队参加比赛,每两个队之间进行一场比赛”,比赛的总场次是n(n -1)场,还是12n(n -1)场,为什么?(2)式子m =12n 2-12n ,m 是n 的函数吗?为什么?学生完成并交流展示. 2.教材P 28 问题2. 提出问题:(1)问题中前后两年的产量间存在怎样的关系?(2)原产量为20 t ,一年后的产量是多少?两年后的产量是多少? (3)对式子y =20(1+x)2,y 是x 的函数吗?(4)教材中的函数①,②,③有什么共同特征?它们是一次函数吗?它们应该属于几次函数? 学生完成并交流展示. ◆活动3 知识归纳我们把形如y =__ax 2+bx +c__(其中a ,b ,c 是常数,且a ≠0)的函数叫做二次函数.其中x 是自变量,a 为__二次项系数__,b 为__一次项系数__,c 为__常数项__.强调以下几个问题:(1)关于自变量x 的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a≠0是定义中不可缺少的条件.若a=0,b≠0,则它是一次函数.◆活动4例题与练习例1判断函数y=(x-2)(3-x)是否为二次函数?若是,写出它的二次项系数、一次项系数和常数项;若不是,请说明理由.解:y=(x-2)(3-x)=-x2+5x-6,它是二次函数,它的二次项系数为-1,一次项系数为5,常数项为-6.例2已知函数y=(m2-9)x2+(m-3)x+5(m是常数),当m为何值时:(1)函数是一次函数?(2)函数是二次函数?解:(1)当m=-3时,函数y=(m2-9)x2+(m-3)x+5是一次函数;(2)当m≠±3时,函数y=(m2-9)x2+(m-3)x+5是二次函数.例3某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时,平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x之间的函数关系式,并注明x的取值范围.解:降低x元后,所销售的件数是(500+100x)件,则y=(13.5-2.5-x)(500+100x),即y=-100x2+600x+5 500(0<x≤11).练习1.教材P29练习第1,2题.2.下列说法中,不正确的是(D)A.二次函数中,自变量的取值范围一般是全体实数B.在圆的面积公式S=πr2中,S是r的二次函数C.y=13(x+1)(2x-1)是二次函数D.在函数y=2-3x2中,一次项系数为23.已知二次函数y=1-2x-x2,其中二次项系数a=__-1__,一次项系数b=__-2__,常数项c=__1__.4.已知两个变量x,y之间的关系为y=(m-2)xm2-2+x-1,若x,y之间是二次函数关系,求m的值.解:根据题意,得m2-2=2且m-2≠0,解得m=-2,即m的值为-2.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.请叙述二次函数的定义及一般形式.2.二次函数y=ax2+bx+c(a≠0):①解析式为整式;②自变量的最高次数为2;③二次项的系数不为0. 3.自变量x的取值范围为全体实数.1.作业布置(1)教材P41习题22.1第1,2题;(2)《名师测控》对应课时练习.2.教学反思22.1.2二次函数y=ax2的图象和性质1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念.2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的解析式.3.经历从特殊到一般的认识过程,学会合情推理.▲重点1.二次函数y=ax2的图象的画法及性质.2.能确定二次函数y=ax2的解析式.▲难点1.用描点法画二次函数y=ax2的图象,探索其性质.2.能运用二次函数y=ax2的有关性质解决问题.◆活动1新课导入1.一次函数y=kx+b(k≠0)的图象是__一条经过(0,b)的直线__.特别地,正比例函数y=kx(k≠0)的图象是__过原点的直线__.2.描点法画出一次函数的步骤:分别为__列表__、__描点__、__连线__三个步骤.3.我们把形如__y=ax2+bx+c(a≠0)__的函数叫做二次函数.◆活动2探究新知1.教材P29~30.提出问题:(1)同学们回想一下,一次函数的性质是怎样研究的?我们能否类比研究一次函数性质的方法来研究二次函数的性质呢?如果可以,应先研究什么?(2)对函数y=x2,请完成下表:x …-3 -2 -1 0 1 2 3 …y=x2……(3)请描绘出表中各点,画出y=x2的图象;(4)你能说说二次函数y=x2的图象有哪些特征吗?学生完成并交流展示.2.教材P30例1.提出问题:(1)你能在同一直角坐标中画出函数y=12x2与y=2x2的图象吗?请完成下表并描点,进而画出各函数图象;x …-4 -3 -2 -1 0 1 2 3 4 …y=12x2……x …-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 …y=2x2……(2)观察所画出的图象,它们有哪些共同点和不同点?(3)你能由此猜想并归纳出当a>0时,y=ax2的图象和性质吗?学生完成并交流展示.3.教材P31探究.提出问题:(1)你能在同一直角坐标系中画出函数y=-x2,y=-12x2,y=-2x2的图象吗?请同学们在草稿纸上尝试画出它们的图象;(2)你画出的图象与图22.1-5中的图象相同吗?仔细观察你所画出的图象,并思考这些抛物线有什么共同点和不同点?(3)你能总结归纳出当a<0时,y=ax2的图象和性质吗?学生完成并交流展示.◆活动3知识归纳1.二次函数y=ax2的图象是一条开口向上或向下的抛物线.一般地,二次函数y=ax2+bx+c的图象叫做抛物线y=ax2+bx+c.2.一般地,抛物线y=ax2的对称轴是__y轴__,顶点是__(0,0)__.当a>0时,抛物线的开口__向上__,顶点是抛物线的最__低__点,|a|越大,抛物线的开口__越小__;在对称轴的左侧,y随x的增大而__减小__,在对称轴的右侧,y随x的增大而__增大__.当a<0时,抛物线的开口向__下__,顶点是抛物线的最__高__点,|a|越大,抛物线的开口越__小__;在对称轴的左侧,y随x的增大而__增大__,在对称轴的右侧,y随x的增大而__减小__.◆活动4例题与练习例1已知函数y=(m+2)xm2+2m-6是关于x的二次函数.(1)求m的值;(2)当m为何值时,此函数图象的顶点为最低点?(3)当m为何值时,此函数图象的顶点为最高点?解:(1)m+2≠0,m2+2m-6=2,解得m1=2,m2=-4,∴m的值为2或-4;(2)若函数图象有最低点,则抛物线的开口向上,∴m+2>0,解得m>-2,∴m=2;(3)若函数图象有最高点,则抛物线的开口向下,∴m+2<0,解得m<-2,∴m=-4.例2二次函数y=ax2与直线y=2x-1的图象交于点P(1,m).(1)求a,m的值;(2)写出二次函数的解析式,并指出x取何值时,y随x的增大而增大?解:(1)将点P(1,m)代入y=2x-1,得m=2×1-1=1,∴点P的坐标为(1,1).将点P(1,1)代入y=ax2,得1=a×12,解得a=1;(2)二次函数的解析式为y=x2,当x>0时,y随x的增大而增大.练习1.教材P32练习.2.抛物线y=3x2的开口向__上__,对称轴是__y轴__,顶点坐标是__(0,0)__;抛物线y=-14x2的开口向__下__,对称轴是__y轴__,顶点坐标是__(0,0)__.3.抛物线y=-x2上有两点(x1,y1),(x2,y2),若x1<x2<0,则y1__<__y2.4.若点(x1,5)和点(x2,5)(x1≠x2)均在抛物线y=ax2上,则当y=x1+x2时,y的值是__0__.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.如何画出函数y=ax2的图象?2.函数y=ax2具有哪些性质?1.作业布置(1)教材P41习题22.1第3,4题;(2)《名师测控》对应课时练习.2.教学反思22.1.3二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质1.能画出二次函数y=ax2+k的图象.2.掌握二次函数y=ax2与y=ax2+k的图象之间的联系.3.掌握二次函数y=ax2+k的图象及其性质.▲重点1.二次函数y=ax2与y=ax2+k的图象之间的联系.2.二次函数y=ax2+k的图象及其性质.▲难点二次函数y=ax2+k的性质的基本应用.◆活动1新课导入1.画函数图象利用描点法,其步骤为__列表__、__描点__、__连线__.2.二次函数y=ax2(a≠0)的图象是一条__抛物线__,当a>0时,它的开口向__上__,对称轴是__y轴__,顶点坐标是__(0,0)__;在对称轴的左侧,y随x的增大而__减小__,在对称轴的右侧,y随x的增大而__增大__;当x=__0__时,y取最__小__值.