2018届中考数学二模试卷(带详解) (18)
2018年中考数学二模试卷-答案
4+6y=282x x y ìïí-=ïî3+3x+2)113x x xì£ïí--<ïî(22(1)(1)(1)1111(1)1x x x x x x x x x x x x--¸+-+-+=?+-=银川北塔中学2018年中考数学第二次模拟试卷评分标准(时间:120分钟 满分120分)本答案仅供参考,允许解法多样化。
请认真研究本参考答案及评分标准,根据学生答卷情况制定详细评分标准,力求阅卷客观、公平、公正。
一、选择题(下列各题中的四个选项只有一个是正确的,请将正确选项的字母标号填在题后的括号内,每小题3分,共24分)题号 1 23456 7 8答案 DCDBDC B A二、24分)9.2(1)(1)x x +-; 10.55 ; 11 .b-a ; 12.275; 13.m >-2;14.2;15. ; 16.2017(3) .三、解答题:(满分36分)17. 解: 解①得x ≥32- (2分)解②得x <2 (4分)不等式组的解集是: ≤x <1 (6分) 18.解:原式= ,当x=2时,原式=12. (6分)19. 解:(1)如图所示:△A 1B 1C 1,即为所求(2分);点C 1的坐标是(2,-2); (3分) (2)如图所示:△A 2B 2C 2,即为所求(5分).点C 2的坐标是(1,0);(6分)20.解:(1)22%(1分)(2)如图示(3分);(2)由树状图或列表法知,随机抽取两名学生做 形象大使共有6种可能人,恰好抽到两位女生的有2种,因此恰好抽到的两位都是女生的概率是2163=. (6分)……① ……② (2分) (4分) 32-C 1B 1A 1A 2C 2 (B 2)xy四种类型人数的折线统计图A女:男:喜欢程度123456789101112131415161718阅读情况 男:女:10012)15300(1220)x x x x ì#ïí-+#ïî(21.(1)60. (1分)(2)设线段OD 所表示的y 与x 之间的函数关系式为y=kx , 将(9,900)代入y=kx 中,解得:k=10∴线段OD 所表示的y 与x 之间的函数关系式为y=10x. (2分) 根据题意得:线段DE 所表示的y 与x 之间的函数关系式为y=90−15(x −14)=−15x+300. (4分) (通过代入(16,60)、(14,90)得出DE 所在直线的函数关系式也可以) 联立两线段所表示的函数关系式成方程组,可得x=12,y=120. ∴交点D 的坐标为(12,120) (5分) 当y=O 时,代入y=-15x+300可得x=20 ∴y 与x 之间的函数关系式为y= (6分)22.证明:由折叠可知,DE=EF,AD=AF,∠DEA=∠FEA (2分) ∵四边形ABCD 是平行四边形 ∴DE ∥AF∴∠DEA=∠EAF ∴∠EAF=∠FEA∴AF=EF (4分) ∴AF=AD=DE=EF∴四边形ADEF 是菱形. (6分) 23.(1)证明:连接OB∵PB 是O 切线 ∴OB ⊥PB∴∠PBO=90∘ ∴∠PBD+∠OBD=90∘ ∵OB=OD ∴∠OBD=∠ODB (2分) ∵OP ⊥BC ∴∠BED=90∘∴∠DBE+∠BDE=90∘ ∴∠PBD=∠EBD ∴BD 平分∠PBC (4分) (2)作DK ⊥PB 于K∵BD 平分∠PBE ,DE ⊥BE ,DK ⊥PB∴DK=DE , (5分)∴BE DE BE PD DE BE DK BP S S BDEBDP ⋅⋅=⋅⋅=∆∆21212121∴DE PD BE BP = (7分)∵PD=3DE , ∴3BPBE = (8分)24.(1)过点A 作AH ⊥OB 于H ∵sin ∠AOB=54,OA=10 ∴AH=8,OH=6∴A 点坐标为(6,8) (2分) ∵反比例函数y=kx(k>0)过(3,4) 可得:k=48∴反比例函数解析式:y=x48(x>0)(4分) (2)过点F 作FM ⊥x 轴于M∵四边形AOBC 是平行四边形,∴AO ∥BC ,AO=CB=10 ∴∠AOB=∠FBM ∵sin ∠AOB=54 ∴sin ∠FBM=54 (6分)∵点F 为BC 的中点, ∴BF=5,∵AH=8,OH=6, ∴FM=4,BM=3, ∴S △BFM =6∵F 在反比例函数图象上, ∴S △OFM =24∴S △OBF =S △OFM -S △BFM =18 (8分)25.拓展探究:(1)四边形ABCD 是垂美四边形. (1分) 理由如下:∵AB=AD ∴点A 在线段BD 的垂直平分线上 ∵CB=CD ∴点C 在线段BD 的垂直平分线上 ∴直线AC 是线段BD 的垂直平分线∴AC ⊥BD ,即四边形ABCD 是垂美四边形 (3分) (2) 四边形FMAN 是矩形. (4分) 理由:如图3,连接AF ,∵Rt △ABC 中,点F 为斜边BC 的中点, ∴AF=CF=BF又∵等腰三角形ABD 和等腰三角形ACE ∴AD=DB ,AE=CE∴由(1)可得,DF ⊥AB ,EF ⊥AC 又∵∠BAC=90∘∴∠AMF=∠MAN=∠ANF=90∘∴四边形AMFN 是矩形 (6分) 问题解决:解:连接CG 、BE∵∠CAG=∠BAE=90°∴∠CAG+∠BAC=∠BAE+∠BAC ,即∠GAB=∠CAE ,ACOBFyx图34243016430a ab ì--=ïí--=ïî∵在△GAB 和△CAE 中,⎧AG=AC ,∠GAB=∠CAE ,AB=AE ∴△GAB ≌△CAE (8分) ∴∠ABG=∠AEC , 又∠AEC+∠AME=90°∴∠ABG+∠AME=90°,即CE ⊥BG∴四边形CGEB 是垂美四边形 (9分)∴CG 2+BE 2=CB 2+GE 2∵AC=4,AB=5∴BC=3,CG=24,BE=25 ∴GE 2=CG 2+BE 2-CB 2=73 ∴GE=73 (10分)26.解:(1)把点A(−2,0)、B(4,0)分别代入y=ax 2+bx −3(a ≠0),得 解得a=83,b=−43所以该抛物线的表达式式为:y=83x 2−43x −3 (3分) (2)由题意可知:AP=3t ,BQ=t.∴PB=6−3t.由题意得,点C 的坐标为(0,−3). 在Rt △BOC 中,BC=54322=+. 如图1,过点Q 作QH ⊥AB 于点H. ∴QH ∥CO ,∴△BHQ ∽△BOC∴HQ BQ OC BC =,即53t HQ =∴HQ=53t.∴S △PBQ =21PB ⋅HQ=21(6−3t)⋅53t=−109t2+59t=−109(t −1)2+109.∴当t=1时,S △PBQ 最大=109. (7分)答:运动1秒使△PBQ 的面积最大,最大面积是109;方法二:由题意可知:AP=3t ,BQ=t ,点C 的坐标为(0,−3) ∴PB=6−3t过点Q 作QH ⊥AB 于点H∵B(4,0) ∴tan ∠HBQ=43,∴sin ∠HBQ=53, ∵BQ=t,∴HQ=53t , ∴S △PBQ =21PB ⋅HQ=21(6−3t)⋅53t=−109t2+59t=−109(t −1)2+109.D∴当t=1时,S △PBQ 最大=9. 当t=2秒,△BPQ 是等腰三角形。
2018年中考数学二模试题(含解析)
江苏省南京市建邺区2018年中考数学二模试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的相反数是()A.﹣2 B.2 C.﹣D.2.下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,34.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切5.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42° B.48° C.52° D.58°6.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分,请在答题卡指定区域内作答.)7.代数式有意义,则x的取值范围是.8.因式分解:a3﹣4a= .9.计算﹣2cos30°﹣|1﹣|= .10.反比例函数y=的图象经过点(1,6)和(m,﹣3),则m= .11.如图,在菱形ABCD中,AC=2,∠ABC=60°,则BD= .12.如图,在⊙O中,AO∥CD,∠1=30°,弧AB的长为3300π千米,则⊙O的半径用科学记数法表示为千米.13.某商品原价100元,连续两次涨价后,售价为144元.若平均增长率为x,则x= .14.直角坐标系中点A坐标为(5,3),B坐标为(1,0),将点A绕点B逆时针旋转90°得到点C,则点C的坐标为.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为.16.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.内作答,解答时应写出文字说明、证明过程或演算步骤)17.解方程组:.18.化简:(﹣x)÷.19.为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练.物理、化学各有3个不同的操作实验题目,物理用番号①、②、③代表,化学用字母a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.(1)小张同学对物理的①、②和化学的b、c实验准备得较好.请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率;(2)小明同学对物理的①、②、③和化学的a实验准备得较好.他两科都抽到准备得较好的实验题目的概率为.20.据报道,历经一百天的调查研究,南京PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物.校环保志愿小分队从环保局了解到南京100天的空气质量等级情况,并制成统计图和表:(1)表中a=,b=,图中严重污染部分对应的圆心角n= °.(2)请你根据“2018年南京市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的频率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米.已知南京市2018年机动车保有量已突破200万辆,请你通过计算,估计2018年南京市一天中出行的机动车至少要向大气里排放多少千克污染物?21.如图,在▱ABCD中,E、F、G、H分别为AB、BC、CD、AD的中点,AF与EH交于点M,FG 与CH交于点N.(1)求证:四边形MFNH为平行四边形;(2)求证:△AMH≌△CNF.22.端午节期间,某食堂根据职工食用习惯,购进甲、乙两种粽子260个,其中甲种粽子花费300元,乙种粽子花费400元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?23.如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)24.小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示.(1)小林的速度为米/分钟,a= ,小林家离图书馆的距离为米;(2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中画出y1(米)与x(分钟)的函数图象;(3)小华出发几分钟后两人在途中相遇?25.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明.26.如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E、与OB交于点F,连接CE、CF.(1)AB与⊙O相切吗,为什么?(2)若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.27.如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合),分别连接ED、EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD 的AB边上的强相似点.(1)若图1中,∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明.)②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.2018年江苏省南京市建邺区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的相反数是()A.﹣2 B.2 C.﹣D.考点:相反数.分析:根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.解答:解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.点评:此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:解:A、a3和a4不是同类项不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选:B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,3考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.解答:解:因为3出现的次数最多,所以众数是:3元;因为第十和第十一个数是3和4,所以中位数是:3.5元.故选B.点评:本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错4.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切考点:专题:正方体相对两个面上的文字.专题:应用题.分析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.解答:解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A.点评:注意正方体的空间图形,从相对面入手,分析及解答问题.5.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42° B.48° C.52° D.58°考点:圆周角定理.分析:首先连接OC,由等腰三角形的性质,可求得∠OCB的度数,继而求得∠BOC的度数,然后利用圆周角定理求解,即可求得答案.解答:解:连接OC,∵OB=OC,∠OBC=42°,∴∠OCB=∠OBC=42°,∴∠BOC=180°﹣∠OBC﹣∠OCB=96°,∴∠A=∠BOC=48°.故选B.点评:此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.6.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A.B.C.D.考点:勾股定理;等腰三角形的判定与性质;矩形的性质;锐角三角函数的定义.分析:首先根据以B为圆心BC为半径画弧交AD于点E,判断出AE=BC=5;然后根据勾股定理,求出AE的值是多少,进而求出DE的值是多少;再根据勾股定理,求出CE的值是多少,再根据BC=BE,BF⊥CE,判断出点F是CE的中点,据此求出CF、BF的值各是多少;最后根据角的正切的求法,求出tan∠FBC的值是多少即可.解答:解:∵以B为圆心BC为半径画弧交AD于点E,∴AE=BC=5,∴AE=,∴DE=AD﹣AE=5﹣4=1,∴CE=,∵BC=BE,BF⊥CE,∴点F是CE的中点,∴CF=,∴BF==,∴tan∠FBC=,即tan∠FBC的值为.故选:D.点评:(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰三角形的判定和性质的应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)此题还考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确一个角的正弦、余弦、正切的求法.(4)此题还考查了矩形的性质和应用,以及直角三角形的性质和应用,要熟练掌握.二、填空题(本大题共10小题,每小题2分,共20分,请在答题卡指定区域内作答.)7.代数式有意义,则x的取值范围是x>1 .考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式和分式有意义的条件可得x﹣1>0,再解不等式即可.解答:解:由题意得:x﹣1>0,解得:x>1,故答案为:x>1.点评:此题主要考查了二次根式和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.8.因式分解:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.9.计算﹣2cos30°﹣|1﹣|= +1 .考点:实数的运算;特殊角的三角函数值.分析:分别利用绝对值的性质以及特殊角的三角函数值、算术平方根化简各数进而求出即可.解答:解:﹣2cos30°﹣|1﹣|=3﹣2×﹣(﹣1)=+1.故答案为:+1.点评:此题主要考查了绝对值的性质以及特殊角的三角函数值、算术平方根等知识,正确化简各数是解题关键.10.反比例函数y=的图象经过点(1,6)和(m,﹣3),则m= ﹣2 .考点:反比例函数图象上点的坐标特征.分析:先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,﹣3)代入即可得出m的值.解答:解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,﹣3)在此函数图象上上,∴﹣3=,解得m=﹣2.故答案为:﹣2.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图,在菱形ABCD中,AC=2,∠ABC=60°,则BD= 2.考点:菱形的性质.分析:由题可知,在直角三角形BOA中,∠ABO=30°,AO=AC=1,根据勾股定理可求BO,BD=2BO.解答:解:在菱形ABCD中,AC、BD是对角线,设相交于O点.∴AC⊥BD,∵AC=2,∴AO=2.∵∠ABC=60°,∴∠ABO=30°.由勾股定理可知:BO=.则BD=2.故答案为:2.点评:本题考查了菱形的性质,同时还考查了直角三角形的边角关系及勾股定理的灵活运用,熟悉菱形对角线互相垂直平分和对角线平分一组对角是解决问题的关键.12.如图,在⊙O中,AO∥CD,∠1=30°,弧AB的长为3300π千米,则⊙O的半径用科学记数法表示为 1.98×104千米.考点:弧长的计算.分析:根据弧长公式求出半径,然后用科学计数法表示.解答:解:∵∠1=30°,AO∥CD,∴∠O=30°,∵L=,∴R==19800=1.98×104.故答案为:1.98×104.点评:本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.13.某商品原价100元,连续两次涨价后,售价为144元.若平均增长率为x,则x= 20% .考点:一元二次方程的应用.专题:增长率问题.