中考试题【全国通用】一轮复习专题测试卷(七)图形变换与相似(含答案).docx
备考2024年中考数学一轮复习-图形的变换_图形的相似_平行线分线段成比例-综合题专训及答案
备考2024年中考数学一轮复习-图形的变换_图形的相似_平行线分线段成比例-综合题专训及答案平行线分线段成比例综合题专训1、(2015淮安.中考真卷) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,动点M从点A 出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动,过线段MN的中点G作边AB的垂线,垂足为点G,交△ABC的另一边于点P,连接PM,PN,当点N运动到点A时,M,N两点同时停止运动,设运动时间为t秒.(1)当t=秒时,动点M,N相遇(2)设△PMN的面积为S,求S与t之间的函数关系式(3)取线段PM的中点K,连接KA,KC,在整个运动过程中,△KAC的面积是否变化?若变化,直接写出它的最大值和最小值;若不变化,请说明理由.2、(2019.中考模拟) 已知点M,N的坐标分别为(0,1),(0,﹣1),点P是抛物线y=x2上的一个动点.(1)求证:以点P为圆心,PM为半径的圆与直线y=﹣1的相切;(2)设直线PM与抛物线y=x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM =∠QNM.3、(2015温州.中考真卷) 如图,抛物线y=﹣x2+6x交x轴正半轴于点A,顶点为M,对称轴MB交x轴于点B.过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.(1)求点A,M的坐标.(2)当BD为何值时,点F恰好落在该抛物线上?(3)当BD=1时求直线MF的解析式,并判断点A是否落在该直线上.(4)②延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1:S2:S3= .4、(2011金华.中考真卷) 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连接CF.(1)当∠AOB=30°时,求弧AB的长度;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.5、(2016聊城.中考真卷) 如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C (0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.6、(2017新乡.中考模拟) 抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.7、(2018武汉.中考真卷) 如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.8、(2020谯城.中考模拟) 如图,在Rt△ABC中,∠ACB = 90°,BC = 6,AC = 8.点D是AB 边上一点,过点D作DE // BC,交边AC于E.过点C作CF // AB,交DE的延长线于点F.(1)如果,求线段EF的长;(2)求∠CFE的正弦值.9、(2020泰顺.中考模拟) 如图,在钝角中,,以为直径作圆O,交于点D,连结并延长,交于点E,连结.(1)求证:四边形是平行四边形。
(通用)第一阶段7、图形变换及相似、全等
第七部分 图形变换与图形的全等、相似 图形变换一、轴对称:如果某个图形沿一条直线翻折后,直线两旁的部分能够完全重合,那么就称这个图形为轴对称图形,这条直线叫做这个图形的对称轴.如果两个图形以一条直线为轴翻折,能够彼此重合,那么就说这两个图形成轴对称。
轴对称的特征:轴对称图形的对称轴垂直平分对称点的连线段;两个图形成轴对称,则这两个图形全等。
二、平移:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动称为平移.平移的特征:平移后对应线段相等且平行或在一条直线上,对应角相等;对应点连线相等且平行或在一条直线上;图形的形状、大小不变。
三、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角度称为旋转角.旋转的特征:旋转时每个点都绕旋转中心旋转相同的角度;对应点到旋转中心的距离相等;图形的形状、大小不变。
四、中心对称:如果一个图形绕着某一定点旋转180°后能与自身重合,那么就称这个图形为中心对称图形;如果一个绕着某一定点旋转180°后能与另一个图形重合,那么就称这两个图形成中心对称.这个定点叫对称中心.中心对称的特征:成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。
五、全等变换:能够完全重合的两个图形叫全等图形.一个图形经过平移、翻折、旋转等变换所得到的新图形一定与原图形全等.全等多边形的对应边相等、对应角相等。
六、位似变换:以一个定点为中心,将一个图形进行放大或缩小的变换,叫位似变换. 这个定点叫位似中心.【位似一定相似,相似不一定位似】【中考试题】:1、直线12+=x y 向下平移2个单位后的解析式是,再向右平移2个单位后的解析式是 .2、如图,O 是边长为1的正△ABC 的中心,将△ABC 绕点O逆时针方向旋转180°得△DEF ,则△DEF 与△ABC 重叠部分(图中阴影部分)的面积为 .3、如图,Rt △ABC 中,∠B=90°,AB=3cm ,AC=5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于 cm .4、在同一坐标平面内,下列4个函数①,1)1(22-+=x y②,322+=x y ③,122--=x y ④1212-=x y 的图象不可能 由函数122+=x y 的图象通过平移、轴对称变换得到的是 (填序号).5、如图,矩形ABCO 中,OA 在x 轴上,OC 在y 轴上,且OA=2,AB=5,把△ABC 沿着AC 对折得到△AB ’C ,AB ’交y 轴于D 点,则点B ’的坐标为 .6、如图,将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转15°后,得到△ADE ,则图中阴影部分的面积是 .7、如图,在Rt △ABC 中,∠ACB=90°,∠B=30°,BC=3.点D 是BC 边上一动点(不与B 、C 重合),过点D 作DE ⊥BC交AB 于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处.当△AEF 为直角三角形时,BD 的长为 .8、如图,已知点C 为直线x y =上在第一象限内的一点,直线12+=x y 交y 轴于点A ,交x 轴于点B ,将直线AB 沿射线OC 方向平移23个单位,求平移后的直线的解析式.9、如图,在等边△ABC 内有一点D ,AD=5,BD=6,CD=4,将△ABD 绕点A 逆时针旋转,使AB 与AC 重合,点D 旋转到点E ,则∠CDE 的正切值为 .10、如图,P 是矩形ABCD 下方一点,将△PCD 绕P 点顺时针旋转60°后恰好D 点与A 点重合,得到△PEA ,连结EB .(1)判断△ABE 形状,并说明理由;(2)若AB=2,AD=33,求PE 的长.11、如图,已知矩形纸片ABCD ,AD=2,AB=4.将纸片折叠,使顶点A 与边CD 上的点E 重合,折痕FG 分别与AB 、CD 交于点G 、F ,AE 与FG 交于点O .(1)如图1,求证:A 、G 、E 、F 四点围成的四边形是菱形;(2)如图2,当△AED 的外接圆与△A 相切于点N 时,求证:点N 是线段BC 的中点;(3)在(2)的条件下,求折痕FG 的长.12、已知等腰△OAB 在直角坐标系中的位置如图,点A 的坐标为)3,33(-,点B 的坐标为)0,6(-.(1)若△OAB 关于y 轴的轴对称图形是△''B OA ,请直接写出A 、B 的对称点''B A 、的坐标;(2)若将△OAB 沿x 轴向右平移a 个单位,此时点A 恰好落在反比例函数xy 36=的图象上,求a 的值;(3)若△OAB 绕点O 按逆时针方向旋转30°时点B 恰好落在反比例函数xk y =的图象上,求k 的值.图形的全等一、定义:能够完全重合的两个图形,叫全等形;能够完全重合的两个三角形,叫全等三角形.二、识别:(1)三边对应相等(符号记为“S.S.S.”);(2)两边和夹角对应相等(符号记为“S.A.S.”);(3)两角和夹边对应相等(符号记为“A.S.A.”);(4)两角和其中一个角的对边对应相等(符号记为“A.A.S.”)的两个三角形全等.特殊地,有一条直角边和斜边对应相等的两个直角三角形全等.(记为“H.L.”) 三、性质:(1)全等三角形的对应边相等,对应角相等.(2)全等三角形对应边上的中线、高分别对应相等,对应角的平分线对应相等; 全等三角形的周长相等,面积相等.【中考试题】:1、下列命题正确的是( )A.三个内角对应相等的两个三角形全等 B .有两边对应相等的两个直角三角形全等 C .一边上的高对应相等的两个等腰三角形全等 D .一边相等的两个等腰三角形全等2、如图,正方形ABCD 中,点E 是AD 边中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE;②BG=4GE;③CHD BHE S S ∆∆=;④∠AHB=∠EHD.其中正确的是 .3、如图,现给出五个等式①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA ,请以其中两个为条件,另两个为结论,写出一个正确的命题.(写出已知、求证并证明)4、如图,折叠矩形的一边AD ,使点D 落在BC 上的点F 处,已知AB=8cm ,BC=10cm ,则EC 的长为 .5、如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连结EF 、BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC .(1)求证:OE=OF ;(2)若BC=32,求AB 的长.6、如图,P 是等边△ABC 内的一点,连结P A 、PB 、PC 并以PB 为角的一边作∠PBQ=60°,且BQ=BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论;(2)若P A :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由。
2023中考数学一轮复习资料(全国通用):图形的变换(练透)(教师版)
专题25 图形的变换一、单选题1.(2022·福建省福州杨桥中学)下列交通标志中,是中心对称图形的是()A.B.C.D.【答案】B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意.故选:A.2.(2022·全国九年级专题练习)下列每组的两个图形不是位似图形的是()A.B.C.D.【答案】D【分析】根据位似图形的概念对各选项逐一判断,即可得出答案.【详解】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A、B、C三个图形中的两个图形都是位似图形;而D的对应顶点的连线不能相交于一点,故不是位似图形.故选:D.3.(2022·广东九年级期末)下列图形中,是中心对称图形的是()A. B.C.D.【答案】D【分析】根据中心对称图形的概念求解.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.4.(2018·内蒙古九年级期末)下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180 ,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】A.是轴对称图形,不是中心对称图形,故该选项不符合题意;B.既是轴对称图形,又是中心对称图形,故该选项符合题意;C.是轴对称图形,不是中心对称图形,故该选项不符合题意;D是轴对称图形,不是中心对称图形,故该选项不符合题意.故选B.5.(2022·哈尔滨市第十七中学校九年级)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不合题意;B.既是轴对称图形,也是中心对称图形,故本选项符合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.6.(2020·浙江九年级期末)如图,将图形用放大镜放大,应该属于()A.平移变换B.相似变换C.旋转变换D.轴对称变换【答案】B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.7.(2022·全国九年级课时练习)晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是()A.先变短后变长B.先变长后变短C.逐渐变短D.逐渐变长【答案】A【分析】根据投影可直接进行求解.【详解】解:由人在马路上走过一盏路灯的过程中,可知光线与地面的夹角越来越大,人在地面上留下的影子越来越短,当人到达灯的下方时,人在地面上的影子变成一个圆点,当远离路灯时,则影子又开始变长;故选A.8.(2022·西安·陕西师大附中)在平面直角坐标系中,若将三角形上各点的横坐标都加上5,纵坐标保持不变,则所得图形在原图形的基础上()A.向左平移了5个单位长度B.向下平移了5个单位长度C.向上平移了5个单位长度D.向右平移了5个单位长度【答案】D【分析】根据图象平移特点,横坐标增加5,纵坐标不变,即图象向右平移,据此解题即可.【详解】解:因为三角形三个顶点的横坐标都增加5,纵坐标保持不变,所以所得的新图形与原图形相比向右平移了5个单位长度,故选:D9.(2022·哈尔滨市第四十七中学九年级开学考试)下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】D【分析】利用轴对称图形的定义进行解答即可.【详解】解:从左到右,第一、二、三、四个图形都是轴对称图形,故选:D.10.(2022·全国九年级单元测试)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形和中心对称图形的概念:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心;据此判断即可.【详解】解:A、是轴对称图形不是中心对称图形,故不符合题意;B、是轴对称图形不是中心对称图形,故不符合题意;C、是轴对称图形也是中心对称图形,故符合题意;D、是轴对称图形不是中心对称图形,故不符合题意;故选:C.二、填空题11.(2022·全国九年级课时练习)轴对称图形的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的_____________.(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的_______________.【答案】垂直平分线垂直平分线12.(2022·全国九年级课时练习)像这样,把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或________.这个点叫做___________.这两个图形在旋转后能重合的对应点叫做关于对称中心的_________.△OCD和△OAB关于点O对称,对称点是A与_______、B与________.【答案】中心对称对称中心对称点C D13.(2022·湖南)如图,所示的美丽图案中,既是轴对称图形又是中心对称图形的有_____个.【答案】3.【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:(1),(3),(4)是轴对称图形,也是中心对称图形.(2)是轴对称图形,不是中心对称图形.故答案为:3.14.(2022·福建省泉州实验中学九年级期中)如图,正六边形ABCDEF沿CD方向平移至正六边形FGDHIJ 位置,已知四边形FGDE的面积是23,则平移的距离是________.【答案】2【分析】分别连接GE、DF,两线交于点O,依题意可得四边形FGDE是菱形,且∠FGD=120°,GE⊥DF,设AF=a,则GE=a,3OF ,由菱形的面积公式即可求得a的值,从而得平移的距离.【详解】分别连接GE、DF,两线交于点O,如图由正六边形的每个内角为120°,且每条边都相等根据平移的性质得:四边形FGDE是菱形,且∠FGD=120°∴GE⊥DF,∠FGE=60°∴△FGE是等边三角形设AF=a,则GE=a∴12GO a=,32OF a=∴3FD a=∵123 2GE FD=∴1323 2a a⨯=∴a=2(负根舍去)所以平移的距离为2故答案为:2.15.(2022·江苏高港区·高港实验学校)如图,AB为⊙O的直径,C为⊙O上一动点,将AC绕点A逆时针旋转120°得AD,若AB=2,则BD的最大值为_____.71【分析】将△ABD绕点A顺时针旋转120°,则D与C重合,B'是定点,BD的最大值即B'C的最大值,根据圆的性质,可知:B'、O、C三点共线时,BD最大,根据勾股定理可得结论.【详解】如图,将△ABD绕点A顺时针旋转120°,则D与C重合,B'是定点,BD的最大值即B'C的最大值,即B'、O、C三点共线时,BD最大,过B'作B'E⊥AB于点E,由题意得:AB =AB'=2,∠BAB'=120°, ∴∠EAB'=60°,Rt △AEB '中,∠AB'E =30°,∴AE =12AB'=1,EB'=222-1=3,由勾股定理得:OB'=22+OE B E '=()222+3=7,∴B'C =OB'+OC =7+1. 故填:7+1..三、解答题16.(2020·浙江杭州·九年级期中)已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得到GFC .(1)求证:BE DG =(2)若四边形ABFG 是菱形,且60B ︒∠=,求:AB BC 的值. 【答案】(1)见详解;(2)AB :BC=2:3. 【分析】(1)根据平移的性质,可得:AE=CG ,再证明Rt △ABE ≌Rt △CDG 即可得到BE=DG ;(2)根据四边形ABFG 是菱形,得出AB=BF ;根据条件找到满足AB=BF 的AB 与BC 满足的数量关系即可. 【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AB=CD.∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.∴CG⊥AD.∴∠AEB=∠CGD=90°.∵AE=CG,AB=CD,∴Rt△ABE≌Rt△CDG(HL).∴BE=DG;(2)∵四边形ABFG是菱形∴AB∥GF,AG∥BF,∵Rt△ABE中,∠B=60°,∴∠BAE=30°,∴BE=12AB.(直角三角形中30°所对直角边等于斜边的一半)∵四边形ABFG是菱形,∴AB=BF.∴BE=CF,∴EF=12AB,∴BC=32 AB,∴AB:BC=2:3.17.(2022·哈尔滨市虹桥初级中学校九年级)如图,图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1个单位,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、P A,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为10的矩形ABCD,且点B和点D均在小正方形的顶点上.【答案】(1)作图见解析,四边形AQCP的周长为410;(2)见解析.【分析】(1)利用网格特点和对称的性质作出格点Q,使P、Q点关于直线AC对称,判断四边形AQCP为正方形,然后计算AP的长度得到正方形AQCP的周长;(2)利用(1)中方法作正方形ABCD,则正方形ABCD满足条件.【详解】(1)如图,点Q和四边形AQCP为所作;由网格特征可得AQ=QC=CP=P A,OA=OC=OQ=OP,∵点P与点Q关于AC对称,∴PQ⊥AC,∴四边形AQCP是正方形,∴四边形AQCP的周长=4AQ=4×22+=410;13(2)如图,矩形ABCD为所作.18.(2022·黑龙江)如图,在63⨯的方格纸中,每个小正方形的边长为1,点A、B均在小正方形的顶点上,请按要求画出图形并计算.(1)画出ABC ,使得45ABC ∠=︒,点C 在小正方形的顶点上,且ABC 的面积为7.5; (2)画出点D ,点D 在小正方形的顶点上,且CD AC =,并直接写出AD 边的长. 【答案】(1)见解析;(2)见解析,AD 的长为10 【分析】(1)过A 作AE ⊥AB 交网格于E ,由勾股定理AB =AE =2231=10+,可得∠ABE =45°,延长BE 交网格于C ,△ABC 为所求;(2)由CD =AC =5,根据勾股定理CD =2234=5+,取过A 点竖直网格点F ,作AB 关于AF 的对称点AD ,连结CD ,则CD 为所求,AD =AB=10. 【详解】解:(1)过A 作AE ⊥AB 交网格于E , 由勾股定理AB =AE =2231=10+, ∴∠ABE =45°, 延长BE 交网格于C , 则S △ABC =113537.522AC ⨯=⨯⨯=, ∴△ABC 为所求;(2)∵CD =AC =5,根据勾股定理CD 2234=5+取过A 点竖直网格点F ,作AB 关于AF 的对称点AD ,连结CD , 则CD 为所求,如图所示,AD=AB=10∴AD的长为10.19.(2022·江苏徐州·)如图,将平行四边形ABCD的四个角向内折起,恰好拼成一个无缝隙、无重叠四边形EFGH.(1)请直接写出∠HEF的度数;(2)判断HF与AD的数量关系,并说明理由.【答案】(1)90°;(2)HF=AD,理由见解析【分析】(1)由折叠的性质可得:∠HEJ=∠AEH,∠BEF=∠FEJ,由平角的性质可求∠HEF=90°;(2)先证四边形EFGH是矩形,可得HG=EF,HG//EF,由“AAS”可证△BFE≌△DHG,可得BF=HD =JF,即可求解.【详解】解:(1)由折叠可得:∠HEJ=∠AEH,∠BEF=∠FEJ,×180°=90°,∴∠HEF=∠HEJ+∠FEJ=12故答案为:90°;(2)HF=AD,理由如下:由折叠可得:∠EFB=∠EFH,∠CFG=∠KFG,BF=JF,AH=HJ,DH=HK,∴∠EFG=90°,同理可得∠EHG=∠HGF=90°,∴四边形EFGH 是矩形, ∴HG =EF ,HG //EF , ∴∠GHF =∠EFH , ∴∠BFE =∠DHG , 在△BFE 和△DHG 中, B D BFE DHG EF HG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BFE ≌△DHG (AAS ), ∴BF =HD , ∴HD =JF , ∴HF =AD .20.(2022·浙江衢州市·九年级期中)在平面直角坐标系中,已知(2,0)A ,(3,1)B ,(1,3)C . (1)将ABC ∆沿x 轴负方向平移2个单位至△111A B C ,画图并写出1C 的坐标 ;(2)以1A 点为旋转中心,将△111A B C 逆时针方向旋转90︒得△222A B C ,画图并写出2C 的坐标为 ; (3)求在旋转过程中线段11A C 扫过的面积.【答案】(1)(1,3)-;(2)(3,1)--;(3)2.5π 【分析】(1)将三个顶点分别向左平移2个单位得到其对应点,再顺次连接即可得;(2)将三个顶点分别以点A 1为旋转中心,逆时针方向旋转90°得到对应点,再顺次连接即可得; (3)由题意可知线段11A C 扫过的面积是一个圆心角为90°,半径为线段11A C 长的扇形,由此求解即可. 【详解】解:(1)如图,△111A B C 即为所求.画图并写出1C 的坐标(1,3)-; 故答案为:(1,3)-.(2)如图,△222A B C 即为所求.画图并写出2C 的坐标为(3,1)--; 故答案为:(3,1)--;(3)由题意得21190C A C =∠ ,22111310AC =+= 旋转过程中线段11A C 扫过的面积290(10) 2.5360ππ⋅==. 21.(2022·福建省福州第十九中学九年级月考)如图,在ABC 中,90ACB ∠=︒,CD 平分ACB ∠交AB 于点D ,将CDB △绕点C 逆时针旋转到CEP △的位置,点F 在A C 上,连接DE 交AC 于点O . (1)求证:OE OD ;(2)若23AD BD =,3BC =.求DE 的长.【答案】(1)见解析;(263【分析】(1)由角平分线的性质得出45DCB DCA ∠=∠=︒,由旋转的性质得出90DCE ACB ∠=∠=︒,CD CE =,得出90COD ∠=︒,则可得出答案;(2)证明ADO ABC ∆∆∽,由相似三角形的性质得出DO ADBC AB=,求出DO 的长,则可得出答案. 【详解】解:证明:(1)90ACB ∠=︒,CD 平分ACB ∠交AB 于点D , 45DCB DCA ∴∠=∠=︒,将CDB ∆绕点C 逆时针旋转到CEF ∆的位置,90DCE ACB ∴∠=∠=︒,CD CE =,45CDE ∴∠=︒, 90COD ∴∠=︒,OC DE ∴⊥,OE OD ∴=;(2)由(1)OC DE ⊥,BC AC ⊥,//DE BC ∴,ADO ABC ∴∆∆∽,∴DO ADBC AB =, 23AD BD =,35AD AB ∴=, ∴35,DO ∴2DE DO ∴==. 22.(2022·珠海市斗门区实验中学九年级期中)如图,在Rt △ABC 中,∠A =90°,AB =AC ,D 、E 分别在AB ,AC 上,且AD =AE .若△ADE 绕点A 逆时针旋转,得到△AD 1E 1,设旋转角为a (0<α≤180°),记直线BD 1与CE 1的交点为P . (1)求证:BD 1=CE 1;(2)当∠CPD 1=2∠CAD 1时,求旋转角为α的度数.【答案】(1)见解析;(2)135° 【分析】(1)由旋转得到△ABD 1≌△ACE 1的条件即可;(2)由(1)的结论,得出∠ABD 1=∠ACE 1,即可得出结论. 【详解】解:(1)由题意得:∠BAC =∠D 1AE 1=90°, ∴∠CAE 1=∠BAD 1, 在△ABD 1和△ACE 1中, 1111AC AB CAE BAD AE AD=⎧⎪∠=∠⎨⎪=⎩, ∴△ABD 1≌△ACE 1(SAS ), ∴BD 1=CE 1;(2)设AC 与BP 交于点G ,由(1)知△ABD 1≌△ACE 1, ∴∠ABD 1=∠ACE 1, ∵∠AGB =∠CGP , ∴∠CPG =∠BAG =90°, ∴∠CPD 1=90°,∵∠CPD 1=2∠CAD 1, ∴∠CAD 1=12∠CPD 1=45°, ∴旋转角α=90°+∠CAD 1=135°.23.(2022·黑龙江)如图,网格中的每个小正方形的边长均为1.点A 、点B 和点C 在小正方形的顶点上.(1)在图中确定点D ,点D 在小正方形的顶点上,连接DC ,DA ,使得到的四边形ABCD 为中心对称图形;(2)在(1)确定点D 后,在图中确定点E ,点E (不与点C 重合)在小正方形的顶点上,连接ED ,EB 得到凸四边形ABED ,使EBA EDA ∠=∠,直接写出ED 的长. 【答案】(1)见解析;(2)见解析,10ED =. 【分析】(1)利用平行四边形的对称性确定D ;(2)如图,连接AE ,可得△ADE 是等腰直角三角形,得到∠EDA =45°,利用网格特点可得∠EBA =45°,从而确定E 点即为所求,然后再利用勾股定理求解即可. 【详解】 解:(1)如图:此时,由勾股定理得:222222CD AB ==+22125AD BC =+∴四边形ABCD 是平行四边形, ∴四边形ABCD 是中心对称图形.(2)如图,点E 即为所求, 连接AE ,则有AE 5DE=,∵AD=∴AD2+AE2=10=DE2,∴△ADE是等腰直角三角形,∠DAE=90°,∴∠EDA=45°,又∠EBA=45°,∴∠=∠,EBA EDA∴点E是符合条件的点,此时ED=。