当a<0时又会有什么变化呢?◆活动2探究新知教材P32例2.提出问题:(1)观察图22.1-6,图中红色、蓝色抛物线分别是哪一个函数的图象?中间黑色虚线抛物线又是哪一个函数的图象?(2)学生们观察图象,回答:①抛物线y=2x2+1与y=2x2-1的开口方向、对称轴、顶点各是什么?②抛物线y=2x2+1,y=2x2-1与抛物线y=2x2有什么位置关系?学生完成并交流展示.◆活动3知识归纳1.抛物线y=ax2与y=ax2+k的区别和联系:函数解析式顶点坐标对称轴开口方向增减性y=ax2(a≠0) (0,0)y轴当a>0时,抛物线开口向__上__;当a<0时,抛物线开口向__下__.当a>0时,在对称轴左侧,y随x的增大而__减小__,在对称轴右侧,y随x的增大而__增大__;当a<0时,在对称轴左侧,y随x的增大而__增大__,在对称轴右侧,y随x的增大而__减小__.y=ax2+k(a≠0) (0,k)2.二次函数y=ax2+k的图象可由抛物线y=ax2的图象向上或向下平移__|k|__个单位长度得到.当k>0时,抛物线y=ax2向__上__平移__k__个单位长度得到抛物线y=ax2+k;当k<0时,抛物线y=ax2向__下__平移__-k __个单位长度得到抛物线y =ax 2+k.◆活动4 例题与练习例1 指出下列函数的开口方向、对称轴、顶点坐标及最值. (1)y =-13x 2+4;(2)y =2x 2-3.解:(1)y =-13x 2+4的图象开口向下,对称轴是y 轴,顶点坐标为(0,4),当x =0时,有最大值y =4;(2)y=2x 2-3的图象开口向上,对称轴是y 轴,顶点坐标为(0,-3),当 x =0时,有最小值y =-3.例2 直接写出符合下列条件的抛物线y =ax 2-1的函数解析式: (1)经过点(-3,2);(2)与y =12x 2的开口大小相同,方向相反;(3)当x 的值由0增加到2时,函数值减少4. 解:(1)y =13x 2-1;(2)y =-12x 2-1;(3)y =-x 2-1.例3 能否适当地上下平移抛物线y =15x 2,使得到的新图象经过点(5,-2)?若能,请你求出平移的方向和距离;若不能,请说明理由.解:设平移y =15x 2的图象后经过点(5,-2)的图象的函数解析式为y =15x 2+k ,则有-2=15×52+k ,解得k =-7,故经过点(5,-2)的函数解析式为 y =15x 2-7,即把抛物线y =15x 2向下平移7个单位长度.练习1.教材P 33 练习.2.对于二次函数y =-35x 2+3,下列说法中错误的是( B )A .最大值为3B .图象与y 轴没有交点C .当x <0时,y 随x 的增大而增大D .其图象关于y 轴对称3.已知抛物线y =4x 2+2上有两点A(x 1,y 1),B(x 2,y 2),且x 1<x 2<0,则y 1与y 2的大小关系是( C ) A .y 1<y 2 B .y 1=y 2 C .y 1>y 2 D .无法确定4.抛物线y =ax 2+c 向下平移2个单位长度得到抛物线y =-3x 2+2,则a =__-3__,c =__4__. ◆活动5 完成《名师测控》随堂反馈手册 ◆活动6 课堂小结1.二次函数y =ax 2+k 的图象和性质.2.二次函数y =ax 2+k 的图象与二次函数y =ax 2的图象之间的关系.1.作业布置(1)教材P 41 习题22.1第5题(1); (2)《名师测控》对应课时练习.2.教学反思第2课时 二次函数y =a (x -h )2的图象和性质1.能画出二次函数y =a(x -h)2的图象.2.了解抛物线y =ax 2与抛物线y =a(x -h)2的联系. 3.掌握二次函数y =a(x -h)2的图象特征及其简单性质.▲重点1.掌握二次函数y =a(x -h)2的图象及性质.2.二次函数y =ax 2与y =a(x -h)2的图象之间的联系. ▲难点运用二次函数y =a(x -h)2的性质解决实际问题.◆活动1 新课导入1.画函数图象利用描点法,其步骤为__列表__、__描点__、__连线__.2.二次函数y =x 2+3的图象是一条__抛物线__,它的开口向__上__,对称轴是__y 轴__,顶点坐标是__(0,3)__;在对称轴的左侧,y 随x 的增大而__减小__,在对称轴的右侧,y 随x 的增大而__增大__;当x =__0__时,y 取最__小__值.◆活动2 探究新知 1.教材P 33 探究. 提出问题:(1)抛物线y =-12(x +1)2与y =-12(x -1)2的开口方向、对称轴、顶点坐标各是什么?两抛物线的开口大小有什么关系?(2)抛物线y =-12(x +1)2与y =-12(x -1)2之间有什么关系?学生完成并交流展示.2.若抛物线y =a(x -h)2的顶点是(-3,0),它是由抛物线y =-2x 2平移得到的,则a ,h 的值各是多少? 学生完成并交流展示. ◆活动3 知识归纳1.二次函数y =a(x -h)2(a ≠0)的图象性质:开口方向:当a>0时,开口向__上__,当a<0时,开口向__下__;顶点是__(h ,0)__,对称轴是__x =h__;最值:当a>0时,有__最小值y =0__,当a<0时,有__最大值y =0__;增减性:当a>0且x>h 时,y 随x 的增大而__增大__,x<h 时,y 随x 的增大而__减小__;当a<0且x>h 时,y 随x 的增大而__减小__,x<h 时,y 随x 的增大而__增大__.2.y =ax 2和y =a(x -h)2的图象有如下关系: y =ax 2――→h>0,向右平移 h 个单位h<0,向左平移 |h| 个单位y =a(x -h)2.3.由抛物线y =ax 2的图象通过平移得到y =a(x -h)2的图象,左右平移的规律是(四字口诀)__左加右减__. 4.对于二次函数的图象,只要|a|相等,则它们的形状__相同__,只是__开口方向__不同,且|a|越大,开口__越小__.◆活动4 例题与练习例1 试说明:分别通过怎样的平移,可以由抛物线y =15x 2得到抛物线y =15(x +4)2和y =15(x -4)2.解:将抛物线y =15x 2向左平移4个单位长度得到抛物线y =15(x +4)2,向右平移4个单位长度得到抛物线y =15(x -4)2. 例2 已知二次函数y =a(x -h)2,当x =2时有最大值,且此函数的图象经过点(1,-3),求此二次函数的解析式,并指出当x 为何值时,y 随x 的增大而增大.解:依题意,得h =2,∴y =a(x -2)2.∵点(1,-3)在抛物线上,∴a =-3,∴y =-3(x -2)2,当x <2时,y 随x 的增大而增大.练习1.教材P 35 练习.2.在下列二次函数中,其图象对称轴为x =-2的是( A ) A .y =(x +2)2 B .y =2x 2-2 C .y =-2x 2-2 D .y =2(x -2)23.已知点A(-4,y 1),B(-3,y 2),C(3,y 3)三点都在抛物线y =-13(x +2)2的图象上,则y 1,y 2,y 3的大小关系为__y 3<y 1<y 2__.4.已知一抛物线与抛物线y =-12x 2+3的形状相同,开口方向相反,顶点坐标是(-5,0),根据以上特点,试写出该抛物线的解析式.解:∵所求的抛物线与抛物线y =-12x 2+3的形状相同,开口方向相反,∴其二次项系数是12.又∵顶点坐标是(-5,0),∴所求抛物线的解析式为y =12(x +5)2.◆活动5 完成《名师测控》随堂反馈手册 ◆活动6 课堂小结1.二次函数y =a(x -h)2的图象和性质.2.二次函数y =a(x -h)2的图象和二次函数y =ax 2的图象之间的关系.1.作业布置(1)教材P 41 习题22.1第5题(2); (2)《名师测控》对应课时练习. 2.教学反思第3课时 二次函数y =a (x -h )2+k 的图象和性质1.会用描点法画出二次函数y =a(x -h)2+k(a ≠0)的图象. 2.掌握抛物线y =ax 2与y =a(x -h)2+k 之间的平移规律.3.依据具体问题情境建立二次函数y =a(x -h)2+k 模型来解决实际问题.▲重点二次函数y =a(x -h)2+k(a ≠0)的图象及其性质. ▲难点1.二次函数y =a(x -h)2+k 与y =ax 2(a ≠0)的图象之间的平移关系. 2.通过对图象的观察,分析规律,归纳性质.◆活动1 新课导入 1.填空:函数 开口方向 对称轴 顶点坐标 最值 y =2x 2 向上 y 轴或x =0 (0,0) 最小值0 y =-x 2+2 向下 y 轴或x =0 (0,2) 最大值2 y =3x 2-5 向上 y 轴或x =0 (0,-5) 最小值-5 y =0.5(x -6)2 向上 x =6 (6,0) 最小值0 y =-8(x +4)2向下x =-4(-4,0)最大值02.