分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.解答:解:依题意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或﹣2.2(舍去).故答案为:20%.点评:此题主要考查了一元二次方程的应用,解题关键是根据增长率的求解公式列出方程.14.直角坐标系中点A坐标为(5,3),B坐标为(1,0),将点A绕点B逆时针旋转90°得到点C,则点C的坐标为(﹣2,4).考点:坐标与图形变化-旋转.分析:根据题意画出图形,易证△ADB≌△BEC,求出CE、OE的长即可求出C的坐标.解答:解:如图所示,点A绕点B逆时针旋转90°到点C,∵A坐标为(5,3),B坐标为(1,0),∴AD=3,BD=4,∴AB=5,根据旋转的性质,AB=BC,∵∠ABC=90°,∴∠EBC+∠ABD=90°,∵∠DAB+∠ABD=90°,∴∠EBC=∠DAB.在△EBC和△BAD中,∴△EBC≌△BAD,∴CE=BD=4,BE=AD=3,∵OB=1,∴OE=2,∴C(﹣2,4).故答案为:(﹣2,4).点评:本题主要考查了旋转变换和三角形全等的判定与性质,证明△EBC≌△BAD是解决问题的关键.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为k<2 .考点:抛物线与x轴的交点.分析:先由交点式求出二次函数的解析式,再由方程的根的情况得出判别式△>0,解不等式即可得出k的取值范围.解答:解:根据题意得:二次函数的图象与x轴的交点为:(1,0)、(3,0),设二次函数y=a(x﹣1)(x﹣3),把点(2,2)代入得:a=﹣2,∴二次函数的解析式为:y=﹣2(x﹣1)(x﹣3)即y=﹣2x2+8x﹣6;∵方程﹣2x2+8x﹣6=k有两个不相等的实数根,∴﹣2x2+8x﹣6﹣k=0,△=82﹣4×(﹣2)×(﹣6﹣k)>0,解得:k<2;故答案为:k<2.点评:本题考查了抛物线与x轴的交点、二次函数解析式的求法、不等式的解法;熟练掌握二次函数图象的有关性质,并能进行推理计算是解决问题的关键.16.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为6﹣2.考点:正多边形和圆.分析:如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE是等腰直角三角形,求得△ABC的高和底即可求出阴影部分的面积.解答:解:如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE是等腰直角三角形,∴BF=OB=2,∴△BFO的高为;,CD=2(2﹣)=4﹣2,∴BC=(2﹣4+2)=﹣1,∴阴影部分的面积=4S△ABC=4×()•=6﹣2.故答案为:6﹣2.点评:本题考查了正多边形和圆,三角形的面积,解题的关键是知道阴影部分的面积等于4个三角形的面积.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.内作答,解答时应写出文字说明、证明过程或演算步骤)17.解方程组:.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①×2得:4x+6y=﹣10③,②×3得:9x﹣6y=36④,③+④得:13x=26,解得:x=2,把x=2代入①得y=﹣3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.化简:(﹣x)÷.考点:分式的混合运算.分析:先算括号里面的,分母要因式分解,再算除法即可.解答:解:原式=[﹣]÷,=×,=×,=×,=﹣x(x﹣1),=﹣x2+x.点评:本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.19.为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练.物理、化学各有3个不同的操作实验题目,物理用番号①、②、③代表,化学用字母a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.(1)小张同学对物理的①、②和化学的b、c实验准备得较好.请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率;(2)小明同学对物理的①、②、③和化学的a实验准备得较好.他两科都抽到准备得较好的实验题目的概率为.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小张同学两科都抽到准备得较好的实验题目的情况,再利用概率公式即可求得答案;(2)首先由(1)中的树状图求得小明同学两科都抽到准备得较好的实验题目的情况,然后直接利用概率公式求解即可求得答案.解答:解:(1)画树状图得:∵共有9种等可能结果,他两科都抽到准备得较好的实验题目的有4种情况,∴他两科都抽到准备得较好的实验题目的概率为:;(2)∵小明同学两科都抽到准备得较好的实验题目的有3种情况,∴他两科都抽到准备得较好的实验题目的概率为:=.故答案为:.点评:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.据报道,历经一百天的调查研究,南京PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物.校环保志愿小分队从环保局了解到南京100天的空气质量等级情况,并制成统计图和表:2018年南京市100天空气质量等级天数统计表a= 25 ,b= 20 ,图中严重污染部分对应的圆心角n=72 °.(2)请你根据“2018年南京市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的频率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米.已知南京市2018年机动车保有量已突破200万辆,请你通过计算,估计2018年南京市一天中出行的机动车至少要向大气里排放多少千克污染物?考点:扇形统计图;用样本估计总体;频数与频率;统计表.分析:(1)根据优的天数和所占的百分比求出总天数,再乘以良和严重污染所占的百分比,求出a,b,再用360°乘以严重污染所占的百分比求出严重污染部分对应的圆心角的度数;(2)用重度污染和严重污染所占的百分比相加即可得出答案;(3)根据题意和用样本估计总体的方法,列出算式,求解即可.解答:解:(1)根据题意得:=100(天),a=100×25%=25(天),严重污染所占的百分比是:1﹣10%﹣25%﹣12%﹣8%﹣25%=20%,b=100×20%=20(天),n=360°×20%=72°;故答案为:25,20,72;(2)100天内重度污染和严重污染出现的频率共是20%+25%=45%;(3)根据题意得:200×0.035×10000×=87500(千克),答:2018年南京市一天中出行的机动车至少要向大气里排放87500千克污染物.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,在▱ABCD中,E、F、G、H分别为AB、BC、CD、AD的中点,AF与EH交于点M,FG 与CH交于点N.(1)求证:四边形MFNH为平行四边形;(2)求证:△AMH≌△CNF.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)利用三角形中位线的性质得出EH∥FG,进而得出AH FC,再求出EH∥FG,即可得出答案;(2)利用平行四边形的性质以及平行线的性质得出∠AMH=∠CNF,进而利用AAS得出即可.解答:证明:(1)连接BD,∵E、F、G、H分别为AB、BC、CD、AD的中点,∴EH为△ABD的中位线,∴EH∥BD.同理FG∥BD.∴EH∥FG,在▱ABCD中,∴AD BC,∵H为AD的中点AH=AD,∵F为BC的中点FC=BC,∴AH FC,∴四边形AFCH为平行四边形,∴AF∥CH,又∵EH∥FG∴四边形MFNH为平行四边形;(2)∵四边形AFCH为平行四边形∴∠FAD=∠HCB,∵EH∥FG,∴∠AMH=∠AFN,∵AF∥CH,∴∠AFN=∠CNF,∴∠AMH=∠CNF,在△AMH和△CNF中∵∴△AMH≌△CNF(AAS).点评:此题主要考查了平行四边形的判定与性质以及全等三角形的判定等知识,熟练应用平行四边形的判定方法是解题关键.22.端午节期间,某食堂根据职工食用习惯,购进甲、乙两种粽子260个,其中甲种粽子花费300元,乙种粽子花费400元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?考点:分式方程的应用.分析:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,根据甲粽子比乙种粽子少用100元,可得甲粽子用了300元,乙粽子400元,根据共购进甲、乙两种粽子260个,列方程求解.解答:解:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,由题意得,+=260,解得:x=2.5,经检验:x=2.5是原分式方程的解,(1+20%)x=3,则买甲粽子为:=100(个),乙粽子为:=160(个).答:乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.23.如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)考点:解直角三角形的应用-仰角俯角问题.分析:过D作DE⊥AB于E,在直角三角形中运用正切函数计算.解答:解:如图,过点D作DE⊥AB,垂足为E.在Rt△ADE中,DE=BC=10m,∠ADE=33°,tan∠ADE=,∴AE=DE•tan∠ADE≈10×0.65=6.5(m).(5分)∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:树的高度AB约为8m.(7分)点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.24.小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示.(1)小林的速度为60 米/分钟,a= 960 ,小林家离图书馆的距离为1200 米;(2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中画出y1(米)与x(分钟)的函数图象;(3)小华出发几分钟后两人在途中相遇?考点:一次函数的应用.专题:综合题;压轴题.分析:(1)本题需先根据小林到小华家所走的路程和时间即可求出小林的速度和离图书馆的距离.(2)本题需先根据题意求出y1(米)与x(分钟)的函数关系式,再画出图象即可.(3)本题需求出两个函数图象的交点坐标即可求出小华出发几分钟后两人在途中相遇.解答:解:(1)240÷4=60(米/分钟)(20﹣4)×60=960(米)60×20=1200(米).故答案为60,960,1200.(2)y1(米)与x(分钟)的函数关系式是:y1=40x函数的图象是线段m.(3)∵小林的速度为 60米/分钟,小华的步行速度是40米/分钟,根据题意得:,得:.所以小华出发12分钟后两人在途中相遇.点评:本题主要考查了一次函数的应用,在解题时要能根据题意求出函数的解析式,再根据函数的图象求出答案.25.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明.考点:二次函数的应用.分析:(1)根据所建坐标系知顶点P和与X轴交点M的坐标,可设解析式为顶点式形式求解,x的取值范围是0≤x≤12;(2)根据对称性当车宽2.5米时,x=3或9,求此时对应的纵坐标的值,与车高5米进行比较得出结论.解答:解:(1)∵M(12,0),P(6,6).∴设这条抛物线的函数解析式为y=a(x﹣6)2+6,∵抛物线过O(0,0),∴a(0﹣6)2+6=0,解得a=﹣,∴这条抛物线的函数解析式为y=﹣(x﹣6)2+6,即y=﹣x2+2x.(0≤x≤12);(2)当x=6﹣0.5﹣2.5=3(或x=6+0.5+2.5=9)时y=4.5<5故不能行驶宽2.5米、高5米的特种车辆.点评:本题考查了二次函数的应用,解题的关键是通过建模把实际问题转化为数学模型,这充分体现了数学的实用性.26.如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E、与OB交于点F,连接CE、CF.(1)AB与⊙O相切吗,为什么?(2)若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.考点:切线的判定;菱形的判定.分析:(1)根据等腰三角形的性质由OA=OB,C是边AB的中点得到OC⊥AB,然后根据切线的判定方法即可得到AB与⊙O相切;(2)根据等腰三角形的性质得∠AOC=∠BOC,再利用“SAS”可判断△EOC≌△FOC,则CE=CF,∠ECO=∠FCO,于是∠AOB=2∠EOC,∠ECF=2∠ECO,而∠AOB=∠ECF,所以∠EOC=∠ECO,则CE=OE,得到CE=OE=OF=CF,然后利用菱形的判定方法得到四边形OECF为菱形.解答:解:(1)AB与⊙O相切.理由如下:连结OC,∵OA=OB,C是边AB的中点,∴OC⊥AB,而OC为⊙O的半径,∴AB与⊙O相切于C;(2)四边形OECF为菱形.理由如下:。
2018年四川省成都市中考数学二模试卷(含答案解析)
2018年四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣38.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.2018年四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2016的长.【解答】解:根据题意得:l1==,l2==,l3===π,则L2016=,故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=8.【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=2.【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .19.(10分)如图,已知反比例函数y =的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ). (1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.【分析】(1)把点A 坐标分别代入反比例函数y =,一次函数y =x +b ,求出k 、b 的值,再把点B 的坐标代入反比例函数解析式求出n 的值,即可得出答案;(2)求出直线AB 与y 轴的交点C 的坐标,分别求出△ACO 和△BOC 的面积,然后相加即可; (3)根据A 、B 的坐标结合图象即可得出答案.【解答】解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b , 得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =的图象上,∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.【分析】(1)点A是劣弧BC的中点,即可得∠ABC=∠ADB,又由∠BAD=∠EAB,即可证得△ABE∽△ADB,根据相似三角形的对应边成比例,即可证得AB2=AE•AD;(2)由(1)求得AB的长,又由BD为⊙O的直径,即可得∠A=90°,由DF是⊙O的切线,可得∠BDF =90°,在Rt△ABD中,求得tan∠ADB的值,即可求得∠ADB的度数,即可证得△DEF是等边三角形,则问题得解.【解答】解:(1)证明:∵点A是劣弧BC的中点,∴∠ABC=∠ADB.(1分)又∵∠BAD=∠EAB,∴△ABE∽△ADB.(2分)∴.∴AB2=AE•AD.(2)解:∵AE=2,ED=4,∵△ABE∽△ADB,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4.【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9.【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF 是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y1、y2、y3的大小关系.【解答】解:∵抛物线的对称轴与x轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y1)到直线x=﹣1的距离最大,点(0,y3)到直线x=﹣1的距离最小,∴y3<y2<y1.故答案为y3<y2<y1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y =(x +10)(400﹣10x )=﹣10x 2+300x +4000=﹣10(x ﹣15)2+6250当x =15时,y 有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F .(1)若AB =6,AE =4,BD =2,则CF = 4 ;(2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示,问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长之比为 1﹣cos α (用含α的表达式表示).【分析】(1)先求出BE 的长度后发现BE =BD 的,又∠B =60°,可知△BDE 是等边三角形,可得∠BDE =60°,另外∠DEF =60°,可证得△CDF 是等边三角形,从而CF =CD =BC ﹣BD ;(2)证明△EBD ∽△DCF ,这个模型可称为“一线三等角•相似模型”,根据“AA ”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D 作DM ⊥BE ,DG ⊥EF ,DN ⊥CF ,则DM =DG =DN ,从而证明△BDM ≌△CDN 可得BD =CD ;【探索】由已知不能求得C △ABC =AB +BC +AC =2AB +2OB =2(m +m cos α),则需要用m 和α是三角函数表示出C △AEF ,C △AEF =AE +EF +AF =AG +AH =2AG ;题中直接已知点O 是BC 的中点,应用(2)题的方法和结论,作OG ⊥BE ,OD ⊥EF ,OH ⊥CF ,可得EG =ED ,FH =DF ,则C △AEF =AE +EF +AF =AG +AH =2AG ,而AG =AB ﹣BO ,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.。
(完整版)2018上海市黄浦区2018届中考二模数学试题含答案,推荐文档
(A) y kx k ;
(B) y kx k ;
(C) y kx k ;
(D) y kx k .
