概率论期末复习 20

合集下载

概率论期末复习知识点

概率论期末复习知识点

本章重点:随机事件的概率计算.**事件的关系及运算A).对立事件:A .差事件:若事件A发生且事件B不发生,记作A B(或AB).德g摩根(De Morgan)法则:对任意事件A和B有古典概型:几何概率占八、、第一章随机事件与概率和事件:n L A n (简记为yA).积事件:AB A A2 LnI AA n (简记为AAL A n或i 1 ).互不相容:若事件A和B不能同时发生,即AB2 . ** 古典概率的定义B A B, A B A B.P(A) A 中所含样本点的个数中所含样本点的个数n AP(A)A的长度(或面积、体积)样本空间的的长度(或面积、体积)**概率的性质有限可加性)设n 个事件A'A'L ,几两两互不相容,则有P(A) 1 P(A).若事件A , B 满足A B ,则有P(A) 1.加法公式)对于任意两个事件A , B ,有对于任意n 个事件A I ,A 2,L ,人,有P(AA j A k ) L ( 1)n 9(A 1L A n )j k n4 . **条件概率与乘法公式P(AIB) Pt .乘法公式:5. *随机事件的相互独立性P(A B)P(A) P(B) P (AB).P(AB) P(A)P(B I A) P(B)P(A|B).(1) P( ) 0.P(A i A LA n )nP(A i )i 1P(B A)P(B) P(A),P(A) P(B).nP(UnP(A)P (AA j )i 11 i j n事件A与B相互独立的充分必要条件一:P(AB) P(A)P(B),事件A与B相互独立的充分必要条件二:P(A|B) P(A).对于任意n个事件A'^'L 'A n相互独立性定义如下:对任意一个k 2,L ,n,任意的1i1 L i k n,若事件A1'A2'L 'A n总满足P(A i L A k) P(A i)L P(A k),则称事件A1'A2'L 'A n相互独立.这里实际上包含了2n6.*贝努里概型与二项概率立试验中.,事件A恰发生k次的概率为n 1个等式.设在每次试验中,随机事件A发生的概率P(A) p(0 P 1),则在n次重复独nPn(k) kP k(1 P)n k,k 0,1,L ,n7 . **全概率公式与贝叶斯公式贝叶斯公式:如果事件A1,A2,L 'A n两两互不相容, n且U A ,P(A) 0,i 1,2,L , n,则P(A k | B) P(Ak)P (B|A k)n ,k 1,2,L ,n P(A i) P(B|A)i 1第二章一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算(4 )** 泊松分布P(),它的概率函数为iP(X i) —ei!.4.*二维离散型随机变量及联合概率概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 1 . **离散型随机变量及其分布律 分布律也可用下列表格形式表示:2. *概率函数的性质 (1)P i, i 1,2,L ,n,L ;⑵ i 1 pi 13. *常用离散型随机变量的分布(1)0— 1 分布 B(1,P), 它的概率函数为 P(X i) P i (1 p)1i其中,i 0 或 1, 0 P 1 .二项分布B(n,p), 它的概率函数为n i n iP(X i) . p i (1 p)nii其中,i 0,1,2,L ,n , 0 p其中,i 0,1,2,L ,n,L ,0.二维离散型随机变量(X,Y)的分布可用下列联合概率函数来表示:0, i,j 1,2,L , i j P ij 1其中,P ij5 .* 二维离散型随机变量的边缘概率P设(X,Y)为二维离散型随机变量,ij 为其联合概率( i, j 1,2,L ),称概率P(X a i)(i 1,2,L )为随机变量X的边缘分布律,记为P ig并有P i. P(X a i) P ij,i 1,2,Lj称概率P(丫b j)(j 1,2,L )为随机变量Y的边缘分布率,记为P.j,并有P(Y b j) P ij, j 1,2,Lj=i6.随机变量的相互独立性设(X ,丫)为二维离散型随机变量,X与丫相互独立的充分必要条件为多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.7.*随机变量函数的分布设X是一个随机变量,g(x)是一个已知函数,丫 g(x)是随机变量X的函数,它也是一个随机变量.对离散型随机变量X,下面来求这个新的随机变量丫的分布.设离散型随机变量X 的概率函数为但要注意,若g(a i )的值中有相等的,则应把那些相等的值分别合并,同时把对应的 概率P i 相加.第三章连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算. 1 . *分布函数随机变量的分布可以用其分布函数来表示,F(x) P(X x)2 .分布函数F(x)的性质⑵ l imF(x)°,lim F(x)1xX 的分布函数F(x),可算得X 落在任意区间(a’b]内的概率P(a X b) F(b) F(a)3 .联合分布函数二维随机变量(X,Y)的联合分布函数F(x,y) P(X x,Y x)(1)0 F(x)1;由已知随机变量 则随机变量函数4.联合分布函数的性质(1)0 F(x,y) 1;lim F(x,y) 0, lim F(x,y) 0(2)x yl x im F (x, y)0, lim F(x,y)xy1•(3)P(x1 X x2,y1 Y y2) F(x2,y2) F(x2,y1) F(x1,y2) F(x1,y1)5. ** 连续型随机变量及其概率密度设随机变量X 的分布函数为 F ( x) ,如果存在一个非负函数 f (x) ,使得对于任实数x ,有成立,则称X为连续型随机变量,函数f(x)称为连续型随机变量X的概率密度.6. **概率密度f(x)及连续型随机变量的性质(1) f(x) 0;(2) f(x)dx 1;(3) F (x) f(x);4)设X 为连续型随机变量,则对任意一个实数c,P(X c) 0;(5) 设f(x)是连续型随机变量X的概率密度,则有ba f(x)dx7.** 常用的连续型随机变量的分布(1) 均匀分布R (a ,b ),它的概率密度为0 .其中,指数分布E ( ),它的概率密度为其中,正态分布N (2),它的概率密度为f(x)其中, 0, 1时,称 N (0,1)为标准正态分布,它的概率密度为 f(x) 标准正态分布的分布函数记作 (x), (x)当出x 0时, (x )可查表得到;x 0时,(X )可由下面性质得到x) 1(x).设 X ~N(2),则有F(x)P(a X(旦8. **二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数F(x,y),如果存在一个二元非负函数 f(x,y),使得对于任意一对实数(x, y )有(X'Y)为二维连续型随机变量, f(x, y)为二维连续型随机变量的联合概率 密度.**二维连续型随机变量及联合概率密度的性质f(x,y)dxdy 1.,在f(x, y)的连续点处有设f(x,y )为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为丫的边缘概率密度为11 .常用的二维连续型随机变量 (1) 均匀分布成立,则(1)f (x, y) 0,x,y2F(X , y) x yf(x,y)设(X,Y)为二维连续型随机变量, 则对平面上任一区域P((X,Y) D)f (x, y) dxdy0, **二维连续型随机变量(X ,Y)的边缘概率密度f x (x)f(x,y)dy .f Y (y)f (x,y)dx如果(X,Y )的联合概率密度(X,Y )服从二维正态分布,并记为(X,Y)~ N(布的边缘分布还是正态分布.12 . **随机变量的相互独立性那么,称随机变量X 与丫相互独立.设(X,Y )为二维连续型随机变量,则 X 与丫相互独立的充分必要条件为第四章 随机变量的数字特征本章重点:随机变量的期望。

概率论期末复习

概率论期末复习

F 0 .05 ( 7 , 8 ) 3 . 5 t 0 .05 ( 17 ) 1 . 74 t 0 .025 ( 15 ) 2 . 13
F 0 .05 ( 8 , 9 ) 3 . 23 t 0 .025 ( 17 ) 2 . 11 t 0 .05 ( 15 ) 1 . 75
F 0 .025 ( 8 , 9 ) 4 . 10
7.总体的未知参数 的点估计 ˆ 1 比 ˆ 2 有效指的是_____。
8.设 ( X , X , , X ) 为总体 X 的一个样本,则总体 X 的方差的矩估计量为_____。
1 2 n
二、(12分)甲、乙、丙三人独立的向飞机各射击一次, 命中率分别为0.5,0.6,0.7, (1) 求飞机被击中的概率; (2) 已知飞机被击中一次,求甲击中飞机的概率。
关于X的边缘概率密度
fX (x)
5.设随机变量X~N(5,4),则P{X<13/2}+P{X<7/2}=___.
6.随机变量X与Y的相关系数越接近于1,则 X,Y的 线性相关程度越 . 7.在区间(0,1)中随机的取两个数, 则事件“两数之和小于4/3”的概率为_____.
8.设总体X在区间[1,b]上服从均匀分布,b>1未知, 则对于来自总体的样本值(2.3, 1.6, 2.7, 2.2, 1.3, 1.1), b的矩估计值为____.
(B )P{ X x} f ( x )
(C ) P { X x } F ( x ) ( D ) P { X x } F ( x )
4. 设正态总体期望的置信区间长度 则其置信度为
( A)