把抛物线y =-2x 2向左平移1个单位长度得到的抛物线是( A ) A .y =-2(x +1)2 B .y =-2(x -1)2 C .y =-2x 2+1 D .y =-2x 2-1 ◆活动2 探究新知 1.教材P 35 例3. 提出问题:(1)函数y =-12(x +1)2-1的图象与函数y =-12x 2的图象有什么关系?函数y =-12(x +1)2-1有哪些性质?(2)请在坐标系中画出函数y =-12(x +1)2-1的图象,并将它与函数y =-12x 2和y =-12x 2-1的图象作比较,抛物线y =-12(x +1)2-1可以由抛物线y =-12x 2经过怎样的变换得到?根据图象,你能指出这个函数图象的开口方向、对称轴和顶点坐标吗?(3)请依据上述问题中的发现,说说抛物线y =a(x -h)2+k 是由抛物线y =ax 2(a ≠0)通过怎样的平移而得到的?你能由此归纳出y =a(x -h)2+k(a ≠0)的图象的性质吗?学生完成并交流展示.2.已知点A(1,y 1),B(-2,y 2),C(-2,y 3)在函数y =a(x +1)2+k(a >0)的图象上,则y 1,y 2,y 3的大小关系是什么?学生完成并交流展示.◆活动3 知识归纳1.一般地,抛物线y =a(x -h)2+k 与y =ax 2形状__相同__,位置__不同__.把抛物线y =ax 2向上(下)向左(右)平移,可以得到抛物线y =a(x -h)2+k.平移的方向、距离要根据__h ,k__的值决定.2.思考:(1)抛物线y =a(x -h)2+k 有如下特点:①当a >0时,开口向__上__;当a <0时,开口向__下__;②对称轴是x =__h__;③顶点坐标是__(h ,k)__;(2)从二次函数y =a(x -h)2+k 的图象可以看出:如果a >0,当x <h 时,y 随x 的增大而__减小__,当x >h 时,y 随x 的增大而__增大__;如果a <0,当x <h 时,y 随x 的增大而__增大__,当x>h时,y随x的增大而__减小__.◆活动4例题与练习例1对于抛物线y=-12(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(-1,3);④当x>1时,y随x的增大而减小.其中正确的结论有(C)A.1个B.2个C.3个D.4个例2把二次函数y=a(x-h)2+k的图象先向左平移2个单位长度,再向上平移4个单位长度,得到二次函数y=12(x+1)2-1的图象.(1)试确定a,h,k的值;(2)指出二次函数y=a(x-h)2+k的开口方向、对称轴和顶点坐标.解:(1)原二次函数的解析式为y=12(x+1-2)2-1-4,即y=12(x-1)2-5,∴a=12,h=1,k=-5;(2)它的开口向上,对称轴为x=1,顶点坐标为(1,-5).练习1.教材P37练习.2.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围是(B)A.m>1B.m>0C.m>-1D.-1<m<03.已知点A(4,y1),B(2,y2),C(-2,y3)都在函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是__y3>y1>y2__.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.二次函数y=a(x-h)2+k的图象和性质.2.二次函数y=a(x-h)2+k的图象和二次函数y=ax2的图象之间的关系.1.作业布置(1)教材P41习题22.1第5题(3);(2)《名师测控》对应课时练习.2.教学反思22.1.4二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+bx+c的图象和性质1.会用描点法画出函数y=ax2+bx+c的图象.2.掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标.3.掌握二次函数y=ax2+bx+c的性质.▲重点用二次函数y=ax2+bx+c的图象和性质解决简单问题.▲难点通过配方将二次函数y=ax2+bx+c化为y=a(x-h)2+k的形式,并得到其性质.◆活动1 新课导入1.你能说出函数y =-4(x -2)2+1图象的开口方向、对称轴和顶点坐标及其性质吗?解:开口向下,对称轴是直线x =2,顶点坐标是(2,1),在对称轴右侧y 随x 的增大而减小,在对称轴左侧y 随x 的增大而增大.当x =2时,有最大值1.2.函数y =-4(x -2)2+1的图象与函数y =-4x 2的图象有什么关系?解:函数y =-4(x -2)2+1的图象是由函数y =-4x 2的图象向上平移1个单位长度,再向右平移2个单位长度得到的.◆活动2 探究新知 1.教材P 37 思考. 提出问题:(1)把二次函数y =12x 2-6x +21化成y =a(x -h)2+k 的形式;(2)写出二次函数y =12x 2-6x +21的开口方向、对称轴和顶点坐标;(3)画出y =12x 2-6x +21的图象;(4)观察图象,回答:①抛物线y =12x 2如何平移得到抛物线y =12x 2-6x +21?②二次函数y =12x 2-6x +21的y 随x 的增减性如何?学生完成并交流展示.2.不画出图象,你能直接说出函数y =-x 2+2x -3的图象的开口方向、对称轴和顶点坐标吗? 提出问题:(1)你能用上面的方法讨论二次函数y =-x 2+2x -3的图象和性质吗?(2)思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?(3)你能由此总结归纳出二次函数y =ax 2+bx +c(a ≠0)的图象和性质吗? 学生完成并交流展示. ◆活动3 知识归纳1.如何画二次函数y =ax 2+bx +c 的图象?一般地,先用配方法求抛物线的顶点坐标:y =ax 2+bx +c =a ⎝⎛⎭⎫x +b 2a 2+4ac -b 24a ,则抛物线的对称轴为__x =-b 2a __,顶点坐标为__⎝⎛⎭⎫-b 2a,4ac -b 24a __.2.思考并完成下表:函数 y =ax 2+bx +c(a ≠0)开口方向 a >0,开口__向上__ a <0,开口__向下__对称轴 __x =-b2a __顶点坐标__⎝⎛⎭⎫-b 2a,4ac -b 24a __最大(小)值当x =-b2a 时,y 最小值=__4ac -b 24a__当x =-b2a 时,y 最大值=__4ac -b 24a__增减性当x <-b2a时,y 随x 的增大而__减小__;x >-b2a时,y 随x 的增大而__增大__x <-b2a时,y 随x 的增大而__增大__;x >-b2a时,y 随x 的增大而__减小__◆活动4 例题与练习例1 求二次函数y =-12x 2+x -52的顶点坐标及对称轴.解:顶点坐标为(1,-2),对称轴为x =1.例2 把抛物线y =ax 2+bx +c 向右平移4个单位长度,再向下平移6个单位长度,得到抛物线y =-12x 2,求原来的抛物线的解析式.解:抛物线y =-12x 2先向上平移6个单位长度,得到抛物线y =-12x 2+6,再将抛物线y =-12x 2+6向左平移4个单位长度,得到抛物线y =-12(x +4)2+6,即y =-12x 2-4x -2.练习1.教材P 39 练习.2.已知二次函数y =2x 2-mx +8,当x <-3时,y 随x 的增大而减小;当x >-3时,y 随x 的增大而增大,则当x =1时,y 的值为__22__.◆活动5 完成《名师测控》随堂反馈手册 ◆活动6 课堂小结1.形如y =ax 2+bx +c(a ≠0)的二次函数的顶点坐标及对称轴的确定:(1)当二次函数y =ax 2+bx +c 容易配方时,可采用配方法来确定顶点坐标及对称轴方程; (2)当a ,b ,c 比较复杂时,可直接用公式来确定: 抛物线y =ax 2+bx +c的对称轴为x =-b 2a ,顶点坐标为⎝⎛⎭⎫-b 2a,4ac -b 24a .2.解决二次函数y =ax 2+bx +c 的平移问题时,应先将它化为y =a(x -h)2+k 形式后进行.1.作业布置(1)教材P 41 习题22.1第6,7题; (2)《名师测控》对应课时练习. 2.教学反思第2课时 用待定系数法求二次函数的解析式1.学会用待定系数法求抛物线的解析式.2.熟练地根据二次函数的不同性质选择适当的方法求解析式.▲重点用待定系数法求二次函数的解析式. ▲难点由条件灵活选择解析式类型.◆活动1 新课导入1.正比例函数图象经过点(1,3),该函数解析式是__y =3x__.2.在直角坐标系中,直线l 过(1,3)和(3,1)两点,求直线l 的函数解析式. 解:设直线l 的函数解析式为y =kx +b(k ≠0).把(3,1),(1,3)代入上式,得⎩⎪⎨⎪⎧3k +b =1,k +b =3,解得⎩⎪⎨⎪⎧k =-1,b =4.