4.一个民营企业 10 名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是( )
人次
1
1
1
2
1
1
3
工资
30
3
2
1.5
1.2
2
24.(本题满 12 分)
已知抛物线 y x2 bx c 经过点 A(1,0)和 B(0,3),其顶点为 D.
(1)求此抛物线的表达式; (2)求△ABD 的面积; (3)设 P 为该抛物线上一点,且位于抛物线对称轴 右侧,作 PH⊥对称轴,垂足为 H,若△DPH 与△AOB 相 似,求点 P 的坐标.
P,则该反比例函数的解析式为
.
12.如果一次函数的图像经过第一、二、四象限,那么其函数值 y 随自变量 x 的值的增大而
.
(填“增大”或“减小”)
13.女生小琳所在班级共有 40 名学生,其中女生占 60%.现学校组织部分女生去市三女中参观,需要
从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是
那么 AD∶AB=
.
三、解答题:(本大题共 7 题,满分 78 分)
19.(本题满分 10 分)
1
计算: 22 23 2
0
2018 2018 3 2 3 .
20.(本题满分 10 分)
第3页
x2 2xy y2 9
解方程组:
x
2
y2
5
.
21.(本题满分 10 分)
2
如图,AH 是△ABC 的高,D 是边 AB 上一点,CD 与 AH 交于点 E.已知 AB=AC=6,cosB= ,
2018届中考数学二模试卷(带答案) (18)
2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E 是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A.【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l 3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1,∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。
2018年江苏省徐州市中考数学二模试卷(含答案解析)
2018年江苏省徐州市中考数学二模试卷一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的相反数是()A.﹣ B.4 C.﹣4 4 D D.【解答】解:﹣的相反数是.故选:D.2.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.(3分)下列运算中,正确的是()A.(﹣3a3)2=9a6B.a•a4=a4C.a6÷a3=a2D.3a+2a2=5a3【解答】解:A、(﹣3a3)2=9a6,故此选项正确;B、a•a4=a5,故此选项错误;C、a6÷a3=a3,故此选项错误;D、3a+2a2,无法计算,故此选项错误.故选:A.4.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B .“367人中有2人同月同日生”为必然事件C .可能性是1%的事件在一次试验中一定不会犮生D .数据3,5,4,1,﹣2的中位数是4【解答】解:A 、检测某批次灯泡的使用寿命,适宜用抽样调查,故此选项错误;B 、“367人中有2人同月同日生”为必然事件,正确;C 、可能性是1%的事件在一次试验中一定不会犮生,的事件在一次试验中一定不会犮生,发生的概率小,发生的概率小,发生的概率小,也有可能发也有可能发生,故此选项错误;D 、数据3,5,4,1,﹣2的中位数是3,故此选项错误.故选:B .5.(3分)若正多边形的一个内角是150°,则该正多边形的边数是(,则该正多边形的边数是( ) A .6 B .12 C .16 D .18【解答】解:设多边形为n 边形,由题意,得 (n ﹣2)•180°=150n , 解得n=12, 故选:B .6.(3分)如图,BC 是⊙O 的弦,OA ⊥BC ,∠AOB=70°,则∠ADC 的度数是( )A .70°B .35°C .45°D .60°【解答】解:∵A 、B 、C 、D 是⊙O 上的四点,OA ⊥BC , ∴弧AC=弧AB (垂径定理),∴∠ADC=∠AOB (等弧所对的圆周角是圆心角的一半);又∠AOB=70°, ∴∠ADC=35°. 故选:B .7.(3分)已知点分)已知点 A (﹣1,1),B (1,1),C (2,4)在同一个函数图象上,这个函数图象可能是(个函数图象可能是( )A .B .C .D .【解答】解:∵A (﹣1,1),B (1,1), ∴A 与B 关于y 轴对称,故C ,D 错误;∵B (1,1),C (2,4),当x >0时,y 随x 的增大而增大,而B (1,1)在直线y=x 上,C (2,4)不在直线y=x 上,所以图象不会是直线,故A 错误;故B 正确. 故选:B .8.(3分)已知一次函数y=kx +b 的图象如图所示,则关于x 的不等式k (x ﹣4)﹣2b ≥0的解集为(的解集为( )A .x ≥﹣2 B .x ≤3 C .x ≤﹣2 D .x ≥3【解答】解:把(3,0)代入y=kx +b 得3k +b=0,则b=﹣3k , 所以k (x ﹣4)﹣2b ≥0化为k (x ﹣4)+6k ≥0, 因为k <0, 所以x ﹣4+6≤0, 所以x ≤﹣2. 故选:C .二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)若分式有意义,则x的取值范围为的取值范围为 x≠1.【解答】解:依题意得解:依题意得 x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.10.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【解答】解:ax 2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).11.(3分)如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是,则飞镖落在阴影区域的概率是 .【解答】解:由题意可得:阴影部分有4个小扇形,总的有10个小扇形,故飞镖落在阴影区域的概率是:=.故答案为:.12.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.13.(3分)若反比例函数y=﹣的图象经过点A(m,3),则m的值是的值是 ﹣2.【解答】解:∵反比例函数y=﹣的图象经过点A(m,3),∴3=﹣,解得m=﹣2.故答案为:﹣2.14.(3分)已知2a﹣3b=7,则8+6b﹣4a=﹣6.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.15.(3分)如图,⊙O的直径垂直于弦CD,垂足为E,∠A=15°,半径为2,则CD的长为的长为 2.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,在Rt△OCE中,OC=2,∠COE=30°,∴CE=OC=1,(直角三角形中,30度角所对的直角边是斜边的一半)∴CD=2CE=2,故答案为:216.(3分)若某一圆锥的母线长为5cm,高为4cm,则此圆锥的侧面积是,则此圆锥的侧面积是 15πcm2.【解答】解:∵母线长为5cm,高为4cm,∴底面圆的半径为3cm,圆锥的侧面积=2π×3×5÷2=15π.故答案为:15π.17.(3分)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC 和CD上,则∠AEB=75度.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.18.(3分)观察下列的“蜂窝图”的个数是 3n+1.(用含有n的代数式表示)则第n个图案中的“”的个数是【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1三、解答题(本大题共有10小题,共86分。
2018年中考数学二模试卷含答案
2018年中考数学二模试卷一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a23.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.化简÷(1+)的结果是()A.B.C.D.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m27.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1968.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.0012410.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.711.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= .22.方程=的解为.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是.三、解答题(本题共5小题,48分)25.(8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?26.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.27.(10分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1),易证BD+AB=CB,过程如下:过点C 作CE ⊥CB 于点C ,与MN 交于点E ∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE .∵四边形ACDB 内角和为360°,∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°,∴BD+AB=CB .∴∠EAC=∠BDC 又∵AC=DC , ∴△ACE ≌△DCB , ∴AE=DB ,CE=CB , ∴△ECB 为等腰直角三角形,∴BE=CB .又∵BE=AE+AB , ∴BE=BD+AB .(1)当MN 绕A 旋转到如图(2)和图(3)两个位置时,BD 、AB 、CB 满足什么样关系式,请写出你的猜想,并对图(3)给予证明. (2)MN 在绕点A 旋转过程中,当∠BCD=30°,BD=时,则CD= ,CB= .28.(10分)如图1,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE ⊥OB 交BC 边于点E . (1)求证:△ABF ∽△COE ; (2)当O 为AC 的中点,时,如图2,求的值; (3)当O 为AC 边中点,时,请直接写出的值.29.(12分)如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2018年中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣【考点】6F:负整数指数幂;17:倒数.【分析】先计算负整数指数幂,再依据倒数的定义可得.【解答】解:∵(﹣)﹣1=﹣,∴(﹣)﹣1的倒数为﹣,故选:C.【点评】本题主要考查负整数指数幂和倒数的定义,熟练掌握负整数指数幂是解题的关键.2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a2+4a2=13a2,不符合题意;B、原式=3a2﹣4a2=﹣a2,符合题意;C、原式=12a3,不符合题意;D、原式=9a4÷4a2=a2,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握公式及法则是解本题的关键.3.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】R6:关于原点对称的点的坐标;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先确定出点M在第三象限,然后根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解得到m的取值范围,从而得解.【解答】解:∵点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,∴点M(1﹣2m,m﹣1)在第三象限,∴,解不等式①得,m>,解不等式②得,m<1,所以,m的取值范围是<m<1,在数轴上表示如下:.故选C.【点评】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法,以及关于原点对称的两点坐标之间的关系以及一元一次不等式组的解法.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.化简÷(1+)的结果是()A.B.C.D.【考点】6C:分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m2【考点】U3:由三视图判断几何体.【分析】左视图面积=宽×高.【解答】解:由主视图易得高为1,由俯视图易得宽为3.∴左视图面积=1×3=3(m2).故选D.【点评】主视图确定物体的长与高;俯视图确定物体的长与宽.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【考点】AC:由实际问题抽象出一元二次方程.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.【点评】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两家抽到东营港的情况,再利用概率公式求解即可求得答案.【解答】解:用A、B、C表示:东营港、黄河入海口、龙悦湖;画树状图得:∵共有9种等可能的结果,则两家都抽到东营港的有3种情况,∴则两家都抽到东营港的概率是=;故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6;故选:C.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).11.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.【考点】R2:旋转的性质.【分析】先求出∠ACD=30°,再根据旋转角求出∠ACD1=45°,然后判断出△ACO是等腰直角三角形,再根据等腰直角三角形的性质求出AO、CO,AB⊥CO,再求出OD1然后利用勾股定理列式计算即可得解.【解答】解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB⊥CO是解题的关键,也是本题的难点.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.【考点】GB:反比例函数综合题.【分析】先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x 轴,BE⊥x轴,CF⊥BE于点F,再设A(3x, x),由于OA=3BC,故可得出B(x, x+4),再根据反比例函数中k=xy为定值求出x【解答】解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x, x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x, x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.