中考数学《图形的相似》真题汇编含解析
图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。
2024年九年级中考数学一轮复习专项练习题:相似(含答案)
2024年九年级中考数学一轮复习专项练习题:相似一、单选题1.下列说法正确的是( )A .各有一个角是70°的等腰三角形相似B .各有一个角是95°的等腰三角形相似C .所有的矩形相似D .所有的菱形相似2.如图,在 △ABC 中, DE//BC , AD =6 , DB =3 , AE =4 ,则 AC 的长为( )A .1B .2C .4D .63.如图,△ABC 中,D 、E 分别为AC 、BC 边上的点,AB ∥DE ,CF 为AB 边上的中线,若AD=5,CD=3,DE=4,则BF 的长为( )A .323B .163C .103D .83 4.如图,在三角形ABC 中,M ,N 分别是边AB ,AC 上的点,AM = 14 AB ,AN = 14 AC ,则三角形AMN 的面积与四边形MBCN 的面积比( )A .12B .115C .14D .116 5.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA , OB , OC 的中点, 则△DEF 与△ABC 的面积比是( )A .1:6B .1:5C .1:4D .1:26.如图, △ABC 中, AB =AC =3 ,将 △ABC 绕点 B 顺时针方向旋转得到 △DEB ,当点 D 落在 BC 边上时, ED 的延长线恰好 B 经过点 A ,则 AD 的长为( )A .3√5−3B .3√5−32C .92D .92√5 7.如图,四边形 ABCD 中, P 为对角线 BD 上一点,过点 P 作 PE//AB ,交 AD 于点E ,过点 P 作 PF//CD ,交 BC 于点F ,则下列所给的结论中,不一定正确的是( ).A .PE AB =PF CD B .AE DE =BF CFC .CF BC +AE AD =1 D .PE AB +PF CD =1 8.如图,在四边形 ABCD 中, AB ∥CD ,对角线 AC 、 BD 交于点 O 有以下四个结论其中始终正确的有( )①ΔAOB ∽ΔCOD ; ②ΔAOD ∽ΔACB ;③S ΔDOC :S ΔAOD =DC:AB ; ④S ΔAOD =S ΔBOCA .1个B .2个C .3个D .4个二、填空题9.在平行四边形ABCD 的边AB 和AD 上分别取点E 和F ,使AE=13AB ,AF=14AD ,连接EF 交对角线AC 于G ,则AG的值是.AC10.如图,在▱ABCD中,E为CD上一点,连接AE,BD交于点F,S△DEF:S△ABF=4:25,则DE:EC= .11.已知:如图,PAB、PCD是⊙O的割线,PA=4cm,AB=6cm,CD=3cm .则PD = cm .12.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为cm.13.如图,在平面直角坐标系中,等腰△OBC的边OB在x轴上,OB=CB,OB边上的高CA与OC边上的高BE 相交于点D,连接OD,AB=√2,∠CBO=45°,在直线BE上求点M,使△BMC与△ODC相似,则点M的坐标是.三、解答题14.如图,四边形ABCD是平行四边形,E是BA延长线上的一点,连接EC交AD于点F.求证:△BEC∽△DCF .15.如图,在边长为1的正方形网格内有一个三角形ABC(1)把△ABC沿着轴向右平移5个单位得到△A1B1C1,请你画出△A1B1C1(2)请你以O点为位似中心在第一象限内画出△ABC的位似图形△A2B2C2,使得△ABC与△A2B2C2的位似比为1:2;(3)请你写出△A2B2C2三个顶点的坐标。
2023年中考数学一轮专题练习 图形的相似(含解析)
2023年中考数学一轮专题练习 ——图形的相似3一、单选题(本大题共11小题)1. (云南省2022年)如图,在ABC 中,D 、E 分别为线段BC 、BA 的中点,设ABC的面积为S 1,EBD 的面积为S 2.则21S S =( )A .12 B .14 C .34 D .782. (广西百色市2022年)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:1 3. (广西贺州市2022年)如图,在ABC 中,25DE BC DE BC ==∥,,,则:ADE ABC S S 的值是( )A .325B .425C .25D .35 4. (广西贺州市2022年)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A .2cmB .3cmC .4cmD .5cm5. (广西梧州市2022年)如图,以点O 为位似中心,作四边形ABCD 的位似图形''''A B C D ﹐已知'13OAOA ,若四边形ABCD 的面积是2,则四边形''''A B C D 的面积是( )A .4B .6C .16D .186. (贵州省毕节市2022年)矩形纸片ABCD 中,E 为BC 的中点,连接AE ,将ABE △沿AE 折叠得到AFE △,连接CF .若4AB =,6BC =,则CF 的长是( )A .3B .175C .72D .1857. (贵州省贵阳市2022年)如图,在ABC 中,D 是边上的点,,,则与的周长比是()AB B ACD ∠=∠:1:2AC AB =ADC ACB △A .B .C . D.8. (海南省2022年)如图,点(0,3)(1,0)A B 、,将线段AB 平移得到线段DC ,若90,2ABCBC AB ∠=︒=,则点D 的坐标是( )A .(7,2)B .(7,5)C .(5,6)D .(6,5)9. (浙江省金华市2022年)如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则AD AB的值为( )A .B .C .207D .8310. (黑龙江省哈尔滨市2022年)如图,相交于点E ,,则的长为( )A .32B .4C .D .611. (黑龙江省省龙东地区2022年)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC 于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②45OPA ∠=︒;③AP BP -=;④若:2:3BE CE =,则4tan 7CAE ∠=;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是( ) 1:21:31:4,,AB CD AC BD ∥1,2,3AE EC DE ===BD 92A .①②④⑤B .①②③⑤C .①②③④D .①③④⑤二、填空题(本大题共11小题)12. (浙江省湖州市2022年)如图,已知在△ABC 中,D ,E 分别是AB ,AC 上的点,DE BC ∥,13AD AB =.若DE =2,则BC 的长是 .13. (浙江省温州市2022年)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13m MC CD ==,垂直于地面的木棒EF 与影子FG 的比为2∶3,则点O ,M 之间的距离等于 米.转动时,叶片外端离地面的最大高度等于 米.14. (北京市2022年)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为 .15. (江苏省泰州市2022年)如图上,Δ,90,8,6,ABC C AC BC ∠===中O 为内心,过点O 的直线分别与AC 、AB 相交于D 、E ,若DE=CD+BE ,则线段CD 的长为 .16. (山东省潍坊市2022年)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为 .17. (陕西省2022年)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF 将矩形窗框ABCD 分为上下两部分,其中E 为边AB 的黄金分割点,即2BE AE AB =⋅.已知AB 为2米,则线段BE 的长为 米.18. (浙江省丽水市2022年)一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是 cm .ABCD19. (浙江省杭州市2022年)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ⊥BC ,DE ⊥EF ,DE =2.47m ,则AB = m .20. (黑龙江省省龙东地区2022年)在矩形ABCD 中,9AB =,12AD =,点E 在边CD 上,且4CE =,点P 是直线BC 上的一个动点.若APE 是直角三角形,则BP 的长为 .21. (江苏省宿迁市2022年)如图,在矩形ABCD 中,AB =6,BC =8,点M 、N 分别是边AD 、BC 的中点,某一时刻,动点E 从点M 出发,沿MA 方向以每秒2个单位长度的速度向点A 匀速运动;同时,动点F 从点N 出发,沿NC 方向以每秒1个单位长度的速度向点C 匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF ,过点B 作EF 的垂线,垂足为H .在这一运动过程中,点所经过的路径长是 .22. (安徽省2022年)如图,四边形ABCD 是正方形,点E 在边AD 上,△BEF 是以E 为直角顶点的等腰直角三角形,EF ,BF 分别交CD 于点M ,N ,过点F 作AD 的垂线交AD 的延长线于点G .连接DF ,请完成下列问题:H(1)FDG ∠= °;(2)若1DE =,DF =MN = .三、解答题(本大题共8小题)23. (湖南省常德市2022年)在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:①GE GD =;②BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论②的证明.24. (湖北省武汉市2022年)问题提出:如图(1),ABC 中,AB AC =,D 是AC 的中点,延长BC 至点E ,使DE DB =,延长ED 交AB 于点F ,探究AF AB的值.(1)先将问题特殊化.如图(2),当60BAC ∠=︒时,直接写出AF AB的值; (2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在ABC 中,AB AC =,D 是AC 的中点,G 是边BC 上一点,()12CG n BC n=<,延长BC 至点E ,使DE DG =,延长ED 交AB 于点F .直接写出AF AB的值(用含n 的式子表示). 25. (甘肃省金昌市2022年)如图,AB 是O 的直径,AM 和BN 是它的两条切线,过O 上一点E 作直线DC ,分别交AM 、BN 于点D 、C ,且DA =DE .(1)求证:直线CD 是O 的切线;(2)求证:2OA DE CE =⋅26. (湖北省宜昌市2022年)已知菱形ABCD 中,E 是边AB 的中点,F 是边AD 上一点.(1)如图1,连接CE ,CF .CE AB ⊥,CF AD ⊥.①求证:CE CF =;②若2AE =,求CE 的长;(2)如图2,连接CE ,EF .若3AE =,24EF AF ==,求CE 的长.27. (浙江省温州市2022年)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE CD ⊥,交CD 延长线于点E ,交半圆于点F ,已知5,3BC BE ==.点P ,Q 分别在线段AB BE ,上(不与端点重合),且满足54AP BQ =.设,BQ x CP y ==.(1)求半圆O 的半径.(2)求y 关于x 的函数表达式.(3)如图2,过点P 作PR CE ⊥于点R ,连结,PQ RQ .①当PQR 为直角三角形时,求x 的值.②作点F 关于QR 的对称点F ',当点F '落在BC 上时,求CF BF ''的值. 28. (江苏省泰州市2022年)已知:△ABC 中,D 为BC 边上的一点.(1)如图①,过点D 作DE ∥AB 交AC 边于点E ,若AB =5,BD =9,DC =6,求DE 的长;(2)在图②,用无刻度的直尺和圆规在AC 边上做点F ,使∠DFA =∠A ;(保留作图痕迹,不要求写作法)(3)如图③,点F 在AC 边上,连接BF 、DF ,若∠DFA =∠A ,△FBC 的面积等于12CD AB •,以FD 为半径作⊙F ,试判断直线BC 与⊙F 的位置关系,并说明理由. 29. (江苏省苏州市2022年)(1)如图1,在△ABC 中,2ACB B ∠=∠,CD 平分ACB ∠,交AB 于点D ,DE //AC ,交BC 于点E .①若1DE =,32BD =,求BC 的长; ②试探究AB BE AD DE-是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,CBG ∠和BCF ∠是△ABC 的2个外角,2BCF CBG ∠=∠,CD 平分BCF ∠,交AB 的延长线于点D ,DE //AC ,交CB 的延长线于点E .记△ACD 的面积为1S ,△CDE 的面积为2S ,△BDE 的面积为3S .若2132916S S S ⋅=,求cos CBD ∠的值.30. (浙江省湖州市2022年)已知在Rt △ABC 中,∠ACB =90°,a ,b 分别表示∠A ,∠B 的对边,a b >.记△ABC 的面积为S .(1)如图1,分别以AC ,CB 为边向形外作正方形ACDE 和正方形BGF C .记正方形ACDE 的面积为1S ,正方形BGFC 的面积为2S .①若19S =,216S =,求S 的值;②延长EA 交GB 的延长线于点N ,连结FN ,交BC 于点M ,交AB 于点H .若FH ⊥AB (如图2所示),求证:212S S S -=.(2)如图3,分别以AC ,CB 为边向形外作等边三角形ACD 和等边三角形CBE ,记等边三角形ACD 的面积为1S ,等边三角形CBE 的面积为2S .以AB 为边向上作等边三角形ABF (点C 在△ABF 内),连结EF ,CF .若EF ⊥CF ,试探索21S S 与S 之间的等量关系,并说明理由.参考答案1. 【答案】B【分析】先判定EBD ABC ,得到相似比为12,再根据两个相似三角形的面积比等于相似比的平方,据此解题即可.【详解】解:∵D 、E 分别为线段BC 、BA 的中点, ∴12BE BD AB BC ==, 又∵B B ∠=∠, ∴EBD ABC ,相似比为12, ∴22114S BE S AB ⎛⎫== ⎪⎝⎭, 故选:B .2. 【答案】C【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,∴△ABC 与△A 1B 1C 1的面积比为1:9,故选:C .3. 【答案】B【分析】根据相似三角形的判定定理得到ADE ABC ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】解:25DE BC DE BC ==∥,,∴ADE ABC , ∴2224525ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 故选:B .4. 【答案】B【分析】由圆锥的圆锥体底面半径是6cm ,高是6cm ,可得CD =DE ,根据园锥、圆柱体积公式可得液体的体积为63πcm 3,圆锥的体积为72πcm 3,设此时“沙漏”中液体的高度AD =x cm ,则DE =CD =(6-x )cm ,根据题意,列出方程,即可求解.【详解】解:如图,作圆锥的高AC ,在BC 上取点E ,过点E 作DE ⊥AC 于点D ,则AB =6cm ,AC =6cm ,∴△ABC 为等腰直角三角形,∵DE ∥AB ,∴△CDE ∽△CAB ,∴△CDE 为等腰直角三角形,∴CD =DE ,圆柱体内液体的体积为:圆锥的体积为, 设此时“沙漏”中液体的高度AD =x cm ,则DE =CD =(6-x )cm ,∴, ∴,解得:x =3,即此时“沙漏”中液体的高度3cm .故选:B .5. 【答案】D【分析】两图形位似必相似,再由相似的图形面积比等于相似比的平方即可求解.【详解】解:由题意可知,四边形与四边形相似,由两图形相似面积比等于相似比的平方可知:, 又四边形的面积是2,∴四边形的面积为18,故选:D .6. 【答案】D【分析】 连接BF 交AE 于点G ,根据对称的性质,可得AE 垂直平分BF ,BE =FE ,BG =FG =12BF ,根据E 为BC 中点,可证BE =CE =EF ,通过等边对等角可证明∠BFC =90°,利233763cm ππ⨯⨯=2316672cm 3ππ⨯⨯=21(6)(6)72633x x πππ⋅-⋅-=-3(6)27x -=ABCD ''''A B C D ''''22'1139ABCD A B C D S OA S OA ABCD ''''A B C D用勾股定理求出AE,再利用三角函数(或相似)求出BF,则根据FC=算即可.【详解】连接BF,与AE相交于点G,如图,∵将ABE△沿AE折叠得到AFE△∴ABE△与AFE△关于AE对称∴AE垂直平分BF,BE=FE,BG=FG=12 BF∵点E是BC中点∴BE=CE=DF=13 2BC=∴5 AE=∵sinBE BG BAEAE AB ∠==∴341255BE ABBGAE⋅⨯===∴1224 2225 BF BG==⨯=∵BE=CE=DF∴∠EBF=∠EFB,∠EFC=∠ECF∴∠BFC=∠EFB+∠EFC=18090 2︒=︒∴185FC故选 D7. 【答案】B【分析】先证明△ACD∽△ABC,即有,则可得,问题得解.【详解】∵∠B=∠ACD,∠A=∠A,∴△ACD∽△ABC,∴,12AC AD CDAB AC BC===12AC AD CDAB AC BC++=++AC AD CDAB AC BC==∵, ∴, ∴, ∴△ADC 与△ACB 的周长比1:2,故选:B .8. 【答案】D【分析】先过点C 做出轴垂线段CE ,根据相似三角形找出点C 的坐标,再根据平移的性质计算出对应D 点的坐标.【详解】如图过点C 作轴垂线,垂足为点E ,∵∴∵∴在和BCE ∆中,90ABO BCE AOB BEC =⎧⎨==︒⎩∠∠∠∠ , ∴ABO BCE ∆∆∽,∴ , 则 ,22EC OB ==∵点C 是由点B 向右平移6个单位,向上平移2个单位得到,∴点D 同样是由点A 向右平移6个单位,向上平移2个单位得到,∵点A 坐标为(0,3),∴点D 坐标为(6,5),选项D 符合题意,故答案选D9. 【答案】A【分析】12AC AB =12AC AD CD AB AC BC ===12AC AD CD AC AD CD AB AC BC AB AC BC ++====++x x 90ABC ∠=︒90ABO CBE ∠+∠=︒90CBE BCE +=︒∠ABO BCE ABO ∆12AB AO OB BC BE EC ===26BE AO ==令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A G CF B F'=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH=,最后求出AD AB的值. 【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH , ∵23BF GC =, ∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,52x y A G -'=, 由题意,得==90CA G CB F ''︒∠∠,又为公共角,∴,∴, 则,整理,得,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH =, EH =-(舍),∴AB =x ,∴.故选:A .GCA '∠CGA CFB ''△∽△CG AG CF B F'='53232x yx x y x-=+()()30x y x y +-=AD AB ==10. 【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵∴∴ ∵, ∴∵∴ 故选:C .11. 【答案】B【分析】分别对每个选项进行证明后进行判断:①通过证明得到EC =FD ,再证明得到∠EAC =∠FBD ,从而证明∠BPQ =∠AOQ =90°,即;②通过等弦对等角可证明;③通过正切定义得,利用合比性质变形得到,再通过证明AOP AEC ∽得到OP AE CE AO ⋅=,代入前式得OP AE BP AP BP AO BE⋅⋅-=⋅,最后根据三角形面积公式得到AE BP AB BE ⋅=⋅,整体代入即可证得结论正确;④作EG ⊥AC 于点G 可得EG ∥BO ,根据tan EG EG CAE AG AC CG∠==-,设正方形边长为5a ,分别求出EG 、AC 、CG 的长,可求出3tan 7CAE ∠=,结论错误;⑤将四边形OECF 的面积分割成两个三角形面积,利用()DOF COE ASA ≌,可证明S 四边形OECF =S △COE +S △COF = S △DOF +S △COF =S △COD 即可证明结论正确.【详解】①∵四边形ABCD 是正方形,O 是对角线AC 、BD 的交点,∴OC =OD ,OC ⊥OD ,∠ODF =∠OCE =45°∵OE OF ⊥∴∠DOF +∠FOC =∠FOC +∠EOC =90°∴∠DOF =∠EOC在△DOF 与△COE 中//AB CD ABE CDE ∽AE BE EC DE=1,2,3AE EC DE ===32BE =BD BE ED =+92BD =()DOF COE ASA ≌()EAC FBD SAS ≌AE BF ⊥45OPA OBA ∠=∠=︒tan BE BP BAE AB AP ∠==CE BP AP BP BE ⋅-=ODF OCE OC ODDOF EOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DOF COE ASA ≌∴EC =FD∵在△EAC 与△FBD 中45EC FD ECA FDB AC BD =⎧⎪∠=∠=︒⎨⎪=⎩∴()EAC FBD SAS ≌∴∠EAC =∠FBD又∵∠BQP =∠AQO∴∠BPQ =∠AOQ =90°∴AE ⊥BF所以①正确;②∵∠AOB =∠APB =90°∴点P 、O 在以AB 为直径的圆上 ∴AO 是该圆的弦∴45OPA OBA ∠=∠=︒所以②正确; ③∵tan BE BP BAE AB AP ∠== ∴AB AP BE BP = ∴AB BE AP BP BE BP --= ∴AP BP CE BP BE-= ∴CE BP AP BP BE⋅-= ∵,45EAC OAP OPA ACE ∠=∠∠=∠=︒ ∴∴ ∴ ∴ ∵1122ABE AE BP AB BE S⋅=⋅= ∴AE BP AB BE ⋅=⋅∴OP AB BE AB AP BP OP AO BE AO⋅⋅-==⋅ 所以③正确;AOP AEC ∽OP AO CE AE =OP AE CE AO⋅=OP AE BP AP BP AO BE ⋅⋅-=⋅④作EG ⊥AC 于点G ,则EG ∥BO , ∴EG CE CG OB BC OC== 设正方形边长为5a ,则BC =5a ,OB =OC, 若:2:3BE CE =,则23BE CE =, ∴233BE CE CE ++= ∴35CE BC =∴35CE EG OB BC =⋅= ∵EG ⊥AC ,∠ACB =45°,∴∠GEC =45°∴CG =EG∴3tan 7EG EG CAE AG AC CG ∠===- 所以④错误;⑤∵()DOF COE ASA ≌,S 四边形OECF =S △COE +S △COF ∴S 四边形OECF = S △DOF +S △COF = S △COD ∵S △COD =∴S 四边形OECF =所以⑤正确;综上,①②③⑤正确,④错误, 故选 B12. 【答案】6【分析】根据相似三角形的性质可得,再根据DE =2,进而得到BC 长. 【详解】 14ABCD S 正方形14ABCD S正方形13DE AD BC AB ==解:根据题意,∵,∴△ADE ∽△ABC ,∴, ∵DE =2, ∴, ∴;故答案为:6.13. 【答案】 10 ;10【分析】过点O 作AC 、BD 的平行线,交CD 于H ,过点O 作水平线OJ 交BD 于点J ,过点B 作BI ⊥OJ ,垂足为I ,延长MO ,使得OK =OB ,求出CH 的长度,根据23EF OM FG MH ==,求出OM 的长度,证明BIO JIB ∽,得出23BI IJ =,49OI IJ =,求出IJ 、BI 、OI 的长度,用勾股定理求出OB 的长,即可算出所求长度.【详解】如图,过点O 作AC 、BD 的平行线,交CD 于H ,过点O 作水平线OJ 交BD 于点J ,过点B 作BI ⊥OJ ,垂足为I ,延长MO ,使得OK =OB ,由题意可知,点O 是AB 的中点,∵OH AC BD ,∴点H 是CD 的中点,∵13m CD =, ∴1 6.5m 2CH HD CD ===, ∴8.5 6.515m MH MC CH =+=+=,又∵由题意可知:23EF OM FG MH ==, ∴2153OM =,解得10m =OM , ∴点O 、M 之间的距离等于10m ,∵BI ⊥OJ ,∴90BIO BIJ ∠=∠=︒,∵由题意可知:90OBJ OBI JBI ∠=∠+∠=︒,又∵90BOI OBI ∠+∠=︒,∴BOI JBI ∠=∠,∴BIO JIB ∽,DE BC ∥13DE AD BC AB ==213BC =6BC =∴23BI OI IJ BI ==, ∴,, ∵, ∴四边形IHDJ 是平行四边形,∴,∵, ∴,,,∵在中,由勾股定理得:,∴,∴,∴,∴叶片外端离地面的最大高度等于,故答案为:10,14. 【答案】1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC ==, ∴144AE =, ∴1AE =,故答案为:1.15. 【答案】2或##或2 23BI IJ =49OI IJ =,OJCD OH DJ 6.5m OJ HD ==4 6.5m 9OJ OI IJ IJ IJ =+=+=4.5m IJ =3m BI =2m OI =Rt OBI △222OB OI BI =+OB =OB OK ==(10m MK MO OK =+=(10m 101212【分析】分析判断出符合题意的DE 的情况,并求解即可;【详解】解:①如图,作,,连接OB ,则OD ⊥AC ,∵,∴∵O 为的内心,∴,∴∴,同理,,∴DE=CD+BE ,∵O 为的内心,∴,∴∴∴②如图,作,由①知,,,∵∴ ∴ ∴1061582AB AE AD AC ⋅⨯=== //DE BC OF BC OG AB ⊥⊥,//DE BC OBF BOE ∠=∠ABC ∆OBF OBE ∠=∠BOE OBE ∠=∠BE OE =CD OD=10AB =ABC ∆OF OD OG CD ===BF BG AD AG ==,6810AB BG AG BC CD AC CD CD CD =+=-+-=-+-=2CD =DE AB⊥4BE =6AE =ACB AED CAB EAD ∠=∠∠=∠,ABCADE ∆∆AB AD AC AE=∴151822CD AC AD =-=-=∵92DE == ∴19422DE BE CD =+=+= ∴12CD = 故答案为:2或12.16. 