∴直线l 的函数解析式为y =-x +4.3.一般地,函数解析式中有几个独立的系数,我们就需要相同个数的独立条件才能求出函数解析式.例如:我们确定正比例函数y =kx(k ≠0)只需要一个独立条件;确定一次函数y =kx +b(k ≠0)需要两个独立条件.如果要确定二次函数y =ax 2+bx +c 的解析式,需要几个条件呢?◆活动2 探究新知 1.教材P 39 探究.(1)回忆一下用待定系数法求一次函数的解析式的一般步骤.求二次函数y =ax 2+bx +c 的解析式的关键是什么?(2)如果一个二次函数的图象经过(-1,10),(1,4),(2,7)三点,同学们能仿照求一次函数的解析式的步骤求出这个二次函数的解析式吗?(3)解三元一次方程的方法是什么? 学生完成并交流展示.2.已知抛物线的顶点坐标为(1,-1),过原点,求抛物线的解析式. 提出问题:(1)图象顶点为(h ,k)的二次函数的解析式是什么?如果顶点坐标已知,那么求解析式的关键是什么? (2)如何设解析式?(3)如果已知顶点坐标和一点,求二次函数的解析式的一般步骤是什么? 学生完成并交流展示. ◆活动3 知识归纳1.求二次函数的解析式y =ax 2+bx +c ,需要求出__a ,b ,c__的值.由已知条件(如二次函数图象上三个点的坐标)列出关于__a ,b ,c__的方程组,求出__a ,b ,c__的值,就可以写出二次函数的解析式.2.利用待定系数法求二次函数解析式时,一般可以分以下几种情况: (1)顶点在原点,可设为y =ax 2;(2)对称轴是y 轴(或顶点在y 轴上),可设为y =ax 2+k ; (3)顶点在x 轴上,可设为y =a(x -h)2; (4)抛物线过原点,可设为y =ax 2+bx ;(5)已知顶点(h ,k)时,可设顶点式y =a(x -h)2+k ; (6)已知抛物线上三点时,可设一般式为y =ax 2+bx +c ;(7)已知抛物线与x 轴两交点坐标为(x 1,0),(x 2,0)时,可设交点式为y =a (x -x 1)(x -x 2).◆活动4 例题与练习例1 已知二次函数经过(1,1),(-1,4),(0,3)三点,求这个二次函数的解析式. 解:设二次函数的解析式为y =ax 2+bx +c.∵二次函数y =ax 2+bx +c 过点(1,1),(-1,4),(0,3)三点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =4,c =3,解得⎩⎪⎨⎪⎧a =-12,b =-32,c =3,∴二次函数的解析式为y =-12x 2-32x +3.例2 已知二次函数的图象如图所示,求这个二次函数的解析式.解:设二次函数的解析式为y =ax 2+bx +c.∵二次函数y =ax 2+bx +c 过点(0,2),(1,0),(2,0)三点, ∴⎩⎪⎨⎪⎧a +b +c =0,4a +2b +c =0,c =2,解得⎩⎪⎨⎪⎧a =1,b =-3,c =2. ∴二次函数的解析式为y =x 2-3x +2. 练习1.教材P 40 练习第1,2题.2.已知函数y =-x 2+bx +c 的图象顶点是(1,3),则b ,c 的值是( B ) A .b =2,c =-2 B .b =2,c =2 C .b =-2,c =2 D .b =-2,c =-23.已知二次函数的图象经过点(-1,-6),(1,-2)和(2,3),则这个二次函数的解析式为__y =x 2+2x -5__.4.已知二次函数的图象的对称轴为x =1,函数的最大值为-6,且图象经过点(2,-8),求此二次函数的解析式.解:设二次函数的解析式为y =a(x -1)2-6.∵函数图象过点(2,-8),∴a(2-1)2-6=-8,解得a =-2,∴此二次函数的解析式为y =-2(x -1)2-6.◆活动5 完成《名师测控》随堂反馈手册 ◆活动6 课堂小结1.熟练掌握求二次函数解析式的基本方法. 2.灵活选择方法求解析式.1.作业布置(1)教材P 42 习题22.1第10,11题;(2)《名师测控》对应课时练习.2.教学反思22.2二次函数与一元二次方程1.知道二次函数与x轴的交点个数与一元二次方程的根的个数之间的关系.2.能够利用二次函数的图象求一元二次方程的近似解,体会数形结合思想.▲重点二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)之间的联系,利用二次函数的图象求一元二次方程的近似解.▲难点一元二次方程根的情况与二次函数图象与x轴位置关系的联系.◆活动1新课导入1.若一次函数y=kx+b的图象经过点(0,1),(1,0),则方程kx+b=0的解是__x=1__.2.一次函数y=kx+b的图象如图所示,则方程kx+b=-3的解是__x=-2__.3.对于二次函数y=ax2+bx+c(a≠0),当y取一个确定值时,它就变成了一个一元二次方程,由此可知一元二次方程与二次函数有着密切的关系.那么,二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)之间到底有怎样的关系呢?通过本节课的学习我们将能解决这个问题.◆活动2探究新知1.教材P43问题.提出问题:(1)小球的飞行高度能否达到15 m,20 m,20.5 m?就是要判断哪一个一元二次方程是否有解?(2)请将函数h=20t-5t2化成顶点式,并解释小球飞行高度能否达到15 m,20 m,20.5 m;(3)为什么小球飞行高度达到15 m有两个时间,而飞行高度达到20 m只有一个时间,请从方程和函数角度分别给出解释;(4)请结合本问题谈谈二次函数与一元二次方程的关系.学生完成并交流展示.2.教材P44思考.提出问题:(1)由图22.2-2可以看出抛物线y=x2+x-2与x轴有几个公共点?它们的横坐标分别是什么?当x取公共点的横坐标时,函数值是多少?由此得出方程x2+x-2=0的根为多少?(2)由图22.2-2可以看出抛物线y=x2-6x+9与x轴有几个公共点?公共点的横坐标是多少?当x为多少时,函数值是0?由此得出方程x2-6x+9=0的根为多少?(3)由图22.2-2可以看出抛物线y=x2-x+1与x轴有没有公共点?由此得出方程x2-x+1=0的根如何?(4)你能由此总结归纳出二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系吗?学生完成并交流展示. ◆活动3 知识归纳一般地,从二次函数y =ax 2+bx +c 的图象可得如下结论:(1)如果抛物线y =ax 2+bx +c 与x 轴有公共点,公共点的横坐标为x 0,那么当x =x 0时,函数值是0,因此x =x 0是方程ax 2+bx +c =0的一个根;(2)二次函数y =ax 2+bx +c 的图象与x 轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax 2+bx +c =0的根的三种情况:无实数根、有两个相等的实数根、有两个不相等的实数根.◆活动4 例题与练习 例1 教材P 46 例.例2 如图,已知直线y =-12x 与抛物线y =-14x 2+6交于A ,B 两点.(1)求A ,B 两点的坐标;(2)-14x 2+6>-12x 的解集为______________;(3)-14x 2+6<-12x 的解集为______________.解:(1)A(6,-3),B(-4,2); (2)-4<x <6; (3)x <-4或x >6例3 二次函数y =ax 2+bx +c 的图象如图所示,请根据图象信息回答问题:(1)写出方程ax 2+bx +c =0的两根; (2)写出不等式ax 2+bx +c >0的解集; (3)写出方程ax 2+bx +c =2.5的两根; (4)写出不等式ax 2+bx +c <2.5的解集;(5)若方程ax 2+bx +c +1-k =0有两个不相等的实数根,求k 的取值范围.解:(1)x 1=0,x 2=4;(2)x <0或x >4;(3)x 1=-1,x 2=5;(4)-1<x <5;(5)k >-1. 练习。
高中数学教案:二次函数的图像与性质
高中数学教案:二次函数的图像与性质一、引言二次函数是高中数学中重要的内容之一。
本节课将着重介绍二次函数的图像与性质,通过深入理解二次函数的特点和变化规律,帮助学生掌握相关的知识和技能。
二、二次函数的定义与表示1. 二次函数定义:二次函数是形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c是实数且a ≠ 0。
2. 二次函数的顶点形式:f(x) = a(x - h)^2 + k,其中 (h, k) 是顶点坐标。
三、二次函数的图像1. 求解顶点坐标:- 对于一般形式 f(x) = ax^2 + bx + c,顶点坐标为 (-b/2a, f(-b/2a))。