2
L
2S n
t ( n 1)

概率论期末复习

概率论期末复习
(5)两个相互独立的正态分布,方差已知,对μ1-μ2的检验(Z检验)
(6)两个相互独立的正态分布,期望未知,对方差的检验(F检验)
15)
根据双边检验和单边检验,给出的显著性水平,找出分位点,确定拒绝域。
16)
看检验统计量是否在拒绝域内判断原假设是否正确。
[10]
原假设为“=”时,为双边检验,其他为单边检验。
[2]
作图步骤:
(1)找出最小值和最大值;
(2)将选定区间分为k个小区间;
(3)算出每个区间的频率,在区间上做高度为频率的小矩形。
[3]
1)
样本(X1,X2,...,Xn)的不含有未知参数的连续函数g(X1,X2,...,Xn)称为统计量。(统计量是随机变量)
2)
样本均值
样本方差
样本标准差(标准偏差)
内容:参数估计、假设检验(重要)
目的:对总体特征作出推断
2.样本分析
[1]
总体——研究对象全体元素组成的集合。研究的对象的某个(或某些)数量指标的全体,它是一个随机变量(或多维随机变量),记为X。X的分布函数和数字特征称为总体的分布函数和数字特征。
个体——组成总体的每一个元素即总体的每个数量指标,可看作随机变量X的某个取值,可记作Xi
8)
定义:设 和 是θ的无偏估计量,且 ,则称 比 有效。
9)
定义:设 是θ的无偏估计量,当n(样本容量)→∞时, 收敛于θ。
[7]
10)
选取枢轴量
由分位点定义建立不等式
解出不等式
11)
定义:
正态分布的枢轴量选取:
(1)样本均值的置信区间(已知σ)
(2)样本均值的置信区间(未知σ)
(3)样本方差的置信区间(μ未知)

概率论期末试题及答案

概率论期末试题及答案

概率论期末试题及答案在概率论的学习过程中,期末试题是评估学生对该学科知识理解和应用的重要方式。

本文将给出一份概率论的期末试题及答案,以供参考。

试题将按照适当的格式整理,确保排版整洁美观,语句通顺,全文表达流畅,同时符合阅读体验的要求。

试题一:概率基础1. 已知事件A发生的概率为0.4,事件B发生的概率为0.6,求事件A和事件B同时发生的概率。

2. 一桶中装有6个红色球和4个蓝色球,从中随机抽取2个球,求这2个球颜色相同的概率。

3. 掷一颗骰子,点数为1至6的概率各为1/6。

连续投掷两次,求两次投掷结果和为7的概率。

试题二:概率分布1. 某商品的销售量服从正态分布N(150, 25),计算销售量在120至180之间的概率。

2. 某批产品的质量服从均匀分布U(60, 80),求产品质量小于75的概率。

3. 甲、乙两个小组分别进行同一项任务,甲组平均完成时间为4小时,标准差为0.5小时;乙组平均完成时间为3.8小时,标准差为0.3小时。

求完成时间小于4.2小时的概率。

试题三:条件概率1. 假设事件A和事件B是相互独立的,已知P(A)=0.3,P(B)=0.4,求P(A|B)和P(B|A)。

2. 某城市的天气预报根据历史数据和气象模型给出,根据预报可以推测出降雨的概率。

已知天气预报准确率为80%,预报为有降雨的概率为30%,求实际发生降雨的概率。

3. 从一批产品中随机抽取一件进行检验,已知该批产品中次品率为5%,已检一件产品为次品,求该件产品来自次品批次的概率。

试题四:随机变量1. 设随机变量X服从指数分布Exp(λ),已知λ=0.1,求P(X≥2)。

2. 设随机变量X服从均匀分布U(20, 40),求X的期望值E(X)和方差Var(X)。

3. 设随机变量X服从正态分布N(60, 16),求P(X>70)和P(50≤X≤80)。

试题五:大数定律和中心极限定理1. 设随机变量X服从参数为p的二项分布B(n,p),当n=200,p=0.4时,根据大数定律,计算X的期望值E(X)和方差Var(X)。

概率论期末总复习必考题型

概率论期末总复习必考题型

复习重点题目第一章p13例2、p14例5、习题一20、25第二章p34 例7、8;习题二15、24。

第三章p58 例2、例5、p61 例5、p63 例1、习题三5。

第四章习题四13、14、15、16。

第七章P139 例4、P148 例2、习题七P157 1、P159 13。

第八章例4、例5、习题八3、6。

例 1.5.2 设袋中装有r 只红球,t 只白球,每次自袋中任取一只球,观察其颜色然后放回,并再放入 a 只与所取出的那只球同色的球,若在袋中连续取球 4 次,试求第一、二次取到红球且第三、四次取到白球的概率。

解以A i(i 1,2,3,4)表示事件“第i次取到红球”,则A3, A4 分别表示事件“第三、四次取到白球” 。

所求概率为:P( A1 A2 A3 A4 ) P(A4 | A1 A2 A3)P( A3 | A1A2 )P( A2 |A1)P(A1)t a t r a rr t 3a r t 2a r t a r t例 1.5.4 八支枪中,有三支未经试射校正,五支已经试射校正。

校正过的枪射击时,中靶的概率为0.8,未校正的枪射击时,中靶的概率为0.3,今从8 支枪中任取一支射击中靶。

问所用这枪是校正过的概率是多少?解设事件8 8 10 45A ={射击中靶}B 1={ 任取一枪是校正过的 }, B 2 ={任取一枪是未校正过的 }, B 1, B 2构成完备事件组 ,则 P(B 1) 5/8,P(B 2) 3/8,P(A |B 1) 0.8,P(A|B 2) 0.3, 故所求概率为P(B 1 | A) P(B 1)P(A|B 1)/[P(B 1)P(A|B 1) P(B 2)P(A|B 2)] 40/49 0.816习题一、20.已知在 10 只晶体管中有 2 只次品,在其中取两次,每次任取一 只,作不放回抽样。