【答案】【分析】根据正方形ABCD 的面积为4,求出,根据位似比求出,周长即可得出;【详解】解:正方形ABCD 的面积为4,,,,所求周长;故答案为:.17. 【答案】##【分析】根据点E 是AB 的黄金分割点,可得,代入数值得出答案. 【详解】∵点E 是AB 的黄金分割点,∴. ∵AB=2米,∴米.).18. 【答案】3【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间2AB =4A B ''=∴2AB =:2:1A B AB ''=∴4A B ''=∴A C ''==1)15AE BE BE AB ==AE BE BE AB ==1BE =)1的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FN DE DF=,解得FN = 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.19. 【答案】9.88【分析】根据平行投影得AC ∥DE ,可得∠ACB =∠DFE ,证明Rt △ABC ∽△Rt △DEF ,然后利用相似三角形的性质即可求解.【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m . ∴AC ∥DE ,∴∠ACB =∠DFE ,∵AB ⊥BC ,DE ⊥EF ,∴∠ABC =∠DEF =90°,∴Rt △ABC ∽△Rt △DEF ,∴,即, 解得AB =9.88,∴旗杆的高度为9.88m .故答案为:9.88.20. 【答案】313或154或6 【分析】分三种情况讨论:当∠APE =90°时,当∠AEP =90°时,当∠PAE =90°时,过点P 作PF ⊥DA 交DA 延长线于点F ,即可求解.【详解】解:在矩形ABCD 中,9AB CD ==,12AD BC ==,∠BAD =∠B =∠BCD =∠ADC =90°,如图,当∠APE =90°时,∴∠APB +∠CPE =90°,∵∠BAP +∠APB =90°,∴∠BAP =∠CPE ,∵∠B =∠C =90°,∴△ABP ∽△PCE , ∴AB BP PC CE =,即9124BP BP =-, 解得:BP =6;如图,当∠AEP =90°时,AB BC DE EF =8.722.47 2.18AB=∴∠AED +∠PEC =90°,∵∠DAE +∠AED =90°,∴∠DAE =∠PEC ,∵∠C =∠D =90°,∴△ADE ∽△ECP , ∴AD DE CE PC =,即12944PC-=, 解得:53PC =, ∴313BP BC PC =-=; 如图,当∠PAE =90°时,过点P 作PF ⊥DA 交DA 延长线于点F ,根据题意得∠BAF =∠ABP =∠F =90°,∴四边形ABPF 为矩形,∴PF =AB =9,AF =PB ,∵∠PAF +∠DAE =90°,∠PAF +∠APF =90°,∴∠DAE =∠APF ,∵∠F =∠D =90°,∴△APF ∽△EAD , ∴AF PF DE AD =,即99412AF =-, 解得:154=AF ,即154PB =; 综上所述,BP 的长为313或154或6. 故答案为:313或154或621.【分析】根据题意知EF 在运动中始终与MN 交于点Q ,且 点H 在以BQ 为直径的上运动,运动路径长为的长,求出BQ 及的圆角,运用弧长公式进行计算即可得到结果.【详解】解:∵点、分别是边、的中点,连接MN ,则四边形ABNM 是矩形,∴MN =AB =6,AM =BN =AD ==4,根据题意知EF 在运动中始终与MN 交于点Q ,如图,∵四边形ABCD 是矩形,∴AD //BC ,∴ ∴ ∴ 当点E 与点A 重合时,则NF =, ∴BF =BN +NF =4+2=6,∴AB =BF =6∴是等腰直角三角形,∴∵BP ⊥AF ,∴由题意得,点H 在以BQ 为直径的上运动,运动路径长为长,取BQ 中点O ,连接PO ,NO ,∴∠PON =90°,又∴, AQM FQN ∆∆,:1:2,NQ MQ =PN PN PN M N AD BC 12AQMFQN ∆∆,12NF NQ EM MQ ==123NQ MN ==122AM =ABF ∆45,AFB ∠=︒45PBF ∠=︒PN PN 90,BNQ ∠=︒BQ ===∴, ∴故答案为: 22. 【答案】 45 ;2615【分析】 (1)先证△ABE ≌△GEF ,得FG =AE =DG ,可知△DFG 是等腰直角三角形即可知FDG ∠度数.(2)先作FH ⊥CD 于H ,利用平行线分线段成比例求得MH ;再作MP ⊥DF 于P ,证△MPF ∽△NHF ,即可求得NH 的长度,MN =MH +NH 即可得解.【详解】(1)∵四边形ABCD 是正方形,∴∠A =90°,AB =AD ,∴∠ABE +∠AEB =90°,∵FG ⊥AG ,∴∠G =∠A =90°,∵△BEF 是等腰直角三角形,∴BE =FE ,∠BEF =90°,∴∠AEB +∠FEG =90°,∴∠FEG =∠EBA ,在△ABE 和△GEF 中,A G ABE GEF BE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△GEF (AAS ),∴AE =FG ,AB =GE ,在正方形ABCD 中,AB =ADAD GE ∴=∵AD =AE +DE ,EG =DE +DG ,∴AE =DG =FG ,∴∠FDG =∠DFG =45°.故填:45°.(2)如图,作FH ⊥CD 于H ,12ON OP OQ BQ ===PN∴∠FHD =90°∴四边形DGFH 是正方形,∴DH =FH =DG =2,∴AG FH , ∴=DE DM FH MH, ∴DM =23,MH =43, 作MP ⊥DF 于P ,∵∠MDP =∠DMP =45°,∴DP =MP ,∵DP 2+MP 2=DM 2,∴DP =MP=∴PF∵∠MFP +∠MFH =∠MFH +∠NFH =45°,∴∠MFP =∠NFH ,∵∠MPF =∠NHF =90°,∴△MPF ∽△NHF , ∴=MP PF NH HF,即=NH 332, ∴NH =25, ∴MN =MH +NH =43+25=2615. 故填: 2615. 23. 【答案】(1)证明见详解(2)证明见详解【分析】(1)①证明ADG AEG ≌△即可;②连接BG ,CG ,证明ADG BCG ≌△,BOE GOC ∽△△即可证明;(2)①的结论和(1)中证明一样,证明ADG AEG ≌△即可;②的结论,作DM BC GM ⊥,连接,证明BOE GOM ∽△△即可.(1)证明:①证明过程:四边形ABCD 为矩形,90ABC BAD ∴∠=∠=︒AF 平分BAD ∠45BAF DAF ∴∠=∠=︒ABF ∴为等腰直角三角形AB BF ∴=BE FC =AB BE BF CF AE BC AD ∴+=+==,即AG AG =∴ADG AEG ≌△∴GE GD =②证明:连接BG ,CG ,G 为AF 的中点,四边形ABCD 为矩形,90ABC BAD AD BC ∴∠=∠=︒=,BG AG FG ∴==AF 平分BAD ABF ∠,为等腰直角三角形,45BAF DAF ABG CBG ∴∠=∠=︒=∠=∠∴ADG BCG ≌△∴ADG BCG ∠=∠ADG AEG ≌△E ADG ∴∠=∠E BCG ∴∠=∠BOE GOC ∠=∠BOE GOC ∴∽△△BO GO GO BO BE GC GD CF∴=== ∴BO GD GO FC ⋅=⋅ (2)作DM BC BC M GM GN DM DM N ⊥⊥交于,连接,作交于点,如图所示90DMB GNM GND DMC ∴∠=︒=∠=∠=∠由(1)同理可证:ADG AEG ≌△E ADG ∴∠=∠四边形ABCD 为平行四边形AD BC ∴∥90ADM DMC ∴∠=∠=︒BC GN AD ∴∥∥G 为AF 的中点,由平行线分线段成比例可得DN MN =DG MG ∴=,,GDM GMDADG BMG EBOE GOM ∠=∠BOE GOM ∴∽△△BO GO GO BO BE GM GD CF∴=== ∴BO GD GO FC ⋅=⋅ 24. 【答案】(1)[问题提出](1)14;(2)见解析 (2)[问题拓展]24n - 【分析】[问题探究](1)根据等边三角形的性质结合已知条件,求得30ADF ADB ∠=∠=︒,90AFD ∠=︒,根据含30度角的直角三角形的性质,可得111,222AF AD AD AC AB ===,即可求解; (2)取BC 的中点H ,连接DH .证明DBH DEC △≌△,可得BH EC =,根据DH AB ∥,证明EDH EFB △∽△,根据相似三角形的性质可得32FB EB DH EH ==,进而可得14AF AB =;[问题拓展]方法同(2)证明DBH DEC△≌△,得出,GH EC,证明EDH EFB△∽△,得到2+2FB EB nDH EH==,进而可得AFAB=24n-.(1)[问题探究]:(1)如图,ABC中,AB AC=,D是AC的中点,60BAC∠=︒,ABC∴是等边三角形,12AD AB=30ABD DBE∴∠=∠=︒,60A∠=︒,DB DE∴=,30E DBE∴∠=∠=︒,180120DCE ACB∠=︒-∠=︒,18030ADF CDE E DCE∴∠=∠=︒-∠-∠=︒,60A∠=︒,90AFD∴∠=︒,12AF AD∴=,1124ADAFAB AB∴==.(2)证明:取BC的中点H,连接DH.∵D是AC的中点,∴DH AB∥,12DH AB=.∵AB AC=,∴DH DC=,∴DHC DCH ∠=∠.∵BD DE =,∴DBH DEC ∠=∠.∴BDH EDC ∠=∠.∴DBH DEC △≌△.∴BH EC =. ∴32EB EH =. ∵DH AB ∥,∴EDH EFB △∽△. ∴32FB EB DH EH ==. ∴34FB AB =. ∴14AF AB =. (2)[问题拓展]如图,取BC 的中点H ,连接DH .∵D 是AC 的中点,∴DH AB ∥,12DH AB =. ∵AB AC =,∴DH DC =,∴DHC DCH ∠=∠.∵DE DG =,∴DGH DEC ∠=∠.∴GDH EDC ∠=∠.∴DGH DEC ≌.∴GH EC . HE CG ∴=()12CG nBC n=<BC nCG ∴=()1BG n CG ∴=-,()1111222n CE GH BC BG nCG n CG CG ⎛⎫==-=--=- ⎪⎝⎭∴1221+22nCG EB BC CE n n EH EH n C CG G ⎛⎫-+++==== ⎪⎝⎭. ∵DH AB ∥,∴EDH EFB △∽△. ∴2+2FB EB n DH EH ==. ∴24FB n AB +=. ∴42244AF n n AB ---==. ∴AF AB =24n -. 25. 【答案】(1)见解析;(2)见解析【分析】(1)连接OD ,OE ,证明△OAD ≌△OED ,得∠OAD=∠OED=90°,进而得CD 是切线;(2)连接OC ,得AM ∥BN ,得,DEOOEC ∆∆,再证明2.OE DE CE =•,进而得出结论2.OA DE CE =•.【详解】解(1)如图,连接,OE OD 、 DA 是O 的切线,90OAD ︒∠= 在AOD ∆和EOD ∆中, , ,,OA OE DA DE OD OD ===()AOD EOD SSS ∴∆∆≌90,OAD OED ︒∴∠=∠=,OE CD ∴⊥CD ∴是O 的切线.(2)连接,OC AM BN DC 、、是O 的切线,90OAD OBC DEO OEC ︒∴∠=∠=∠=∠=//,AM BN ∴180ADE BCE ︒∴∠+∠=又AM BN DC 、、是O 的切线,CE CB ∴=,OD 平分,ADE OC ∠平分, .BCE ∠()111809022ODE OCE ADE BCE ︒︒∴∠+∠=∠+∠=⨯=又90ODE DOE ︒∠+∠=,OCE DOE ∴∠=∠又90DEO OEC ︒∠=∠=,,DEO OEC ∴∆∆OE DE CE OE∴= 2.OE DE CE ∴=•又,OA OE =2.OA DE CE ∴=•26. 【答案】(1)①见解析;②CE =(2)6EC =【分析】(1)①根据AAS 可证得:BEC DFC ≌△△,即可得出结论; ②连接AC ,可证得ABC是等边三角形,即可求出CE =(2)延长FE 交的延长线于点,根据可证得,可得出,,,则,即可证得,即可得出的长. (1)(1)①∵,,∴,∵四边形是菱形,∴,,∴()BEC DFC AAS ≌,∴CE CF =.②如图,连接AC .∵E 是边AB 的中点,CE AB ⊥,∴BC AC =,又由菱形ABCD ,得BC AB =,∴ABC 是等边三角形,∴60EAC ∠=︒,CB M AAS AEF BEM ≌4ME =2BM =8MC =MB ME =12ME MC =MEB MCE △∽△EC CE AB ⊥CF AD ⊥90BEC DFC ∠=∠=︒ABCD B D ∠=∠BC CD =在Rt AEC 中,2AE =,∴tan 60EC AE =︒=∴CE =(2)如图,延长FE 交CB 的延长线于点M ,由菱形ABCD ,得AD BC ∥,AB BC =,∴AFE M ∠=∠,A EBM ∠=∠,∵E 是边AB 的中点,∴AE BE =,∴()AEF BEM AAS △≌△,∴=ME EF ,MB AF =,∵3AE =,24EF AF ==,∴4ME =,2BM =,3BE =,∴26BC AB AE ===,∴8MC =, ∴2142MB ME ==,4182ME MC ==, ∴MB ME ME MC=,而M ∠为公共角. ∴MEB MCE △∽△, ∴24BE MB EC ME ==, 又∵3BE =,∴6EC =.27. 【答案】(1)(2) (3)①或;② 【分析】 (1)连接OD ,设半径为r ,利用,得,代入计算即可; (2)根据CP =AP 十AC ,用含x 的代数式表示 AP 的长,再由(1)计算求AC 的长即可;(3)①显然,所以分两种情形,当 时,则四边形RPQE 是矩形,当 ∠PQR =90°时,过点P 作PH ⊥BE 于点H , 则四边形PHER 是矩形,分别根据图形可得答案;②连接,由对称可知,利用三角函数表示出和BF 的长度,从而解决问题.(1)解:如图1,连结.设半圆O 的半径为r .∵切半圆O 于点D ,∴.∵,∴,∴,∴, 即, ∴,即半圆O 的半径是. (2) 由(1)得:. 1585544y x =+972111199△∽△COD CBE OD CO BE CB =90PRQ ∠<︒90RPQ ∠=︒,AF QF ',45QF QF F QR EQR ∠∠'=='=︒BF 'OD CD OD CD ⊥BE CD ⊥OD BE ∥△∽△COD CBE OD CO BE CB =535r r -=158r =1581555284CA CB AB =-=-⨯=∵, ∴. ∵,∴. (3)①显然,所以分两种情况. ⅰ)当时,如图2.∵,∴.∵,∴四边形为矩形,∴.∵, ∴, ∴. ⅱ)当时,过点P 作于点H ,如图3,则四边形是矩形,∴.∵,∴.5,4AP BQ x BQ ==54AP x =CP AP AC =+5544y x =+90PRQ ∠<︒90RPQ ∠=︒PR CE ⊥90ERP ∠=︒90E ∠=︒RPQE PR QE =333sin 544PR PC C y x =⋅==+33344x x +=-97x =90PQR ∠=︒PH BE⊥PHER ,PH RE EH PR ==5,3CB BE ==4CE ==∵, ∴3PH RE x EQ ==-=, ∴45EQR ERQ ∠=∠=︒, ∴45PQH QPH ∠=︒=∠, ∴3HQ HP x ==-, 由EH PR =得:33(3)(3)44x x x -+-=+, ∴2111x =. 综上所述,x 的值是97或2111. ②如图4,连结,AF QF ',由对称可知QF QF =',F QR EQR ∠=∠' ∵BE ⊥CE ,PR ⊥CE , ∴PR ∥BE , ∴∠EQR =∠PRQ , ∵BQ x =,5544CP x =+, ∴EQ =3-x , ∵PR ∥BE , ∴CPR CBE △∽△, ∴CP CB CR CE=, 即:x CR +=555444, 解得:CR =x +1, ∴ER =EC -CR =3-x , 即:EQ = ER∴∠EQR =∠ERQ =45°, ∴45F QR EQR ∠=∠='︒ ∴90BQF ∠='︒, 4cos 15CR CP C y x =⋅==+∴4tan 3QF QF BQ B x ==⋅='. ∵AB 是半圆O 的直径,∴90AFB ∠=︒, ∴9cos 4BF AB B =⋅=, ∴4934x x +=, ∴2728x =, ∴319119CF BC BF BC BF BF BF x -==''''=-='-. 28. 【答案】(1)2(2)图见详解(3)直线BC 与⊙F 相切,理由见详解【分析】(1)由题意易得23CD BD =,则有,然后根据相似三角形的性质与判定可进行求解;(2)作DT ∥AC 交AB 于点T ,作∠TDF =∠ATD ,射线DF 交AC 于点F ,则点F 即为所求;(3)作BR ∥CF 交FD 的延长线于点R ,连接CR ,证明四边形ABRF 是等腰梯形,推出AB =FR ,由CF ∥BR ,推出,推出CD ⊥DF ,然后问题可求解.(1)解:∵DE ∥AB ,∴,∴, ∵AB =5,BD =9,DC =6,∴, ∴;(2)解:作DT ∥AC 交AB 于点T ,作∠TDF =∠ATD ,射线DF 交AC 于点F ,则点F 即为所求;如图所示:点F 即为所求,25CD CB =1122CFB CFR SS AB CD FR CD ==⋅=⋅CDE CBA ∽DECD AB CB 6569DE =+2DE =(3)解:直线BC 与⊙F 相切,理由如下:作BR ∥CF 交FD 的延长线于点R ,连接CR ,如图,∵∠DFA =∠A ,∴四边形ABRF 是等腰梯形,∴,∵△FBC 的面积等于, ∴, ∴CD ⊥DF ,∵FD 是⊙F 的半径,∴直线BC 与⊙F 相切.29. 【答案】(1)①94BC =;②AB BE AD DE -是定值,定值为1;(2)3cos 8CBD ∠= 【分析】(1)①证明CED CDB ∽,根据相似三角形的性质求解即可;②由DE AC ∥,可得AB BC AD DE =,由①同理可得CE DE =,计算AB BE AD DE-1=; (2)根据平行线的性质、相似三角形的性质可得12S AC BC S DE BE==,又32S BE S CE =,则1322S S BC S CE ⋅=,可得916BC CE =,设9BC x =,则16CE x =.证明CDB CED ∽△△,可得12CD x =,过点D 作DH BC ⊥于H .分别求得BD BH ,,进而根据余弦的定义即可求解.【详解】(1)①∵CD 平分ACB ∠,AB FR =12CD AB •1122CFB CFR S S AB CD FR CD ==⋅=⋅2∵2ACB B ∠=∠,∴ACD DCB B ∠=∠=∠. ∴32CD BD ==. ∵DE AC ∥,∴ACD EDC ∠=∠.∴EDC DCB B ∠=∠=∠.∴1CE DE ==.∴CED CDB ∽. ∴CE CD =CD CB. ∴94BC =. ②∵DE AC ∥, ∴AB BC AD CE=. 由①可得CE DE =, ∴AB BC AD DE=. ∴1AB BE BC BE CE AD DE DE DE DE-=-==. ∴AB BE AD DE -是定值,定值为1. (2)∵DE AC ∥,BDE BAC ∴∽△△BC AB AC BE BD DE ∴== ∴12S AC BC S DE BE==. ∵32S BE S CE=, ∴1322S S BC S CE⋅=. 又∵2132916S S S ⋅=, ∴916BC CE =. 设9BC x =,则16CE x =.∵CD 平分BCF ∠,2∵2BCF CBG ∠=∠,∴ECD FCD CBD ∠=∠=∠.∴BD CD =.∵DE AC ∥,∴EDC FCD ∠=∠.∴EDC CBD ECD ∠=∠=∠.∴CE DE =.∵DCB ECD ∠=∠,∴CDB CED ∽△△. ∴CD CB CE CD=. ∴22144CD CB CE x =⋅=.∴12CD x =.如图,过点D 作DH BC ⊥于H .∵12BD CD x ==, ∴1922BH BC x ==. ∴932cos 128x BH CBD BD x ∠===. 30. 【答案】(1)①6;②见解析 (2)2114S S S -=,理由见解析 【分析】(1)①将面积用a ,b 的代数式表示出来,计算,即可②利用AN 公共边,发现△FAN ∽△AN B ,利用FA AN AN NB=,得到a ,b 的关系式,化简,变形,即可得结论(2)等边ABF 与等边CBE △共顶点B ,形成手拉手模型,△ABC ≌△FBE ,利用全等的对应边,对应角,得到:AC =FE =b ,∠FEB =∠ACB =90°,从而得到∠FEC =30°,再利用Rt CFE △,cos30FE b CE a ︒===,得到a 与b 的关系,从而得到结论 (1)∵19S =,216S =∴b =3,a =4∵∠ACB =90° ∴11S ab 34622==⨯⨯= ②由题意得:∠FAN =∠ANB =90°,∵FH ⊥AB∴∠AFN =90°-∠FAH =∠NAB∴△FAN ∽△AN B ∴FA AN AN NB = ∴a b a a b+=, 得:22ab b a +=∴122S S S +=.即212S S S -= (2)2114S S S -=,理由如下: ∵△ABF 和△BEC 都是等边三角形∴AB =FB ,∠ABC =60°-∠FBC =∠FBE ,CB =EB∴△ABC ≌△FBE (S A S )∴AC =FE =b∠FEB =∠ACB =90°∴∠FEC =30°∵EF ⊥CF ,CE =BC =a∴cos30b FE a CE ==︒=∴b =∴212S ab ==由题意得:21S ,22S =∴22221S S -== ∴2114S S S -=。
2024年中考数学一轮复习章节测试及解析—第七章:图形的变化(提升卷)
2024年中考数学一轮复习章节测试及解析—第七章:图形的变化(提升卷)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、不是轴对称图形,是中心对称图形,故此选项不符合题意;C 、是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、既是轴对称图形,又是中心对称图形,故此选项符合题意;故选:D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,在ABC 中,120BAC ∠=︒,将ABC 绕点C 逆时针旋转得到DEC ,点A ,B 的对应点分别为D ,E ,连接AD .当点A ,D ,E 在同一条直线上时,下列结论一定正确的是()A .ABC ADC ∠=∠B .CB CD=C .DE DC BC +=D .AB CD∥【答案】D【分析】由旋转可知120EDC BAC ∠=∠=︒,即可求出60ADC ∠=︒,由于60ABC ∠<︒,则可判断ABC ADC ∠≠∠,即A 选项错误;由旋转可知CB CE =,由于CE CD >,即推出CB CD >,即B 选项错误;由三角形三边关系可知DE DC CE +>,即可推出DE DC CB +>,即C 选项错误;由旋转可知DC AC =,再由60ADC ∠=︒,即可证明ADC 为等边三角形,即推出60ACD ∠=︒.即可求出180ACD BAC ∠+∠=︒,即证明//AB CD ,即D 选项正确;【详解】由旋转可知120EDC BAC ∠=∠=︒,∵点A ,D ,E 在同一条直线上,∴18060ADC EDC ∠=︒-∠=︒,∵60ABC ∠<︒,∴ABC ADC ∠≠∠,故A 选项错误,不符合题意;由旋转可知CB CE =,∵120EDC ∠=︒为钝角,∴CE CD >,∴CB CD >,故B 选项错误,不符合题意;∵DE DC CE +>,∴DE DC CB +>,故C 选项错误,不符合题意;由旋转可知DC AC =,∵60ADC ∠=︒,∴ADC 为等边三角形,∴60ACD ∠=︒.∴180ACD BAC ∠+∠=︒,∴//AB CD ,故D 选项正确,符合题意;故选D .【点睛】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定.利用数形结合的思想是解答本题的关键.4.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为A .10B .6C .3D .2【答案】C 【解析】如图所示,n 的最小值为3,故选C .【名师点睛】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.5.四盏灯笼的位置如图.已知A,B,C,D的坐标分别是(−1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位【答案】C【分析】直接利用利用关于y轴对称点的性质得出答案.【详解】解:∵点A(−1,b)关于y轴对称点为B(1,b),C(2,b)关于y轴对称点为(-2,b),需要将点D(3.5,b)向左平移3.5+2=5.5个单位,故选:C.【点睛】本题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为()A .()202020202,2-B .()202120212,2C .()202020202,2D .()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.【详解】解:由题意,点A 每6次绕原点循环一周,20216371......5÷= ,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=22-,()2020202020212,2A ∴,故选:C .【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.7.如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,),将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为()A .(2--,或2)-B .(2,C .(2,-D .(2--,或(2,【答案】D【解析】【分析】如图所示,过点A 作AE ⊥x 轴于点E ,根据题意易得△AOB 为等边三角形,在旋转过程中,点A 有两次落在x 轴上,当点A 落在x 轴正半轴时,点C 落在点C′位置,利用旋转的性质和菱形的性质求解,当A 落在x 轴负半轴时,点C 落在点C′′位置,易证此时C′′与点A 重合,即可求解.【详解】解:如图所示,过点A 作AE ⊥x 轴于点E ,则23tan AOE=2∠,,∴∠AOE=60°,∵四边形ABCD 是菱形,∴△AOB 是等边三角形,当A 落在x 轴正半轴时,点C 落在点C′位置,此时旋转角为60°,∵∠BOC=60°,∠COF=30°,∴∠C′OF=60°-30°=30°,∵OC′=OA=4,∴OF=C'O cos ∠,C′F=C'Osin C'OF=2∠,∴C′(2,--),当A 落在x 轴负半轴时,点C 落在点C′′位置,∵∠AOC=∠AOC+∠BOC=120°,∴∠A′′OC=120°,∠GOC′=30°又∵OA=OC′′,∴此时C′′点A 重合,C C′′(2,,综上,点C 的对应点的坐标为(2--,或(2,,故答案为:D .