- 对于顶点形式 f(x) = a(x - h)^2 + k,顶点坐标为 (h, k)。
2. 判定开口方向:- 当 a > 0 时,图像开口向上;- 当 a < 0 时,图像开口向下。
3. 对称轴:对于一般形式 f(x) = ax^2 + bx + c 或者顶点形式 f(x) = a(x - h)^2 + k,对称轴为 x = -b/2a 或者 x = h。
4. 零点:对于一般形式 f(x) = ax^2 + bx + c,可以利用求根公式得到零点。
四、二次函数图像的性质1. 最值与单调性:- 当 a > 0 时,最小值为顶点坐标 (h, k),函数递增;- 当 a < 0 时,最大值为顶点坐标 (h, k),函数递减。
2. 对称性:- 关于对称轴有对称性,即关于 x = h 对称;- 对称轴也是图像的一个切线。
3. 平移与缩放:- 在顶点形式 f(x) = a(x - h)^2 + k 中,顶点坐标可以通过平移 h 和 k 实现平移和缩放效果。
五、练习题请根据所学知识回答以下问题:1. 给定二次函数 y = 2x^2 + 4x + 1,求其顶点坐标、开口方向以及对称轴。
2. 给定二次函数 y = -3(x + 1)^2 + 5,求其顶点坐标、开口方向以及对称轴。
22.1.3二次函数的图像和性质教案
22.1.3二次函数的图像和性质教案篇一:22.1.3二次函数的图像和性质(1)课题:二次函数y?ax2?k的图象与性质主备:宋忠保总课时数:周课时数:学习目标1.会画二次函数y=ax2+k的图象;2.掌握二次函数y=ax2+k的性质,并会应用;3.知道二次函数y =ax2与y=ax2+k的联系.重难点预测:1.重点:从图象的平移变换的角度认识y?ax2?k与y?ax2的位置关系.22第1页第2页篇二:22.1.4二次函数的图像和性质教案22.1二次函数(6)教学目标:1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
重点难点:重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。
难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-bb4ac-b2(-是教学的难点。
2a2a4a教学过程:一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)3.函数y=-4(x-2)2+1具有哪些性质?(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x 的增大而减小;当x=2时,函数取得最大值,最大值y=1)154.不画出图象,你能直接说出函数y=-2+x-的图象的开口方向、对称轴和顶点22坐标吗?155.你能画出函数y=-x2+x-?22二、解决问题15由以上第4个问题的解决,我们已经知道函数y=-x2+x2215轴和顶点坐标。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质第1课时教案
22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
人教版 九年级数学上第22章二次函数 22.2二次函数的图象和性质教案
北屯中学电子备课教学设计表
学科:数学年级:九_ _年级_上_册第22章单元(章)
练习
1.把抛物线向下平移2个单位,可以得到抛物线,再向上平移5个单位,
可以得到抛物线;
2.对于函数y = –x 2+1,当x 时,函数值y 随
x 的增大而增大;当x 时,函数值y 随x 的增大而减小;当x 时,函数取得最值,
为
1 。
2
21x y =2212
-=x y 32
12
+=x y <0>0=0大
3.函数y =3x 2+5与y =3x 2的图象的不同之处是( )A.对称轴 B.开口方向 C.顶点 D.形状
4.已知抛物线y =2x 2–1上有两点(x 1,y 1) ,(x 2,y 2)
且x 1<x 2<0,则y 1y 2(填“<”或“>”)
5.已知抛物线,把它向下平移,得到的抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,若⊿ABC 是直角三角形,那么原抛物线应向下平移几个单位?
2
21x y =C。
二次函数的图像和性质教案
二次函数的图像和性质教案教案标题:二次函数的图像和性质教学目标:1. 理解二次函数的定义、图像和性质;2. 能够画出二次函数的图像,并根据图像分析其性质;3. 掌握二次函数的顶点、对称轴、零点以及开口方向的求解方法;4. 运用二次函数的性质解决实际问题。
教学重点:1. 二次函数的图像及其意义;2. 二次函数的性质及其应用。
教学难点:1. 二次函数性质的理解和应用;2. 实际问题转化为二次函数求解。
教学准备:1. 教师:计算机、投影仪;2. 学生:纸张、铅笔、计算器。
教学过程:一、导入(5分钟)1. 展示一个抛物线的图像,引发学生思考:这个图像与平面解析几何中的什么有关?2. 引导学生回顾解析几何中的抛物线,了解其定义和性质。
二、知识讲解(15分钟)1. 介绍二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0;2. 讲解二次函数图像的基本形状和性质,包括抛物线的开口方向、顶点、对称轴等概念;3. 指导学生如何利用顶点求解二次函数的最值和对称轴的方程。
三、图像绘制(20分钟)1. 学生利用计算器或手工绘制二次函数的图像,从中观察和分析抛物线的特征;2. 小组讨论并汇报图像的性质,如开口方向、顶点坐标、对称轴等。
四、性质探究(15分钟)1. 学生根据图像和定义,推导二次函数与其各特征之间的关系;2. 学生以小组为单位,解答提出的问题,并进行讨论。
五、解题实践(20分钟)1. 提供一组具体的问题,要求学生利用所学二次函数的性质解答;2. 学生独立或合作解答问题,并与小组成员讨论思路和解题方法;3. 学生汇报解答结果,并进行讨论。
六、拓展与总结(10分钟)1. 引导学生思考:二次函数的图像和性质在哪些实际问题中能够应用?2. 总结本节课所学内容,强调二次函数图像与性质的重要性。
教学延伸:1. 进一步讲解二次函数图像的平移、伸缩等变换;2. 利用软件工具进行二次函数的探索和应用。
人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计
人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计一. 教材分析人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时,主要介绍了二次函数的图象和性质。
本节课的内容是学生对二次函数知识的深入理解,也是对之前学习的函数知识的巩固。
教材通过生动的实例和丰富的练习,帮助学生掌握二次函数的图象和性质,提高他们解决实际问题的能力。
二. 学情分析学生在之前的学习中,已经掌握了函数的基本概念和一次函数的知识,具备了一定的数学思维能力。
但是,对于二次函数的图象和性质,学生可能还存在一些困惑和误解。
因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。
三. 教学目标1.知识与技能:使学生了解二次函数的图象和性质,能够运用二次函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生研究函数问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:二次函数的图象和性质。
2.难点:二次函数的图象和性质的内在联系和运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考,提高他们解决实际问题的能力。
六. 教学准备1.教师准备:熟读教材,了解学生的学习情况,准备相关教学资源和案例。
2.学生准备:预习教材,了解二次函数的基本概念,准备参与课堂讨论。
七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生对二次函数的图象和性质的思考。
例如:有一块长方形土地,欲将其分割成一个面积为100平方米的矩形和两个面积相等的圆形,如何设计分割方案?2.呈现(15分钟)呈现二次函数的图象和性质,引导学生观察、分析,发现其中的规律。
例如,通过展示二次函数y=x^2的图象,让学生观察其在不同象限的取值情况,总结其性质。
3.操练(15分钟)让学生通过实际操作,加深对二次函数图象和性质的理解。
人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第3课时教学设计