【点评】本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm【考点】M4:圆心角、弧、弦的关系;KD:全等三角形的判定与性质;KQ:勾股定理.【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径AE,连接BE.得直角三角形ABE.根据圆周角定理可证∠CBD=∠MAO,运用三角函数定义求解.【解答】解:连接AO并延长交圆于点E,连接BE.则∠C=∠E,由AE为直径,且BD⊥AC,得到∠BDC=∠ABE=90°,所以△ABE和△BCD都是直角三角形,所以∠CBD=∠EAB.又△OAM是直角三角形,∵AO=1,∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM的长.故选:A.【点评】考查了圆周角定理和三角函数定义.此题首先要观察题目涉及的线段,然后根据已知条件结合定理进行角的转换.15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【考点】H2:二次函数的图象;F4:正比例函数的图象.【分析】由y=mx(m≠0),y随x的增大而减小,推出m<0,可知二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,由此即可判断.【解答】解:∵y=mx(m≠0),y随x的增大而减小,∴m<0,∴二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,故选A.【点评】本题参考二次函数的性质、正比例函数的性质等知识,解题的关键是熟练掌握正比例函数以及二次函数的性质,属于中考常考题型.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④【考点】L9:菱形的判定;KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【解答】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故选:C.【点评】本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据tan∠EFC=,设BF=3x、AB=4x,利用勾股定理列式求出AF=5x,再求出CF,根据tan∠EFC=表示出CE并求出DE,最后在Rt△ADE中,利用勾股定理列式求出x,即可得解.【解答】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°﹣90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵tan∠EFC=,∴设BF=3x、AB=4x,在Rt△ABF中,AF===5x,∴AD=BC=5x,∴CF=BC﹣BF=5x﹣3x=2x,∵tan∠EFC=,∴CE=CF•tan∠EFC=2x•=x,∴DE=CD﹣CE=4x﹣x=x,在Rt△ADE中,AD2+DE2=AE2,即(5x)2+(x)2=(10)2,整理得,x2=16,解得x=4,∴AB=4×4=16cm,AD=5×4=20cm,矩形的周长=2(16+20)=72cm.故选A.【点评】本题考查了矩形的对边相等,四个角都是直角的性质,锐角三角函数,勾股定理的应用,根据正切值设出未知数并表示出图形中的各线段是解题的关键,也是本题的难点.18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x 与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】H4:二次函数图象与系数的关系.【分析】(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b+2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.【点评】本题考查二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= 2(x2+1)(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式即可分解.【解答】解:原式=2(x4﹣1)=2(x2+1)(x2﹣1)=2(x2+1)(x+1)(x﹣1).故答案是:2(x2+1)(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.方程=的解为x=2 .【考点】B3:解分式方程.【分析】方程两边都乘以最简公分母(x﹣1)(2x+1)把分式方程化为整式方程,求解后进行检验.【解答】解:方程两边都乘以(x﹣1)(2x+1)得,2x+1=5(x﹣1),解得x=2,检验:当x=2时,(x﹣1)(2x+1)=(2﹣1)×(2×2+1)=5≠0,所以,原方程的解是x=2.故答案为:x=2.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为﹣1 .【考点】MO:扇形面积的计算.【分析】首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值.【解答】解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1,在Rt△CDG中,由勾股定理得:DG==,设∠DCG=θ,则由题意可得:S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣,∴S=﹣.当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.当r=时,DG=1,∵CG=1,故θ=45°,∴S=﹣=﹣1,故答案为:﹣1.【点评】本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是(﹣×42016,42017).【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标;L5:平行四边形的性质.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n的坐标是(﹣×4n﹣1,4n),即可求得C2017的坐标.【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x,∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n),∴C2017的坐标是(﹣×42016,42017).故答案为(﹣×42016,42017).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三、解答题(本题共5小题,48分)25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.26.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【考点】G8:反比例函数与一次函数的交点问题;G6:反比例函数图象上点的坐标特征.【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;。
河南省2018届九年级中考数学二模试题(解析版)
2018年河南省天宏大联考中考数学二模试卷一、选择题1.2018的绝对值是A. B. 2018 C. D.【答案】B【解析】【分析】根据正数的绝对值是它本身可得答案.【详解】2018的绝对值是2018,故选B.【点睛】此题主要考查了绝对值,关键是掌握绝对值的性质.2.生活中有很多美味的食物,它们的包装盒也很漂亮,观察以下食品的包装盒,从正面看、从上面看看到的平面图形分别是长方形、圆的是A. B. C. D.【答案】C【解析】【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.【详解】A、从正面看是梯形,从上面看是圆环,故A错误;B、从正面看是三角形,从上面看是圆,故B错误;C、从正面看是长方形,从上面看是圆,故C正确;D、从正面看是长方形,从上面看是长方形,故D错误;故选C.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的图形是俯视图.3.为了进一步降低机动车污染物排放,减轻重污染天气污染发生频次和污染程度,保障人民群众身体健康,郑州市从2017年12月4日0时至2017年12月31日24时起对机动车实施单双号限行措施,此次限行将会大大减少空气中的排放量,指的是雾天气时大气中直径小于或等于的颗粒物,将用科学记数法表示为A. B. C. D.【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将0.0000025用科学记数法表示为2.5×10-6,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.直角三角板和直尺如图放置,若,则的度数为A. B. C. D.【答案】C【解析】【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【详解】如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.5.某校进行广播操比赛,比赛打分包括以下几项:服装统一、进退有序、动作规范、动作整齐每项满分10分其中四个班级的成绩见如表,如果将各班这四项的得分依次按照1:2:3:4的权重来计算的话,最终得分最高的班级为A. 一班B. 二班C. 三班D. 四班【答案】C【解析】【分析】根据加权平均数的计算公式分别求出四个班级的平均成绩,再判断即可得出答案.【详解】因为一半的平均成绩为=8.4(分),二班的平均成绩为=7.9(分),三班的平均成绩为=8.6(分),四班的平均成绩为=8.1(分),所以最终得分最高的班级是三班,故选C.【点睛】本题主要考查加权平均数,解题的关键是熟练掌握若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+w3+…+w n)叫做这n个数的加权平均数.6.春节期间,中国诗词大会》节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱,现有以下四句古诗词:锄禾日当午;春眠不觉晓;白日依山尽;床前明月光,甲、乙两名同学从中各随机选取了一句写在了纸上,则他们选取的诗句恰好相同的概率为A. B. C. D.【答案】B【解析】【分析】画树状图列出所有等可能结果,从中找到他们选取的诗句恰好相同的结果数,根据概率公式计算可得.【详解】画树状图如下:由树状图可知共有16种等可能结果,其中他们选取的诗句恰好相同的结果有4种,∴他们选取的诗句恰好相同的概率为,故选B.【点睛】此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏的表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.7.二次函数的图象如图,反比例函数与正比例函数在同一坐标系内的大致图象是A. B. C. D.【答案】C【解析】【分析】根据函数图象的开口方向,对称轴,可得a、b的值,根据a、b的值,可得相应的函数图象.【详解】由y=ax2+bx+c的图象开口向下,得a<0.由图象,得->0.由不等式的性质,得b>0.a<0,y=图象位于二四象限,b>0,y=bx图象位于一三象限,故选C.【点睛】本题考查了二次函数的性质,利用函数图象的开口方向,对称轴得出a、b的值是解题关键.8.不等式组的整数解的个数为A. 3B. 4C. 5D. 6【答案】B【解析】【分析】分别求出两个不等式的解,然后求其解集,最后找出整数解的个数.【详解】解不等式3-(3x-2)≥1得:x≤,解不等式2+x<3x+8得:x>-3,故不等式的解集为:-3<x≤,则整数解为-2,-1,0,1,共4个.故选B.【点睛】本题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.如图:有一块三角形状的土地平均分给四户人家,现有四种不同的分法,如图中,D、E、F分别是BC、AC、AB的中点,G、H分别是BF、AF的中点,其中正确的分法有A. 1种B. 2种C. 3种D. 4种【答案】D【解析】【分析】根据D、E、F分别是AB、BC、AC的中点,G、H分别是线段BD和AD的中点,利用三角形中位线定理,求证△ADF,△BDE,△DEF,△EFC是同底同高,然后即可证明其面积相等,其他3种情况,同理可得.【详解】∵D、E、F分别是AB、BC、AC的中点,∴在图①中,DE=AC,EF=AB,DF=BC,∴△ADF,△BDE,△DEF,△EFC是同底同高,∴根据三角形面积公式可得△ADF,△BDE,△DEF,△EFC面积相等.同理可得图②,∵D、E、F分别是AB、BC、AC的中点,G、H分别是线段BD和AD的中点.同理可得图③,图④中4个三角形面积相等,所以四种分法都正确.故选D.【点睛】此题主要考查三角形中位线定理和三角形面积的计算。
初中中考数学2018届第二次模拟考试试题解析
初中数学中考2018届17-18学年二次模拟考试试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1. 在,,0,2这四个数中,最小的数是()A. B. C. 0 D. 2【答案】A【解析】分析:先比较数的大小,再得出选项即可.详解:-2.5<0<<2,最小的数是-2.5,故选A.点睛:本题考查了绝对值和有理数的大小比较,能熟记有理数的大小比较法则内容是解此题的关键,正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.2. 计算的结果是()A. B. C. D.【答案】B【解析】分析:利用积的乘方性质:(ab)n=a n•b n,幂的乘方性质:(a m)n=a mn,直接计算.详解:(-2x2)3=.故选B.点睛:本题考查了幂运算的性质,注意结果的符号确定,比较简单,需要熟练掌握.3. 下列图案属于轴对称图形的是()A. B. C. D.【答案】D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.详解:A、不能找出对称轴,故A不是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、能找出一条对称轴,故D是轴对称图形.故选D.点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.4. 下列调查中,调查方式选择正确的是()A. 为了了解全市中学生课外阅读情况,选择全面调查B. 端午节期间,我市食品安全检查部门调查市场上粽子的质量情况,选择全面调查C. 旅客上飞机前的安检,选择抽样调查D. 为了了解《人民的名义》的收视率,选择抽样调查【答案】D【解析】分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.详解:A、为了了解全市中学生课外阅读情况,选择抽样调查,故A不符合题意;B、端午节期间,我市食品安全检查部门调查市场上粽子的质量情况,选择抽样调查,故B不符合题意;C、旅客上飞机前的安检,选择普查,故C不符合题意;D、为了了解《人民的名义》的收视率,选择抽样调查,故D符合题意;故选D.点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5. 当,则的值()A. B. 1 C. 4 D. 6【答案】B【解析】分析:把a=-2,b=3代入代数式,求出算式的值是多少即可.详解:当a=-2,b=3时,=(-2)2-2×3+3=1.故选B.