求下列事件的概率: (1)两只都是正品; (2)两只都是次品;(3)一只是正品,一只是次品; (4)第二次取出的是次品。

概率论与数理统计期末考试复习题集-01

概率论与数理统计期末考试复习题集-01

复习题 (A )备用数据:220.990.9950.9950.0050.9952.326,(99) 2.575,(99)66.510,(99)138.987u t u χχ=≈===一、选择题(20分,每题4分,请将你选的答案填在( )内)1、 下列结论哪一个不正确 ( ))(A 设A,B 为任意两个事件,则A B A B -=; )(B 若A B =,则A,B 同时发生或A,B 同时不发生; )(C 若A B ⊂,且B A ⊂,则A B =; )(D 若A B ⊂,则A-B 是不可能事件.2、 设(,)X Y 的联合概率函数为则(1)概率(13,0)P Y X ≤<≥等于 ( ))(A 58; )(B 12; )(C 34; )(D 78.(2)Z X Y =+的概率函数为 ( ))(A()B()C()D3、 如果2EX <∞,2EY <∞,且X 与Y 满足()()D X Y D X Y +=-,则必有 ( ))(A X 与Y 独立;)(B X 与Y 不相关; )(C ()0D Y =; )(D ()()0D X D Y =. 4、若()25,()36D X D Y ==,X 和Y 的相关系数,0.4X Y ρ=,则,X Y 的协方差(,)Cov X Y 等于( ))(A 5; )(B 10; )(C 12; )(D 36. 二、(12分)设X,Y 为随机变量,且3(0,0)7P X Y ≥≥=,4(0)(0)7P X P Y ≥=≥= 求(1)(min(,)0)P X Y <;(2)(max(,)0)P X Y ≥.三、(10分)一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人.然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,(1)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯确实是黑人的概率是多大? (2)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯是白人的概率是多大? 四、(10分)某商业中心有甲、乙两家影城,假设现有1600位观众去这个商业中心的影城看电影,每位观众随机地选择这两家影城中的一家,且各位观众选择哪家影城是相互独立的.问:影城甲至少应该设多少个座位,才能保证因缺少座位而使观众离影城甲而去的概率小于0.01. (要求用中心极限定理求解.)五、(16分)设二维随机变量),(Y X 的联合概率密度函数为2,01(,)0,x y f x y <<<⎧=⎨⎩其它(1)求Y X ,的边缘密度函数(),()X Y f x f y ; (2)求条件概率113(0)224P X Y <<<<;(3)问:X 与Y 是否相互独立?请说明理由; (4)求Z X Y =+的概率密度函数()Z f z . 六、(14分)某地交通管理部门随机调查了100辆卡车,得到它们在最近一年的行驶里程(单位:100km )的数据12100,,,x x x ,由数据算出145x =,样本标准差24s =.假设卡车一年中行驶里程服从正态分布),(2σμN ,分别求出均值μ和方差2σ的双侧0.99置信区间.(请保留小数点后两位有效数字.)七、(18分) 设n X X X ,,,21 是取自总体X 的简单随机样本,总体X 的密度函数为(1),(;)0,e x x ef x θθθθ-+⎧>=⎨⎩其它 ,其中θ为未知参数,01θ<<.(1)求出θ的极大似然估计; (2)记1αθ=,求参数α的极大似然估计;(3)问:在(2)中求到的α的极大似然估计是否为α的无偏估计?请说明理由.复习题(B )备用数据:220.9750.0250.9750.995(2)0.9772,(8) 2.31,(8) 2.18,(8)17.54, 2.575,t u χχΦ=====一、选择题(共20分,每题4分,请将你选的答案填在( )内) 1、 下列命题哪一个是正确的? ( )()A 若()()0P A P B >>,则()()P A B P B A <; ()B 若()()0P A P B >>,则()()P A B P B A ≥; )(C 若()0P B >,则()()P A P A B ≥; )(D 若()0P B >,则()()P A B P AB ≤.2、已知1()()()2P A P B P C ===,1()()()4P AB P AC P BC ===,()0P ABC =,判断下列结论哪一个是正确的( ))(A 事件A ,B ,C 两两不独立,但事件A ,B ,C 相互独立;)(B 事件A ,B ,C 两两独立,同时事件A ,B ,C 相互独立;)(C 事件A ,B ,C 两两独立,但事件A ,B ,C 不相互独立; )(D 事件A ,B ,C 不会同时都发生.3、 设12,X X 相互独立,且都服从参数1的指数分布,则当0x >时,12min(,)X X 的分布函数()F x 为( ))(A 121(1)e ---; )(B 21(1)x e ---; )(C 2x e ; )(D 21x e --.4、 已知(,)X Y 的联合概率函数为若X ,Y 独立,则,αβ的值分别为 ( ))(A 12,99αβ==; )(B 21,99αβ==;)(C 15,1818αβ==; )(D 51,1818αβ==.5、 设15,,X X 是取自正态总体(0,1)N 的样本,已知22212345()()X a X X b X X +-+-(0,0)a b >>服从2χ分布,则这个2χ分布的自由度为( ))(A 5; )(B 4; )(C 3; )(D 2.二、(12分)已知男性患色盲的概率为0.005,女性患色盲的概率为0.0025,如在某医院参加体检的人群中,有3000个男性,2000个女性,现从这群人中随机地选一人,(1)求此人患有色盲的概率; (2)若经检验此人的确患有色盲,问:此人为男性的概率是多大?三、(12分)设随机变量Y 服从参数为1的指数分布(1)E .定义随机变量0,1,k Y kX Y k≤⎧=⎨>⎩ , 1,2.k =(1)求12(,)X X 的联合概率函数; (2)分别求12,X X 的边缘概率函数.四、(10分)有100位学生在实验室测定某种化合物的PH 值,假设各人测量都是独立进行的,每人得到的测定结果服从相同的分布,且这个相同分布的期望为5,方差为4,设i X 表示第i 位学生的测定结果,1,,100i =,10011100i i X X ==∑,求(4.6 5.4)P X << .(要求用中心极限定理求解.)五、(16分) 设二维随机变量),(Y X 的联合概率密度函数为1,01,02(,)0,x y x f x y <<<<⎧=⎨⎩且其它求(1)Y X ,的边缘密度函数(),()X Y f x f y ; (2)21Z X =+的概率密度函数()Z f z ;(3)(2)(2)E X Y D X Y --和; (4)11()22P Y X ≤≤. 六、(14分)某医生为研究铅中毒患者与正常成年人的脉搏数的关系,他随机调查了9例患者,测得其脉搏数分别为129,,,x x x ,并由此算出99211675,50657i i i i x x ====∑∑. 设铅中毒患者的脉搏数服从正态分布),(2σμN ,分别求出均值μ和标准差σ的置信水平0.95的双侧置信区间.(请保留小数点后两位有效数字.)七、(16分) 设n X X X ,,,21 是取自总体X 的简单随机样本,总体X 的概率密度函数为1,0(;)0xex f x θθθ-⎧>⎪=⎨⎪⎩,其它,其中θ是未知参数,0θ>。

概率论和数理统计期末考试题库

概率论和数理统计期末考试题库

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6、已知随机变量(X,Y)的分布律为:且X 与Y 相互独立。

则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2( ()X f x , )(y f Y ;)3( X 与Y 是否相互独立? )4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立.(4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。

《概率论与数理统计》期末复习材料——教材经典习题(20例)回查训练

《概率论与数理统计》期末复习材料——教材经典习题(20例)回查训练

《概率论与数理统计》期末复习材料——教材经典习题(20例)回查训练第一页(共一页)1. 将3只小球随机放入4个杯子中去,求杯子中球的最大个数分别为1、2、3的概率。

2. 一学生连接参加同一课程的两次考试,第一次及格的概率为P ,若第一次及格,则第二次及格的概率也为P :若第一次不及格,则第二次及格的概率为P/2。

(1) 若至少一次及格,则他能通取得某种资格,求他取得该资格的概率。

(2)若已知他第二次已及格求他第一次及格的概率。

3. 有两箱同类零件,第一箱有50个,其中10个一等品有两箱同类零件,第一箱有50个,其中10个一等品,第二箱有30个,其中18个一等品。

现任取一箱,从中任取零件两次,每次取一个,取后不放回。

求: (1)第二次取到的零件是一等品的概率;(2)在第一次取到一等品的条件下,第二次取到一等品的条件概率; (3) 两次取到的都不是一等品的概率。

4.设随机变量X 具有概率密度 fx (x)={8/x ,0<x<4 0, 其他 求随机变量Y=2X+8的概率密度。

5. 设随机变量X 的分布函数为F X(x)={0,x<1;lnx,1<=x<e;1,x>=e; (1)求P{X<2},P{0<X<=3},P{2<X<2.5}; (2)求概率密度fX(x)6. 设二维随机变量(X ,Y)的概率密度为:f(x ,y)=4.8y(2-x)[0≤x ≤1,0≤y ≤x],0[其他],求边缘概率密度。

7. 设二维随机变量(X,Y)的概率密度为f(x,y)={e^(-y), 0<x<y ;0,其他 求边缘概率密度。

8. 设二维随机变量(X,Y )的概率密度为:f(x,y)={cx 2y ,x 2<y<1 ; 0 , 其他 求(1)试确定常数C (2)求边缘概率密度。

9. 设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa+Y=0,试求a 有实根的概率.10. 设系统L 由两个相互独立的子系统L 1与L 2连接而 成,连接的方式分并联,串联(分别如图),设L 1和L 2的寿命(即正常工作的时间)分别为X 和Y ,其概率密度分别为和这里α>0,β>0为已知常数,试分别求出系统L 的寿命Z 的概 率密度f Z (z).11. 设随机变量XY 的概率密度为f(x,y)=be^[-(x+y)],0<x<1,0<y<正无穷,确定常数b ,边缘概率密度fx(x),fy(y) ,求U=max(x,y)12. 将二信息分别编码为A 和B 传送出去,接收站接收时,A 被误收作B 在概率为0.02,而B 被误收作A 在概率为0.01,信息A 与信息B 传送在频繁程度为2:1,若接收站收到在信息是A ,问原发信息是A 在概率是多少?13. 病树的主人外出,委托邻居浇水,设已知如果不浇水,树死去的概率为0.8.若浇水则树死去的概率为0.15.有0.9的概率知邻居记得浇水。