人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第3课时教学设计一. 教材分析人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第3课时,主要介绍二次函数的图象和性质。
这部分内容是在学生已经掌握了二次函数的定义、标准式、顶点式的基础上进行的,是进一步研究二次函数的重要内容。
本节课的主要内容有:二次函数的图象、开口方向、对称轴、顶点、增减性、最值等。
这些内容对于学生来说是比较抽象的,需要通过大量的实例和练习来理解和掌握。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的基本概念和性质有一定的了解。
但是,对于二次函数的图象和性质,学生可能还存在着一些困惑和误解。
比如,对于开口方向、对称轴、顶点等概念,学生可能还存在着模糊的认识。
此外,学生的数学思维能力和逻辑推理能力还需要进一步的培养和提高。
三. 教学目标1.知识与技能:使学生能够理解和掌握二次函数的图象和性质,能够运用二次函数的性质解决一些实际问题。
2.过程与方法:通过观察、实验、探究等方法,使学生能够自主学习,提高学生的数学思维能力和逻辑推理能力。
3.情感态度与价值观:培养学生对数学的兴趣和信心,使学生能够积极主动地参与数学学习。
四. 教学重难点1.重点:二次函数的图象和性质。
2.难点:二次函数的图象和性质的运用。
五. 教学方法1.情境教学法:通过实例和问题,引发学生的思考和探究,使学生能够主动地学习。
2.引导发现法:教师引导学生发现问题,引导学生通过实验、观察、探究等方法来解决问题。
3.合作学习法:学生分组合作,共同完成任务,培养学生的团队合作能力和沟通能力。
六. 教学准备1.教师准备:教师需要准备相关的教学材料,如PPT、例题、练习题等。
2.学生准备:学生需要预习相关的内容,了解二次函数的定义和性质。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入二次函数的图象和性质,引发学生的思考和兴趣。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案
22.1 二次函数的图象和性质22.1.4 二次函数y=ax2+bx+c的图象和性质(第1课时)一、教学目标【知识与技能】1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.【过程与方法】通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.【情感态度与价值观】经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课教师问:二次函数y=a(x-h)2+k的性质有哪些?(出示课件2)师生共同回忆:教师问:我们已经知道二次函数y=a(x-h)2+k的图象和性质,能否利用这些知识来讨论二次函数y=ax2+bx+c 图象和性质?(出示课件3)(二)探索新知探究一 画出二次函数y=ax 2+bx+c 的图象我们已经知道y=a(x-h)2+k 的图象和性质,能否利用这些知识来讨论216212y x x =-+的图象和性质?(出示课件5) 问题1:怎样将216212y x x =-+化成y=a(x-h)2+k 的形式?学生回忆配方的方法及步骤,并回答.(出示课件6)216212y x x =-+ 21(1242)2x x =-+ 2221(126642)2x x =-+-+ 2221[(126)642]2x x =-+-+ 21[(6)6]2x =-+ 21(6) 3.2x =-+ 学生回答后,教师总结并强调.(出示课件7) 配方的步骤:(1)“提”:提出二次项系数; (2)“配”:括号内配成完全平方; (3)“化”:化成顶点式.配方后的表达式通常称为配方式或顶点式. 问题2:你能说出21(6)32y x =-+的对称轴及顶点坐标吗?(出示课件8) 生答:对称轴是直线x=6,顶点坐标是(6,3). 问题3:二次函数21(6)32y x =-+可以看作是由212y x =怎样平移得到的? 生答:平移方法1:先向上平移3个单位,再向右平移6个单位得到的;平移方法2:先向右平移6个单位,再向上平移3个单位得到的. 问题4:如何画二次函数216212y x x =-+的图象?(出示课件:9) 学生自主操作,画图,教师加以巡视.并引导他们进行分析. 方法一:描点法. 1.列表.2.描点,连线:方法二:平移法.(出示课件10)问题5:结合二次函数216212y x x =-+的图象,说出其性质.(出示课件11) 生答:当x<6时,y 随x 的增大而减小;当x>6时,y 随x 的增大而增大. 开口方向:向上.对称轴:x=6. 顶点:(6,3). 例 画出函数21522y x x =-+-的图象,并说明这个函数具有哪些性质.(出示课件12)师生共同解答如下: 解:函数21522y x x =-+-通过配方可得21(1)22y x =---, 先列表:然后描点、连线,得到图象如下图:(出示课件13)生观察图象,并总结性质如下: 开口方向:向下. 顶点坐标:(1,-2). 对称轴:x=1.最值:x=1时,y 最大值=-2.当x <1时,函数值y 随x 的增大而增大;当x >1时,函数值y 随x 的增大而减小; 当x=1时,函数取得最大值,最大值y=-2.出示课件14:求二次函数y=2x 2-8x+7图象的对称轴和顶点坐标. 生板演解题过程: 解:y=2x 2-8x+722(4)7x x =-+ 22(44)87x x =-+-+ 22(2) 1.x =--因此,二次函数y=2x 2-8x+7图象的对称轴是直线x=2,顶点坐标为(2,-1). 探究二 二次函数y=ax 2+bx+c 的图象与性质出示课件15:根据下列关系你能发现二次函数y=ax 2+bx+c 的图象和性质吗?师生共同探究强化认知:y=ax 2+bx+c 224()24b ac b a x a a-++=出示课件16:显然,二次函数y 224()24b ac b a x a a-++=的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =- 因此,抛物线y=ax 2+bx+c 的对称轴是2bx a=-,顶点坐标是24,24b ac b a a ⎛⎫ ⎪⎝-⎭- . 师生共同总结整理如下:(出示课件18)出示课件19:例二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)学生自主思考后,师生共同解答如下:解析∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x²+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4).教师加以强调:把函数的一般式化为顶点式,再由顶点式确定开口方向、对称轴、顶点及其他性质.出示课件20:填一填.生自主思考,并填表. 答案:(1,1);x=1;最大值1; (0,-1);y 轴;最大值-1;(13-,-6);x=13-;最小值-6. 出示课件21:一次函数y=kx+b 的图象如下图所示,请根据一次函数图象的性质填空:生观察图象,并填空.k 1<0;b 1>0;k 2>0;b 2<0;k 3>0;b 3>0.出示课件22,23:二次函数y=ax 2+bx+c 的图象如下图所示,请根据二次函数的性质填空:a1___0,b1___0,c1___0;a20,b2___0,c20;a3___0,b3___0,c3___0;a4___0,b4___0,c4___0.生观察图象后,独立填空,教师加以纠正.a1>0,b1>0,c1>0;a2>0,b2<0,c2=0;a3<0,b3=0,c3>0;a4<0,b4>0,c4<0.师生共同总结:二次函数y=ax2+bx+c的图象与a、b、c的关系(出示课件24)出示课件25:例已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是( )A.1 B.2 C.3 D.4生独立思考后,师生共同分析:由图象开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图象与y轴交于正半轴可得c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;由图象上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图可知x=1的点在第四象限得a+b+c<0,由图象上x=-1的点在第二象限得出a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.出示课件26:二次函数y=ax²+bx+c的图象如图所示,下列选项中正确的是()A.a>0 B.b>0 C.c<0 D.ac>0生独立思考后,自主解决.