点睛:此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.6. ∆ABC与∆DEF的相似比为1:3,则∆ABC与∆DEF的面积比为()A. 1:3B. 1:6C. 1:9D. 1:16【答案】C【解析】分析:由相似△ABC与△DEF的相似比为1:3,根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.详解:∵相似△ABC与△DEF的相似比为1:3,∴△ABC与△DEF的面积比为1:9.故选C.点睛:本题考查了相似三角形的性质.注意相似三角形面积的比等于相似比的平方.7. 函数中,自变量的取值范围是()A. B. C. 且 D. 且【答案】D【解析】分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.详解:根据题意得:,解得:x≥-1且x≠2.故选D.点睛:本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8. 如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=2,则图中阴影部分的面积是()A. B. C. D.【答案】C【解析】分析:根据题意可以求出各个扇形圆心角的度数,然后根据题目中的条件求出阴影部分的面积,本题得以解决.详解:∵点B、C把弧线AD分成三等分,ED是⊙O的切线,∠E=45°,∴∠ODE=90°,∠DOC=45°,∴∠BOA=∠BOC=∠COD=45°,∵OD=2,∴阴影部分的面积是:=.故选C.点睛:本题考查扇形面积的计算、切线的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.9. 估计的运算结果在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】C【解析】分析:先把算式化简,再估算的大小,即可解答.详解:=4−=4−=3,∵1<<2,≈1.732∴5<3<6,故选C.点睛:本题考查了估算无理数的大小,解决本题的关键是估算的大小.10. 如下图,每一幅图中均含有若干个菱形,第①幅图中含有1个菱形;第②幅图中含有5个菱形;……按这样的规律下去,则第⑦幅图中含有的菱形的个数为()A. 50B. 80C. 91D. 140【答案】D【解析】分析:观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…第n个有:1+4+9+…+n2=n(n+1)(2n+1)个正方形,从而得到答案.详解:观察图形发现第一个有1个菱形,第二个有1+4=5个菱形,第三个有1+4+9=14个菱形,…第n个有:1+4+9+…+n2=n(n+1)(2n+1)个菱形,第7个有1+4+9+16+25+36+49=140个菱形,故选D.点睛:此题考查了图形的变化规律,解题的关键是仔细关系图形并找到规律,利用规律解决问题.11. 如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,斜坡AB的坡度,仰角∠CBE=50°.则山峰的高度CF约为()米.(可用的参考数据:sin50°≈0.8,tan50°≈1.2, )A. 500B. 518C. 530D. 580【答案】B【解析】分析:先在Rt△CBE中利用∠CBE的正弦计算出CE,然后计算CE和EF的和即可.详解:作BH⊥AF于H,如图,∵斜坡AB的坡度i=1:2,∴设BH=k,AH=2k,∴AB=k=800,∴k=,∴BH=≈356,∴EF=BH=356m;在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin50°=200×0.8=160,∴CF=CE+EF=160+356=516(m).答:山CF的高度约为516米.故选B.点睛:本题考查了解直角三角形的应用-坡度与坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i═tanα.12. 如果关于的分式方程有整数解,且关于的不等式组有且只有四个整数解,那么符合条件的所有整数的个数为()A. B. C. D.【答案】B【解析】分析:表示出不等式组的解集,由不等式组有且只有四个整数解,确定出a的范围,分式方程去分母转化为整式方程,表示出x,由x为整数确定出a的值即可.详解:分式方程去分母得:1-ax+2x-4=-1,即(2-a)x=2,由分式方程有整数解,得到2-a≠0,解得:x=,不等式组整理得:,即-3≤x<,由不等式组有且只有四个整数解,得到0<≤1,解得:<a≤2,由x为整数,且≠2,得到2-a=±1,-2,解得:a=1,则符合条件的所有整数a的个数为1,故选B.点睛:此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对应的横线上.13. “互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到468000000户,则数字468000000用科学记数法表示为______________.【答案】4.68×108【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将468000000用科学记数法表示为:4.68×108.故答案为:4.68×108.点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14. 计算:=____________.【答案】【解析】分析:首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.详解:=2+-1+2-1=3故答案为:3.点睛:此题主要考查了实数的运算,零指数幂、负整数指数幂的求法,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.15. 如图,已知AB是⊙O的直径,∠D=42°,则∠CAB的度数为__________.【答案】48°【解析】分析:先根据圆周角定理求出∠B及∠ACB的度数,再由三角形内角和定理即可得出结论.详解:∵AB是⊙O的直径,∠D=42°,∴∠B=∠D=42°,∠ACB=90°,∴∠CAB=90°-42°=48°.故答案为:48°.点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.16. 在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的平均分是____分.【答案】88.5【解析】分析】首先求出10名选手的总成绩,再求出平均分即可.详解:根据统计图可知,这10名选手成绩的平均分为=88.5(分),故答案为88.5.点睛:本题主要考查了加权平均数的知识,掌握加权平均数的计算公式是解题的关键.17. 甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,中途与乙相遇后休息了一会儿,然后以原来的速度继续行驶直到A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示,则乙车到达A地时甲车距B地的路程为___________千米.【答案】150【解析】分析:根据速度=路程÷时间可求甲车匀速前往B地的速度,根据时间=路程÷速度可求甲车匀速前往B地的时间,可求甲车返回到A地的时间,再根据速度=路程÷时间可求甲车返回到A地的速度,根据速度=路程÷时间可求乙车匀速前往A地的速度,根据时间=路程÷速度可求乙车开车时间,加上停留的时间,可求乙车到达A地一共的时间,再求出甲车到达B地后返回的时间,再根据路程=速度×时间即可求解.详解:180÷1.5=120(千米/时),300÷120=2.5(小时),300÷(5.5-2.5)=100(千米/时),(300-180)÷1.5=80(千米/时),300÷80+(1.75-1.5)=3.75+0.25=4(小时),(4-2.5)×100=1.5×100=150(千米).答:乙车到达A地时甲车距B地的路程为150千米.故答案为:150.点睛:此题考查一次函数的实际运用,关键是利用行程问题的基本数量关系解决问题.18. 在正方形ABCD中,AB=,E是边BC的中点,F是AB上一点,线段AE、CF交于点G,且CE=EG,将∆ABF沿CF翻折,使得点B落在点M,连接GM并延长交AD于点N,则∆AGN的面积为_________________.【答案】【解析】分析:先作GH⊥BC于H,交AN于J,则GH∥AB,即可得到HG:HE=AB:BE=2:1,设HE=m,则HG=2m,EG=m,进而得到BC=2GE=2m,GJ=2m-2m,根据AB=2+2=BC,可得m=1+,再根据,可得AN=(5-)m,最后根据△AGN的面积=AN×GJ,进行计算即可.详解:如图所示,作GH⊥BC于H,交AN于J,连接BG,则GH∥AB,∴HG:HE=AB:BE=2:1,设HE=m,则HG=2m,EG=m,∵E是边BC的中点,CE=EG,∴BC=2GE=2m,GJ=2m-2m,∵AB=2+2=BC,∴2+2=2m,解得m=1+,∵EG=CE=BE,∴∠BGC=×180°=90°,即BG⊥CF,又∵BM⊥CF,∴B,G,M在同一直线上,又∵BE∥AN,∴△GBE∽△GNA,∴,即,解得AN=(5-)m,∴△AGN的面积=AN×GJ=(5-)m×(2m-2m)=(-1)2m2=(-1)2(1+)2=,故答案为:.点睛:本题主要考查了折叠问题,正方形的性质以及相似三角形的判定与性质的综合应用,解决问题的关键是依据相似三角形的对应边成比例列式计算,求出△ANG的底边与高.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19. 如图,AB∥CD,∠CDE=120°,GF交∠DEB的平分线EF于点F,∠AGF=130°,求∠F的度数.【答案】10°【解析】分析:根据平行线的性质得到∠BED=∠CDE=120°,由角平分线的定义得到∠BEF=∠BED=60°,根据三角形的外角的性质即可得到结论。
苏州市2018届中考数学二模试卷(解析版)
中考数学二模试卷(解析版)一.选择题1.﹣3的倒数是()A. 3B. ﹣3C. ﹣D.2.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为()A. 0.35×108B. 3.5×107C. 3.5×106D. 35×1053.下列运算正确的是()A. x4+x2=x6B. (﹣2a)3•a=6a4C. (﹣x)6÷x2=x3D. a2b•(﹣2a2b)=﹣2a4b24.为调查某班学生每天使用零花钱的情况,张华随机调查了20名同学,结果如下表:则这20名同学每天使用的零花钱的众数和中位数分别是()A. 3,3B. 3,3.5C. 3.5,3.5D. 3.5,35.下列四个几何体中,主视图与其它三个不同的是()A. B. C. D.6.餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为()A. (160+x)(100+x)=160×100×2B. (160+2x)(100+2x)=160×100×2C. (160+x)(100+x)=160×100D. 2(160x+100x)=160×1007.已知,且x﹣y<0,则m的取值范围为()A. mB. mC. mD. m8.如图,将⊙O沿弦AB折叠,圆弧AB恰好经过圆心O,P是上一点,则∠APB的度数为()A. 30°B. 45°C. 60°D. 75°9.如图,平行四边形ABCD中,点E、F分别是AD、AB的中点,EF交AC于点G,那么AG:GC的值为()A. 1:2B. 1:3C. 1:4D. 2:310.如图,在矩形ABCD中,AB=3,BC=4,点E在BC边上运动,连结AE,过点D作DF⊥AE,垂足为F,设AE=x,DF=y,则能反映y与x之间函数关系的大致图象是()A. B. C. D.二.填空题11.分解因式:xy2﹣9x________.12.制作一个圆锥模型,要求圆锥母线长9cm,底面圆直径为10cm,那么要制作的这个圆锥模型的侧面展开扇形的纸片圆心角度数是________度.13.在如图所示的数轴上,点C与点B关于点A对称,C、A两点对应的实数分别是和1,则点B对应的实数为________.14.如图,在四边形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均为锐角,点F是对角线BD上的一点,EF ∥AB交AD于点E,FG∥BC交DC于点G,四边形EFGP是平行四边形,给出如下结论:①四边形EFGP是菱形;②△PED为等腰三角形;③若∠ABD=90°,则△EFP≌△GPD;④若四边形FPDG也是平行四边形,则BC∥AD且∠CDA=60°.其中正确的结论的序号是________(把所有正确结论的序号都填在横线上).三.综合题15.计算:﹣2cos30°+()﹣2﹣|1﹣|.16.先化简再求值:,其中x是方程x2=2x的根.四.解答题17.观察下列算式:①1×5+4=32,②2×6+4=42,③3×7+4=52,④4×8+4=62,…请你在察规律解决下列问题(1)填空:________×________+4=20152.(2)写出第n个式子(用含n的式子表示),并证明.18.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;①把△ABC绕点O顺时针旋转90°得到△A1B1C1;②以图中的O为位似中心,在△A1B1C1的同侧将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.五.解答题19.如图,身高1.6米的小明为了测量学校旗杆AB的高度,在平地上C处测得旗杆高度顶端A的仰角为30°,沿CB方向前进3米到达D处,在D处测得旗杆顶端A的仰角为45°,求旗杆AB的高度()20.如图,一次函数y1=kx+b和反比例函数y2= 的图象交于A、B两点.(1)求一次函数y1=kx+b和反比例函数y2= 的解析式;(2)观察图象写出y1<y2时,x的取值范围为________;(3)求△OAB的面积.六.解答题21.为了备战初三物理、化学实验操作考试.某校对初三学生进行了模拟训练.物理、化学各有4个不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.小张同学对物理的①、②和化学的b、c实验准备得较好,请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率.七.解答题22.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=5,AB=7,求的值.八.应用题23.如图,已知一条直线过点(0,4),且与抛物线y= x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?答案解析一.<b >选择题</b>1.【答案】C【考点】倒数【解析】【解答】﹣3的倒数是﹣.故答案为:C.【分析】符号不变,分子分母互换位置即可.2.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】350万=3 500 000=3.5×106.故答案为:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,首先将350万变形为3 500 000,然后在第一位数字后面加上一个小数点可得到a的值,然后依据n等于原数的整数位数减1可确定出n的值.3.【答案】D【考点】同底数幂的除法,单项式乘单项式,单项式除以单项式【解析】【解答】A、x4•x2=x6,A不符合题意;B、(﹣2a)3•a=﹣8a4,B不符合题意;C、(﹣x)6÷x2=x6÷x2=x4,C不符合题意;D、正确,D符合题意;故答案为:D.【分析】依据合并同类项法则、积的乘方法则、同底数幂的除法法则,单项式乘单项式法则进行判断即可.4.