概率论期末考试复习题及答案

概率论期末考试复习题及答案

概率论期末考试复习题及答案第⼀章1.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=____61_______.2. 设P (A )=31,P (A ∪B )=21,且A 与B 相互独⽴,则P (B )=______41_____.3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A )=___0.5_____.4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独⽴,则P (A B )=________1/3________. A 与B 相互独⽴5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________.6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______.7.⼀⼝袋装有3只红球,2只⿊球,今从中任意取出2只球,则这两只恰为⼀红⼀⿊的概率是________ 0.6________.8.设袋中装有6只红球、4只⽩球,每次从袋中取⼀球观其颜⾊后放回,并再放⼊1只同颜⾊的球,若连取两次,则第⼀次取得红球且第⼆次取得⽩球的概率等于____12/55____.9.⼀袋中有7个红球和3个⽩球,从袋中有放回地取两次球,每次取⼀个,则第⼀次取得红球且第⼆次取得⽩球的概率p=___0.21_____.10.设⼯⼚甲、⼄、丙三个车间⽣产同⼀种产品,产量依次占全⼚产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该⼚⽣产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间⽣产的概率. 35 18第⼆章1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413)设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=0.15872.设连续型随机变量X 的分布函数为≤>-=-,0,0;0,1)(3x x e x F x则当x >0时,X 的概率密度f (x )=___ xe 33-_____.3.设随机变量X 的分布函数为F (x )=?≤>--,0,0;0,2x x e a x 则常数a =____1____.4.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X5.抛⼀枚均匀硬币5次,记正⾯向上的次数为X ,则P{X ≥1}=_____3231_______.6.X 表⽰4次独⽴重复射击命中⽬标的次数,每次命中⽬标的概率为0.5,则X~ _B(4, 0.5)____7.设随机变量X 服从区间[0,5]上的均匀分布,则P {}3≤X = ____0.6_______.8.设随机变量X 的分布律为Y =X 2,记随机变量Y 的分布函数为F Y (y ),则F Y (3)=_____9/16____________.9.设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 110.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞求:(1)A 值;(2)P {021 21(1-e -1)≤>-=-0210211)(x e x e x F x x11.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(1)求常数A ,B ;(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ). A=1 B=-1 P {X ≤2}=λ21--e P {X >3}=λ3-e≤>=-0)(x x e x f xλλ 12.设随机变量X 的概率密度为f (x )=??<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ).≥≤<-+-≤<≤=21211221102100)(22x x x x x x x x F13.设随机变量X 的分布律为求(1)X 的分布函数,(2)Y =X 2的分布律.≥<≤<≤<≤--<≤--<=313130/191030/170130/11125/120)(x x x x x x x F 14.设随机变量X ~U (0,1),试求:(1) Y =e X 的分布函数及密度函数;(2) Z =-2ln X 的分布函数及密度函数. <<=others e y y y f Y 011)(>=-othersz ez f zZ 0021)(2第三章1.设⼆维随机变量(X ,Y )的概率密度为 >>=+-,,0;0,0,),()(其他y x ey x f y x(1)求边缘概率密度f X (x)和f Y (y ),(2)问X 与Y 是否相互独⽴,并说明理由.≤>=-00)(x x e x f xX ≤>=-00)(y y e y f yY因为 )()(),(y f x f y x f Y X = ,所以X 与Y 相互独⽴2.设⼆维随机变量221212(,)~(,, ,,)X Y N µµσσρ,且X 与Y 相互独⽴,则ρ=____0______.3.设X~N (-1,4),Y~N (1,9)且X 与Y 相互独⽴,则2X-Y~___ N (-3,25)____.4.设随机变量X 和Y 相互独⽴,它们的分布律分别为,则{}==+1Y X P _____516_______. 5.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三⾓形区域,则(X,Y)的概率密度101()2y x f x y others≤<≤=,.6,Y(2)随机变量Z=XY 的分布律.7求:Y 的边缘分布列;(3)X 与Y 是否独⽴?为什么?(4)X+Y 的分布列.因为{0,1}{0}{1}P X Y P X P Y ==≠==,所以X 与Y 不相互独⽴。