【点睛】本题考查菱形的性质,解直角三角形和旋转的性质,解题的关键是根据题意,分析点A 的运动情况,分情况讨论.8.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B重合,则CE的长为()A.198B.2C.254D.74【答案】D【分析】先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.【详解】解:∵∠ACB=90°,AC=8,BC=6,∴=10,∵△ADE沿DE翻折,使点A与点B重合,∴AE=BE,AD=BD=12AB=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中∵BE2=BC2+CE2,∴x2=62+(8-x)2,解得x=25 4,∴CE=2584-=74,故选:D .【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.9.在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为()A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---【答案】A【分析】先求出C 点坐标,再设新抛物线上的点的坐标为(x,y ),求出它关于点C 对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.【详解】解:当x=0时,y=5,∴C (0,5);设新抛物线上的点的坐标为(x,y ),∵原抛物线与新抛物线关于点C 成中心对称,由20x x ⨯-=-,2510y y ⨯-=-;∴对应的原抛物线上点的坐标为(),10x y --;代入原抛物线解析式可得:()()21045y x x -=--⋅-+,∴新抛物线的解析式为:245y x x =--+;故选:A .【点睛】本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.10.如图.将菱形ABCD 绕点A 逆时针旋转α∠得到菱形'''AB C D ,B β∠=∠.当AC 平分''B AC ∠时,α∠与β∠满足的数量关系是()A .2αβ∠=∠B .23αβ∠=∠C .4180αβ∠+∠=︒D .32180αβ∠+∠=︒【答案】C【分析】根据菱形的性质可得AB=AC ,根据等腰三角形的性质可得∠BAC=∠BCA=1(180)2B ︒-∠,根据旋转的性质可得∠CAC′=∠BAB′=α∠,根据AC 平分''B AC ∠可得∠B′AC=∠CAC=α∠,即可得出4180αβ∠+∠=︒,可得答案.【详解】∵四边形ABCD 是菱形,B β∠=∠,∴AB=AC ,∴∠BAC=∠BCA=1(180)2B ︒-∠=1(180)2β︒-∠,∵将菱形ABCD 绕点A 逆时针旋转α∠得到菱形'''AB C D ,∴∠CAC′=∠BAB′=α∠,∵AC 平分''B AC ∠,∴∠B′AC=∠CAC=α∠,∴∠BAC=∠B′AC+∠BAB′=2α∠=1(180)2β︒-∠,∴4180αβ∠+∠=︒,故选;C .【点睛】本题考查旋转的性质及菱形的性质,熟练掌握相关性质并正确找出旋转角是解题关键.二、填空题(本大题共10小题,每小题3分,共30分)11.如图,三角形纸片ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,BF =4,CF =6,将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为__________.【答案】【分析】根据折叠的性质得到DE 为ABC 的中位线,利用中位线定理求出DE 的长度,再解t R ACE △求出AF 的长度,即可求解.【详解】解:∵将这张纸片沿直线DE 翻折,点A 与点F 重合,∴DE 垂直平分AF ,AD DF =,AE EF =,ADE EDF ∠=∠,∵DE ∥BC ,∴ADE B ∠=∠,EDF BFD ∠=∠,90AFC ∠=︒,∴B BFD ∠=∠,∴BD DF =,∴BD AD =,即D 为AB 的中点,∴DE 为ABC 的中位线,∴152DE BC ==,∵AF =EF ,∴AEF 是等边三角形,在t R ACE △中,60CAF ∠=︒,6CF =,∴tan 60CF AF ==︒∴AG =∴四边形ADFE 的面积为122DE AG ⋅⨯=,故答案为:.【点睛】本题考查解直角三角形、中位线定理、折叠的性质等内容,掌握上述基本性质定理是解题的关键.12.如图,将边长为1的正方形ABCD 绕点A 顺时针旋转30°到111AB C D 的位置,则阴影部分的面积是______________;【答案】2323-【分析】CD 交11B C 于点E ,连接AE ;根据全等三角形性质,通过证明1AB E ADE △≌△,得1EAB EAD ∠=∠;结合旋转的性质,得130EAB EAD ∠=∠=︒;根据三角函数的性质计算,得1EB ,结合正方形和三角形面积关系计算,即可得到答案.【详解】解:如图,CD 交11B C 于点E ,连接AE根据题意,得:190AB E ADE ∠=∠=︒,11AB AD ==∵AE AE=∴1AB E ADE△≌△∴1EAB EAD∠=∠∵正方形ABCD 绕点A 顺时针旋转30°到111AB C D ∴130BAB ∠=︒,90BAD ∠=︒∴119060B AD BAB ∠=︒-∠=︒∴130EAB EAD ∠=∠=︒∴111tan 3EB EAB AB =∠=∴13EB =∴111112236AB E ADE S S AB EB ==⨯=⨯=△△∴阴影部分的面积()()122AB E ADE AB BC S S =⨯-+△△23=-故答案为:23-.【点睛】本题考查了正方形、全等三角形、旋转、三角函数的知识;解题的关键是熟练掌握正方形、全等三角形、旋转、三角函数的性质,从而完成求解.13.如图,在Rt △ABC 中,∠B =90°,∠A =30°,AC =8,点D 在AB 上,且BD点E 在BC 上运动.将△BDE 沿DE 折叠,点B 落在点B′处,则点B′到AC 的最短距离是_____.【答案】2【解析】【分析】如图,过点D作DH⊥AC于H,过点B′作B′J⊥AC于J.在Rt△ACB中,根据三角函数知识可得DB′+B′J≥DH,DB′=DB=,当D,B′,J共线时,B′J的值最小,此时求出DH,DB′,即可解决问题.【详解】解:如图,过点D作DH⊥AC于H,过点B′作B′J⊥AC于J.在Rt△ACB中,∵∠ABC=90°,AC=8,∠A=30°,∴AB=AC•cos30°=,∵BD,∴AD=AB﹣BD=,∵∠AHD=90°,∴DH=12AD=332,∵B′D+B′J≥DH,DB′=DB ∴B′J≥DH﹣DB′,∴B′J≥3 2,∴当D,B′,J共线时,B′J的值最小,最小值为3 2;故答案为2.【点睛】本题主要考查了图形的折叠,特殊锐角三角函数的知识.14.如图,射线OM 、ON 互相垂直,8OA =,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,5AB =.将线段AB 绕点O 按逆时针方向旋转得到对应线段A B '',若点B '恰好落在射线ON 上,则点A '到射线ON 的距离d ≈______.【答案】245【分析】添加辅助线,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .根据旋转的性质,得到''A B O ABO ≅ ,在'Rt A PO ∆和中,'B OA BOA ∠=∠,根据三角函数和已知线段的长度求出点A '到射线ON 的距离=A'P d .【详解】如图所示,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .∵线段AB 绕点O 按逆时针方向旋转得到对应线段A B ''∴'8OA OA ==,''B OB A OA∠=∠∴''''B OB BOA A OA BOA ∠-∠=∠-∠即''B OA BOA∠=∠∵点B 在线段OA 的垂直平分线l 上∴118422OC OA ==⨯=,5OB AB ==2222543BC OB OC =--∵''B OA BOA∠=∠∴'sin ''sin 'A P BC B OA BOA A O OB∠==∠=∴'385A P =∴24'5d A P ==【点睛】本题主要考查旋转的性质和三角函数.对应点到旋转中心的距离相等,对应点与旋转中心所连的线段的夹角等于旋转角,旋转前、后的图形全等.15.如图,将Rt △ABC 的斜边AB 绕点A 顺时针旋转α(0°<α<90°)得到AE ,直角边AC 绕点A 逆时针旋转β(0°<β<90°)得到AF ,连接EF .若AB=3,AC=2,且α+β=∠B ,则EF=__________.【答案】13【解析】由旋转的性质可得AE=AB=3,AC=AF=2,∵∠B+∠BAC=90°,且α+β=∠B ,∴∠BAC+α+β=90°,∴∠EAF=90°,∴22AE AF +1313【名师点睛】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.16.如图,将ABCD 绕点A 逆时针旋转到AB C D ''' 的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.【答案】98【分析】过点C 作CM//C D ''交B C ''于点M ,证明ABB ADD ''∆∆∽求得53C D '=,根据AAS 证明ABB B CM ''∆≅∆可求出CM=1,再由CM//C D ''证明△CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM//C D ''交B C ''于点M ,∵平行四边形ABCD 绕点A 逆时针旋转得到平行四边形AB C D '''∴AB AB '=,,AD AD '=B AB C D D '''∠=∠=∠=∠,BAD B AD ''∠=∠∴BAB DAD ''∠=∠,B D '∠=∠∴ABB ADD ''∆∆∽∴3,4BB AB AB DD AD BC ''===∵1BB '=∴43DD '=∴C D C D DD ''''=-CD DD '=-AB DD '=-433=-53=AB C AB C CB M ABC BAB '''''∠=∠+∠=∠+∠ ∴∠CB M BAB ''=∠∵413B C BC BB ''=-=-=∴B C AB'=∵AB AB '=∴∠AB B AB C ABB ''''=∠=∠∵//AB C D ''',//C D CM''∴//AB CM'∴∠AB C B MC'''=∠∴∠AB B B MC''=∠在ABB '∆和B MC '∆中,BAB CB M AB B B MC AB B C ∠=∠⎧⎪∠='''∠''⎨⎪=⎩∴ABB B CM''∆≅∆∴1BB CM '==∵//CM C D'∴△CME DC E'∆∽∴13553CM CE DC DE '===∴38CE CD =∴333938888CE CD AB ====故答案为:98.【点睛】此题主要考查了旋转的性质,平行四边形的性质,全等三角形的判定与性质以及相似三角形的判定与性质,正确作出辅助线构造全等三角形和相似三角形是解答本题的关键.17.如图,点P 是正方形ABCD 内一点,且点P 到点A 、B 、C的距离分别为4则正方形ABCD 的面积为________【答案】314【解析】【分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.【详解】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵2,∠PBM=90°,∴2PB=2,∵PC=4,3,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A ,P ,M 共线,∵BH ⊥PM ,∴PH=HM ,∴BH=PH=HM=1,∴AH=2+1,∴AB 2=AH 2+BH 2=()2+12,∴正方形ABCD 的面积为14+4.故答案为.【点睛】本题考查旋转的性质,全等三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.18.如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将DAE △按逆时针方向旋转得DCF ,连接EF ,分別交BD ,CD 于点M ,N .若25AE DN =,则sin EDM ∠=__________.【答案】5【分析】过点E 作EP ⊥BD 于P ,将∠EDM 构造在直角三角形DEP 中,设法求出EP 和DE 的长,然后用三角函数的定义即可解决.【详解】解:∵四边形ABCD 是正方形,∴AB ∥DC ,∠A=∠BCD=∠ADC=90°,AB=BC=CD=DA=1,BD =.∵△DAE 绕点D 逆时针旋转得到△DCF ,∴CF=AE ,DF=DE ,∠EDF=∠ADC=90°.设AE=CF=2x ,DN=5x ,则BE=1-2x ,CN=1-5x ,BF=1+2x .∵AB ∥DC ,∴~FNC FEB .∴NC FC EB FB =.∴1521212x x x x -=-+.整理得,26510x x +-=.解得,116x =,21x =-(不合题意,舍去).∴1221233AE x EB x ===-=.∴103DE ===.过点E 作EP ⊥BD 于点P ,如图所示,设DP=y ,则2BP y =.∵22222EB BP EP DE DP -==-,∴)2222210233y y ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪⎝⎭⎝⎭.解得,223y =.∴222210222333EP E D DP ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.∴在Rt △DEP 中,253sin 5103EP EDP ED ∠==.即5sin 5EDM ∠=.故答案为:55【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质、勾股定理、锐角三角函数、方程的数学思想等知识点,熟知各类图形的性质与判定是解题的基础,构造直角三角形,利用锐角三角函数的定义是解题的关键.20.如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O V 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O V 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.【答案】3875【分析】计算出△AOB 的各边,根据旋转的性质,求出OB 1,B 1B 3,,得出规律,求出OB 21,再根据一次函数图像上的点求出点B 21的纵坐标即可.【详解】解:∵AB ⊥y 轴,点B (0,3),∴OB=3,则点A 的纵坐标为3,代入34y x =-,得:334x =-,得:x=-4,即A (-4,3),∴OB=3,AB=4,,由旋转可知:OB=O 1B 1=O 2B 1=O 2B 2=…=3,OA=O 1A=O 2A 1=…=5,AB=AB 1=A 1B 1=A 2B 2=…=4,∴OB 1=OA+AB 1=4+5=9,B 1B 3=3+4+5=12,∴OB 21=OB 1+B 1B 21=9+(21-1)÷2×12=129,设B 21(a ,34a -),则OB 21129=,解得:5165a =-或5165(舍),则335163874455a ⎛⎫-=-⨯-= ⎪⎝⎭,即点B 21的纵坐标为3875,故答案为:387 5.【点睛】本题考查了一次函数图象上点的坐标特征,旋转以及直角三角形的性质,求出△OAB的各边,计算出OB21的长度是解题的关键.三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).【解析】(1)如下图所示,点A1的坐标是(–4,1);(2)如下图所示,点A2的坐标是(1,–4);(3)∵点A(4,1),∴=∴线段OA在旋转过程中扫过的面积是:290(17)360⨯π⨯=174π.【名师点睛】本题考查简单作图、扇形面积的计算、轴对称、旋转变换,解答本题的关键是明确题意,利用数形结合的思想解答.22.在Rt ABC 中,90,5,3ACB AB BC ∠=︒==,将ABC 绕点B 顺时针旋转得到A BC ''△,其中点A ,C 的对应点分别为点A ',C '.(1)如图1,当点A '落在AC 的延长线上时,求AA '的长;(2)如图2,当点C '落在AB 的延长线上时,连接CC ',交A B '于点M ,求BM 的长;(3)如图3,连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .在旋转过程中,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.【答案】(1)8AA '=;(2)1511BM =;(3)存在,最小值为1【分析】(1)根据题意利用勾股定理可求出AC 长为4.再根据旋转的性质可知AB A B '=,最后由等腰三角形的性质即可求出AA '的长.(2)作CD AC '⊥交AC '于点D ,作//CE A B '交AC '于点E .由旋转可得A BC ABC ''∠=∠,3BC BC '==.再由平行线的性质可知CEB A BC ''∠=∠,即可推出CEB ABC ∠=∠,从而间接求出3CE BC BC '===,DE DB =.由三角形面积公式可求出125CD =.再利用勾股定理即可求出185BE =,进而求出335C E '=.最后利用平行线分线段成比例即可求出BM 的长.(3)作//AP A C ''且交C D '延长线于点P ,连接A C '.由题意易证明BCC BC C ''∠=∠,90ACP BCC '∠=︒-∠,90A C D BC C '''∠=︒-∠,即得出ACP A C D ''∠=∠.再由平行线性质可知APC A C D ''∠=∠,即得出ACP APC ∠=∠,即可证明AP AC A C ''==,由此即易证()APD A C D AAS ''≅ ,得出AD A D '=,即点D 为AA '中点.从而证明DE 为ACA ' 的中位线,即12DE A C '=.即要使DE 最小,A C '最小即可.根据三角形三边关系可得当点A C B '、、三点共线时A C '最小,且最小值即为=A C A B BC ''-,由此即可求出DE 的最小值.【详解】(1)在Rt ABC 中,4AC ==.根据旋转性质可知AB A B '=,即ABA '△为等腰三角形.∵90ACB ∠=︒,即BC AA '⊥,∴4A C AC '==,∴8AA '=.(2)如图,作CD AC '⊥交AC '于点D ,作//CE A B '交AC '于点E .由旋转可得A BC ABC ''∠=∠,3BC BC '==.∵//CE A B ',∴CEB A BC ''∠=∠,∴CEB ABC ∠=∠,∴3CE BC BC '===,DE DB =.∵1122ABC S AB CD AC BC == ,即543CD ⨯=⨯,∴125CD =.在Rt BCD 中,2295DB BC CD =-=,∴185BE =.∴335C E BE BC ''=+=.∵//CE A B ',∴BM BC CE C E '=',即33335BM =,∴1511BM =.(3)如图,作//AP A C ''且交C D '延长线于点P ,连接A C '.∵BC BC '=,∴BCC BC C ''∠=∠,∵180ACP ACB BCC '∠=︒-∠-∠,即90ACP BCC '∠=︒-∠,又∵90A C D BC C '''∠=︒-∠,∴ACP A C D ''∠=∠.∵//AP A C '',∴APC A C D ''∠=∠,∴ACP APC ∠=∠,∴AP AC =,∴AP A C ''=.∴在APD △和AC D '' 中ADP A DC APD A C D AP A C '''∠=∠⎧⎪∠=∠'''⎨⎪=⎩,∴()APD A C D AAS ''≅ ,∴AD A D '=,即点D 为AA '中点.∵点E 为AC 中点,∴DE 为ACA ' 的中位线,∴12DE A C '=,即要使DE 最小,A C '最小即可.根据图可知A C A B BC ''≤-,即当点A C B '、、三点共线时A C '最小,且最小值为==53=2A C A B BC ''--.∴此时1=12DE A C '=,即DE 最小值为1.【点睛】本题为旋转综合题.考查旋转的性质,勾股定理,等腰三角形的判定和性质,平行线的性质,平行线分线段成比例,全等三角形的判定和性质,中位线的判定和性质以及三角形三边关系,综合性强,为困难题.正确的作出辅助线为难点也是解题关键.23.已知在 ABC 中,O 为BC 边的中点,连接AO ,将 AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到 EOF ,连接AE ,CF .(1)如图1,当∠BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是;(2)如图2,当∠BAC =90°且AB≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.【答案】(1)AE CF =;(2)成立,证明见解析;(3)5113【分析】(1)结论AE CF =.证明()AOE COF SAS ∆≅∆,可得结论.(2)结论成立.证明方法类似(1).(3)首先证明90AED ∠=︒,再利用相似三角形的性质求出AE ,利用勾股定理求出DE 即可.【详解】解:(1)结论:AE CF =.理由:如图1中,∠=︒,OC OB=,BAC,90=AB AC⊥,∴==,AO BCOA OC OB∠=∠=︒,90AOC EOF∴∠=∠,AOE COF,OE OFOA OC==,∴∆≅∆,AOE COF SAS()∴=.AE CF(2)结论成立.理由:如图2中,,OC OB=,BAC∠=︒90∴==,OA OC OB,AOC EOF∠=∠∴∠=∠,AOE COFOA OC=,OE OF=,()AOE COF SAS∴∆≅∆,AE CF∴=.(3)如图3中,由旋转的性质可知OE OA=,OA OD=,5OE OA OD∴===,90AED∴∠=︒,OA OE=,OC OF=,AOE COF∠=∠,∴OA OE OC OF=,AOE COF∴∆∆∽,∴AE OA CF OC=,5CF OA== ,∴5 53 AE=,253 AE∴=,5113 DE∴=.【点睛】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.24.已知:如图①,将一块45°角的直角三角板DEF 与正方形ABCD 的一角重合,连接,AF CE ,点M 是CE 的中点,连接DM .(1)请你猜想AF 与DM 的数量关系是__________.(2)如图②,把正方形ABCD 绕着点D 顺时针旋转α角(090a ︒<<︒).①AF 与DM 的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM 到点N ,使MN DM =,连接CN )②求证:AF DM ⊥;③若旋转角45α=︒,且2EDM MDC ∠=∠,求AD ED的值.(可不写过程,直接写出结果)【答案】(1)AF=2DM (2)①成立,理由见解析②见解析③622+【解析】【分析】(1)根据题意合理猜想即可;=,连接CN,先证明△MNC≌△MDE,再证明(2)①延长DM到点N,使MN DM△ADF≌△DCN,得到AF=DN,故可得到AF=2DM;②根据全等三角形的性质和直角的换算即可求解;③依题意可得∠AFD=∠EDM=30°,可设AG=k,得到DG,AD,FG,ED的长,故可求解.【详解】(1)猜想AF与DM的数量关系是AF=2DM,故答案为:AF=2DM;(2)①AF=2DM仍然成立,=,连接CN,理由如下:延长DM到点N,使MN DM∵M是CE中点,∴CM=EM又∠CMN=∠EMD,∴△MNC≌△MDE∴CN=DE=DF,∠MNC=∠MDE∴CN∥DE,又AD∥BC∴∠NCB=∠EDA∴△ADF≌△DCN∴AF=DN∴AF=2DM②∵△ADF≌△DCN∴∠NDC=∠FAD,∵∠CDA=90°,∴∠NDC+∠NDA=90°∴∠FAD+∠NDA=90°∴AF ⊥DM③∵45α=︒,∴∠EDC=90°-45°=45°∵2EDM MDC ∠=∠,∴∠EDM=23∠EDC=30°,∴∠AFD=30°过A 点作AG ⊥FD 的延长线于G 点,∴∠ADG=90°-45°=45°∴△ADG 是等腰直角三角形,设AG=k,则DG=k ,k ,k ,∴故ADED 622+=.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、旋转的特点、全等三角形的判定与性质及三角函数的运用.25.如图1,点B 在线段CE 上,Rt △ABC ≌Rt △CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.【答案】(1)1;(2)12π;(3)23OF =【解析】【分析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF=∠ECF=30°,即CF 是∠ACB 的平分线,然后根据角平分线的性质可得点F 到直线CA 的距离即为EF 的长,于是可得答案;(2)①易知E 点和F 点的运动轨迹是分别以CF 和CE 为半径、圆心角为30°的圆弧,据此即可画出旋转后的平面图形;在图3中,先解Rt △CEF 求出CF 和CE 的长,然后根据S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )即可求出阴影面积;②作EH ⊥CF 于点H ,如图4,先解Rt △EFH 求出FH 和EH 的长,进而可得CH 的长,设OH=x ,则CO 和OE 2都可以用含x 的代数式表示,然后在Rt △BOC 中根据勾股定理即可得出关于x 的方程,解方程即可求出x 的值,进一步即可求出结果.【详解】解:(1)∵30BAC ∠=︒,90ABC ∠=︒,∴∠ACB=60°,∵Rt △ABC ≌Rt △CEF ,∴∠ECF=∠BAC=30°,EF=BC=1,∴∠ACF=30°,∴∠ACF=∠ECF=30°,∴CF 是∠ACB 的平分线,∴点F 到直线CA 的距离=EF=1;故答案为:1;(2)①线段EF 经旋转运动所形成的平面图形如图3中的阴影所示:在Rt △CEF 中,∵∠ECF=30°,EF=1,∴CF=2,CE=3,由旋转的性质可得:CF=CA=2,CE=CG=3,∠ACG=∠ECF=30°,∴S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )=S 扇形ACF -S 扇形CEG =()2230330236036012πππ⨯⨯-=;故答案为:12π;②作EH ⊥CF 于点H ,如图4,在Rt △EFH 中,∵∠F=60°,EF=1,∴13,22FH EH ==,∴CH=13222-=,设OH=x ,则32OC x =-,2222223324OE EH OH x x⎛⎫=+=+=+ ⎪ ⎪⎝⎭,∵OB=OE ,∴2234OB x =+,在Rt △BOC 中,∵222OB BC OC +=,∴2233142x x ⎛⎫++=- ⎪⎝⎭,解得:16x =,∴112263OF =+=.