【答案】B【考点】中位数、众数【解析】【解答】因为3出现的次数最多,所以众数是:3元;因为第十和第十一个数是3和4,所以中位数是:3.5元.故答案为:B.【分析】把这组数据按从小到大的顺序排列,位于最中间两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.5.【答案】D【考点】简单组合体的三视图【解析】【解答】A、的主视图是第一层两个小正方形,第二层左边一个小正方形,A不符合题意,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,B不符合题意C、的主视图是第一层两个小正方形,第二层左边一个小正方形,C不符合题意D、的主视图是第一层两个小正方形,第二层左两个小正方形,D符合题意.故答案为:D.【分析】先从正面观察结合体,确定出所观察的面数以及各面之间的位置关系,从而可得到个几何体的主视图,然后再作出判断即可.6.【答案】B【考点】一元二次方程的应用【解析】【解答】依题意得:桌布面积为:160×100×2,桌面的长为:160+2x,宽为:100+2x,则面积为=(160+2x)(100+2x)=2×160×100.故答案为:B.【分析】先用含x的式子表示桌布的长和宽,然后依据桌布面积是桌面面积的2倍列方程即可.7.【答案】D【考点】解二元一次方程组,解一元一次不等式【解析】【解答】,②﹣①得:x﹣y=6m+1,代入已知不等式得:6m+1<0,解得:m<﹣.故答案为:D.【分析】由②-①得:x﹣y=6m+1,然后再依据x-y<0列出关于m的不等式求解即可.8.【答案】C【考点】垂径定理,翻折变换(折叠问题)【解析】【解答】作半径OC⊥AB于D,连结OA、OB,如图,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD= OC= OA,∴∠OAD=30°,又OA=OB,∴∠OBA=30°,∴∠AOB=120°,∴∠APB= ∠AOB=60°.故答案为:C.【分析】先过点O作半径OC⊥AB于D,连结OA、OB,依据特殊锐角三角函数值可得到∠OAD=∠OBA=30°,从而可而得到∠AOB=120°,最后依据圆周角定理求解即可.9.【答案】B【考点】三角形中位线定理,平行四边形的性质【解析】【解答】连接BD,与AC相交于O,∵点E、F分别是AD、AB的中点,∴EF是△ABD的中位线,∴EF∥DB,且EF= DB,∴△AEF∽△ADB,= ,∴= = ,∴= ,即G为AO的中点,∴AG=GO,又OA=OC,∴AG:GC=1:3.故答案为:B.【分析】连接BD,与AC相交于O,依据三角形中位线的性质可知EF∥BD,从而可证明G是AO的中点,然后再结合平行四边形对角线互相平分的性质求解即可.10.【答案】C【考点】反比例函数的应用【解析】【解答】∵四边形ABCD为矩形,∴AD∥BC,AD=BC=4,∠B=90°,∴∠AEB=∠DAF,而DF⊥AE,∴∠AFD=90°,∴△ABE∽△DFA,∴AE:DA=AB:DF,即x:4=3:y,∴y= (3≤x≤5).故答案为:C.【分析】由矩形的性质可得到AD∥BC,AD=BC=4,∠B=90°,然后根据平行线的性质得∠AEB=∠DAF,故此△ABE∽△DFA,依据相似三角形对应边成比例的性质可得到y=,接下来,再依据自编量的取值范围为3≤x≤5可得到问题的答案.二.<b >填空题</b>11.【答案】x(y﹣3)(y+3)【考点】提公因式法与公式法的综合运用【解析】【解答】解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).【分析】首先提取公因式,然后再利用平方差公式进行分解即可.12.【答案】200【考点】弧长的计算【解析】【解答】解:根据周长公式可得:周长=10π,即为侧面展开扇形弧长,再根据弧长公式列出方程得:10π= ,解得n=200°.故答案为:200°.【分析】利用底面周长=展开图的弧长可得到展图的弧长,然后依据弧长公式可得到n的值.13.【答案】2﹣【考点】实数与数轴【解析】【解答】解:AC= ﹣1,AB=1﹣(﹣1)=2﹣,点B对应的数是2﹣.故答案为:2﹣.【分析】首先依据题意可得到A为BC的中点,先求得AC的长,然后再由点B到点A的距离可得到点B 所表示的数.14.【答案】①③④【考点】菱形的判定【解析】【解答】解:∵EF∥AB,∴= ,∵FG∥BC,∴= ,∴= ,∵AB=BC,∴EF=FG,∵四边形EFGP是平行四边形,∴四边形EFGP是菱形,故①正确;∵BC=CD,∴∠DBC=∠BDC,∵FG∥BC,∴∠DBC=∠DFG,∴∠DFG=∠BDC,∴FG=DG,∵PG=FG=PE,∴PG=DG,∵无法证得△PDG是等边三角形,∴PD不一定等于PE,∴△PED不一定是等腰三角形,故②错误;∵∠ABD=90°,PG∥EF,∴PG⊥BD,∵FG=DG,∴∠FGP=∠DGP.∵四边形EFGP是平行四边形,∴∠PEF=∠FGP.∴∠DGP=∠PEF.在△EFP和△GPD中∴△EFP≌△GPD(SAS).故③正确;∵四边形FPDG也是平行四边形,∴FG∥PD,∵FG∥EP,∴E、P、D在一条直线上,∵FG∥BC∥PE,∴BC∥AD,∵四边形FPDG也是平行四边形,∵FG=PD,∵FG=DG=PG,∴PG=PD=DG,∴△PGD是等边三角形,∴∠CDA=60°.∴四边形ABCD还应满足BC∥AD,∠CDA=60°.故④正确.故答案为①③④.【分析】对于①,根据平行线分线段成比例定理得出=,即可证得EF=FG,从而证得四边形EFGP是菱形;对于②,由于无法证得△PDG是等边三角形,故此PD不一定等于PE,所以△PED不一定是等腰三角形;对于③,证PG⊥BD,根据等腰三角形“三线合一”的性质,求得∠FGP=∠DGP,进而求得∠DGP=∠PEF,然后根据SAS可证△EFP≌△GPD;对于④,由FG∥PE,FG∥PD知,点P在AD上,故BC∥AD.又由FG=PG=PD=DG.证得△PDG是等边三角形,故∠CDA=60度.因此四边形ABCD还应满足BC∥AD,∠CDA=60.三.<b >综合题</b>15.【答案】解:原式=3 ﹣2× +4﹣(﹣1),=3 ﹣+4﹣+1,= +5【考点】绝对值,负整数指数幂,二次根式的性质与化简,特殊角的三角函数值【解析】【分析】先依据算术平方根、特殊锐角三角函数值,负整数指数幂的性质,绝对值的性质进行化简,然后再进行计算即可.16.【答案】解:原式= •= •= •=(﹣x﹣2)•(x﹣1),∵解方程x2=2x得x1=0,x2=2(舍去),∴当x=0时,原式=(﹣0﹣2)•(0﹣1)=2.【考点】分式的混合运算,分式的化简求值【解析】【分析】先计算括号内的减法,然后将除法转化为乘法,接下来,再进行约分计算,然后再求得方程的解,最后,将能够使得分式成立的未知数的值代入计算即可.四.<b >解答题</b>17.【答案】(1)2013;2017(2)解:第n个等式为:n(n+4)+4=(n+2)2;∵左边=n2+4n+4=(n+2)2=右边∴n(n+4)+4=(n+2)2成立【考点】探索数与式的规律【解析】【解答】解:(1)由以上四个等式可以看出:每一个等式第一个因数等于序号数,第二个因数比第一个大4,等式右边的底数比第一个数大2;所以有:2013×2017+4=20152.(2)第n个等式为:n(n+4)+4=(n+2)2;∵左边=n2+4n+4=(n+2)2=右边∴n(n+4)+4=(n+2)2成立答案为:(1)2013,2017;(2)n(n+4)+4=(n+2)2.【分析】(1)观察所给的算式可知:每一个等式第二个因数比第一个大4,然后都加4,等式右边的底数比第一个数大2;(2)设第一个数是n,那么第二个因数即为(n+4),等式右边的底数则为(n+2),然后依据规律列出算式即可.18.【答案】解:如图,△A1B1C1为①所作,△A2B2C2为②所作【考点】作图-旋转变换【解析】【分析】(1)利用网格的特点以及旋转中心、旋转角和旋转方向确定出点A、B、C的对应点A1、B1、C1的位置即可得到△A1B1C1;(2)延长OA1到A2使OA2=2OA1,则A2点为A1的对应点,同样方法作出B1的对应点B2,C1的对应点C2,从而得到△A2B2C2.五.<b >解答题</b>19.【答案】解:如图,在Rt△FGA中,设AG=FG=x米,在Rt△AEG中,=tan30°,解得,x= ≈ =4.05米,∴AB=1.6+4.05=5.65米.答:旗杆AB的高度为5.65米.【考点】解直角三角形的应用-仰角俯角问题【解析】【分析】设AG=FG=x米,在Rt△FGA中,依据特殊锐角三角函数值可得到关于x的方程,从而可求得AG的长,最后依据AB=BG+AG求解即可.20.【答案】(1)解:由图可知:A(﹣2,﹣2),∵反比例函数y2= 的图象过点A(﹣2,﹣2),∴m=4,∴反比例函数的解析式是:y2= ,把x=3代入得,y= ,∴B(3,),∵y=kx+b过A、B两点,∴解得:k= ,b=﹣,∴一次函数的解析式是:y1= x﹣(2)x<﹣2或0<x<3(3)解:由一次函数y1= x﹣可知直线与y轴的交点为(0,﹣),∴△OAB的面积= × ×2+ × ×3=【考点】反比例函数与一次函数的交点问题【解析】【解答】(1)由图可知:A(﹣2,﹣2),∵反比例函数y2= 的图象过点A(﹣2,﹣2),∴m=4,∴反比例函数的解析式是:y2= ,把x=3代入得,y= ,∴B(3,),∵y=kx+b过A、B两点,∴解得:k= ,b=﹣,∴一次函数的解析式是:y1= x﹣(2)根据图象可得:当x<﹣2或0<x<3时,y1<y2.由一次函数可知直线与y轴的交点为(0,﹣ 2 3 ),∴△OAB的面积= × ×2+ × ×3=故答案为:(1);;(2)x<﹣2或0<x<3;(3).【分析】(1)依据点的坐标的定义可得到A、B的坐标,把A的坐标代入反比例函数的解析式可求得m 的值;把A、B的坐标代入一次函数的解析式,即可求出一次函数的解析式;(2)找出一次函数图像位置反比例函数图像下方时,自变量x的取值范围即可.(3)求得直线与y轴的交点,然后根据三角形面积公式求解即可.六.<b >解答题</b>21.【答案】解:画树状图得:∵共有16种等可能的结果,他两科都抽到准备得较好的实验题目的有4种情况,∴他两科都抽到准备得较好的实验题目的概率为:=【考点】列表法与树状图法【解析】【分析】先画出树状图,然后由树状图求得所有等可能的结果以及他两科都抽到准备得较好的实验题目的情况,最后,再利用概率公式进行计算即可.七.<b >解答题</b>22.【答案】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB.又∵∠ADC=∠ACB=90°,∴△ADC∽△ACB.∴AD:AC=AC:AB,∴AC2=AB•AD.(2)证明:∵E为AB的中点,∠ACB=90°,∴CE= AB=AE.∴∠EAC=∠ECA.∵∠DAC=∠CAB,∴∠DAC=∠ECA.∴AD∥CE(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE= AB,∴CE= ×7= ,∵AD=5,∴= ,∴=【考点】相似三角形的判定与性质【解析】【分析】(1)首先证明△ADC∽△ACB,然后依据相似三角形的对应边成比例得到AC2=AB•AD;(2)根据在直角三角形中,斜边上的中线等于斜边的一半可证得CE=,AB=AE,然后依据等边对等角的性质可得到∠EAC=∠ECA.通过等量代换可得到∠DAC=∠ECA,故此可证明CE∥AD;(3)首先证明△AFD∽△CFE,然后由相似三角形的对应边成比例的性质可求得的值.八.<b >应用题</b>23.【答案】(1)解:∵点A是直线与抛物线的交点,且横坐标为﹣2,∴y= ×(﹣2)2=1,A点的坐标为(﹣2,1),设直线的函数关系式为y=kx+b,将(0,4),(﹣2,1)代入得,解得,∴直线y= x+4,∵直线与抛物线相交,∴x+4= x2,解得:x=﹣2或x=8,当x=8时,y=16,∴点B的坐标为(8,16)(2)如图1,连接AC,BC,∵由A(﹣2,1),B(8,16)可求得AB2=325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m﹣8)2+162=m2﹣16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,解得:m=﹣;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2﹣16m+320,解得:m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,解得:m=32;∴点C的坐标为(﹣,0),(0,0),(6,0),(32,0)(3)解:设M(a,a2),如图2,设MP与y轴交于点Q,在Rt△MQN中,由勾股定理得MN= = a2+1,又∵点P与点M纵坐标相同,∴+4= a2,∴x= ,∴点P的横坐标为,∴MP=a﹣,∴MN+3PM= +1+3(a﹣)=﹣a2+3a+9,∴当a=﹣=6,又∵2≤6≤8,∴取到最大值18,∴当M的横坐标为6时,MN+3PM的长度的最大值是18.【考点】二次函数的应用【解析】【分析】(1)由抛物线的解析式可求得点A的纵坐标,然后利用待定系数法确定直线的解析式,将直线和抛物线的解析式联立可求得交点的坐标;(2)过点B作BG∥x轴,过点A作AG∥y轴,交点为G,然后分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;(3)设M(a,a2),MP与y轴交于点Q,在Rt△MQN中依据勾股定理可求得MN的长(用含a的式子表示),然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM关于a的函数关系是,最后,依据二次函数的性质可得到MN+3PM的长度的最大值.。
2018年广东省广州二中中考数学二模试卷(解析版)