概率论与数理统计期末复习资料

概率论与数理统计期末复习资料

概率统计、概率论与数理统计、随机数学课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考;1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质;5、理解随机变量的概念,能熟练写出0—1分布、二项分布、泊松分布的分布律;6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质;7、掌握指数分布参数λ、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度;9、会求分布中的待定参数;10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性;11、掌握连续型随机变量的条件概率密度的概念及计算;12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率;13、了解求二维随机变量函数的分布的一般方法;14、会熟练地求随机变量及其函数的数学期望和方差;会熟练地默写出几种重要随机变量的数学期望及方差;15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念;会用独立正态随机变量线性组合性质解题;17、了解大数定理结论,会用中心极限定理解题;18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握χ2分布及性质、t分布、F分布及其分位点概念;19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数;20、掌握极大似然估计法,无偏性与有效性的判断方法;21、会求单正态总体均值与方差的置信区间;会求双正态总体均值与方差的置信区间;23、明确假设检验的基本步骤,会U检验法、t检验、2χ检验法、F检验法解题;24、掌握正态总体均值与方差的检验法;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法;2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;3.准确地选择和运用全概率公式与贝叶斯公式;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;5.会用中心极限定理解题;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理;4.会求未知参数的矩估计、极大似然估计; 5.掌握无偏性与有效性的判断方法; 6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率; 例2:袋中有a 个白球,b个黑球,c 个红球,从中任意取出mm ≤a +b个球,求取出的m 个球中有k 1≤a 个白球、k 2≤b 个黑球、k 3≤c 个红球k 1+k 2+k 3=m 的概率. 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;如对于事件A ,B ,A 或B ,已知P A ,PB ,P AB ,P A B ,P A |B ,PB |A 以及换为A 或B 之中的几个,求另外几个; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 3.准确地选择和运用全概率公式与贝叶斯公式;若已知导致事件A 发生或者是能与事件A 同时发生的几个互斥的事件B i ,i =1,2,…,n ,…的概率PB i ,以及B i 发生的条件下事件A 发生的条件概率P A |B i ,求事件A 发生的概率P A 以及A 发生的条件下事件B i 发生的条件概率PB i | A ;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;1已知一维离散型随机变量X 的分布律PX =x i =p i ,i =1,2,…,n ,… 确定参数 求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的分布律及期望EgX 例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E2已知一维连续型随机变量X 的密度函数fx确定参数求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的密度函数及期望EgX例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k求概率}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数X Y =的密度及期望)(X E3已知二维离散型随机变量X ,Y 的联合分布律PX =x i ,Y =y j =p ij ,i =1,2,…,m ,…;j =1,2,…,n ,… 确定参数求概率P {X ,Y ∈G }求边缘分布律PX =x i =p i.,i =1,2,…,m ,…;PY =y j =, j =1,2,…,n ,… 求条件分布律PX =x i |Y =y j ,i =1,2,…,m ,…和PY =y j |X =x i , j =1,2,…,n ,… 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的分布律及期望EgX , Y 例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X =1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律4已知二维连续型随机变量X 的联合密度函数fx , y 确定参数求概率P {X ,Y ∈G }求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的密度函数及期望EgX , Y例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率.例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;对于来自总体X 的样本n X X X ,,,21 ,由样本构成的各种函数是否是统计量; 2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;对于来自总体X 的样本n X X X ,,,21 ,判断估计量是否无偏,比较哪个更有效; 例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;对于正态总体,由样本结合给出条件,导出参数的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤; 对于单、双正态总体根据给定条件,确定使用什么检验方法,明确基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤;1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;分析:本例的样本点就是从a +b中有次序地取出m 个球的不同取法;第m 次取出的球是白球意味着:第m次是从a 个白球中取出一球,再在a +b-1个球中取出m-1个球; 解:设B ={第m 次取出的球是白球}样本空间的样本点总数: mb a A n +=事件B 包含的样本点: 111--+=m b a a AC r ,则 b a a A aA n r B P mba mb a +===+--+11)( 注:本例实质上也是抽签问题,结论说明按上述规则抽签,每人抽中白球的机会相等,同抽签次序无关;例2:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1 个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数: 915C n ==5005事件B 包含的样本点: 563514C C C r ==240,则 PB =120/1001=占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 解:样本点为n 个质点在N 个格子中的任一种分布,每个质点都有N 种不同分布,即n 个质点共有N n 种分布;故样本点总数为:N n1在n 个格子中放有n 个质点,且每格有一个质点,共有n 种不同放法;因此,事件A 包含的样本点数:n,则n Nn A P !)(=2先在N 个格子中任意指定n 个格子,共有nN C 种不同的方法;在n 个格子中放n 个质点,且每格一个质点,共有n 种不同方法;因此,事件B 包含的样本点数: n Nn NA C n =!,则n n NNA B P =)(3在指定的一个格子中放mm ≤n 个质点共有mn C 种不同方法;余下n-m 个质点任意放在余下的N-1个格子中,共有mn N --)1(种不同方法.因此,事件C 包含的样本点数:m n C mn N --)1(, 则mn m m n nm n m n N N N C NN C C P ---=-=)1()1()1()( 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数} ;若允许千位数为0,此时千位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个;其中,千位数为0的“四位偶数”有多少个 此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A种选法;从而共有428A=224个; 因此410283945)(A A A B P -==2296/5040= 2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B 解:P AB = P APB =,P A -B = P A -P AB =,P A B = P A +PB -P AB =例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 解:P A -B =,P A B =,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,)|(B A P =)(1)()()(B P B A P B P B A P -= =2/33.准确地选择和运用全概率公式与贝叶斯公式;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;解:设事件A 表示“顾客买下该箱”,i B 表示“箱中恰好有i 件次品”,2,1,0=i ;则8.0)(0=B P ,1.0)(1=B P ,1.0)(2=B P ,1)|(0=B A P ,54)|(4204191==C C B A P ,1912)|(4204182==C C B A P ;由全概率公式得 ∑==⨯+⨯+⨯==294.019121.0541.018.0)|()()(i i i B A P B P A P ; 由贝叶斯公式 85.094.018.0)()|()()|(000=⨯==A PB A P B P A B P ; 4.1例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,P 1<X <3 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E 解:由1=∑iip,有 k +2 k +3 k +4 k =1 得 k =P 0<X <3= PX =1+PX =2=,P 1<X <3= PX =2=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<=41436.0323.0211.010)(x x x x x x F∑=ii i p x X E )(=3,∑=i i p x X E 22)(=10,DX =22))(()(X E X E -=12)3(-X E =12例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k 求概率P 1<X <3 求分布函数Fx 求期望EX ,方差DX 求函数X Y =的密度函数及期望)(X E 解:由⎰+∞∞-dx x f )(=1,有⎰+∞∞-dx x f )(=k dx kx 38202=⎰=1,得 k =3/8P 1<X <3=⎰31)(dx x f =⎰21283dx x =7/8. ⎪⎩⎪⎨⎧≥<<≤=2120800)(3x x x x x F⎰+∞∞-=dx x xf X E )()(=⎰2383dx x =3/2,⎰+∞∞-=dx x f x X E )()(22=⎰20483dx x =12/5DX =22))(()(X E X E -=3/20⎪⎩⎪⎨⎧<<=其他02043)(5y y y f)(X E =⎰+∞∞-dx x f x )(=⎰202583dx x =726 3例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X=1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律 解:PX <Y =, PX =Y =YXY =iij ji p x X E )(=,=iij ji p x X E )(=,DX =))(()(X E X E -=∑∑=i ij j j p y Y E )(=2,∑∑=i ij jj p y Y E 22)(=5,DY =22))(()(Y E Y E -=1∑∑=iij jj i p y x XY E )(=,cov X ,Y =)()()(Y E X E XY E -=XY ρ=)()(),cov(Y D X D Y X = 相关V =min{X ,Y }4例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 解:由⎰⎰+∞∞-+∞∞-dxdy y x f ),(=1,有⎰⎰+∞∞-+∞∞-dxdy y x f ),(=⎰⎰-11212ydy x c dx x=1,得 c =21/4PX <Y =⎰⎰-12421ydx x dy y y = ⎪⎩⎪⎨⎧≤≤--==⎰其它011)1(821421)(42122x x x ydy x x f x X ⎪⎩⎪⎨⎧≤≤==⎰-其它1027421)(252y y ydx x y f yy Y X 与Y 不独立⎪⎩⎪⎨⎧≤≤-==-其它023)(),()|(232|yx y y x y f y x f y x f YY X⎪⎩⎪⎨⎧≤≤-==其它0118)(),()|(24|y x x y x f y x f x y f X X Y⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(=⎰⎰-11312421ydy x dx x =0⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(22=⎰⎰-11412421ydy x dx x =7/15DX =22))(()(X E X E -=7/15⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(=⎰⎰-112212421dy y x dx x =7/9⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(22=⎰⎰-113212421dy y x dx x =7/11DY =22))(()(Y E Y E -=28/891⎰⎰+∞∞-+∞∞-=dxdy y x f xy XY E ),()(=⎰⎰-112312421dy y x dx x =0cov X ,Y =0, XY ρ=0,X 与Y 不相关5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率. 解:例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率; 解:设这批种子发芽数为X ,则)9.0,1000(~B X ,由中心极限定理得所求概率为}880{≥X P 9826.0)108.2()108.2(1)90900880(1=Φ=-Φ-=-Φ-=;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤; 解: 1 1.提出假设 u u H u u H ≠=:,:12.选取统计量nS u X t /)(0-=3.对给定的显著性水平α,查表得)1(2-n t α4.计算 ns u x t /)(0-=5.判断 若),1(2->n t t α拒绝; H 反之,接受. H21.提出假设2021202:,:σσσσ>≤H H2.选取统计量2022)1(σχS n -=3.对给定的显著性水平α,查表得)1(2-n αχ4.计算.)1(2022σχs n -=5.判断 若),1(22-<n αχχ拒绝; H 反之,接受. H。