【点睛】本题考查了旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识,涉及的知识点多,综合性较强,熟练掌握上述知识、灵活应用整体思想和方程思想是解题的关键.26.如图,在矩形ABCD 中,E 是边AB 上一点,BE BC =,EF CD ⊥,垂足为F .将四边形CBEF 绕点C 顺时针旋转()090αα︒<<︒,得到四边形CB E F '''.B E ''所在的直线分别交直线BC 于点G ,交直线AD 于点P ,交CD 于点K .E F ''所在的直线分别交直线BC 于点H ,交直线AD 于点Q ,连接B F ''交CD 于点O .(1)如图1,求证:四边形BEFC 是正方形;(2)如图2,当点Q 和点D 重合时.①求证:GC DC =;②若1OK =,2CO =,求线段GP 的长;(3)如图3,若//BM F B ''交GP 于点M ,1tan 2G ∠=,求'GMB CF H S S △△的值.【答案】(1)见解析;(2)①见解析;②3)125-【分析】(1)先利用三个角是直角的四边形是矩形证明,再根据BE BC =证得结论;(2)①证明''CGB CDF ≅ 即可得到结论;②方法一:设正方形边长为a ,根据'~'B KO F CO ,求出11''22B K BC a ==,利用勾股定理得到222''B K B C CK +=,求出a,得到5B C '=,5B K '=,根据B KC ' ∽△CKG ,求出KG ,再根据PKD GKC ≅ ,求出答案;方法二:过点P 作PM GH ⊥于点M ,根据CG CD =,2CD CK =求出6CG =,由26PM CK ==,12GM =,再利用勾股定理求得结果;(3)方法一:延长''B F 与BH 的延长线交于点R ,证明~'GBM CRF ,求出'1'2F H CF =,设'F H x =,'2CF x =,则CH =,证明'~'RB C RF H ,求得2'''22CF R CF H S S x == ,由'~'GB C GE H,求出)21GB x =-,利用~'GBM CRF ,求出'6255GMB CF R S S -= ,即可得到答案;方法二,过点B 作BN PG ⊥,垂足为点N .设FH x =,则'''''2CF B E E F BC x ====,'4GB x =,求得(2'465GBN CHF S GB S CH -⎛⎫== ⎪⎝⎭ ,证明~'GBN GCB,求出55GB GC =,再证明~''MBN B F C ,求出答案;方法三:设AB 与PQ 交于N 点,设FH x =,则'''''2CF CB B E E F BC x =====,'4GB x =,证明~'MBN F OC,得到(2'9620MBN F OC S BN S CO -⎛⎫==⎪⎝⎭ ,根据12GBN S BG BN =⨯⨯ ,求出答案.【详解】(1)在矩形ABCD 中,90B BCD ∠=∠=︒,∵EF AB ⊥,则90EFB ∠=︒,∴四边形BEFC 是矩形.∵BE BC =,∴矩形BEFC 是正方形.(2)①如图1,∵90GCK DCH ∠=∠=︒,∴'90CDF H ∠+∠=︒,90KGC H ∠+∠=︒,∴'KGC CDF ∠=∠,又∵''B C CF =,''GB C CF D ∠=∠,∴''CGB CDF ≅ ,∴CG CD =.②方法一:设正方形边长为a ,∵PG ∥CF ',∴'~'B KO F CO ,∴'1'2B K OK CF CO ==,∴11''22B K BC a ==,∴在'Rt B KC 中,222''B K B C CK +=,∴222132a a ⎛⎫+= ⎪⎝⎭,∴5a =.∴5B C '=,5B K '=,∵90,CB K GCK B KC GKC ''∠=∠=︒∠=∠,∴B KC ' ∽△CKG ,∴2CK B K KG '=⋅,∴KG =∵1,,2B K a KE DKE B KC DE K KB C ''''''==∠=∠∠=∠,∴△B’CK ≌△E’KD ,∴DK=KC ,又∵∠DKP=∠GKC ,∠P=∠G ,∴PKD GKC ≅ ,∴PG=KG ,∴PG =;方法二:如图2,过点P 作PM GH ⊥于点M ,由''CGB CDF ≅ ,可得:CG CD =,由方法一,可知2CD CK =,∴6CG =,由方法一,可知K 为GP 中点,从而26PM CK ==,12GM =,从而由勾股定理得PG =.(3)方法一:如图3,延长''B F 与BH 的延长线交于点R ,由题意可知,'//CF GP ,'//RB BM ,∴~'GBM CRF ,'G F CR ∠=∠,∴'1tan tan ''2F HG F CH CF ∠=∠==,设'F H x =,'2CF x =,则CH =,∴''''''2CB CF E F B E BC x =====,∵'//'CB HE ,∴'~'RB C RF H ,∴''1''2F H RH RF B C RC RB ===,∴CH RH =,'''B F RF =,∴2CR CH ==,2'''22CF R CF H S S x == ,∵'//'CB HE ,∴'~'GB C GE H ,∴'22'33GC B C x GH E H x ===,'2'3B C E H ==,∴)21GB x =,∵~'GBM CRF ,∴22'216255GMBCF Rx S GB S CR ⎡⎤-⎛⎫=== ⎪⎝⎭.∵'''2CF R CF H S S =,∴'125GMB CF HS S -= .方法二,如图4,过点B 作BN PG ⊥,垂足为点N .由题意可知,'//CF GP ,'//HE BN ,∴~'GBN CHF ,∴2'GBN CHF S GB S CH ⎛⎫= ⎪⎝⎭,∵'//CF GP ,∴'NGB F CH ∠=∠,∴'1tan tan ''2CB FH G F CH GB CF ∠=∠===,设FH x =,则'''''2CF B E E F BC x ====,'4GB x =,∴CH =,CG =,则)21GB x =,∴(22'21465GBN CHF x S GB S CH ⎛⎫--⎛⎫=== ⎪⎝⎭,∵2'1'2CF H S CF FH x =⋅= ,∴(2465GBNSx -=,∵'//HE BN ,∴~'GBN GCB,∴55'5GB GC CB BN -===,∵'//CB BN ,//''BM B F ,'//'CF GB ,∴~''MBN B F C ,∴22''55625'55MBN B F C S BN S CB ⎛⎫-⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭,∴(2''26655MBNB FC SS x --==,∴(((222462626555MBGNBG MBN SS S xxx ---=-=-=,∴'12455GMB CF H S S -= .方法三:如图5,设AB 与PQ 交于N 点,设FH x =,则'''''2CF CB B E E F BC x =====,'4GB x =,由题意可知,'//CF GP ,//''BM B F ,//BN CO ,∴~'MBN F OC ,∴2'MBN F OC S BN S CO ⎛⎫= ⎪⎝⎭,由方法(2)可知,)251GB x =,所以)51BN x =-,又∵22533CO CK x ==,∴(2'96520MBN F OC S BN S CO -⎛⎫==⎪⎝⎭ ,∴((229625362542035BMNSxx --=⨯=,∵)(222151652GBN S BG BN x x =⨯⨯==- ,∴(((2223625262562555GBMGBN NBM SS S x xx --=-=--=,∴2'1''2CF H S CF F H x =⨯⨯= ,∴'12455GMB CF H S S -= .【点睛】此题考查正方形的判定定理及性质定理,旋转的性质,全等三角形的判定及性质,相似三角形的判定及性质,锐角三角函数,综合掌握各知识点并熟练应用解决问题是解题的关键.。
2020年中考数学第一轮复习 第七章 图形与变换 学生版(后含答案)
2020年中考数学第一轮复习第七章图形与变换第二十六讲相似图形一、成比例线段:1、线段的比:如果选用同一长度单位的两条线段AB,CD的长度分别为m、n则这两条线段的比就是它们的比,即:AB CD=2、比例线段:四条线段a、b、c、d如果ab=那么四条线段叫做成比例线段,简称3、比例的基本性质:ab=cd<=>4、平行线分线段成比例定理:三条平行线截两条直线所得的对应线段,推论:平行于三角形一边的直线截其它两边或两边的延长线所得的对应线段。
【注意:1、表示两条线段的比时,必须采用相同的,在采用了相同单位的前提下,两条线段的比值与采用的单位无关即比值没有单位。
2、黄金分割:如图,点C把线段AB分成两条线段AC和BC(AC>BC)如果那么称线段AB被点C黄金分割,AC与AB的比叫黄金比,即ACAB= ≈ 】二、相似三角形:1、定义:如果两个三角形的各角对应各边对应那么这两个三角形相似2、性质:⑴相似三角形的对应角对应边⑵相似三角形对应高的比、对应角平分线的比、对应的比都等于⑶相似三角形周长的比等于面积的比等于3、判定:⑴基本定理:平行于三角形一边的直线和其它两边或两边是延长线相交,所截得的三角形与原三角形相似⑵两边对应且夹角的两三角形相似⑶两角的两三角形相似⑷三组对应边的比的两三角形相似【注意:1、全等是相似比为的特殊相似2、根据相似三角形的性质的特质和判定,要证四条线段的比相等相等一般要先证 判定方法中最常用的是 ,三组对应边成比例的两三角形相似多用格点三角 形中】 三、相似多边形:1、定义:各角对应 各边对应的两个多边形叫做相似多边形 2、性质:⑴相似多边形对应角 对应边⑵相似多边形周长的比等于 面积的比等于【注意:相似多边形没有专门的判定方法,判定两多边形相似多用在矩形中,一般用定义进行判定】 四、位似:1、定义:如果两个图形不仅是 而且每组对应点的连线 那么这样的两 个图形叫做位似图形,这个点叫做 这时相似比又称为2、性质:位似图形上任意一点到位似中心的距离之比都等于 【注意:1、位似图形一定是 图形,但反之不成立,利用位似变换可以将一个图形放大或2、在平面直角坐标系中,如果位似是以原点为位似中心,相似比位k ,那么位似图形 对应点的坐标的比等于 或 】 【重点考点例析】考点一:平行线分线段成比例例1(2019年山东临沂)如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则△ABC 的面积是 .对应练习1-1(上海)如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB=3:5,那么CF :CB 等于( )A .5:8B .3:8C .3:5D .2:5对应练习1-2(乌鲁木齐)如图,AB ∥GH ∥CD ,点H 在BC 上,AC 与BD 交于点G ,AB=2,CD=3,则GH 的长为 .考点二:位似 例2(2019年山东滨州)在平面直角坐标系中,△ABO 的三个顶点的坐标分别为A (-2,4),B (-4,0),O (0,0).以原点O 为位似中心,把这个三角形缩CA DB小为原来的12,得到△CDO ,则点A 的对应点C 的坐标是_________. 对应练习2-1(2019年烟台)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO 的顶点坐标分别为A (-2,-1),B (-2,-3),O (0,0).△A 1B 1O 1的顶点全标分别为A 1(1,一1),B 1(1,-5),O 1(5,1).△ABO 与△A 1B 1O 1是以点P 为位似中心的位似图形,则P 点的坐标为____________A .(-2,1)B .(-8,4)C .(-8,4)或(8,-4)D .(-2,1)或(2,-1) 考点三:相似三角形的性质及其应用例3(2019年德州)如图,正方形ABCD 中,点F 在边AB 上,且AF ∶FB =1∶2,CE ⊥DF ,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接GM .有如下结论:①DE =AF ;②AN =4AB ;③∠ADF =∠GMF ;④S △ANF ∶S 四边形CNFB=1∶8.上述结论中,所有正确结论的序号是( )A .①②B .①③C .①②③D .②③④对应练习3-1(2019年德州)(12分)(1)如图1,菱形AEGH 的顶点E 、H 在菱形ABCD 的边上,且∠BAD =60°,请直接写出HD ∶GC ∶EB 的结果(不必写计算过程) (2)将图1中的菱形AEGH 绕点A 旋转一定角度,如图2,求HD ∶GC ∶EB ; (3)把图2中的菱形都换成矩形,如图3,且AD ∶AB =AH ∶AE =1∶2,此时HD ∶GC ∶EB 的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.AFE D CN B G对应练习3-2(2019山东东营) 如图1,在 Rt△ABC 中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC 的中点,连接DE.将△CDE 绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现①当α =0°时,AEBD=;②当α= 180°时,AEBD=.(2)拓展探究试判断:当0°≤α<360°时,AEBD的大小有无变化?请仅就图 2 的情形给出证明.(3)问题解决△CDE 绕点C 逆时针旋转至A、B、E 三点在同一条直线上时,求线段BD 的长.考点四:相似三角形的判定例4(2019年莱芜)如图,在△ABC中,D、E分别是AB、BC上的点,且DE△AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=()A . 1:16B . 1:18C . 1:20D . 1:24 对应练习4-1(2019年烟台)【问题探究】(1)如图1,△ABC 和△DEC 均为等腰直角三角形,∠ACB =∠DCE =90°,点B ,D ,E 在同一直线上,连接AD ,BD .①请探究AD 与BD 之间的位置关系:________;②若AC =BC=10,DC =CE =2,则线段AD 的长为________; 【拓展延伸】(2)如图2,△ABC 和△DEC 均为直角三角形,∠ACB =∠DCE =90°,AC =21,BC =7,CD =3,CE =1.将△DCE 绕点C 在平面内顺时针旋转,设旋转角∠BCD 为α(0°≤α<360°),作直线BD ,连接AD ,当点B ,D ,E 在同一直线上时,画出图形,并求线段AD 的长.对应练习4-2(牡丹江)如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件 ,使△ABC ∽△ACD .(只填一个即可) 考点五:相似形的综合题例5(2019年淄博)如图,在△ABC 中AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B ,若△ADC 的面积为a ,则△ABD 的面积为(A )2a(B )a 25 (C )3a (D )a 27对应练习5-1(荆州)如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC=AC ,∠ACB 的平分线CE 交AD 于E ,点F 是AB 的中点,则S △AEF :S 四边形BDEF 为( ) A .3:4 B .1:2 C .2:3 D .1:3对应练习5-2(株洲)已知在△ABC 中,∠ABC=90°,AB=3,BC=4.点Q 是线段AC 上的一个动点,过点Q 作AC 的垂线交线段AB (如图1)或线段AB 的延长线(如图2)于点P .(1)当点P 在线段AB 上时,求证:△AQP ∽△ABC ;图1DBA CE图2DB(2)当△PQB 为等腰三角形时,求AP 的长.第二十六讲 相似图形 参考答案【重点考点例析】考点一:平行线分线段成比例 例1答案:83解析:本题考查了平行线分线段成比例定理,解直角三角形的知识.过点A 作AE ⊥BC 交其延长线于点E ,又∵DC ⊥BC ,∴AE ∥DC ,∴EC :CB =AD :DB ,又∵AD =BD ,∴EC =CB =4.∵∠ACB =120°,∴∠ACE =60°,∴AE =EC ·tan60°=43,∴S △ABC =21BC ·AE =21×4×43=83.对应练习1-1 答案: 解:∵AD :DB=3:5, ∴BD :AB=5:8, ∵DE ∥BC ,∴CE :AC=BD :AB=5:8, ∵EF ∥AB ,∴CF :CB=CE :AC=5:8. 故选A . 对应练习1-2 答案:56考点二:位似 例2答案:(﹣1,2)或(1,﹣2)CA DBE解析:本题考查了坐标与图形性质与位似变换的知识,以原点O为位似中心,把这个三角形缩小为原来的,点A的坐标为(﹣2,4),∴点C的坐标为(﹣2×,4×)或(2×,﹣4×),即(﹣1,2)或(1,﹣2),,因此本题填(﹣1,2)或(1,﹣2).对应练习2-1答案:(﹣5,﹣1)解析:法一:借助网格.任意两对应点连线的交点为(﹣5,﹣1).法二:设点P坐标为(x,y).∵直线AA1平行于x轴,∴y= ﹣1.又∵AB平行于A1B1,∴P A:P A1=AB:A1B1=2:4=1:2.∴P A=3.∴x= ﹣3﹣2= ﹣5.即P点坐标为(﹣5,﹣1).故填(﹣5,﹣1).对应练习2-2答案:解:根据题意得:则点E的对应点E′的坐标是(-2,1)或(2,-1).故选D.考点三:相似三角形的性质及其应用例3答案:C解析:①正确.证明△ADF≌△DCE(ASA),即可判断.②正确.利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可.③正确.作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,通过计算证明MH=CH即可解决问题.④错误.设△ANF的面积为m,由AF∥CD,推出==,△AFN∽△CDN,推出△ADN的面积为3m,△DCN的面积为9m,推出△ADC的面积=△ABC的面积=12m,由此即可判断.对应练习3-1答案:解∶(1)连接AG,∵菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,∴∠GAE=∠CAB=30°,AE=AH,AB=AD,∴A,G,C共线,AB-AE=AD-AH,∴HD=EB,延长HG交BC于点M,延长EG交DC于点N,连接MN,交GC于点O,则GMCN也为菱形,∴GC⊥MN,∠NGO=∠AGE=30°,∴OGGN=cos30°=√32, ∵GC =2OG , ∴GN GC√3,∵HGND 为平行四边形, ∴HD =GN ,∴HD ∶GC ∶EB =1∶√3∶1.(2)如图2,连接AG ,AC ,∵△ADC 和△AHG 都是等腰三角形,∴AD ∶AC =AH ∶AG =1∶√3,∠DAC =∠HAG =30°, ∴∠DAH =∠CAG , ∴△DAH ∽△CAG ,∴HD ∶GC =AD ∶AC =1∶√3, ∵∠DAB =∠HAE =60°, ∴∠DAH =∠BAE , 在△DAH 和△BAE 中, {AD =AB ∠DAH =∠BAE AH =AE∴△DAH ≌△BAE (SAS ) ∴HD =EB ,∴HD ∶GC ∶EB =1∶√3∶1.(3)有变化.如图3,连接AG ,AC ,∵AD ∶AB =AH ∶AE =1∶2,∠ADC =∠AHG =90°, ∴△ADC ∽△AHG ,∴AD ∶AC =AH ∶AG =1∶√5, ∵∠DAC =∠HAG ,∴∠DAH =∠CAG , ∴△DAH ∽△CAG ,∴HD ∶GC =AD ∶AC =1∶√5, ∵∠DAB =∠HAE =90°, ∴∠DAH =∠BAE ,∵DA ∶AB =HA ∶AE =1∶2, ∴△ADH ∽△ABE ,∴DH ∶BE =AD ∶AB =1∶2, ∴HD ∶GC ∶EB =1∶√5∶2对应练习3-2答案:解:(1.(2)AEBD的大小无变化. 证明:如图 1,∵∠B =90°,AB =4,BC =2,∴ A C , ∵点 D 、E 分别是边 BC 、AC 的中点,∴ C E =12AC ,CD =12BC =1.如图 2,∵∠ DCE =∠ B CA , ∴∠ A CE +∠ D CA =∠ B CD +∠ D CA , ∴∠ A CE =∠ B CD ,∵CA CE CD CB =∴△ ACE ∽△BCD ,∴CE AE BD CD ==AE BD的大小无变化.(3)第一种情况(如图 3):在 R t △BCE 中,CE ,BC =2,BE =1, ∴ A E =AB + B E = 5 ,由(2)得AEBD =∴ B D=第二种情况(如图 4):由第一种情况知:BE =1. ∴AE =AB - BE = 3 ,由(2)得AEBD =∴ B D=综上所述,线段 B D .考点四:相似三角形的判定 例4 答案: 解:△S △BDE :S △CDE =1:4,△设△BDE 的面积为a ,则△CDE 的面积为4a ,△△BDE 和△CDE 的点D 到BC 的距离相等,△=, △=,△DE △AC ,△△DBE △△ABC ,△S △DBE :S △ABC =1:25,△S △ACD =25a ﹣a ﹣4a=20a ,△S △BDE :S △ACD =a :20a=1:20.故选C .对应练习4-1 答案:解:(1)①垂直 ②4.提示:由题意,可得△ACD ≌△BCE ,,所以∠ADC =45°,从而∠ADE =90°,即AD ⊥BE . ②由AC =BC =10,DC =CE =2,得AB =25,DE =2.在Rt △ADB 中,设AD =x ,则由勾股定理得222(2)(25)x x +-=.解得x =4. (负值舍去). ∴AD =4.(2)①如图:∵∠ACB =∠DCE =90°,AC =21,BC =7,CD =3,CE =1,∴AB =27,DE =2,∠ACD =∠BCE, 7AC BC DC CE==. ∴△ACD ∽△BCE .∴∠ADC =∠E ,3AD AC BE BC==. 又∵∠CDE +∠E=90°,∴∠ADC +∠CDE =90°,即∠ADE=90°.∴AD ⊥BE . 设BE =x ,则AD =3x .在Rt △ABD 中,222AD BD AB +=,即2223)(2)(27)x x +-=(. 解得x =3(负值舍去).∴AD =33.②如图,A C E D B同①设BE =x ,则AD =3x . 在Rt △ABD 中,222AD BD AB +=,即2223)(+2)(27)x x +=(. 解得x =2(负值舍去).∴AD =23.综上可得,线段AD 的长为332 3.或对应练习4-2 答案:解:由题意得,∠A=∠A (公共角),则可添加:∠ACD=∠ABC ,利用两角法可判定△ABC ∽△ACD .故答案可为:∠ACD=∠ABC .考点五:相似形的综合题例5 答案:C解析:本题考查了相似三角形的性质与判定,∵∠CAD =∠B ,∠C=∠C ,∴△ACD ∽△BCA ,S △ACD ∶S △BCA =412=⎪⎭⎫ ⎝⎛BC AC ,S △ACD = a ,S △BCA =4a ,S △BCD = S △BCA ﹣S △ACD =4a ﹣a =3a ,因此本题选C .对应练习5-1 答案:解:∵DC=AC ,∴△ADC 是等腰三角形,∵∠ACB 的平分线CE 交AD 于E ,∴E 为AD 的中点(三线合一),又∵点F 是AB 的中点,∴EF 为△ABD 的中位线,∴EF=12BD ,△AFE ∽△ABD , ∵S △AFE :S △ABD =1:4,∴S △AFE :S 四边形BDEF =1:3,故选D .对应练习5-2 答案:AC BED解答:(1)证明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C.在△APQ与△ABC中,∵∠APQ=∠C,∠A=∠A,∴△AQP∽△ABC.(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠BPQ为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ.(I)当点P在线段AB上时,如题图1所示.由(1)可知,△AQP∽△ABC,∴PA PQAC BC=,即354PB PB-=,解得:PB=43,∴AP=AB-PB=3-43=53;(II)当点P在线段AB的延长线上时,如题图2所示.∵BP=BQ,∴∠BQP=∠P,∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A,∴BQ=AB,∴AB=BP,点B为线段AB中点,∴AP=2AB=2×3=6.综上所述,当△PQB为等腰三角形时,AP的长为53或6.【聚焦中考真题】一、选择题1.(无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于()A.12B.14C.18D.1162.(青岛)如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A .(2m ,n )B .(m ,n )C .(m ,2n )D .(2m ,2n ) 3.(温州)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,已知AE=6, 34AD BD ,则EC 的长是( )4.(宜昌)如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2)5.(柳州)小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为( )A .10米B .12米C .15米D .22.5米6.(贵阳)如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线截△ABC ,使截得的三角形与△ABC 相似,这样的直线共有( )A .1条B .2条C .3条D .4条7.(沈阳)如图,△ABC 中,AE 交BC 于点D ,∠C=∠E ,AD=4,BC=8,BD :DC=5:3,则DE 的长等于( )A .203B .154C . 163D . 1748.(内江)如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( )A .2:5B .2:3C .3:5D .3:29.(重庆)如图,在平行四边形ABCD 中,点E 在AD 上,连接CE 并延长与BA 的延长线交于点F ,若AE=2ED ,CD=3cm ,则AF 的长为( )A .5cmB .6cmC .7cmD .8cm10.(雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()A.1:3B.2:3C.1:4D.2:511.(恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4B.1:3C.2:3D.1:212.(昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN ∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个13.(眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.A.1B.2C.3D.414.(黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2 C.3D.415.(莆田)下列四组图形中,一定相似的是()A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形16.(重庆)已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3:4,则△ABC 与△DEF 的面积比为( )A .4:3B .3:4C .16:9D .9:1617.(菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1918.(聊城)如图,D 是△ABC 的边BC 上一点,已知AB=4,AD=2.∠DAC=∠B ,若△ABD 的面积为a ,则△ACD 的面积为( )A .aB .12aC .13aD .23a 19.(淄博)如图,直角梯形ABCD 中,AB ∥CD ,∠C=90°,∠BDA=90°,AB=a ,BD=b ,CD=c ,BC=d ,AD=e ,则下列等式成立的是( )A .b 2=acB .b 2=ceC .be=acD .bd=ae二、填空题20.(淄博)如图,AB 是⊙O 的直径,⌒AD =⌒DE ,AB=5,BD=4,则sin ∠ECB= .21.(威海)如图,AC ⊥CD ,垂足为点C ,BD ⊥CD ,垂足为点D ,AB 与CD 交于点O .若AC=1,BD=2,CD=4,则AB= .22.(济宁)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,且幻灯片中的图形的高度为6cm ,则屏幕上图形的高度为 cm .23.(枣庄)已知矩形ABCD 中,AB=1,在BC 上取一点E ,AE 将△ABE 向上折叠,使B 点落在AD 上的F 点.若四边形EFDC 与矩形ABCD 相似,则AD= .24.(菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=13CE时,EP+BP= .25.(潍坊)如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1,若△E1FA1∽△E1BF,则AD= .26.(岳阳)同一时刻,物体的高与影子的长成比例,某一时刻,高1.6m的人影长1.2m,一电线杆影长为9m,则电线杆的高为m.27.(六盘水)如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)28.(宁夏)△ABC中,D、E分别是边AB与AC的中点,BC=4,下面四个结论:①DE=2;②△ADE∽△ABC;③△ADE的面积与△ABC的面积之比为1:4;④△ADE的周长与△ABC的周长之比为1:4;其中正确的有.(只填序号)29.(本溪)如图,在矩形ABCD中,AB=10,AD=4,点P是边AB上一点,若△APD 与△BPC相似,则满足条件的点P有个.30.(厦门)如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC= .31.(雅安)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF= ..32.(黔东南州)将一副三角尺如图所示叠放在一起,则BEEC的值是.33.(苏州)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为34.(泰州)如图,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,-3),△AB′O′是△ABO关于的A的位似图形,且O′的坐标为(-1,0),则点B′的坐标为35.(盘锦)如图,矩形ABCD的边AB上有一点P,且AD=53,BP=45,以点P为直角顶点的直角三角形两条直角边分别交线段DC,线段BC于点E,F,连接EF,则tan∠PEF= .36.(宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足13 CFFD,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=52;④S△DEF=45.其中正确的是(写出所有正确结论的序号).三、解答题37.(徐州)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)(1)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.38.(滨州)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).39.(泰安)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;CBE.42.(山西)数学活动---求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.(1)独立思考:请回答老师提出的问题.(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.任务:①请解决“爱心”小组提出的问题,直接写出△DMN的面积是.②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图4中画出图形,标明字母,不必解答(注:也可在图1的基础上按顺时针旋转).43.(武汉)已知四边形ABCD在,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF.求证:DE AD CF CD=;(2)如图②,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得DE ADCF CD=成立?并证明你的结论;(3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF.请直接写出DECF的值.44.(陕西)一天晚上,黎明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC 方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m.45.(德宏州)如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?46.(怀化)如图,已知在△ABC与△DEF中,∠C=54°,∠A=47°,∠F=54°,∠E=79°,求证:△ABC∽△DEF.47.(厦门)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是365,面积是54.求证:AC⊥BD.48.(宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4)C(-2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.49.(巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F 为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.50.(眉山)在矩形ABCD中,DC=23,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.51.(邵阳)如图所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,点P是△ABC的外角∠BCN的角平分线上一个动点,点P′是点P关于直线BC的对称点,连结PP′交BC于点M,BP′交AC于D,连结BP、AP′、CP′.(1)若四边形BPCP′为菱形,求BM的长;(2)若△BMP′∽△ABC,求BM的长;(3)若△ABD为等腰三角形,求△ABD的面积.52.(温州)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0.8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作▱CDEF.(1)当0<m<8时,求CE的长(用含m的代数式表示);(2)当m=3时,是否存在点D,使▱CDEF的顶点F恰好落在y轴上?若存在,求出点D 的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯一的位置,使得▱CDEF为矩形,请求出所有满足条件的m的值.53.(无锡)如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.(1)求点Q运动的速度;(2)求图2中线段FG的函数关系式;(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.第二十六讲相似图形参考答案【聚焦中考真题】一、选择题1-5 BDBBA6-10 CBBB A11-15 BBCDD16-19 DBCA二、填空题 20.答案:54 21.答案:5 22.答案:18 23.答案:215+ 24.答案:12 25.答案:3.2 26.答案:1227.答案:∠C=∠ADE 或∠B=∠AED 或ACADAB AE =28.答案:①②③ 29.答案:3 30.答案:6 31.答案:314 32.答案:33 33.答案:(2,4﹣2)34.答案:⎪⎭⎫ ⎝⎛-4,3535.答案:2512 36.答案:①②④ 三、解答题: 37.答案:解:(1)若△CEF 与△ABC 相似.①当AC=BC=2时,△ABC 为等腰直角三角形,如答图1所示. 此时D 为AB 边中点,AD=22AC=2.38.答案:39.答案:(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=12AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=12 AB,∴CE=12×6=3,∵AD=4,∴43AFCF =,∴74 ACAF=.40.答案:解:(1)∵当AP=PD时,四边形AQDM是平行四边形,即3t=3-3t,t=12,∴当t=12s时,四边形AQDM是平行四边形.(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴△AMP∽△DQP,∴AM AP DQ PD=,∴3 133 AM tt t=--,∴AM=t,∵MN⊥BC,∴∠MNB=90°,∵∠B=45°,∴∠BMN=45°=∠B,∴BN=MN,∵BM=1+t,在Rt△BMN中,由勾股定理得:BN=MN=22(1+t),∵四边形ABCD是平行四边形,∴AD∥BC,∵MN⊥BC,∴MN⊥AD,∴y=12×AP×MN=12•3t•22(1+t)即y与t之间的函数关系式为y=324t2+324t(0<t<1).(3)假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半.此时324t2+324t=12×3×22,整理得:t2+t-1=0,解得t1=512-,t2=512--(舍去)∴当t=512-s时,四边形ANPM的面积是平行四边形ABCD的面积的一半.(4)存在某一时刻t,使NP与AC的交点把线段AC分成12:的两部分,理由是:假设存在某一时刻t,使NP与AC的交点把线段AC分成12:的两部分,∵四边形ABCD是平行四边形,∴AD∥BC,∴△APW∽△CNW,∴AP AW CN CW=,即32123(1)2tt=-+或31223(1)2tt=-+,∴t=3214-或3217-,∵两数都在0<t<1范围内,即都符合题意,∴当t=3214-s 或3217-s 时,NP 与AC 的交点把线段AC 分成12:的两部分. 41.答案:证明:在△ABC 中,AB=AC ,BD=CD , ∴AD ⊥BC ,∵CE ⊥AB , ∴∠ADB=∠CEB=90°, 又∵∠B=∠B ,∴△ABD ∽△CBE . 42.答案:解:(1)【独立思考】∵∠ACB=90°,D 是AB 的中点, ∴DC=DA=DB ,∴∠B=∠DCB .又∵△ABC ≌△FDE ,∴∠FDE=∠B . ∴∠FDE=∠DCB ,∴DG ∥BC .∴∠AGD=∠ACB=90°,∴DG ⊥AC . 又∵DC=DA ,∴G 是AC 的中点,∴CG=12AC=12×8=4,DG=12BC=12×6=3, ∴S △DGC =12CG•DG=12×4×3=6.解法一:如下图所示:∵△ABC ≌△FDE ,∴∠B=∠1. ∵∠C=90°,ED ⊥AB ,∴∠A+∠B=90°,∠A+∠2=90°, ∴∠B=∠2,∴∠1=∠2, ∴GH=GD .∵∠A+∠2=90°,∠1+∠3=90°, ∴∠A=∠3,∴AG=GD ,∴AG=GH ,即点G 为AH 的中点. 在Rt △ABC 中,AB=222286AC BC +=+=10, ∵D 是AB 中点,∴AD=12AB=5. 在△ADH 与△ACB 中,∵∠A=∠A ,∠ADH=∠ACB=90°,∴△ADH ∽△ACB ,∴AD DH AC CB =,即586DH =,解得DH=154, ∴S △DGH =12S △ADH =12×12×DH•AD=1157554416⨯⨯=.解法二:同解法一,G 是AH 的中点.连接BH ,∵DE ⊥AB ,D 是AB 中点, ∴AH=BH .设AH=x ,则CH=8-x . 在Rt △BCH 中,CH 2+BC 2=BH 2即:(8-x )2+36=x 2,解得x=254. ∴S △ABH =12AH•BC=12×254×6=754.∴S △DGH =12S △ADH =12×12S △ABH =14×754=7516.解法三:同解法一,∠1=∠2.连接CD ,由(1)知,∠B=∠DCB=∠1, ∴∠1=∠2=∠B=∠DCB . ∴△DGH ∽△BDC .过点D 作DM ⊥AC 于点M ,CN ⊥AB 于点N . ∵D 是AB 的中点,∠ACB=90°,∴CD=AD=BD ,∴点M 是AC 的中点, ∴DM=12BC=12×6=3. 在Rt △ABC 中,AB=222286AC BC +=+=10,12AC•BC=12AB•CN ,∴CN=6810AC BC AB ⨯=g =245. ∵△DGH ∽△BDC , ∴2()DGH BDH S DM S CN=V V ,∴S △DGH =(DM CN )2•S △BDC =(DM CN )2•12BD•CN ∴S △DGH =(3245)2×12×5×245=7516.(3)【提出问题】①解决“爱心”小组提出的问题.如答图4,过点D 作DK ⊥AC 于点K ,则DK ∥BC , 又∵点D 为AB 中点, ∴DK=12BC=3. ∵DM=MN ,∴∠MND=∠MDN ,由(2)可知∠MDN=∠B , ∴∠MND=∠B ,又∵∠DKN=∠C=90°,∴△DKN∽△ACB,∴KN DKBC AC=,即368KN=,得KN=94.设DM=MN=x,则MK=x-94.在Rt△DMK中,由勾股定理得:MK2+DK2=MD2,即:(x-94)2+32=x2,解得x=258,∴S△DMN=12MN•DK=12×258×3=7516.②此题答案不唯一,示例:如答图5,将△DEF绕点D旋转,使DE⊥BC于点M,DF交BC于点N,求重叠部分(四边形DMCN)的面积.43.答案:∴DE ADCF CD=, 即当∠B+∠EGC=180°时,DE ADCF CD=成立.(3)解:2524DE CF =. 理由是:过C 作CN ⊥AD 于N ,CM ⊥AB 交AB 延长线于M ,连接BD ,设CN=x , ∵AB ⊥AD ,∴∠A=∠M=∠CNA=90°, ∴四边形AMCN 是矩形, ∴AM=CN ,AN=CM , ∵在△BAD 和△BCD 中AD CD AB BC BD BD =⎧⎪=⎨⎪=⎩, ∴△BAD≌△BCD (SSS ), ∴∠BCD=∠A=90°, ∴∠ABC+∠ADC=180°, ∵∠ABC+∠CBM=180°, ∴∠CBM=∠ADC , ∵∠CND=∠M=90°, ∴△BCM ∽△DCN ,∴CM BCCN CD =, ∴68CM x =,∴CM=34x ,在Rt △CMB 中,CM=34x ,BM=AM -AB=x -6,由勾股定理得:BM 2+CM 2=BC 2, ∴(x -6)2+(34x )2=62, x=0(舍去),x=19225,CN=19225,∵∠A=∠FGD=90°, ∴∠AED+∠AFG=180°, ∵∠AFG+∠NFC=180°, ∴∠AED=∠CFN , ∵∠A=∠CNF=90°, ∴△AED ∽△NFC ,∴8251922425DE ADCF CN===.44.答案:解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA ∴MA∥CD∥BN∴EC=CD=x∴△ABN∽△ACD,∴BN AB CD AC=,即1.75 1.251.75 x x=-。
2024年中考数学一轮复习练习题:相似含参考答案
2024年中考数学一轮复习练习题:相似一、选择题1.如图,在△ABC中,D,E分别是AB,AC上的点,DE∥BC,若AD=6,BD=3,AE=8,则EC的长是()A.4B.2C.5D.942.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论不正确的是()A.AD BD=AE EC B.AF AE=DF BE C.AE EC=AF FE D.DE BC=AF FE3.如图,在△ABC中,∠ACB=2∠B,CD平分∠ACB,AD=2,BD=3,则AC的长为()A.3B.10C.4D.234.如图,已知ΔABC和ΔEDC是以点C为位似中心的位似图形,且ΔABC和ΔEDC的位似比为1∶2,ΔABC 面积为2,则ΔEDC的面积是()A.2B.8C.16D.32 5.如图,在△ABC中,点D,E分别在AB,AC上,若DE∥BC,AD AB=25,AE=6cm,则AC的长为()A.9cm B.12cm C.15cm D.18cm6.如图,李老师用自制的直角三角形纸板去测量灯塔的高度,他调整自己的位置,设法使斜边DF保持水平,边DE与点B在同一直线上.已知直角三角纸板中DE=18cm,EF=12cm,测得眼睛D离地面的高度为1.8m,他与灯塔的水平距离CD为114m,则灯塔的高度AB是()A.74.2m B.77.8m C.79.6m D.79.8m7.如图,已知BO平分∠CBA,CO平分∠ACB,且MN∥BC,设AB=18,BC=24,AC=12,则MN的长是()A.13B.252C.403D.148.如图,在平行四边形ABCD中E为AB的中点,F为AD上一点,EF与AC交于点H,FH=3cm,EH=6cm,AH=4cm,则HC的长为()A.24cm B.22cm C.20cm D.18cm二、填空题9.如图,以点O为位似中心,将△ABO缩小后得到△CDO,OC=3,AC=4,AB CD=.10.如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有对.11.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高为1.5m,测得AB=3m,AC=10m,则建筑物CD的高是m.12.如图,△ABC与△A1B1C1位似,位似中心是点O,则OA:OA1=1:2,△ABC的面积为3,则△A1B1C1的面积是.13.如图,已知点A、B分别在反比例函数y=1x(x>0),y=−4x(x>0)的图象上,且OA⊥OB,则OB OA的值为.三、解答题14.如图所示,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD;(2)若AB=13,BC=10,求线段DE 的长.15.如图,在四边形ABCD 中,AD∥BC,AB⊥BC,点E 在AB 上,∠DEC=90°.(1)求证:△ADE∽△BEC.(2)若AD=1,BC=3,AE=2,求AB 的长.16.在△ABC 中,AD⊥BC,BC=AD=20cm,现有若干张长为5cm 宽为3cm 的矩形纸片,打算如图方向平铺在三角形内,(纸片均不能重叠和超出三角形ABC 三边)(1)如果纸片只平铺底层,最多能平铺几张完整的矩形纸片,说明理由;(2)三角形内最多可以平铺几张完整的矩形纸片,说明理由.17.已知:如图,在半径为4的O 中,AB CD 、是两条直径,M 为OB 的中点,CM 的延长线交O 于点E ,且EM MC >,连接,15DE DE =(1)求证:AMC EMB ∆∆∽;(2)求EM 的长。
2020年中考数学(通用版)一轮复习《图形的相似》基础测试卷(包含答案解析)
2020年中考数学(通用版)一轮复习《图形的相似》基础测试卷考试时间:90分钟;满分:120分班级:___________姓名:___________学号:___________成绩:___________一.选择题(共11小题,满分33分,每小题3分)1.(3分)如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为()A.6B.7C.8D.92.(3分)若a:b=3:4,且a+b=14,则2a﹣b的值是()A.4B.2C.20D.143.(3分)已知△ABC∽△A'B'C',AB=8,A'B'=6,则=()A.2B.C.3D.4.(3分)若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为()A.2:1B.1:2C.4:1D.1:45.(3分)如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=GC D.EG=2GC6.(3分)在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B (0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A点的对应点A′坐标为()A.(﹣2,﹣4)B.(﹣4,﹣2)C.(﹣1,﹣4)D.(1,﹣4)7.(3分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元8.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b9.(3分)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC =12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m10.(3分)如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对11.(3分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1B.C.1D.二.填空题(共8小题,满分32分,每小题4分)12.(4分)如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为.13.(4分)已知=,则的值为.14.(4分)如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.15.(4分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.16.(4分)如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为.17.(4分)若两个相似三角形的周长比为2:3,则它们的面积比是.18.(4分)如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.19.(4分)如图,为了测量一水塔的高度,小强用2米的竹竿做测量工具,移动竹竿,使竹竿、水塔的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8米,与水塔相距32米,则水塔的高度为米.三.解答题(共7小题,满分55分)20.(7分)已知x:y=2:5,x:z=:,求x:y:z.21.(8分)如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)22.(8分)如图,△ABC的三个顶点坐标分别是A(0,3),B(1,0),C(3,1).(1)以原点O为位似中心,在y轴左侧画出△A1B1C1,使得△A1B1C1与△ABC的位似比为2:1;(2)△ABC的内部一点M的坐标为(a,b),则点M在△A1B1C1中的对应点M1的坐标是多少?23.(8分)如图,已知正方形ABCD的边长为4,F为BC上一点,且BF=3,E为DC上的点.(1)若∠AEF=90°,求证:△ADE∽△ECF;(2)若△ADE与△ECF相似,求CE的长.24.(8分)如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE=∠ACB.(1)求证:△ADE∽△ACB;(2)若AD=2DB,AE=4,AC=9,求BD的长.26.(8分)如图1,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒3cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒2cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)(如图2)连接AQ,CP,若AQ⊥CP,求t的值.27.(8分)如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD于E.(1)求证:CD2=DE•DA;(2)当∠BED=47°时,求∠ABC的度数.2020年中考数学(通用版)一轮复习《图形的相似》基础测试卷答案与试题解析一.选择题(共11小题,满分33分,每小题3分)1.(3分)如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为()A.6B.7C.8D.9【分析】利用平行线分线段成比例定理得到=,利用比例性质求出AE,然后计算AE+EC即可.【解答】解:∵DE∥BC,∴=,即=,∴AE=6,∴AC=AE+EC=6+2=8.故选:C.2.(3分)若a:b=3:4,且a+b=14,则2a﹣b的值是()A.4B.2C.20D.14【分析】根据比例的性质得到3b=4a,结合a+b=14求得a、b的值,代入求值即可.【解答】解:由a:b=3:4知3b=4a,所以b=.所以由a+b=14得到:a+=14,解得a=6.所以b=8.所以2a﹣b=2×6﹣8=4.故选:A.3.(3分)已知△ABC∽△A'B'C',AB=8,A'B'=6,则=()A.2B.C.3D.【分析】直接利用相似三角形的性质求解.【解答】解:∵△ABC∽△A'B'C',∴===.故选:B.4.(3分)若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为()A.2:1B.1:2C.4:1D.1:4【分析】直接利用相似三角形的性质求解.【解答】解:∵△ABC~△A′B'C′,相似比为1:2,∴△ABC与△A'B′C'的周长的比为1:2.故选:B.5.(3分)如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=GC D.EG=2GC【分析】根据平行线分线段成比例定理即可得到答案.【解答】解:∵DE∥FG∥BC,DB=4FB,∴.故选:B.6.