2018年广东省广州二中中考数学二模试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项,只有一项是符合题目要求的)1.(3分)下列运算正确的是()A.B.C.﹣|﹣2|=2D.2.(3分)将两个全等的直角三角形纸片构成如下的四个图形,这四个图形中是中心对称图形的是()A.B.C.D.3.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010 4.(3分)把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x2+1B.y=(x+1)2C.y=x2﹣1D.y=(x﹣1)2 5.(3分)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.6.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°7.(3分)某县为发展教育事业,加强了对教育经费的投入,2015年投入3千万元,预计2017年投入5千万元.设教育经费的年平均增长率为x,则下面所列方程正确的是()A.3(1+x)2=5B.3x2=5C.3(1+x%)2=5D.3(1+x)+3(1+x)2=58.(3分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.abπD.acπ9.(3分)如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B 等于()A.30°B.35°C.40°D.50°10.(3分)如图,在Rt△AOB中,两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数y=的图象恰好经过斜边A′B的中点C,且S△AOB=4,tan∠ABO=,则k的值为()A.3B.4C.6D.8二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)使有意义的x的取值范围是.12.(3分)因式分解:a2b﹣b=.13.(3分)如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC=.14.(3分)如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.15.(3分)分式方程+=2的解是.16.(3分)如图,AB是⊙O的弦,AB=8,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)解方程组:.18.(9分)如图,点E,F是平行四边形ABCD的对角线AC上的点,CE=AF,求证:BE =DF.19.(10分)先化简,再求值:,其中a=2,b=﹣1.20.(10分)为测山高,在点A处测得山顶D的仰角为31°,从点A向山方向前进140米到达点B,在B处测得山顶D的仰角为62°(如图).(1)在所给的图②中尺规作图:过点D作DC⊥AB,交AB的延长线于点C;(2)山高DC是多少(结果取整数)?21.(12分)某完全中学(含初、高中)篮球队12名队员的年龄情况如下:(1)这个队队员年龄的众数是,中位数是,平均数是.(2)若把这个队队员年龄的分布情况绘成扇形统计图,请求出年龄为15岁的队员人数所对应的圆心角的度数.(3)为了检查队员们的训练水平,教练要从年龄为15岁的4名队员(用A、B、C、D 表示)中随机抽取2人,请用列表法或树形图法求出恰好选中B、D的概率.22.(12分)如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.23.(12分)如图1,AB是⊙O的直径,AC是⊙O的切线.(1)连接BC,BC交⊙O于点E,连接AE.①若D为AC的中点,连接DE,证明:DE是⊙O的切线.②若BE=3EC,求tan∠ABC.(2)如图2,CF是圆O的另一条切线,F为切点,OC与圆O交于点G,求证:点G 是三角形ACF的内心.24.(14分)已知抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2)两点.(1)用含a的式子表示b.(2)当a=﹣时,y=ax2+bc+c的函数值为正整数,求满足条件的x值.(3)若a>0,线段AB下方的抛物线上有一点E,求证:不管a取何值,当△EAB的面积最大时,E点的横坐标为定值.25.(14分)如图1,在矩形ABCD中,AB=4,AD=6,M是AD的中点,点E是线段AB 上一动点,连接EM并延长交直线CD于点F,过M作MN⊥EF,交射线BC于点N,连接NF,点P是线段NF的中点.(1)连接图1中的PM,PC,求证:PM=PC.(2)如图2,当点N与C重合时,求AE的长.(3)当点E从点A运动到点B时,求点P经过的路径长.2018年广东省广州二中中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项,只有一项是符合题目要求的)1.【解答】解:A、=2,此选项错误;B、()﹣2=4,此选项错误;C、﹣|﹣2|=﹣2,此选项错误;D、,此选项正确;故选:D.2.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.3.【解答】解:4 400 000 000=4.4×109,故选:B.4.【解答】解:原抛物线的顶点为(0,0),向右平移1个单位,那么新抛物线的顶点为(1,0);可设新抛物线的解析式为y=(x﹣h)2+k代入得:y=(x﹣1)2,故选:D.5.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选:C.6.【解答】解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.7.【解答】解:设教育经费的年平均增长率为x,则2016的教育经费为:3×(1+x)2017的教育经费为:3×(1+x)2.那么可得方程:3(1+x)2=5.故选:A.8.【解答】解:由题意得底面直径为a,母线长为c,∴几何体的侧面积为acπ,故选:B.9.【解答】解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.10.【解答】解:∵tan∠ABO==,∴设OA=x,则OB=2x,则S△ABO=OA•OB=x•2x=4,∴x=2,∴B(0,4),A'(4,2),∵点C为斜边A′B的中点,∴C(2,3),∴k=2×3=6;故选:C.二、填空题(本大题共6小题,每小题3分,满分18分)11.【解答】解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.12.【解答】解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).13.【解答】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴=,∴=,∴EC=4,∴AC=AE+EC=2+4=6,故答案为6.14.【解答】解:根据旋转的性质得到:BE′=DE=1,在直角△EE′C中:EC=DC﹣DE =2,CE′=BC+BE′=4.根据勾股定理得到:EE′===2.15.【解答】解:去分母得:1+x﹣1=2x﹣4,解得:x=4,经检验x=4是分式方程的解.故答案为:x=416.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=8,∴∠AC′B=45°,∴BC′=,∴MN最大=4.故答案为:4三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.【解答】解:①×3+②得:11x=11,即x=1,把x=1代入①得:y=﹣1,则方程组的解为.18.【解答】证明:∵四边形ABCD是平行四边形,∴CB=AD,CB∥AD,∴∠BCE=∠DAF,在△BCE和△DAF,,∴△BCE≌△DAF,∴BE=DF.19.【解答】解:====a﹣b,当a=2,b=﹣1时,原式=2﹣(﹣1)=2﹣+1=3﹣.20.【解答】解:(1)如图②,(2)如图②,∵∠DBC=62°,∠DAB=31°,∴∠BDA=∠DAB=31°,∴AB=DB,∵AB=140米,∴DB=140米,在Rt△DCB中,∠C=90°,sin∠DBC=,∴DC=140•sin62°≈124米.答:山高124米.21.【解答】解:(1)15岁出现了4次,次数最多,因而众数是:15;12个数,处于中间位置的都是16,因而中位数是:16.这个队队员的平均年龄=×(14×1+15×4+16×3+17×2+18×2)=16,故答案为15、16、16;(2)年龄为15岁的队员人数所对应的圆心角的度数360°×=120°;(3)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴恰好选中B、D的概率为=.22.【解答】解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴BC=AB=3,∴C(3,﹣2),把C(3,﹣2)代入y=,得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣;把C(3,﹣2),A(0,1)代入y=ax+b,得,解得,∴一次函数解析式为y=﹣x+1;(2)∵反比例函数y=﹣的图象过点E(m,3),∴m=﹣2,∴E点的坐标为(﹣2,3);由图象可知,当x<﹣2或0<x<3时,一次函数落在反比例函数图象上方,即当x<﹣2或0<x<3时,一次函数的值大于反比例函数的值;(3)设P(t,﹣),∵△AOP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).23.【解答】证明:(1)①连接OE,如图1所示∵AC是⊙O的切线,AB是⊙O的直径,∴∠CAB=∠AEB=∠AEC=90°,又∵D为AC中点,∴DE=CD=DA,∴∠DEA=∠DAE,∵OE=OA,∴∠OEA=∠EAO,∴∠DEA+∠OEA=∠DAE+∠EAO即∠DEO=∠DAO=90°,∵点E在⊙O上,∴DE与⊙O相切.②在直角△EAC与直角△EBA中,∵∠EAC+∠EAB=90°,∠EBA+∠EAB=90°,∴∠EAC=∠EBA,∴△EAC∽△EBA,∴=,EA2=EB•EC,设EC=1,则EB=3,EA2=EB•EC=3,EA=,∴tan∠ABC==.(2)如图2,连接AG,BG.∵AC,FC都是圆O的切线,∴AC=FC,AF⊥OC.∴OC平分∠ACO.又AC是圆O的切线,∴∠CAG=∠ABG.又AB是直径,∴∠AGB=90°.∴∠GAF=∠OGB.∵∠OGB=∠OBG,∴∠CAG=∠GAF.∴AG是∠CAF的角平分线,∴点G是三角形ACF的内心.24.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2),∴,∴,即:b=﹣2a﹣2;(2)由(1)知,c=2,b=﹣2a﹣2,∵a=﹣,∴b=﹣1,∴抛物线解析式为y=﹣x2﹣x+2=﹣(x+1)2+,∵y=ax2+bc+c的函数值为正数,∴﹣(x+1)2+>0,∴(x+1)2﹣5<0,∴﹣﹣1<x<﹣1,∵y=ax2+bc+c的函数值为整数,即﹣(x+1)2+为整数,∴(x+1)2是奇数,∴x为偶数,∴x=﹣2或x=0;(3)由(1)知,c=2,b=﹣2a﹣2,∴抛物线的解析式为y=ax2﹣(2a+2)x+2,∵A(0,2),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点E在线段AB下方的抛物线上,设点E(m,am2﹣(2a+2)m+2),过点E作y轴的平行线,交AB于F,∴F(m,﹣2m﹣2),∴EF=﹣2m﹣2﹣[am2﹣(2a+2)m+2]=﹣a(m﹣1)2+a,∴S△EAB=EF×|x B﹣x A|=EF=﹣a(m﹣1)2+a,∵a>0,∴﹣a<0,∴m=1时,△EAB面积最大,即:不管a取大于0的何值,当△EAB的面积最大时,E点的横坐标为定值,定值为1.25.【解答】解:(1)如图1中,连接PM、PC.∵四边形ABCD是矩形,∴∠FCN=90°,∵PF=FN,∴PC=FN,∵NM⊥EF,∴∠FMN=90°,∵FP=FN,∴PM=FN,∴PM=PC.(2)如图2中,连接EC,设AE=x.∵AB∥DF,∴∠AEM=∠F,∵AM=MD,∠AMD=∠DMF,∴△AME≌△DMF,∴AE=DF=x,EM=FM,∵NM⊥EF,∴EC=CF=4+x,在Rt△EBC中,∵EB2+BC2=EC2,∴(4﹣x)2+62=(x+4)2,∴x=.∴AE=.(3)如图3中,点P的运动轨迹是线段PP1.作PH⊥AD于H.当点E与A重合时,点P是矩形CDMN的中点,易知PH=2,DH=,当点E与B重合时,点P1在AD的延长线上,设BN1=F1N1=m,在Rt△CF1N1中,m2=(m﹣6)2+82,∴m=,∴CN1=﹣6=,∴DP1=CN1=,∴HP1=+=,在Rt△HPP1中,PP1==,∴点P的运动路径为.。
2018年中考二模数学试卷及答案
EDCB A2018年初中毕业生学业模拟考试数 学 试 卷说明:本试卷共 4页,25小题,满分 120 分.考试用时100 分钟. 注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分) 1.﹣4的绝对值是( )A .4B .﹣4C .41 D .41 2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( ) A .44×108 B .4.4×109 C .4.4×108D .4.4×10103.一组数据从小到大排列为2,3,4,x ,6,9.这组数据的中位数是5,那么这组数据的众数为( ) A .4B .5C .5.5D .64.下列四边形中,是中心对称而不是轴对称图形的是( ) A .平行四边形 B .矩形 C .菱形 D .正方形 5.如图,能判定EB ∥AC 的条件是( ) A .∠A=∠ABE B .∠A=∠EBDC .∠C=∠ABCD .∠C=∠ABE 6.下列计算正确的是( )A .a 2+a 2=a 4B .(﹣a )2﹣a 2=0C .a 8÷a 2=a 4D .a 2•a 3=a 6 7.一元二次方程x 2﹣2x+p=0总有实数根,则p 应满足的条件是( ) A .p >1 B . p =1 C .p <1 D .p ≤18.如图,沿AC 方向修隧道,为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=145°,BD=500米,∠D=55°,使A 、C 、E 在一条直线上,那么开挖点E 与D 的距离是( ) A .500sin55°米 B .500cos35°米 C .500cos55°米 D .500tan55°9.如图,在Rt △ABC 中,∠C=90°,∠ABC=60°,AB 的垂直平分线分别交AB 与AC 于点D 和点E ,若CE=2,则AB 的长是( ) A .4B .43C .8D .83P OFEDCBACC10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AC=6,BD=8.动点E 从点B 出发,沿着 B ﹣A ﹣D 在菱形ABCD 的边上运动,运动到点D 停止.点F 是点E 关于BD 的对称点,EF 交 BD 于点P ,若BP=x ,△OEF 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .二.填空题(本大题6小题,每小题4分,共24分) 11.比较大小:(填“>”或“<”)12.一个多边形的每个外角都是60°,则这个多边形边数为 . 13.若|x +2|+5-y =0,则xy 的值为 .14.分式方程aa 134=-的根是 . 15.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是 . 16.把边长为1的正方形ABCD 绕点A 逆时针旋转45°得到正方形AB′C′D′, 边B′C′与DC 交于点O ,则四边形AB′OD 的周长为 . 三.解答题(一)(本大题3小题,每题6分,共18分) 17.(本题满分6分)计算:()332160tan 3101++-︒-⎪⎭⎫⎝⎛-.18.(本题满分6分)先化简,再求值: ⎪⎭⎫ ⎝⎛--÷+-+x x x x x x 1121222,其中x=3.19.(本题满分6分)在平行四边形ABCD 中,AB=2AD . (1)作AE 平分∠BAD 交DC 于E (2)在(1)的条件下,连接BE ,判定△ABE 的形状 (不要求证明).20.(本题满分7分)中秋佳节我国有赏月和吃月饼的传统,英才学校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为度;条形统计图中,“很喜欢”月饼中喜欢“豆沙”月饼的学生有人;(2)若该校共有学生1200人,请根据上述调查结果,估计该校学生中“很喜欢”月饼的有人.(3)李民同学最爱吃莲蓉月饼,陈丽同学最爱吃豆沙月饼,现有重量、包装完全一样的豆沙、莲蓉、蛋黄三种月饼各一个,让李民、陈丽每人各选一个,则李民、陈丽两人都选中自己最爱吃的月饼的概率为.21.(本题满分7分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.22.(本题满分7分)飞马汽车销售公司3月份销售新上市一种新型低能耗汽车8辆,由于该型汽车的优越的经济适用性,销量快速上升,5月份该公司销售该型汽车达18辆.(1)求该公司销售该型汽车4月份和5月份的平均增长率;(2)该型汽车每辆的进价为9万元,该公司的该型车售价为9.8万元/辆.且销售m辆汽车,汽车厂返利销售公司0.04m万元/辆.若使6月份每辆车盈利不低于1.7万元,那么该公司6月份至少需要销售该型汽车多少辆?(盈利=销售利润+返利)E23.