概率论与数理统计第一章期末复习

概率论与数理统计第一章期末复习

概率论与数理统计第一章期末复习(一)随机事件1.随机现象定义1在一定的条件下,并不总是出现相同结果的现象称为随机现象.定义2只有一个结果的现象称为确定性现象.2.样本空间定义3一个试验如果满足下述条件:(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.就称这样的试验是一个随机试验,记作E.定义4随机试验E的所有可能结果组成的集合称为E的样本空间,记作Ω.样本空间的元素,即E的每个结果,称为样本点,记作ω.3.随机事件定义5随机试验的某些样本点的集合称为随机事件,简称事件,常用大写英文字母A,B,C,…表示.定义6由样本空间Ω中的单个元素组成的子集称为基本事件.而样本空间Ω的最大子集(即Ω本身)称为必然事件,样本空间Ω的最小子集(即空集∅)称为不可能事件.4.事件的关系与运算下面的讨论总是假设在同一个样本空间Ω中进行.1)包含关系⊂如果属于A的样本点必属于B,则称A包含于B或称B包含A,记作A B ⊃.用概率的语言说:事件A发生必然导致事件B发生.或B A对任一事件A,必有∅Ω⊂A.⊂2)相等关系如果属于A的样本点必属于B,且属于B的样本点必属于A,即BA⊂且=.AB⊂,则称事件A与B相等,记作A B3)互不相容(互斥)如果A 与B 没有相同的样本点,则称A 与B 互不相容(互斥).即事件A 与事件B 不可能同时发生.4)两事件的和事件“事件A 与B 中至少有一个发生”,这样的一个事件称作事件A 与B 的和(或并),记作B A .5)两事件的积事件“事件A 与B 同时发生”,这样的一个事件称作事件A 与B 的积(或交),记作B A (或AB ).6)两事件的差事件“事件A 发生而B 不发生”,这样的事件称为事件A 对B 的差,记作A B -.7)对立事件或逆事件若=AB ∅且Ω=B A ,则称A 与B 为对立事件或互为逆事件,事件A 的对立事件记作A .【例1】设A 、B 、C 是Ω中的随机事件,则(1)事件{A 发生且B 与C 至少有一个发生}可表示为:)(C B A ;(2)事件{A 与B 发生而C 不发生}可表示为:C AB ;(3)事件{A 、B 、C 中至少有两个发生}可表示为:BC AC AB ;(4)事件{A 、B 、C 中至多有两个发生}可表示为:ABC ;(5)事件{A 、B 、C 中不多于一个发生}可表示为:AB BC AC ;(6)事件{A 、B 、C 中恰有一个发生}可表示为:ABC ABC ABC .【例2】关系()成立,则事件A 与B 为对立事件.A .=AB ∅B .Ω=B AC .=AB ∅,Ω=B AD .=AB ∅,Ω≠B A 【解析】由对立事件的概念可知选项C 正确.【例3】甲、乙两人谈判,设事件A ,B 分别表示甲、乙无诚意,则B A 表示()A .两人都无诚意B .两人都有诚意C .两人至少有一人无诚意D .两人至少有一人有诚意【解析】由题可知A 与B 分别表示甲、乙有诚意,则B A 表示甲、乙两人至少有一人有诚意,故选项D 正确.5.事件的运算性质(1)交换律:A B B A =,BA AB =;(2)结合律:C B A C B A )()(=,)()(BC A C AB =;(3)分配律:()()()A B C AB AC = ,()()()A B C A C B C = ;(4)对偶律:B A B A = ,B A AB =.一些有用的等式:A A A = ,A Ω=Ω ,A A ∅= AA A =,A A Ω=,A ∅=∅A B A AB AB -=-=,A B A B A =【例4】化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .【解】(1) A B B A B A B A ==)())((ØA =;(2)AC B C A B C B B A ==)())((;(3)))(())((B A B B A B A B A B A =AB AB A A B A A === )(.(二)随机事件的概率1.概率的公理化定义定义1设E 是随机试验,Ω是它的样本空间.对于E 的每一事件A 赋予一个实数,记为)(A P ,称为事件A 的概率,如果集合函数)(⋅P 满足下列条件:(1)非负性0)(≥A P ,对Ω∈A ;(2)规范性()1P Ω=;(3)可列可加性若=j i A A ∅,j i ≠, ,2,1,=j i ,有∑+∞=+∞==11)()(i i i i A P A P .2.概率的性质性质1不可能事件的概率为0,即()0P ∅=.性质2概率具有有限可加性,即若=j i A A ∅(n j i ≤<≤1),则∑===ni i n i i A P A P 11)()( .性质3对任一随机事件A ,有()1()P A P A =-.性质4若A B ⊂,则)()()(B P A P B A P -=-.推论若A B ⊂,则)()(B P A P ≥.性质5对任意的两个事件A ,B ,有)()()(AB P A P B A P -=-.性质6对任意的两个事件A ,B ,有()()()()P A B P A P B P AB =+- .对任意三个事件A ,B ,C ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= .推论对任意的两个事件A ,B ,有)()()(B P A P B A P +≤ .【例1】设A 与B 互不相容,且0)(>A P ,0)(>B P ,则下列结论正确的是()A .A 与B 为对立事件B .A 与B 互不相容C .)()()(B P A P B A P -=-D .)()(A P B A P =-【解析】因为A 与B 互不相容,所以AB =∅,0)(=AB P ,故选项A :互不相容不一定对立,故选项A 错误;选项B :互不相容不一定对立,故B A 不一定等于Ω,所以B A B A =不一定等于∅,即A 与B 不一定互不相容,故选项B 错误;选项C :)()()()(A P AB P A P B A P =-=-,故选项C 错误,进而选项D 正确.【例2】已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求(A P ,)(AB P ,)(B A P 和)(B A P .【解】(1)7.0)(1)(=-=A P A P ;(2)∵B A ⊂,∴A AB =,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .【注】事件的概率的计算常常需要结合对偶律,应用性质3.【例3】已知事件A ,B ,B A 的概率分别是0.4,0.3,0.6,求(B A P .【解】)()()()(AB P B P A P B A P -+= )(3.04.06.0AB P -+=所以1.0)(=AB P ,则3.0)()()((=-=-=AB P A P B A P B A P .【例4】已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P .求:(1)A ,B ,C 中至少发生一个的概率;(2)A ,B ,C 都不发生的概率.【解】(1)因为0)(=AB P ,且AB ABC ⊂,所以由概率的单调性知0)(=ABC P ;再由加法公式,得A ,B ,C 中至少发生一个的概率为)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= 8516243=-=.(2)因为{A ,B ,C 都不发生}的对立事件为{A ,B ,C 中至少发生一个},所以A ,B ,C 都不发生的概率为83851(=-=C B A P .3.古典概型定义2若随机试验E 具有下述特征:(1)样本空间的元素(即样本点)只有有限个,不妨设为n 个,并记它们为12,,,n ωωω .(2)每个样本点出现的可能性相等(等可能性),即有12()()()n P P P ωωω=== .则称这种等可能性的概率模型为古典概型.对任意一个随机事件Ω∈A ,有nk A A P =Ω=中所有样本点的个数所含有样本点的个数事件)(.【例5】袋中有大小相同的4个白球,3个黑球,从中任取3个至少有2个白球的概率为.【解析】袋中共有7个球,从中任取3个,共有37C 中取法,即样本空间Ω中共有37C 个样本点.取出的3个球中至少有2个白球,分为2个白球1个黑球和3个白球两种情况.当取出的3个球中有2个白球1个黑球时,共有1324C C 中取法;当取出的3个球中有3个白球时,共有0334C C 中取法.记=A {从中任取3个至少有2个白球},则事件A 中共有03341324C C C C +个样本点.因此3522)(3703341324=+=C C C C C A P .(三)条件概率1.条件概率定义1设A 与B 是样本空间Ω中的两个事件,若0)(>B P ,则称)()()(B P AB P B A P =为“在事件B 发生条件下事件A 发生的条件概率”,简称条件概率.【例1】已知31)()(==B P A P ,61)(=B A P ,求(B A P .【解】∵61)()()(==B P AB P B A P ,∴181)(=AB P ,)(1)()()()(B P B A P B P B A P B A P -== )(1)]()()([1B P AB P B P A P --+-=127=.【注】条件概率的计算通常与概率的性质结合使用.【技巧】在计算过程中,只要有概率的性质可以用,就一直用概率的性质计算,直到没有概率的性质可用时,对得到的式子进行化简整理,代入已知数据计算.2.乘法公式定理1(乘法公式)(1)若0)(>B P ,则)()()(B A P B P AB P =.(2)若0)(121>-n A A A P ,则)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P .【例2】一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第三次才取得合格品的概率.【解】设=i A {第i 次取得合格品},3,2,1=i .由题意知,所求概率为)(321A A A P ,易知10010)(1=A P ,999)(12=A A P ,9890)(213=A A A P .由此得)()()()(213121321A A A P A A P A P A A A P =0083.0989099910010≈⋅⋅=.3.全概率公式定义2设Ω为试验E 的样本空间,1B ,2B ,…,n B 为E 的一组事件.如果=j i B B ∅,j i ≠,n j i ,,2,1, =且Ω=n B B B 21,则称1B ,2B ,…,n B 为样本空间Ω的一个划分.定理2(全概率公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>i B P ,n i ,,2,1 =,则对任一事件A 有)()()(1i ni i B A P B P A P ∑==.4.贝叶斯公式定理3(贝叶斯公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>A P ,0)(>i B P ,n i ,,2,1 =,则∑==n i j j i i i B A P B P B A P B P A B P 1)()()()()(,n i ,,2,1 =.【例3】一批同型号的零件由编号为Ⅰ、Ⅱ、Ⅲ的三台机器共同生产,各台机器生产的零件占这批零件的比例分别为35%、40%和25%,各台机器生产的零件的次品率分别为3%、2%和1%.(1)求该批零件的次品率;(2)现从该批零件中抽到一颗次品,试问这颗零件由Ⅰ号机器生产的概率是多少?【解】设=A {零件是次品},=1B {零件由Ⅰ号机器生产},=2B {零件由Ⅱ号机器生产},=3B {零件由Ⅲ号机器生产},则由题设知35.0)(1=B P ,4.0)(2=B P ,25.0)(3=B P ,03.0)(1=B A P ,02.0)(2=B A P ,01.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 021.0=.(2)题目要求的是)(1A B P ,由贝叶斯公式,得21)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P .【例4】有甲、乙、丙三厂同时生产某种产品.甲、乙、丙三厂的产量之比为1:1:3,次品率分别为4%,3%,2%.(1)若从一批产品中随机抽出一件,求这件产品为次品的概率.(2)若产品的售后部门接到一名顾客投诉,说其购买的产品为次品,请问哪个厂最该为此事负责,为什么?【解】设=A {产品为次品},=1B {产品由甲厂生产},=2B {产品由乙厂生产},=3B {产品由丙厂生产},则由题设知,2.0)(1=B P ,2.0)(2=B P ,6.0)(3=B P ,04.0)(1=B A P ,03.0)(2=B A P ,02.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 026.0=.(2)由贝叶斯公式,得134)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P ,133)|()()|()()(31222==∑=i i i B A P B P B A P B P A B P ,136)|()()|()()(31333==∑=i i i B A P B P B A P B P A B P .所以在产品为次品的情况下,产品来自丙厂的可能性最大,丙厂最该负责.【注】全概率公式与贝叶斯公式通常一起考试.(四)独立性1.两个事件的独立性定义1若)()()(B P A P AB P =成立,则称事件A 与事件B 相互独立,简称A 与B 独立.否则称A 与B 不独立或相依.定理1若事件A 与B 独立,则A 与B 独立;A 与B 独立;A 与B 独立.【例1】甲、乙两人彼此独立的向同一个目标射击,甲击中目标的概率为0.9,乙击中目标的概率为0.8,求目标被击中的概率.【解】设=A {甲击中目标},=B {乙击中目标},则=B A {目标被击中}.则)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=98.0=.【例2】若事件A 与B 相互独立,8.0)(=A P ,6.0)(=B P ,求:)(B A P 和)|(B A A P .【解】∵A 与B 相互独立,∴)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=92.0=.)())(()|(B A P B A A P B A A P =)()()()()(B A P B P A P B A P B A P ==13.0=.【例3】设)()(B A P B A P =,证明:A 与B 相互独立.【证】因为)()(B A P B A P =,所以有)(1)()()(1)()()()()(B P AB P A P B P B A P B P B A P B P AB P --=--==,即有)]()()[()](1)[(AB P A P B P B P AB P -=-,整理得)()()(B P A P AB P =,所以A 与B 相互独立.2.多个事件的相互独立性定义2设A ,B ,C 是三个事件,若有⎪⎩⎪⎨⎧===)()()()()()()()()(C P B P BC P C P A P AC P B P A P AB P (1)第11页共11页则称A ,B ,C 两两独立.若还有)()()()(C P B P A P ABC P =,(2)则称A ,B ,C 相互独立.注意:只有(1)式与(2)式同时成立,事件A ,B ,C 才相互独立.(1)式成立不能保证(2)式成立;反过来,(2)式成立也不能保证(1)式成立.定义3设有n 个事件1A ,2A ,…,n A ,对任意的n k j i ≤<<<≤ 1,若以下等式均成立⎪⎪⎩⎪⎪⎨⎧===)()()()()()()()()()()(2121n n k j i k j i j i j i A P A P A P A A A P A P A P A P A A A P A P A P A A P 则称此n 个事件1A ,2A ,…,n A 相互独立.定理2如果n (2≥n )个事件1A ,2A ,…,n A 相互独立,则其中任何m (n m ≤≤1)个事件换成相应的对立事件,形成的n 个新的事件仍相互独立.【例4】三人独立地去破译一份密码,已知各人能译出的概率分别为51,31,41,问三人中至少有一人能将此密码译出的概率是多少?【解】设A ,B ,C 分别表示三人独立译出密码,则51)(=A P ,31)(=B P ,41)(=C P ,且A ,B ,C 相互独立,有方法1:)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=6.0=.方法2:)(1)(C B A P C B A P -=(1C B A P -=()()(1C P B P A P -=53411)(311)(511(1=----=.。