解析根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.①∵开口向下,∴a<0,A错误;②对称轴在y轴的右侧和a<0,可知b>0,B正确;③抛物线与y轴交于正半轴,c>0,C错误;④因为a<0,c>0,所以ac<0,D错误.(三)课堂练习(出示课件27-32)1.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤2.已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:则该二次函数图象的对称轴为( )A.y 轴B.直线x=52C.直线x=2D.直线x=323.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论:(1)a ,b 同号;(2)当x=–1和x=3时,函数值相等;(3)4a+b=0;(4)当y=–2时,x 的值只能取0;其中正确的是 .4.如图是二次函数y=ax 2+bx+c(a ≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④5.根据公式确定下列二次函数图象的对称轴和顶点坐标:()()()22(1) 21213;(2) 580319;1(3) 22;2(4)12.y x x y x x y x x y x x =-+=-+-⎛⎫=-- ⎪⎝⎭=+-6.已知函数y=-2x2+x-4,当x= 时,y 有最大值 .7.已知二次函数y=x 2-2x+1,那么它的图象大致为( )参考答案:1.A2.D3.(2)4.B5.⑴直线x=3,(3,-5);⑵直线x=8,(8,1);⑶直线x=1.25,59, 48⎛⎫- ⎪⎝⎭; ⑷直线x=0.5,19, 24⎛⎫ ⎪⎝⎭. 6.14;318- 7.B(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.4第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时的主要任务是理解和掌握二次函数的一般式.我们研究函数的一般基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征.因此本课时的教学仍可采用这种思维方法来探讨二次函数一般式的性质(如顶点坐标,对称轴以及增减性等),另外还要向学生渗透转化思想,即如何将相对复杂的一般式转化为其他解析式的形式.。
人教版九年级数学 上第22章二次函数 22.2 二次函数的图象和性质教案
人教版九年级数学上第22章二次函数 22.2 二次函数的图象和性质教案教学目标知识与技能: 使学生能利用描点法画出二次函数y=()2a x h-的图象。
过程与方法: 让学生经历二次函数y=()2a x h-性质探究的过程,理解函数y=()2a x h-的性质,理解二次函数y=()2a x h-的图象与二次函数y=a2x的图象的关系。
情感态度与价值观:培养学生创造思维的能力和动手实践能力,突出辩证唯物主义观点。
重点会用描点法画出二次函数y=()2a x h-的图象,理解其性质,理解它与y=ax2的图象的关系。
难点理解二次函数y=a(x-h)2的性质,理解二次函数y=()2a x h-的图象与二次函数y=ax2的图象的相互关系。
教学课时1 课时课前准备课件教学时间年月日教学设计教学增补主备课人备教学设计一、情境引入:1.我们已经了解到,函数y=ax2+k图象可以由函数y=ax2的图象上下平移得到,平移的规律是怎样的?授课人根据学情、班情再备课二次函数y=ax2-2的图象可以由函数y=ax2的图象向下平移得到,那么函数y=12(x-2)2的图象是否可以由函数y=12x2的2.二次函数y=-12(x-1)2的图象,是否也可以由函数y=ax2的图象平移而得到呢?若是,应该怎样平移?画图试一试,你能从中发现什么规律吗?3.引出课题——二次函数y=a(x-h)2的图象和性质设计意图:渗透类比学习的方法,使学生对将要进行学习的新内容进行猜想,同时激发学生学习的好奇心和求只欲。
二、探究学习活动1:请你画出画出二次函数y=-12(x-1)2和二次函数y=-12x2的图象。
师生活动:学生在直角坐标系画出二次函数y=-12(x-1)2和二次函数y=-12x2的图象,并加以观察。
教师引导学生进行列表,注意画图的对称性。
并进行巡视、指导学生画图。
再示范画图。
活动2:现在你能回答前面提出的问题吗?学生活动:让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y=-12(x-1)2与y=-12x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y=-12(x一1)2的图象可以看作是函数y=-12x2的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。
人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第2课时教学设计
人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第2课时教学设计一. 教材分析人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第2课时,主要讲述了二次函数的图象和性质。
这部分内容是整个二次函数学习的重要组成部分,对于学生理解二次函数的本质,提高解决实际问题的能力具有重要意义。
本节课时,我们将引导学生通过观察、分析、归纳等方法,探索二次函数的图象和性质,为学生后续的学习打下坚实的基础。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于一次函数和正比例函数有一定的了解。
在之前的学习中,学生已经学习了二次函数的定义和表达式,对于二次函数的基本概念有一定的认识。
但是,对于二次函数的图象和性质,学生可能还比较陌生,需要通过本节课的学习,进一步深化对二次函数的理解。
三. 教学目标1.理解二次函数的图象和性质,能够分析二次函数图象的特点。
2.能够运用二次函数的性质解决实际问题,提高解决问题的能力。
3.培养学生的观察能力、分析能力、归纳能力,提高学生的数学素养。
四. 教学重难点1.教学重点:二次函数的图象和性质。
2.教学难点:如何运用二次函数的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、分析、归纳等方法,探索二次函数的图象和性质。
2.运用多媒体辅助教学,通过动画、图片等形式,生动展示二次函数的图象和性质。
3.采用小组合作学习的方式,鼓励学生互相讨论、交流,提高学生的合作能力。
六. 教学准备1.准备相关的多媒体教学素材,如动画、图片等。
2.准备练习题和拓展题,以便学生在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)通过复习一次函数和正比例函数的图象和性质,引导学生思考二次函数的图象和性质,激发学生的学习兴趣。
2.呈现(15分钟)利用多媒体展示二次函数的图象和性质,引导学生观察、分析,从而得出二次函数的图象和性质。
3.操练(15分钟)让学生通过解决一些实际问题,运用二次函数的性质,从而加深对二次函数的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.1.3 二次函数y=a(x-h)2+k的图像和性质(第一课时)主备人:李安民副备人:孙振坤侯秀山王明芝活动目标探索、研究、掌握二次函数y=ax2+k的图像和性质个性调整活动过程活动一.知识回顾:画出y=2x2的图像活动二.在同一直角坐标系中划出:画出y=2x2+1;y=2x2-1的图像图像。
列表x……-2-1.5 -1 -0.5 0 0.5 1 1.5 2 ……Y=2x2…………Y=2x2+1 …………Y=2x2-1 …………I.观察图像,讨论上面的图像y=2x2向移动单位,得到y=2x2+1;图像图像y=2x2向移动单位,得到y=2x2-1;图像y=2x2+1怎么移动就能得到y=2x2-1的图像。
活动三:小组共同归纳:(1)抛物线y=ax2怎么移动能得到y=ax2+k的图像。
(2)抛物线y=ax2+k的性质:当a>0时:抛物线开口;对称轴;顶点坐标;当x<0是,y随x的增加而。
当x>0时,y随x的增加而。
当a<0时(自己写在下边)课堂检测1.抛物线y=3x2;(1)向上平移4个单位,得到的抛物线是;(2)向下平移3个单位,得到的抛物线是。
2.抛物线y=5x2-5,可以看做是抛物线y=5x2向平移单位得到的。
-3-2-10123yx3.抛物线y= -0.5x 2+1,可以看做是抛物线y= -0.5x 2向 平移 单位得到的。
4.把抛物线y=0.7x 2+3,向下平移6个单位得到的抛物线为 。