(本题满分9分)如图,在平面直角坐标系中,一次函数的图象y 1=kx +b 与反比例函数xny =2的图象交于点A (1,5)和点B (m ,1). (1)求m 的值和反比例函数的解析式; (2)当x >0时,根据图象直接写出不等式xn≥kx +b 的解集; (3)若经过点B 的抛物线的顶点为A ,求该抛物线的解析式.24.(本题满分9分)如图,四边形ABCD 内接于⊙O ,AB=AD ,对角线BD 为⊙O 的直径,AC 与BD 交于点E .点F 为CD 延长线上,且DF=BC . (1)证明:AC=AF ;(2)若AD=2,AF=13+,求AE 的长;(3)若EG ∥CF 交AF 于点G ,连接DG.证明:DG 为⊙O25.(本题满分9分)如图,在矩形ABCD 中,AB=5,AD=4,E 为AD 边上一动点(不与点A 重合), AF ⊥BE ,垂足为F ,GF ⊥CF ,交AB 于点G ,连接EG .设AE=x ,S △BE G =y . (1)证明:△AFG ∽△BFC ;(2)求y 与x 的函数关系式,并求出y 的最大值; (3)若△BFC 为等腰三角形,请直接写出x 的值.2018年初中毕业生学业模拟考试数学参考答案一.选择题(本大题10小题,每题3分,共30分)1.A 2.B 3.D 4.A 5.A 6.B 7.D 8.C 9.B 10.D 二.填空题(本大题6小题,每小题4分,共24分)11.<. 12.6. 13.-10. 14.1-=a . 15.2. 16.. 三.解答题(一)(本大题3小题,每题6分,共18分) 17.解:原式=3-3-1+3 4分 =2. 6分 18.解:原式=()()()11112+-⨯-+x x x x x x 4分=12-x x . 5分当x=3时,原式=291332=-. 19.解:(1)如图,AE 为所求; 3分 (2)△ABE 为直角三角形. 6分四.解答题(二)(本大题3小题,每小题7分,共21分) 20.解:(1)126°, 1分4; 2分 (2)420; 4分 (3)61. 7分 21.(1)证明:∵四边形ABCD 是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′, 1分 ∵∠DAF +∠EAF=90°,∠B′AE +∠EAF=90°,∴∠DAF=∠B′AE , 2分 在△ADF 和△AB′E 中,∴△ADF ≌△AB′E . 3分(2)解:由折叠性质得FA=FC ,设FA=FC=x ,则DF=DC -FC=18-x , 4分在Rt △ADF 中,AD 2+DF 2=AF 2, 5分∴()2221812x x =-+.解得13=x . 6分∵△ADF ≌△AB′E ,(已证) ∴AE=AF=13. ∴S △AEF =AD AE ⋅⋅21=131221⨯⨯=78. 7分 22.解:(1)设该公司销售该型汽车4月份和5月份的平均增长率为x , 1分 根据题意列方程:8(1+x )2=18, 3分 解得x 1=﹣250%(不合题意,舍去),x 2=50%.答:该公司销售该型汽车4月份和5月份的平均增长率为50%. 4分 (2)由题意得:0.04m +(9.8﹣9)≥1.7, 5分 解得:m ≥22.5, 6分 ∵m 为整数,∴该公司6月份至少需要销售该型汽车23辆, 7分 答:该公司6月份至少需要销售该型汽车23辆.五.解答题(三)(本大题3小题,每小题9分,共27分) 23.解:(1)∵反比例函数xny =2的图象交于点A (1,5), ∴5=n ,即n=5,∴, 1分∵点B (m ,1)在双曲线上.∴1=, ∴m=5, ∴B (5,1); 2分(2)不等式xn≥kx +b 的解集为0<x ≤1或x ≥5; 6分 (3)∵抛物线的顶点为A (1,5),∴设抛物线的解析式为()512+-=x a y , 8分∵抛物线经过B (5,1),∴()51512+-=a ,解得41-=a . ∴()51412+--=x y . 9分F24.(1)证明:∵四边形ABCD 内接于⊙O ,∴∠ABC+∠ADC=180°. ∵∠ADF+∠ADC=180°,∴∠ABC=∠ADF . 1分在△ABC 与△ADF 中,⎪⎩⎪⎨⎧=∠=∠=DF BC ADF ABC ADAB , 2分∴△ABC ≌△ADF .∴AC=AF ; 3分 (2)解:由(1)得,AC=AF=13+. 4分 ∵AB=AD , ∴⌒⌒AD AB =.∴∠ADE=∠ACD . ∵∠DAE=∠CAD ,∴△ADE ∽△ACD . 5分 ∴ADAEAC AD =. ∴()232213413222-=-=+==AC AD AE . 6分(3)证明:∵EG ∥CF ,∴1==ACAFAE AG . ∴AG=AE . 由(2)得AD AE AC AD =,∴ADAGAF AD =. ∵∠DAG=∠FAD ,∴△ADG ∽△AFD . 7分 ∴∠ADG=∠F .∵AC=AF ,∴∠ACD=∠F . 又∵∠ACD=∠ABD ,∴∠ADG=∠ABD . 8分 ∵BD 为⊙O 的直径, ∴∠BAD=90°.∴∠ABD+∠BDA=90°.∴∠ADG+∠BDA=90°. ∴GD ⊥BD .∴DG 为⊙O 的切线. 9分E 25.(1)证明:在矩形ABCD 中,∠ABC=90°. ∴∠ABF+∠FBC=90°. ∵AF ⊥BE , ∴∠AFB=90°. ∴∠ABF+∠GAF=90°.∴∠GAF=∠FBC . 1分 ∵FG ⊥FC , ∴∠GFC=90°. ∴∠ABF=∠GFC .∴∠ABF-∠GFB =∠GFC-∠GFB . 即∠AFG=∠CFB . 2分 ∴△AFG ∽△BFC ; 3分 (2)解:由(1)得△AFG ∽△BFC , ∴BFAFBC AG =. 在Rt △ABF 中,tan ∠ADF=BF AF, 在Rt △EAB 中,tan ∠EBA=ABEA,∴AB EA BF AF =. ∴ABEA BC AG =. ∵BC=AD=4,AB=5,∴54xAB BC EA AG =⋅=. 4分 ∴BG=AB-AG=5-x 54.∴32125825522552545212122+⎪⎭⎫ ⎝⎛--=+-=⎪⎭⎫ ⎝⎛-=⋅=x x x x x AE BG y . 5分 ∴y 的最大值为32125; 6分 (3)x 的值为25,825或415. 9分。
2018年山东省济南市市中区中考数学二模试卷含答案解析
2018年山东省济南市市中区中考数学二模试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为()A.0.34×107B.3.4×106C.3.4×105D.34×1052.(4分)如图是某零件的直观图,则它的主视图为()A. B. C. D.3.(4分)如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30°B.60°C.50°D.40°4.(4分)下列计算正确的是()A.a4÷a3=1 B.a4+a3=a7 C.(2a3)4=8a12 D.a4•a3=a75.(4分)如图,△ABC内接于⊙O,连接OA,OB,∠C=40°,则∠OBA的度数是()A.60°B.50°C.45°D.40°6.(4分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.7.(4分)不等式组的解集在数轴上表示正确的是()A. B. C.D.8.(4分)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:那么被遮盖的两个数据依次是()A.35,2 B.36,4 C.35,3 D.36,39.(4分)济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为()A.47m B.51m C.53m D.54m10.(4分)如果关于x的方程(m﹣1)x2+x+1=0有实数根,那么m的取值范围是()A.B.且m≠1 C.D.且m≠111.(4分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴,y轴上,连OB,将纸片OABC沿OB折叠,使点A落在A′的位置,若OB=,tan∠BOC=,则点A′的坐标()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)12.(4分)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);=5,⑤S四边形ABCD其中正确的个数有()A.5 B.4 C.3 D.2二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)分解因式:2a2﹣8a+8=.14.(4分)不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同,从中任意摸出一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是.15.(4分)已知方程组,则x+y的值为.16.(4分)如图所示,扇形AOB的圆心角为120°,半径为2,则图中阴影部分的面积为.17.(4分)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是.18.(4分)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为4,则线段CF的最小值是.三、解答题(本大题共9小题,共计78分。
2018届九年级数学下学期二模试题
二0一八年初中学业水平模拟考试数学试题试卷说明:本试卷共6页,满分150分,考试时间120分钟。
请将题目的答案答在答题纸上,答在本试卷上的一律无效。
考试结束后,将本试卷和答题纸一并交回。
一.选择题:本大题共12小题,每小题4分,共48分.1. 16的算术平方根是()A. B.4 C.-4 D.2562.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.3.中国移动数据中心IDC项目今日在高新区正式开工建设,该项目规划建设规模12.6万平方米,建成后将成为山东省最大的数据业务中心.其中126000用科学计数法表示应为()A. B. C. D.4.如右图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体 D.圆锥体5.下列计算中,正确的是()A. B.C. D.6.下列事件中是必然事件的是()A.﹣a是负数B.两个相似图形是位似图形C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.平移后的图形与原来的图形对应线段相等7.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3D.48.不等式组的解集为()A.x≥﹣2 B.﹣2<x<3 C.x>3 D.﹣2≤x<39.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有()A.1个B.2个C.3个D.4个10.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.B.C.D.11.如图,抛物线y=ax2+bx+c的顶点为B(1,﹣3),与x轴的一个交点A在(2,0)和(3,0)之间,下列结论中:①bc>0;②2a+b=0;③a﹣b+c>0;④a﹣c=3,正确的有()个A.4 B.3 C.2 D.112.如图:在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD 于点F,连接DE交BF于点O,有下列结论:①∠AED=∠CED;②OE=OD;③△BEH≌△HDF;④BC﹣CF=2EH;⑤AB=FH.其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题:本大题共6小题,共24分,只填最后结果,每小题填对得4分.13.如果代数式有意义,那么x的取值范围是.14.在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于M,N,作直线MN,交BC于点D,连接AD.如果BC=5,CD=2,那么AD=.15.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是.16.在4张完全相同的卡片上分别画有等边三角形、平行四边形、正方形和圆,从中随机摸出两张,这两张卡片上的图形都是中心对称图形的概率是.17.观察如图给出的四个点阵,请按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数为个.18.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是(结果保留π).三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分8分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.20. (本题满分10分)为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?21.(本题满分10分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B 之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)22. (本题满分12分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC交AC于E,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.23. (本题满分12分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.24.(本题满分12分)问题背景:如图(1)在四边形ABCD中,∠ACB=∠ADB=90°,AD=BD,探究线段AC、BC、CD之间的数量关系.小明探究此问题的思路是:将△BCD绕点D逆时针旋转90°到△AED处,点B、C分别落在点A、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A.【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC 的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:A 1A 2A 3小丁B 1 A 1,B 1 A 2,B 1 A 3,B 1 小丁,B 1 B 2 A 1,B 2 A 2,B 2 A 3,B 2 小丁,B 2 小李 A 1,小李 A 2,小李 A 3,小李 小丁,小李由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC 内接于⊙O ,点D 在半径OB 的延长线上,∠BCD=∠A=30°. (1)试判断直线CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径长为1,求由弧BC 、线段CD 和BD 所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算. 【专题】几何综合题.【分析】(1)由已知可证得OC ⊥CD ,OC 为圆的半径所以直线CD 与⊙O 相切; (2)根据已知可求得OC ,CD 的长,则利用S 阴影=S △COD ﹣S 扇形OCB 求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1, ∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD 是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x ﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。