概率论期末考试题型、知识点和公式复习

概率论期末考试题型、知识点和公式复习

概率论期末复习知识点第一章(A卷20分,B卷22分)1.事件的表式2.事件的关系与运算3.概率性质及其应用4.古典概型5.条件概率6.全概率公式7.贝叶斯公式8.事件的独立性重点:条件概率,全概率公式,贝叶斯公式第二章(A卷22分,B卷20分)1.离散型随机变量的概率分布2.两点分布3.二项分布4.泊松分布5.概率密度函数及其性质6.连续型随机变量的分布函数7.均匀分布8.指数分布9.标准正态分布、正态分布10.随机变量相关的概率计算11.离散型随机变量函数的概率分布重点:○1正态分布,二项分布○2离散型随机变量及函数的概率分布第三章(A卷23分,B卷20分)1.离散型随机向量联合概率分布及分布函数2.二维连续型随机向量的联合概率密度、性质及其应用3.二维连续型随机向量的分布函数4.均匀分布5.二维正态分布6.边缘概率密度7.随机变量的独立性8.二维随机向量的相关概率计算重点:○1联合概率密度○2边缘概率密度○3随机变量的独立性第四章(A卷21分,B卷26分)1.离散型随机变量的期望2.连续型随机变量的期望3.随机变量函数的期望4.方差5.方差的性质6.协方差、协方差的性质7.相关系数重点:○1数学期望(随机变量及函数的数学期望)○2方差(离散型随机变量的方差)○3协方差和相关系数第五章(A卷14分,B卷12分)1.雪比切夫不等式的应用2.棣莫弗——拉普拉斯中心极限定理的应用重点:棣莫弗——拉普拉斯中心极限定理概率论期末公式复习对偶律: ,B A B A = ; B A AB = 概率的性质1. P (Ø)=0;2. A 1,A 2,…, A n 两两互斥时:P (A 1∪A 2∪…∪A n )=P (A 1)+…+P (A n ),3.)(1)(A P A P -=(A 是 A 不发生)(D )4.若A B , 则有: P (A )≤ P(B ),P (AB ) = P (A ),P (B -A )=P (B )-P (A ),P (A ∪B )=P (B ).5.)()()()(AB P B P A P B A P -+=⋃(D ), P (B -A )=P (B )-P (AB )。