5.抛物线y= -4x 2-2可以看做是抛物线y= -4x 2+3向 平移 单位得到的。
6.在同一坐标系中画出:221,221,21222--=+-=-=x y x y x y 图像。
221x y -=2212+-=x y2212--=x y22.1.3 二次函数y=a (x -h )2+k 的图像和性质(第二课时)主备人:李安民 副备人:孙振坤 侯秀山 王明芝活动目标探索、研究、掌握二次函数y=ax 2+k 的图像和性质个性 调整xy活 动 过 程活动一.知识回顾:画出y= -0.5x 2的图像活动二.在同一直角坐标系中划出:画出y= -0.5(x+1)2;y= -0.5(x -1)2的图像图像。
列表x …… -4 -3 -2 -1 0 1 2 3 4 …… Y= -0.5x 2 …… …… Y=-0.5(x+1)2………… Y=-0.5(x -1)2 …………I.观察图像,讨论上面的图像y=-0.5x 2向 移动 单位,得到y=-0.5(x+1)2; 图像y= -0.5x 2向 移动 单位得到图像y= -0.5(x -1)2;y= -0.5(x -1)2怎么移动就能得到 y= -0.5(x+1)2的图像。
活动三:小组共同归纳:(1)抛物线y=ax 2怎么移动能得到y=a (x -h )2的图像。
(3)抛物线y=a(x -h)2的性质:当a>0时:抛物线开口 ;对称轴 ;顶点坐标 ;当x<h 是, y 随x 的增加而 。
当x>h 时,y 随x 的增加而 。
当a<0时(自己写在下边)课堂检测1.抛物线y=3x 2;(1)向左平移4个单位,得到的抛物线是 ; (2)向右平移3个单位,得到的抛物线是 。
2.抛物线y=5(x -5)2,可以看做是抛物线y=5x 2向 平移 单位得到的。
3.抛物线y= -0.5(x+1)2,可以看做是抛物线y= -0.5x 2向 平移 单位得到的。
4.把抛物线y=0.7(x+3)2,向左平移6个单位得到的抛物线为 。
向右平移1个单位得到5.抛物线y= -4(x -2)2可以看做是抛物线y= -4(x+3)2向 平移 单位得到的。
6.在同一坐标系中画出:Y=-2x 2 ;y=-2(x+2)2; y= -2(x -2)2图像。
22.1.3二次函数y=a (x -h )2+k 的图像和性质(第三课时)xy-3-2-10 1 23y x主备人:李安民 副备人:孙振坤 侯秀山 王明芝活动目标 研究、掌握二次函数y=a (x -h )2+k 的图像和性质个性 调整 活 动 过 程活动一.知识回顾:.)3(21y ;)2(21y ,21.2.321121y ,21y .1222222--=+-=-=--=+-=-=x x x y x y x x 单位得到平移向单位得到平移向单位得到平移;向单位得到平移向活动二.在同一直角坐标系中划出:.1)1(21).3(;121).2(;21).1(222-+---=-=x x y x y 图像。
x-3 -2 -1 0 1 2 3 Y= -21x 2 Y=-21(x+1)2Y=-21(x -1)2-1通过图像,可以得出,抛物线y=-21(x -1)2-1的图像可以由y= -21x 2的图像 向 平移 单位得到抛物线y=-21(x+1)2的图像,再把y=-21(x+1)2的图像向 平移 单位就可得到。
(想想有没有其他平移方法) 抛物线y=a(x -h)2-k 的图像,可以由抛物线y=ax 2怎样移动得到? 活动四小组研究:二次函数y=a (x -h )2+k 的图像和性质:a>0时;抛物线的开口方向 ;对称轴 ;顶点坐标 ;当x<h 时,y 随x 的增大而 ;当x>h 时,y 随x 的增大而 ; a>0时;(自己归纳总结,写在下面)课堂检测1.抛物线y=2(x+3)2-5的开口方向 ;对称轴是 ;顶点坐标是 。
它可以看成是y=2x 2的图像向 平移 单位,再向 平移 单位得到的。
当x<-3时,y 随x 的增大而 。
当x>-3时,y 随x 的增大而 。
2.抛物线y=-5(x -3)2+4的开口方向 ;对称轴是 ;顶点坐标是 。
它可以看成是y=-5x 2的图像向 平移 单位,再向 平移 单位得到的。
当x<3时,y 随x 的增大而 。
当x >3时,y 随x 的增大而 。
3.如图,在平面直角坐标系中,抛物线所表示的函数解析式为,则下列结论正确的是( )A.B.<0, >0C.<0,<0D.>0,<04.二次函数y= -3(x -3)2+2是由y= -3(x+3)2 平移得到的.5.画出抛物线:y =x 2的图像; 通过平移方法再画出y =(x+3)2和y=(x+3)2-2的图像22.1.3 二次函数y=a (x -h )2+k 的图像和性质(第四课时)主备人:李安民 副备人:孙振坤 侯秀山 王明芝活动目标 应用二次函数y=a (x -h )2+k 的图像和性质解决问题 (顶点式确定抛物线解析式)个性 调整活 动 过 程活动一. 小组讨论解答:1.抛物线y=a (x -h )2+k 的顶点坐标为( );对称轴为 。
2.写出一个顶点为(-2,3)的抛物线解析式 。
写出一个顶点为(6,-5)的抛物线解析式 。
※3.顶点为(2,4)且经过点(3,-3)的抛物线解析式为 。
活动二:按照提示完成例4:例4.要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长? 建立适当的直角坐标系; 1.找出出顶点坐标( )2.设二次函数解析式为 。
3.观察抛物线都过哪些点 。
4.求出抛物线解析式为 。
5.确定水管的高度为 。
活动三:仿照例4完成练习如图,排球运动员站在点O 处练习发球,将球从点O 正上方2米的点A 处发出把球看成点,其运行的高度y (米)与运行的水平距离x (米)满足关系式y=a (x-6)2+h ,已知球网与点O 的水平距离为9米,高度为2.43米,球场的边界距点O 的水平距离为18米. (1)当h=2.6时,求y 与x 的函数关系式.(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由. (3)若球一定能越过球网,又不出边界.则h 的取值范围是多少?课堂检测:1.二次函数的图象是由函数的图象先向 (左、右)平移 个单位长度,再向 (上、下)平移 个单位长度得到的.2.若抛物线的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为 .3.抛物线向右平移3个单位长度,再向下平移5个单位长度,则平移后所得的抛物线的解析式为4.抛物线y=﹣(x ﹣2)2﹣3的顶点坐标是( )A . (﹣2,﹣3)B . (2,3)C . (﹣2,3)D . (2,﹣3)5.关于二次函数的图像,下列判断正确的是( )A .图像开口向上B .图像的对称轴是直线x =1C .图像有最低点D .图像的顶点坐标为6.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是 ( ) A .y=(x -2)2+1 B .y=(x+2)2+1 C .y=(x -2)2-3 D .y=(x+2)2-3 作业:1.如图,抛物线y=ax 2+bx+c 与x 轴交于点A (﹣1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论: ①当x >3时,y <0;②3a+b >0;③﹣1≤a≤﹣; ④3≤n≤4中, 正确的是( ) A . ①② B . ③④ C . ①④ D . ①③ 2.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB的距离为9m ,AB=36m ,D ,E 为桥拱底部的两点,且DE∥AB,点E 到直线AB 的距离为7m ,则DE 的长为 m.A BD EC主备人:李安民副备人:孙艺静常文姬王舜君活动目标研究、掌握二次函数y=ax2+bx+c的图像和性质个性调整活动过程活动一:(回顾知识,填空,小组内自检)得到的。
平移个单位,再向平移先向的图像线的图像可以看做是抛物抛物线22213)6(21xyxy=+-=活动二:根据提示研究二次函数216212+--=xxy的图像和性质1.把216212+--=xxy化成上节课学过的y=a(x-h)2+k的形式为2.根据活动一的提示,可以先画抛物线的图像,然后再经过怎样的平移就能得到216212+--=xxy的图像。
(画二次函数图像,一般先找到顶点坐标,然后根据抛物线对称性,对称列表。
)活动三:仿照活动二思考抛物线y=ax2+bx+c的图像和性质。
1.通过配方y=ax2+bx+c化为y=a(x-h)2+k的形式为2.y=ax2+bx+c的对称轴为;顶点坐标为。
3.当a>0时x<ab2-时,图像大致情况为图1,y随x的增大而。
x>ab2-时,y随x的增大而。
的增大而随时,中画出大致图像大致,在图的增大而随时,-当⎪⎪⎩⎪⎪⎨⎧-<><xyabyab2x2x2x0,a。