(3分)在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B (0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A点的对应点A′坐标为()A.(﹣2,﹣4)B.(﹣4,﹣2)C.(﹣1,﹣4)D.(1,﹣4)【分析】利用已知对应点的坐标变化规律得出位似比为1:2,则可求A'坐标.【解答】解:∵△OA′B′与△OAB关于O(0,0)成位似图形,且若B(0,3)的对应点B′的坐标为(0,﹣6),∴OB:OB'=1:2=OA:OA'∵A(1,2),∴A'(﹣2,﹣4)故选:A.7.(3分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选:C.8.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.9.(3分)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC =12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m【分析】先证明△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.10.(3分)如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.11.(3分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1B.C.1D.【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出=,结合BD=AB﹣AD即可求出的值,此题得解.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴()2=.∵S△ADE=S四边形BCED,∴=,∴===﹣1.故选:C.二.填空题(共8小题,满分32分,每小题4分)12.(4分)如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为1:4.【分析】根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质得出即可.【解答】解:∵D、E分别为AB、AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,故答案为:1:4.13.(4分)已知=,则的值为﹣.【分析】根据已知设x=k,y=3k,代入求出即可.【解答】解:∵=,∴设x=k,y=3k,∴==﹣,故答案为:﹣.14.(4分)如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.【分析】根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE∥AC,∴,即,解得:EC=.故答案为:.15.(4分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是8米.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.16.(4分)如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为 1.4m.【分析】判断出△ABC和△AED相似,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:由题意得,DE∥BC,所以,△ABC∽△AED,所以,=,即=,解得h=1.4m.故答案为:1.4m.17.(4分)若两个相似三角形的周长比为2:3,则它们的面积比是4:9.【分析】根据相似三角形周长的比等于相似比求出相似比,再根据相似三角形面积的比等于相似比的平方求解即可.【解答】解:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.18.(4分)如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为5.【分析】易证△BAD∽△BCA,然后运用相似三角形的性质可求出BC,从而可得到CD 的值.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴=.∵AB=6,BD=4,∴=,∴BC=9,∴CD=BC﹣BD=9﹣4=5.故答案为5.19.(4分)如图,为了测量一水塔的高度,小强用2米的竹竿做测量工具,移动竹竿,使竹竿、水塔的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8米,与水塔相距32米,则水塔的高度为10米.【分析】由已知可得BC∥DE,因此△ABC∽△ADE,利用相似三角形的性质可求得水塔的高度.【解答】解:∵BC⊥AD,ED⊥AD,∴BC∥DE,∴△ABC∽△ADE,∴,即,∴DE=10,即水塔的高度是10米.故答案为:10.三.解答题(共7小题,满分55分)20.(7分)已知x:y=2:5,x:z=:,求x:y:z.【分析】根据比例的性质将x,y,z化为同份数的比,可得结论.【解答】解:∵x:y=2:5,x:z=:=3:4,∴x:y=6:15,x:z=6:8,∴x:y:z=6:15:8.21.(8分)如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)【分析】(1)根据▱ABCD可得AD∥BC,∠FGE=FBC,再根据已知∠FBC=∠DCE,进而可得结论;(2)作三角形FBC的外接圆交AD于点P即可证明.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC∴∠FGE=∠FBC∵∠FBC=∠DCE,∴∠FGE=∠DCE∵∠FEG=∠DEC∴∠D=∠F.(2)如图所示:点P即为所求作的点.证明:作BC和BF的垂直平分线,交于点O,作△FBC的外接圆,连接BO并延长交AD于点P,∴∠PCB=90°∵AD∥BC∴∠CPD=∠PCB=90°由(1)得∠F=∠D∵∠F=∠BPC∴∠D=∠BPC∴△BPC∽△CDP.22.(8分)如图,△ABC的三个顶点坐标分别是A(0,3),B(1,0),C(3,1).(1)以原点O为位似中心,在y轴左侧画出△A1B1C1,使得△A1B1C1与△ABC的位似比为2:1;(2)△ABC的内部一点M的坐标为(a,b),则点M在△A1B1C1中的对应点M1的坐标是多少?【分析】(1)依据位似中心的位置以及位似比的大小,即可得到△A1B1C1;(2)依据对应点的坐标的关系,即可得到点M在△A1B1C1中的对应点M1的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)△ABC的内部一点M的坐标为(a,b),则点M在△A1B1C1中的对应点M1的坐标是(﹣2a,﹣2b).23.(8分)如图,已知正方形ABCD的边长为4,F为BC上一点,且BF=3,E为DC上的点.(1)若∠AEF=90°,求证:△ADE∽△ECF;(2)若△ADE与△ECF相似,求CE的长.【分析】(1)欲证△ADE∽△ECF,通过观察发现两个三角形已经具备一组角对应相等,即∠D=∠C,此时,再证明另一组对应角相等即可;(2)先由正方形ABCD的边长为4,BF=3,求出CF=1,DE=4﹣CE,再根据△ADE 与△ECF相似的性质,可求CE的长.【解答】(1)证明:∵正方形ABCD,∴∠D=∠C=90°,∴∠AED+∠DAE=90°,∵∠AEF=90°,∴∠AED+∠CEF=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF.(2)∵正方形ABCD的边长为4,F为BC上一点,BF=3,E为DC上的点,∴CF=1,DE=4﹣CE,∵△ADE∽△ECF,∴=.∴=.解得CE=2.24.(8分)如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE=∠ACB.(1)求证:△ADE∽△ACB;(2)若AD=2DB,AE=4,AC=9,求BD的长.【分析】(1)根据相似三角形的判定即可求出证.(2)设BD=x,则AD=2x,AB=3x,根据相似三角形的性质可知=,从而列出方程解出x的值.【解答】(1)证明:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)解:由(1)可知::△ADE∽△ACB,∴=,设BD=x,则AD=2x,AB=3x,∵AE=4,AC=9,∴=,解得:x=(负值舍去),∴BD的长是.26.(8分)如图1,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒3cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒2cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)(如图2)连接AQ,CP,若AQ⊥CP,求t的值.【分析】(1)根据勾股定理求出AB,分△BPQ∽△BAC、△BPQ∽△BCA两种情况,根据相似三角形的性质列出比例式,计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,BQ=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解答】解:(1)①当△BPQ∽△BAC时,∵,BP=3t,QC=2t,AB=10cm,BC=8cm,∴,∴;②当△BPQ∽△BCA时,∵,∴,∴,∴或时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=3t,,,,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴,∴解得:;27.(8分)如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD于E.(1)求证:CD2=DE•DA;(2)当∠BED=47°时,求∠ABC的度数.【分析】(1)证明∠CED=∠ACB=90°,∠CDE=∠ADC,得到△CDE∽△ADC,列出比例式,化为等积式即可解决问题.(2)运用(1)中的结论,证明△BDE∽△ADB,即可解决问题.【解答】证明(1)∵CE⊥AD,∴∠CED=∠ACB=90°,∵∠CDE=∠ADC,∴△CDE∽△ADC,∴CD:AD=DE:CD,∴CD2=DE•AD.(2)∵D是BC的中点,∴BD=CD;∵CD2=DE•AD,∴BD2=DE•AD,∴BD:AD=DE:BD;又∵∠ADB=∠BDE,∴△BDE∽△ADB,∴∠BED=∠ABC,∵∠BED=47°,∴∠ABC=47°.。
安徽省2019中考数学决胜一轮复习第7章图形与变换第3节图形的相似习题(含答案)
第3课时 图形的相似1.已知5x =6y (y ≠0),那么下列比例式中正确的是( B ) A .x 5=y6B .x 6=y5C .x y =56D .x 5=6y2.(改编题)如图,△ABC ∽△ADE ,且∠ADE =∠B ,则下列比例式正确的是( D )A .AE BE =AD DCB .AE AB =ADACC .AD AC =DE BCD .AE AC =DEBC3.(2018·临沂)如图,利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2 m ,测得AB =1.6 m ,BC =12.4 m .则建筑物CD 的高是( B )A .9.3 mB .10.5 mC .12.4 mD .14 m4.(2018·梧州)如图,AG ∶GD =4∶1,BD ∶DC =2∶3,则AE ∶EC 的值是( D )A .3∶2B .4∶3C .6∶5D .8∶55.(2018·泸州)如图所示,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE =3ED ,DF =CF ,则AGGF的值是( C )A .43B .54C .65D .766.(原创题)△ABC 中,AB =10 cm ,BC =20 cm ,点P 从点A 开始沿AB 边向B 点以2 cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4 cm/s 的速度移动,如果P ,Q 分别从A ,B 同时出发,经过多少秒钟△PBQ 与△ABC 相似( C )A .2.5 sB .3.5 sC .1 s 和2.5 sD .1 s 和3.5 s7.(改编题)在比例尺1∶6 000 000的地图上,量得南京到北京的距离是15 cm ,这两地的实际距离是__900 km __.8.(原创题)如图,∠1=∠B ,AD =5 cm ,AB =10 cm ,则AC =__52 cm __.9.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为__113°或92°__.10.(2018·宜宾)如图,在矩形ABCD 中,AB =3,CB =2,点E 为线段AB 上的动点,将△CBE 沿CE 折叠,使点B 落在矩形内点F 处,下列结论正确的是__①②③__(写出所有正确结论的序号).①当E 为线段AB 中点时,AF ∥CE ;②当E 为线段AB 中点时,AF =95;③当A ,F ,C 三点共线时,AE =13-2133;④当A ,F ,C 三点共线时,△CEF ≌△AEF .11.(2018·福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A ′B ′,∠A ′(∠A ′=∠A ),以线段A ′B ′为一边,在给出的图形上用尺规作出△A ′B ′C ′,使得△A ′B ′C ′∽△ABC ,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程. (1)如图(1),△A′B′C′就是所求作的三角形.(2)已知:如图(2),△A′B′C′∽△ABC ,A′B′AB =B′C′BC =A′C′AC=k ,AD =DB ,A′D′=D′B′.求证:C′D′CD=k.证明:∵AD =DB ,A′D′=D′B′,∴AD =12AB ,A′D′=12A′B′,∴A′D′AD =12A′B′12AB =A′B′AB .∵△A′B′C′∽△ABC ,A′B′AB =A′C′AC =k ,∴A′D′AD =A′C′AC =k.在△C′A′D′和△CAD 中,A′D′AD =A′C′AC ,且∠A′=∠A ,∴△C′A′D′∽△CAD ,∴C′D′CD =A′C′AC=k. 12.(2018·合肥一模)已知四边形ABCD 中,AB =AD ,对角线AC 平分∠DAB ,过点C 作CE ⊥AB 于点E ,点F 为AB 上一点,且EF =EB ,连接DF .(1)求证:CD =CF ;(2)连接DF ,交AC 于点G ,求证:△DGC ∽△ADC ;(3)若点H 为线段DG 上一点,连接AH ,若∠ADC =2∠HAG ,AD =3,DC =2,求FGGH的值.(1)证明:∵AC 平分∠DAB ,∴∠DAC =∠BAC ,在△ADC 和△ABC 中,⎩⎪⎨⎪⎧AC =AC ,∠DAC =∠BAC ,AD =AB ,∴△ADC≌△ABC ,∴CD =CB ,∵CE ⊥AB ,EF =EB ,∴CF =CB ,∴CD =CF ;(2)解:∵△ADC≌△ABC ,∴∠ADC =∠B ,∵CF =CB ,∴∠CFB =∠B ,∴∠ADC =∠CFB ,∴∠ADC +∠AFC =180°,∵四边形AFCD 的内角和等于360°,∴∠DCF +∠DAF =180°,∵CD =CF ,∴∠CDG =∠CFD ,∵∠DCF +∠CDF +∠CFD =180°,∴∠DAF =∠CDF +∠CFD =2∠CDG ,∵∠DAB =2∠DAC ,∴∠CDG =∠DAC ,∵∠DCG =∠ACD ,∴△DGC ∽△ADC ;(3)解:∵△DGC ∽△ADC ,∴∠DGC =∠ADC ,CG CD =DG AD ,∵∠ADC =2∠HAG ,AD =3,DC =2,∴∠HAG =12∠DGC ,CG 2=DG3,∴∠HAG =∠AHG ,CG DG =23,∴HG =AG ,∵∠GDC =∠DAC =∠FAG ,∠DGC =∠AGF ,∴△DGC ∽△AGF ,∴GF AG =CG DG =23,∴FG GH =23。
中考试题【全国通用】一轮复习专题测试卷(七)图形变换与相似(含答案).docx
2015年中考数学一轮复习专题卷(七)图形变换与相似(满分:150分 时间:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列物体的主视图是三角形的是 ( )圆柱 A圆锥 B球C长方体 D2.如图,在△ABC 中,∠ACB =90°,D 为BC 的中点,分别以B 、C 为圆心,大于12BC 的长为半径画弧,两弧在直线BC 的上方交于点E ,直线ED 交AB 于点F ,连接CF .下列结论:①∠B =∠FCD ;②FC =F A ;③FD 平分∠BFC ;④FD =12AC .其中正确的结论有( ) A.①②③ B.①②④ C. ②③④ D.①②③④第2题D FE CBAG第3题DF ECBA第4题DFECBA第5题D CBA3.如图,E 为矩形ABCD 的边CD 的中点,将△ADE 折叠后得到△AFE ,延长AF 交BC 于点G ,若CG =2,GB =1,则AB 的长为 ( )A.23B.33C.25D.26 4.如图,□ABCD 中,E 为CD 中点AE 交对角线BD 于点F ,则DF ︰DB = ( ) A.1︰2 B.1︰3 C.1︰4 D.2︰3 5.如图,D 为△ABC 的边BC 上一点,∠BAD =∠C ,BD =4,DC =2,则AB 的长为( ) A.26 B.25 C.4 D.23 6.某几何体的三视图如图所示,则该几何体的体积为 ( )俯视图左视图主视图42242第7题DFECB AB AO xy第8题A.πB.2πC.3πD.4π7.如图,将周长为10的△ABC 沿BC 方向向右平移2个单位得到△DEF ,则四边形AEFC 的周长为( )A.12B.14C.16D.188.如图,点A 在第二象限,AB ⊥OB 于点B ,OB =1,OA =2,将△OAB 绕O 点旋转90°后得到△OA 1B 1,则点A 1的坐标为 ( )A.(3,1)B.(3,1)--C. (3,1)或(3,1)--D.(1,3)-或(1,3)-9.如图,四边形ABCD 为平行四边形,则图中相似三角形共有 ( )A.1对B.2对C.3对D.4对10.如图,△ABC 中,∠C =90°,AC =3,BC =4,其内部放置一个正方形EFGH ,E 、F 在BC 上,D 在AC上,G 在BC 上,则这个正方形的边长为 ( ) A.125 B.6037 C.43 D.54H G第9题DFE C BAG 第10题DFE CBA H G第13题D FE CBA第14题D C BA二、填空题(本大题共4小题,每小题5分,满分20分)11.手工课上小明想利用腰长为5㎝,底边长为6㎝的等腰三角形加工成一个边长比为1︰3的平行四边形,平行四边形的一个内角恰号是等腰三角形的底角,平行四边形的其余顶点都在等腰三角形上,则这个平行四边形的较短边长为_______________.12.在平面直角坐标系中,将点P (1,-2)向左平移2个单位长度后得到点Q ,则点Q 关于原点对称的点的坐标是__________.13.如图,矩形ABCD 中,AB =2,BC =4,将矩形沿EF 折叠,使点A 、B 分别落在矩形外部的点H 、G 处,则图中阴影部分的周长是_________.14.如图,△ABC 中,AB =5㎝,BC =3㎝,CA =4㎝,D 为AB 的中点,过点D 的直线与另一边交于点E ,若直线DE 截△ABC 所得的三角形与△ABC 相似,则DE =______________. 三、(本大题共2小题,每小题8分,满分16分) 15.四个棱长为1㎝的正方体组成如图的几何体.(1)这个几何体的表面积是多少?(2)画出这个几何体的三视图.16.如图,在平面直角坐标系中,有一个△ABC .(1)作出将△ABC 绕点A 顺时针旋转90°所得的△AB 1C 1;正面BA Oxy(2)作出△AB 1C 1关于x 轴对称的图形△A 1B 2C 2. (3)求△ABC 的面积.四、(本大题共2小题,每小题8分,满分16分) 17.如图,是某几何体的三视图,求该几何体的体积.俯视图左视图主视图621218.用尺规作图:(不写作法,保留作图痕迹)已知:如图,直线AB 与直线BC 相交于点B ,点D 是直线BC 上一点.求作:点E ,使点E 到直线AB 、BC 的距离相等,且点E 到点B 、D 两点的距离相等.DCBA五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC 中,AB =AC ,∠BAC =50°,将△ABC 绕点A 按逆时针方向旋转80°得到△ADE ,连接BD 、CE 交于点F . (1)求证:BD =CE ;(2)四边形ABFE 是什么特殊的四边形?请证明你的结论.20.如图,在矩形ABCD 中,AD =3,BF ⊥AC 分别交AC 、DC 于点E 、F ,F 为CD 的中点,连接AF . 求:(1)∠F AC 的正弦;(2)AB 的长.F ED C BA六、(本题满分12分)21.如图,以等腰△ABC 的一腰AB 为直径作⊙O ,⊙O 与底边BC 交于点D ,过点D 作DE ⊥AC 于点E .80°FE D CBA(1)求证:ED 是⊙O 的切线;(2)若AB =3,DE =1,求tan ∠ABC 的值.ED CBA O七、(本题满分12分)22.已知:如图,E 为正方形ABCD 的边AB 上任意一点,连接DE 并将DE 绕点E 顺时针旋转90°得到线段EF ,在BC 上取点G ,使AE =BG ,连接FG 、AG .(1)求证:四边形AEFG 是平行四边形;(2)设EF 与BG 交于点H ,当点E 在AB 上什么位置时,△EBH ∽△DEH ?请说明理由.G FED C BA八、(本题满分14分)23. 如图,抛物线22y x x c =-++与x 轴交于A 、B 两点,它的对称轴与x 轴交于点C ,过顶点D 作DE ⊥y 轴于点E ,连接BE 交CD 于点F ,点A 的坐标为(-1,0). (1)求抛物线的解析式和顶点D 的坐标; (2)求△EDF 与△BCF 的面积之比.FEDCBAO xy参考答案1.B2.D3.D4.B5.A6.D7.B8.C9.D 10.B 11.3023㎝或107㎝ 12.(1,2) 13.12 14.1.5㎝或2㎝或1.875㎝15. (1)18㎝2 (2)俯视图左视图主视图16.(1)、(2)如图:C 2B 2A 1C 1B 1(3)△ABC 的面积=3.517.16336210832⨯⨯⨯⨯= 18.提示:作∠ABC 的平分线和线段BD 的中垂线,它们的交点即为E 点19.(1)证明:由旋转知AB =AD ,AC =AE ,∠BAD =∠CAE =80°,∵AB =AC ,∴AD =AE ,∴△ABD ≌△ACE ,∴BD =CE (2)四边形ABFE为菱形,证明:∵∠CAE =80°,AC =AE ,∴∠ACE =50°=∠BAC ,∴AB ∥CE ,同理,AE ∥BD ,∴四边形ABFE 为平行四边形,又∵AB =AE ,∴四边形ABFE 为菱形20.(1)由△FCE ∽△BAE 可得1sin 3FE FE FAC FA FB ∠===;(2)由△BCE ∽△ACB 可得AC =3,∴AB =()22336-= .21. (1)连接OD 、AD ,∵AB 为⊙O 直径,∴AD ⊥BC ,∵AB =AC ,∴D 为BC 中点,∴OD ∥AC ,∵DE ⊥AC ,∴DE ⊥OD ,∴ED为⊙O的切线;(2)由△AED ∽△DEC可得AE =352+,∴35352tan tan tan 12AE ABC C ADE DE ++∠=∠=∠=== 22.(1)由△DAE ≌△ABG 得DE =AG ,DE ⊥AG ,又DE ⊥EF ,DE =EF ,∴AG =EF ,AG ∥EF ,∴四边形AEFG是平行四边形(2)E 在AB 中点;由△DAE ∽△EBH 得DA DEEB EH=,由△DEH ∽△DAE 得DA DEAE EH=,∴AE =EB 23. (1)抛物线解析式:223y x x =-++,顶点D 坐标:(1,4);(2)由题意,得ED =1,CB =2,又ED ∥BC ,∴△EDF ∽△BCF ,∴221124EDF BCF s ED s BC ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭初中数学试卷鼎尚图文**整理制作。
初中数学中考一轮复习第7章图形与变换第27课时图形的相似中考演练(含答案)
第27课时 图形的相似1.如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB=5,BC=6,EF=4,则DE 的长为( )A.2B.3C.4D.1032.如图,△ABC 中,BD ⊥AB ,BD ,AC 相交于点D ,AD=47AC ,AB=2,∠ABC=150°,则△DBC 的面积是( )A.3314 B.9314 C.337 D.6373.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )4.如图,在△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC ,已知AE=6,AD DB =34,则EC 的长是( )A.4.5B.8C.10.5D.145.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,位似比为1∶2,∠OCD=90°,CO=CD.若B (1,0),则点C 的坐标为( )A.(1,2)B.(1,1)C.(2,2)D.(2,1)6.如图,以点O 为位似中心,将△ABC 缩小后得到△A'B'C'.已知OB=3OB',则△A'B'C'与△ABC 的面积比为( )A.1∶3B.1∶4C.1∶8D.1∶97.如图,点D 是△ABC 的边BC 的中点,且∠CAD=∠B ,若△ABC 的周长为10,则△ACD 的周长是( )A.5B.52C.52D.5228.如图,在△ABC 中,点D ,E 分别是BC ,AC 的中点,AD 与BE 相交于点F.若BF=6,则BE 的长是 .9.如图,BE 是△ABC 的中线,点F 在BE 上,延长AF 交BC 于点D.若BF=3FE ,则BDDC = .10.如图,原点O 是△ABC 和△A'B'C'的位似中心,点A (1,0)与点A'(-2,0)是对应点,△ABC 的面积是32,则△A'B'C'的面积是 .11.若a 6=b 5=c 4≠0,且a+b-2c=3,则a= .12.如图,在△ABC 中,AB=12,AC=15,D 为AB 上一点,且AD=23AB ,在AC 上取一点E ,使以A ,D ,E 为顶点的三角形与△ABC 相似,则AE 等于 .13.张明同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5 m 时,其影长为1.2 m .当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4 m,墙上影长为1.4 m,则这棵大树高约为 m .14.如图,在矩形ABCD 中,E 为DC 上的一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F 处.(1)求证:△ABF ∽△FCE ;(2)若AB=23,AD=4,求EC 的长;(3)若AE-DE=2EC ,记∠BAF=α,∠FAE=β,求tan α+tan β的值.参考答案1.D2.A3.A4.B5.B6.D7.B8.99.3210.611.612.10或32513.9.414.,∠AFE=∠D=90°,∴∠AFB+∠EFC=90°.又∠EFC+∠FEC=90°,∴∠AFB=∠FEC.又∠B=∠C,∴△ABF∽△FCE.AB=23,AF=AD=4,∴BF=2.∴∠BAF=30°.∵△ABF∽△FCE,∴∠CFE=∠BAF=30°.设CE=x,则EF=2x,.∴x+2x=CD=AB=23,∴CE=233tanα+tanβ=BFAB +EFAF=CECF+EFAF.设CE=1,DE=x,则AE=x+2,AD=AE2-DE2=4x+4,AB=CD=x+1,∴BF=AF2-AB2=-x2+2x+3.∵△ABF∽△FCE,∴ABAF =CFEF,即x+14x+4=x2-1x,∴(x+1)22x+1=x+1x-1x,∴12=x-1x⇒x=2x-1⇒x2-4x+4=0,∴tanα+tanβ=13+223=233.。
中考复习第七章图形与变换测试(含答案)
第七章《图形与变换》自我测试[时间:90分钟分值:100分]、选择题(每小题3分,满分30分)(2018义乌)下列图形中,中心对称图形有 ( )(2018杭州)正方形纸片折一次,沿折痕剪开,能剪得的图形是(2018自贡)边长为1的正方形 ABCD 绕点A 逆时针旋转 叠成一个蝶形风筝”如图所示阴影部分),则这个风筝的面积是()亞2 V3也A. 2- 3 B. 3 C. 2— T 6. (2018乐山)如图,直角三角板 ABC 的斜边 AB = 12 cm ,/ A = 30 °,将三角板 ABC 绕C顺时针旋转90°至三角板A B C 的位置后,再沿 CB 方向向左平移,使点 B 落在原三角板ABC 的斜边AB 上,则三角板 A B C 平移的距离为()1.2.3.4.A .锐角三角形B .钝角三角形C .梯形(2018潍坊)如图,阴影部分是由 5个小正方形涂黑组成的一个直角图形, 白的两个小正方形涂黑,得到新的图形 (阴影部分),其中不是 D .菱形再将方格内空 轴对称图形的是((2018泸州)如图,四边形 转角B 后与△ AED 重ABCD 是正方形,E 是边 B 的取值可能为()CD 上一点,若△ AFB 经过逆时针旋A . 90 °5. 30 °得到正方B . 60 °D . 30 °(第 3 题)C . 45 °(第4题)A. 6 cmB. 4 cmC. (6 —2 , 3) cm D . (4 . 3—6) cm7. (2018烟台)如图,△ ABC 中,点 D 在线段BC 上,且△ ABC s^ DBA ,则下列结论一定 正确的是()A . AB 2= BC BD B . AB 2= AC BD C . AB AD = BD BC D . AB AD = AD CD& (2018黄冈)如图,把 Rt △ ABC 放在直角坐标系内,其中/ CAB = 90° BC = 5,点A 、B 的坐标分别为(1,0)、(4,0),将△ ABC 沿x 轴向右平移,当点 C 落在直线y = 2x — 6上时,线段BC 扫过的面积为( )A . 4B . 8C . 16D . 829. (2018东营)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换....在自然界和日常生活中,大量地存在 这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变.. 换过程中,两个对应三角形(如图乙)的对应点所具有的性质是( )A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行则CD 的长应是()A . 15B . 30C . 20D . 10、填空题(每小题3分,满分30分)11. (2018泉州)等边三角形、平行四边形、矩形、圆这四个图形中,既是轴对称图形又是 中心对称图形的是 _________________ .10.如图所示,它是小孔成像的原理,根据图中尺寸(AB // CD ),如果已知物体 AB = 30,ya12. (2018永州)永州市新田县的龙家大院至今已有930多年历史,因该村拥有保存完好的三堂九井二十四巷四十八栋”明清建筑,而申报为中国历史文化名村.如图是龙家大院的一个窗花图案,它具有很好的对称美,这个图案是由:①正六边形;②正三角形;③ 等腰梯形;④直角梯形等几何图形构成,在这四种几何图形中既是轴对称图形又是中心 对称图形的是 ____________ (只填序号)•13. (2018沈阳市)如图,在?ABCD 中,点 E 在边 BC 上,BE : EC = 1 : 2,连接 AE 交BD于点卩,则厶BFE 的面积与厶DAF 的面积之比为 ____________ .(第13题)(第14题) (第15题)14. (2018绍兴)做如下操作:在等腰三角形 ABC 中,AB = AC , AD 平分/ BAC ,交BC 于 点。
备考2024年中考数学一轮复习-图形的变换_图形的相似_相似三角形的应用-综合题专训及答案
备考2024年中考数学一轮复习-图形的变换_图形的相似_相似三角形的应用-综合题专训及答案相似三角形的应用综合题专训1、(2016北仑.中考模拟) 如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线.(2)如图2,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B 的度数.(3)如图3,△ABC是一个腰长为2的等腰锐角三角形,且它是特异三角形,若它的顶角度数为整数,请求出其特异线的长度;若它的顶角度数不是整数,请直接写出顶角度数.2、(2017温州.中考模拟) 如图1,直线y=﹣x+8,与x轴、y轴分别交于点A、C,以AC为对角线作矩形OABC,点P、Q分别为射线OC、射线AC上的动点,且有AQ=2CP,连结PQ,设点P的坐标为P(0,t).(1)求点B的坐标.(2)若t=1时,连接BQ,求△ABQ的面积.(3)如图2,以PQ为直径作⊙I,记⊙I与射线AC的另一个交点为E.①若= ,求此时t的值.②若圆心I在△ABC内部(不包含边上),则此时t的取值范围为是多少?3、(2017宿州.中考模拟) 定义:有一组对角互补的凸四边形叫做“对补四边形”,性质:“对补四边形”一定是圆内接四边形.(1)概念理解:请你根据上述描述定义举一个“对补四边形”的例子;(2)问题探究:如图1,在对补四边形ABCD中,如果∠A=∠C,试探究AB、AD、BC、CD之间的数量关系,并说明理由;(3)应用拓展:如图2,在四边形ABCD中,AB≠BC,∠A=∠C=90°,连接BD,将△BCD 沿BD折叠,得到△BFD.①连接AF,四边形ABDF是对补四边形吗?请说明理由;②若AB=1,BD=2,且BF把△ABD分成两个三角形的面积比为1:2,请求出CD 的长.4、(2017太和.中考模拟) 已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α.(1)如图1,当α=60°时,求证:△DCE是等边三角形;(2)如图2,当α=45°时,求证:① = ;②CE⊥DE.(3)如图3,当α为任意锐角时,请直接写出线段CE与DE的数量关系是:=.5、(2017瑶海.中考模拟) 如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.6、(2017博山.中考模拟) 设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点B n(()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点An,连接A n B n+1,得Rt△A n B n B n+1.(1)求a的值;(2)直接写出线段An Bn,BnBn+1的长(用含n的式子表示);(3)在系列Rt△An BnBn+1中,探究下列问题:①当n为何值时,Rt△An BnBn+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△Ak BkBk+1与Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,说明理由.7、(2017西华.中考模拟) 问题背景:已知在△ABC中,边AB上的动点D由A向B运动(与A,B不重合),同时点E由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于点F,点H是线段AF上一点,求的值.(1)初步尝试如图(1),若△ABC是等边三角形,DH⊥AC,且点D、E的运动速度相等,小王同学发现可以过点D作DG∥BC交AC于点G,先证GH=AH,再证GF=CF,从而求得的值为.(2)类比探究如图(2),若△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是:1,求的值.(3)延伸拓展如图(3)若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D、E的运动速度相等,试用含m的代数式表示的值(直接写出果,不必写解答过程).8、(2017宜城.中考模拟) 如图,在正方形ABCD中,点E是AD上的点,点F是BC的延长线上一点,CF=DE,连结BE和EF,EF与CD交于点G,且∠FBE=∠FEB.(1)过点F作FH⊥BE于点H,证明:= ;(2)猜想:BE、AE、EF之间的数量关系,并证明你的结论;若DG=2,求AE值.9、(2019株洲.中考真卷) 小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点处测得汽车前端的俯角为,且,若直线与地面相交于点,点到地面的垂线段的长度为1.6米,假设眼睛处的水平线与地面平行.(1)求的长度;(2)假如障碍物上的点正好位于线段的中点位置(障碍物的横截面为长方形,且线段为此长方形前端的边),,若小强的爸爸将汽车沿直线后退0.6米,通过汽车的前端点恰好看见障碍物的顶部点(点为点的对应点,点为点的对应点),求障碍物的高度.10、(2017河源.中考模拟) 如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,求证:△EAF∽△CBA.(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.(2017深圳.中考模拟) 如图,抛物线经过点A(﹣1,0)和B(0,2 ),对称轴为x= .(1)求抛物线的解析式;(2)抛物线与x轴交于另一个交点为C,点D在线段AC上,已知AD=AB,若动点P从A出发沿线段AC以每秒1个单位长度的度数匀速运动,同时另一动点Q以某一速度从B出发沿线段BC匀速运动,问是否存在某一时刻,使线段PQ被直线BD垂直平分?若存在,求出点Q的运动速度;若不存在,请说明理由.(3)在(2)的前提下,过点B的直线l与x轴的负半轴交于点M,是否存在点M,使以A,B,M为顶点的三角形与△PBC相似?如果存在,请直接写出M的坐标;若不存在,请说明理由.12、(2017海口.中考模拟) 如图,在矩形ABCD中,E是AD上一点,AB=8,BE=BC=10,动点P 在线段BE上(与点B、E不重合),点Q在BC的延长线上,PE=CQ,PQ交EC于点F,PG∥BQ 交EC于点G,设PE=x.(1)求证:△PFG≌△QFC连结DG.当x为何值时,四边形PGDE是菱形,请说明理由;13、(2017杭州.中考模拟) 如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.14、(2019蒙城.中考模拟) 如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC,垂足为D,点P是边AB上的一个动点,过点P作PF∥AC交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x.(1)用含x的代数式表示线段DG的长;(2)设△DEF的面积为y,求y与x之间的函数关系式,并写出定义域;(3)△PEF能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.15、(2020海.中考模拟) 定义:按螺旋式分别延长n边形的n条边至一点,若顺次连接这些点所得的图形与原多边形相似,则称它为原图形的螺旋相似图形.例如:如图1,分别延长多边形A1A2…A n的边得A1′,A2′,…,A n′,若多边形A1′A2′…A n′与多边形A1A2…An相似,则多边形A1′A2′…A n′就是A1A2…A n的螺旋相似图形.(1)如图2,已知△ABC是等边三角形,作出△ABC的一个螺旋相似图形,简述作法,并给以证明.(2)如图3,已知矩形ABCD,请探索矩形ABCD是否存在螺旋相似图形,若存在,求出此时AB与BC的比值;若不存在,说明理由.(3)如图4,△ABC是等腰直角三角形,AC=BC=2,分别延长CA,AB,BC至A′,B′,C′,使△A′B′C′是△ABC的螺旋相似三角形.若AA′=kAC,请直接写出BB′,CC′的长(用含k的代数式表示)相似三角形的应用综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
备考2024年中考数学一轮复习-图形的变换_图形的相似_相似三角形的判定与性质-综合题专训及答案
备考2024年中考数学一轮复习-图形的变换_图形的相似_相似三角形的判定与性质-综合题专训及答案相似三角形的判定与性质综合题专训1、(2018通辽.中考真卷) 如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C (0,﹣5)三点,顶点为D.(1)请直接写出抛物线的解析式及顶点D的坐标;(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C 两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.②过点F作FH⊥BC于点H,求△PFH周长的最大值.2、(2020龙城.中考模拟) 如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D 三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE.(1)求证:DF是⊙O的切线.(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.3、(2018抚顺.中考真卷) 如图,△ABC中,AB=BC,BD⊥AC于点D,∠FA C= ∠ABC,且∠FAC在AC下方.点P,Q分别是射线BD,射线AF上的动点,且点P不与点B重合,点Q不与点A重合,连接CQ,过点P作PE⊥CQ于点E,连接DE.(1)若∠ABC=60°,BP=AQ.①如图1,当点P在线段BD上运动时,请直接写出线段DE和线段AQ的数量关系和位置关系;②如图2,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;(2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示).4、(2018无锡.中考真卷) 已知:如图,一次函数y=kx﹣1的图象经过点A(3 ,m)(m>0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.(1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式.5、(2020济源.中考模拟) 如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF =45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AH C∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.6、(2018长宁.中考模拟) 已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.7、(2018海陵.中考模拟) 如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O 的切线与AC的延长线交于点E,且ED∥BC,连接AD交BC于点F.(1)求证:∠BAD=∠DAE;(2)若DF= ,AD=5,求⊙O的半径.8、(2017连云港.中考模拟) 如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.9、(2018浙江.中考模拟) 如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.10、(2019台州.中考真卷) 如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD(1)求的值(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证MF=PF; (3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.11、(2017新泰.中考模拟) 如图,R t△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y= x2+bx+c 经过点B,且顶点在直线x= 上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S 和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.12、(2015黄石.中考真卷) 在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.13、(2019天宁.中考模拟) 如图【定义】若一个四边形恰好关于其中一条对角线所在的直线对称,则我们将这个四边形叫做镜面四边形.(1)【理解】下列说法是否正确①平行四边形是一个镜面四边形②镜面四边形的面积等于对角线积的一半.(2)如图(1),请你在4×4的网格(每个小正方形的边长为1)中画出一个镜面四边形,使它图(1)的顶点在格点上,且有一边长为.(3)【应用】如图(2),已知镜面四边形ABCD,∠BAD=60°,∠ABC=90°,AB≠BC,P是AD上一点,AE⊥BP的延长线上取一点F,使EF=BE,连接AF,作∠FAD的平分线AG 交BF于G,CM⊥BF于M,连接CG.①求∠EAG的度数.②比较BM与EG的大小,并说明理由.14、(2020河北.中考模拟) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=2,,求OM的长.15、已知,在Rt△ABC中,∠BAC=90°,以AB为直径的⨀O与BC相交于点E,在AC上取一点D,使得DE=AD,(1)求证:DE是⨀O的切线.(2)当BC=10,AD=4时,求⨀O的半径.相似三角形的判定与性质综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年中考数学一轮复习专题卷(七)图形变换与相似(满分:150分 时间:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列物体的主视图是三角形的是 ( )圆柱 A圆锥 B球C长方体 D2.如图,在△ABC 中,∠ACB =90°,D 为BC 的中点,分别以B 、C 为圆心,大于12BC 的长为半径画弧,两弧在直线BC 的上方交于点E ,直线ED 交AB 于点F ,连接CF .下列结论:①∠B =∠FCD ;②FC =F A ;③FD 平分∠BFC ;④FD =12AC .其中正确的结论有( ) A.①②③ B.①②④ C. ②③④ D.①②③④第2题D FE CBAG第3题DF ECBA第4题DFECBA第5题D CBA3.如图,E 为矩形ABCD 的边CD 的中点,将△ADE 折叠后得到△AFE ,延长AF 交BC 于点G ,若CG =2,GB =1,则AB 的长为 ( )A.23B.33C.25D.26 4.如图,□ABCD 中,E 为CD 中点AE 交对角线BD 于点F ,则DF ︰DB = ( ) A.1︰2 B.1︰3 C.1︰4 D.2︰3 5.如图,D 为△ABC 的边BC 上一点,∠BAD =∠C ,BD =4,DC =2,则AB 的长为( ) A.26 B.25 C.4 D.23 6.某几何体的三视图如图所示,则该几何体的体积为 ( )俯视图左视图主视图42242第7题DFECB AB AO xy第8题A.πB.2πC.3πD.4π7.如图,将周长为10的△ABC 沿BC 方向向右平移2个单位得到△DEF ,则四边形AEFC 的周长为( )A.12B.14C.16D.188.如图,点A 在第二象限,AB ⊥OB 于点B ,OB =1,OA =2,将△OAB 绕O 点旋转90°后得到△OA 1B 1,则点A 1的坐标为 ( )A.(3,1)B.(3,1)--C. (3,1)或(3,1)--D.(1,3)-或(1,3)-9.如图,四边形ABCD 为平行四边形,则图中相似三角形共有 ( )A.1对B.2对C.3对D.4对10.如图,△ABC 中,∠C =90°,AC =3,BC =4,其内部放置一个正方形EFGH ,E 、F 在BC 上,D 在AC上,G 在BC 上,则这个正方形的边长为 ( ) A.125 B.6037 C.43 D.54H G 第9题DFE C BA G 第10题D FE CBA H G第13题D F ECBA 第14题D C BA二、填空题(本大题共4小题,每小题5分,满分20分)11.手工课上小明想利用腰长为5㎝,底边长为6㎝的等腰三角形加工成一个边长比为1︰3的平行四边形,平行四边形的一个内角恰号是等腰三角形的底角,平行四边形的其余顶点都在等腰三角形上,则这个平行四边形的较短边长为_______________.12.在平面直角坐标系中,将点P (1,-2)向左平移2个单位长度后得到点Q ,则点Q 关于原点对称的点的坐标是__________.13.如图,矩形ABCD 中,AB =2,BC =4,将矩形沿EF 折叠,使点A 、B 分别落在矩形外部的点H 、G 处,则图中阴影部分的周长是_________.14.如图,△ABC 中,AB =5㎝,BC =3㎝,CA =4㎝,D 为AB 的中点,过点D 的直线与另一边交于点E ,若直线DE 截△ABC 所得的三角形与△ABC 相似,则DE =______________. 三、(本大题共2小题,每小题8分,满分16分) 15.四个棱长为1㎝的正方体组成如图的几何体.(1)这个几何体的表面积是多少?(2)画出这个几何体的三视图.16.如图,在平面直角坐标系中,有一个△ABC .(1)作出将△ABC 绕点A 顺时针旋转90°所得的△AB 1C 1; 正面BA Oxy(2)作出△AB 1C 1关于x 轴对称的图形△A 1B 2C 2. (3)求△ABC 的面积.四、(本大题共2小题,每小题8分,满分16分) 17.如图,是某几何体的三视图,求该几何体的体积.俯视图左视图主视图621218.用尺规作图:(不写作法,保留作图痕迹)已知:如图,直线AB 与直线BC 相交于点B ,点D 是直线BC 上一点.求作:点E ,使点E 到直线AB 、BC 的距离相等,且点E 到点B 、D 两点的距离相等.DCBA五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC 中,AB =AC ,∠BAC =50°,将△ABC 绕点A 按逆时针方向旋转80°得到△ADE ,连接BD 、CE 交于点F . (1)求证:BD =CE ;(2)四边形ABFE 是什么特殊的四边形?请证明你的结论.20.如图,在矩形ABCD 中,AD =3,BF ⊥AC 分别交AC 、DC 于点E 、F ,F 为CD 的中点,连接AF . 求:(1)∠F AC 的正弦;(2)AB 的长.F ED C BA六、(本题满分12分)21.如图,以等腰△ABC 的一腰AB 为直径作⊙O ,⊙O 与底边BC 交于点D ,过点D 作DE ⊥AC 于点E . 80°FE D CBA(1)求证:ED 是⊙O 的切线;(2)若AB =3,DE =1,求tan ∠ABC 的值.ED CBA O七、(本题满分12分)22.已知:如图,E 为正方形ABCD 的边AB 上任意一点,连接DE 并将DE 绕点E 顺时针旋转90°得到线段EF ,在BC 上取点G ,使AE =BG ,连接FG 、AG .(1)求证:四边形AEFG 是平行四边形;(2)设EF 与BG 交于点H ,当点E 在AB 上什么位置时,△EBH ∽△DEH ?请说明理由.G FED C BA八、(本题满分14分)23. 如图,抛物线22y x x c =-++与x 轴交于A 、B 两点,它的对称轴与x 轴交于点C ,过顶点D 作DE ⊥y 轴于点E ,连接BE 交CD 于点F ,点A 的坐标为(-1,0). (1)求抛物线的解析式和顶点D 的坐标; (2)求△EDF 与△BCF 的面积之比.FEDCBAO xy参考答案1.B2.D3.D4.B5.A6.D7.B8.C9.D 10.B 11.3023㎝或107㎝ 12.(1,2) 13.12 14.1.5㎝或2㎝或1.875㎝15. (1)18㎝2 (2)俯视图左视图主视图16.(1)、(2)如图:C 2B 2A 1C 1B 1(3)△ABC 的面积=3.517.16336210832⨯⨯⨯⨯= 18.提示:作∠ABC 的平分线和线段BD 的中垂线,它们的交点即为E 点19.(1)证明:由旋转知AB =AD ,AC =AE ,∠BAD =∠CAE =80°,∵AB =AC ,∴AD =AE ,∴△ABD ≌△ACE ,∴BD =CE (2)四边形ABFE为菱形,证明:∵∠CAE =80°,AC =AE ,∴∠ACE =50°=∠BAC ,∴AB ∥CE ,同理,AE ∥BD ,∴四边形ABFE 为平行四边形,又∵AB =AE ,∴四边形ABFE 为菱形20.(1)由△FCE ∽△BAE 可得1sin 3FE FE FAC FA FB ∠===;(2)由△BCE ∽△ACB 可得AC =3,∴AB =()22336-= .21. (1)连接OD 、AD ,∵AB 为⊙O 直径,∴AD ⊥BC ,∵AB =AC ,∴D 为BC 中点,∴OD ∥AC ,∵DE ⊥AC ,∴DE ⊥OD ,∴ED为⊙O的切线;(2)由△AED ∽△DEC可得AE =352+,∴35352tan tan tan 12AE ABC C ADE DE ++∠=∠=∠=== 22.(1)由△DAE ≌△ABG 得DE =AG ,DE ⊥AG ,又DE ⊥EF ,DE =EF ,∴AG =EF ,AG ∥EF ,∴四边形AEFG是平行四边形(2)E 在AB 中点;由△DAE ∽△EBH 得DA DEEB EH=,由△DEH ∽△DAE 得DA DEAE EH=,∴AE =EB 23. (1)抛物线解析式:223y x x =-++,顶点D 坐标:(1,4);(2)由题意,得ED =1,CB =2,又ED ∥BC ,∴△EDF ∽△BCF ,∴221124EDF BCF s ED s BC ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭初中数学试卷鼎尚图文**整理制作。