概率论与数理统计期末复习20题及解答

概率论与数理统计期末复习20题及解答

概率论与数理统计期末复习20题及解答【第一章】 随机事件与概率1、甲袋中有4个白球3个黑球,乙袋中有2个白球3个黑球,先从甲袋中任取一球放入乙袋, 再从乙袋中任取一球返还甲袋. 求经此换球过程后甲袋中黑球数增加的概率.2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求此人拨号不超过两次而接通所需电话的概率.3、已知将1,0两字符之一输入信道时输出的也是字符0或1,且输出结果为原字符的概率为)10(<<αα. 假设该信道传输各字符时是独立工作的. 现以等概率从“101”,“010”这两个字符串中任取一个输入信道.求输出结果恰为“000”的概率.4、试卷中的一道选择题有4个答案可供选择,其中只有1个答案是正确的.某考生如果会做这道题,则一定能选出正确答案;若该考生不会做这道题,则不妨随机选取一个答案.设该考生会做这道题的概率为85.0.(1)求该考生选出此题正确答案的概率;(2)已知该考生做对了此题,求该考生确实会做这道题的概率.【第二章】 随机变量及其分布5、设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.(1)求系数A 及B ;(2)求X 落在区间)1,1(-内的概率;(3)求X 的概率密度.6、设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,0,10,)(x ax x f ,求:(1)常数a ;(2))5.15.0(<<X P ;(3)X 的分布函数)(x F .7、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<+=.,0;1,1),1(),(其它y x xy A y x f 求:(1)系数A ;(2)X 的边缘概率密度)(x f X ;(3)概率)(2X Y P ≤.8、设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<=.,0;20,10,1),(其它x y x y x f求:(1)),(Y X 的边缘概率密度)(x f X ,)(y f Y ;(2)概率)1,21(≤≤Y X P ;(3)判断X ,Y 是否相互独立.9、设X 和Y 是两个相互独立的随机变量,]2.0,0[~U X ,Y 的概率密度函数为⎩⎨⎧≤>=-.0,0,0,5)(5y y e y f y Y(1)求X 和Y 的联合概率密度),(y x f ;(2)求概率)(X Y P ≤.【第三章】数字特征10、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤+-=,,0,21,)2(,10,)()(其它x x a x b x b a x f ,已知21)(=X E ,求:(1)b a ,的值;(2))32(+X E .11、设随机变量X 的概率密度为⎩⎨⎧≤>=-.0,0,0,)(2x x Ae x f x 求:(1)常数A ;(2))(X E 和)(X D .12、设),(Y X 的联合概率分布如下:XY1104/14/12/10(1)求Y X ,的数学期望)(X E ,)(Y E ,方差)(X D ,)(Y D .(2)求Y X ,的协方差),cov(Y X 与相关系数),(Y X R .【第四章】正态分布13、假设某大学学生在一次概率论与数理统计统考中的考试成绩X (百分制)近似服从正态分布,已知满分为100分平均成绩为75分,95分以上的人数占考生总数的2.3%.(1)试估计本次考试的不及格率(低于60分为不及格);(2)试估计本次考试成绩在65分至85分之间的考生人数占考生总数的比例. [已知9332.0)5.1(,8413.0)1(≈≈ΦΦ,9772.0)2(=Φ]14、两台机床分别加工生产轴与轴衬.设随机变量X (单位:mm )表示轴的直径,随机变量Y (单位:mm )表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴 衬的内径与轴的直径之差在3~1mm 之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率.[已知9772.0)2(≈Φ]【第五章】 数理统计基本知识15、设总体)1,0(~N X ,521,,,X X X 是来自该总体的简单随机样本,求常数0>k 使)3(~)2(25242321t XX X X X k T +++=.16、设总体)5 ,40(~2N X ,从该总体中抽取容量为64的样本,求概率)1|40(|<-X P .【第六章】参数估计17、设总体X 的概率密度为⎩⎨⎧≥=--,,0,2,);()2(其它x e x f x λλλ其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本,n x x x ,,,21 为样本观测值.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量.18、设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,0,0;0,e 1);(2x x x xf x λλλ 其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本, n x x x ,,,21 为样本观测值.(1)求参数λ的最大似然估计量.(2)你得到的估计量是不是参数λ的无偏估计,请说明理由.【第七章】假设检验19、矩形的宽与长之比为618.0(黄金分割)时将给人们视觉上的和谐美感. 某工艺品厂生产矩形裱画专用框架. 根据该厂制定的技术标准,一批合格产品的宽与长之比必须服从均值为618.00=μ的正态分布. 现从该厂某日生产的一批产品中随机抽取25个样品,测得其宽与长之比的平均值为,646.0=x 样本标准差为093.0=s . 试问在显著性水平05.0=α水平上能否认为这批产品是合格品?20、已知某种口服药存在使服用者收缩压(高压)增高的副作用. 临床统计表明,在服用此药的人群中收缩压的增高值服从均值为220=μ(单位:mmHg ,毫米汞柱)的正态分布. 现在研制了一种新的替代药品,并对一批志愿者进行了临床试验. 现从该批志愿者中随机抽取16人测量收缩压增高值,计算得到样本均值)mmHg (5.19=x ,样本标准差)mmHg (2.5=s . 试问这组临床试验的样本数据能否支持“新的替代药品比原药品副作用小”这一结论 (取显著性水平05.0=α).解答部分【第一章】 随机事件与概率1、甲袋中有4个白球3个黑球,乙袋中有2个白球3个黑球,先从甲袋中任取一球放入乙袋, 再从乙袋中任取一球返还甲袋. 求经此换球过程后甲袋中黑球数增加的概率.【解】设A 表示“从甲袋移往乙袋的是白球”,B 表示“从乙袋返还甲袋的是黑球”,C 表示“经此换球过程后甲袋中黑球数增加”,则AB C =, 又2163)(,74)(===A B P A P ,于是由概率乘法定理得所求概率为 )()(AB P C P =)()(A B P A P ==722174=⋅.2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求此人拨号不超过两次而接通所需电话的概率.【解】 设i A 表示“此人第i 次拨号能拨通所需电话” )2,1(=i ,A 表示“此人拨号不超过两次而接通所需电话”,则211A A A A +=,由概率加法定理与乘法定理得所求概率为)()()()(211211A A P A P A A A P A P +=+=)()()(1211A A P A P A P +=2.091109101=⋅+=.3、已知将1,0两字符之一输入信道时输出的也是字符0或1,且输出结果为原字符的概率为)10(<<αα. 假设该信道传输各字符时是独立工作的. 现以等概率从“101”,“010”这两个字符串中任取一个输入信道.求输出结果恰为“000”的概率.【解】设:1A 输入的是“101”,:2A 输入的是“010”,:B 输出的是“000”,则2/1)(1=A P ,2/1)(2=A P ,αα21)1()(-=A B P ,)1()(22αα-=A B P ,从而由全概率公式得)()()()()(2211A B P A P A B P A P B P +=)1(21)1(2122αααα-+-=)1(21αα-=.4、试卷中的一道选择题有4个答案可供选择,其中只有1个答案是正确的.某考生如果会做这道题,则一定能选出正确答案;若该考生不会做这道题,则不妨随机选取一个答案.设该考生会做这道题的概率为85.0.(1)求该考生选出此题正确答案的概率;(2)已知该考生做对了此题,求该考生确实会做这道题的概率.【解】设A 表示“该考生会解这道题”,B 表示“该考生选出正确答案”,则85.0)(=A P ,2.0)(=A P ,1)(=A B P ,25.0)(=A B P .(1)由全概率公式得)()()()()(A B P A P A B P A P B P +=25.02.0185.0⨯+⨯=9.0=.(2)由贝叶斯公式得944.018179.0185.0)()()()(≈=⨯==B P A B P A P B A P .【第二章】 随机变量及其分布5、设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.(1)求系数A 及B ;(2)求X 落在区间)1,1(-内的概率;(3)求X 的概率密度.【解】(1)由分布函数的性质可知0)2()(lim )(=-⋅+==-∞-∞→πB A x F F x ,12)(lim )(=⋅+==+∞+∞→πB A x F F x ,由此解得 π1,21==B A . (2)X 的分布函数为)(arctan 121)(+∞<<-∞+=x x x F π, 于是所求概率为21))1arctan(121()1arctan 121()1()1()11(=-+-+=--=<<-ππF F X P .(3)X 的概率密度为)1(1)()(2x x F x f +='=π.6、设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,0,10,)(x ax x f ,求:(1)常数a ;(2))5.15.0(<<X P ;(3)X 的分布函数)(x F .【解】(1)由概率密度的性质可知⎰∞+∞-dx x f )(121===⎰aaxdx , 由此得2=a .(2) )5.15.0(<<X P 75.000212/122/3112/1=+=+=⎰⎰x dx xdx .(3)当0<x 时,有00)(==⎰∞-xdx x F ;当10<≤x 时,有20020)(x xdx dx x F x=+=⎰⎰∞-;当1≥x 时,有1020)(1100=++=⎰⎰⎰∞-xdx xdx dx x F .所以,X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2x x x x x F7、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<+=.,0;1,1),1(),(其它y x xy A y x f 求:(1)系数A ;(2)X 的边缘概率密度)(x f X ;(3)概率)(2X Y P ≤.【解】(1)由联合概率密度的性质可知=⎰⎰+∞∞-+∞∞-dxdy y x f ),(14)1(1111==+⎰⎰--A dy xy A dx ,由此得41=A . (2)当11<<-x 时,有=)(x f X =⎰+∞∞-dy y x f ),(214111=+⎰-dy xy ; 当1-≤x 或1≥x 时,显然有0)(=x f X .所以X 的边缘概率密度⎩⎨⎧<<-=.,0;11,2/1)(其它x x f X(3))(2X Y P ≤⎰⎰≤=2),(x y dxdy y x f dy xy dx x ⎰⎰--+=211141dx x x x )1221(412511+-+=⎰-32=.8、设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<=.,0;20,10,1),(其它x y x y x f求:(1)),(Y X 的边缘概率密度)(x f X ,)(y f Y ;(2)概率)1,21(≤≤Y X P ;(3)判断X ,Y 是否相互独立.【解】(1)当10<<x 时,有x dy dy y x f x f xX 2),()(20⎰⎰===+∞∞-;当0≤x 或1≥x 时,显然有0)(=x f X .于是X 的边缘概率密度为⎩⎨⎧<<=.,0;10,2)(其它x x x f X 当20<<y 时,有⎰⎰-===+∞∞-1221),()(y Y ydx dx y x f y f ; 当0≤y 或2≥y 时,显然有0)(=y f Y .于是Y 的边缘概率密度为⎪⎩⎪⎨⎧<<-=.,0;20,21)(其它y y y f Y(2)⎰⎰⎰⎰===≤≤∞-∞2/12/102/11-41),()}1,21{(y dx dy dx y x f dy Y X P .(3)容易验证)()(),(y f x f y x f Y X ≠,故X 与Y 不独立.9、设X 和Y 是两个相互独立的随机变量,]2.0,0[~U X ,Y 的概率密度函数为⎩⎨⎧≤>=-.0,0,0,5)(5y y e y f y Y(2)求X 和Y 的联合概率密度),(y x f ;(2)求概率)(X Y P ≤.【解】(1)由题意知,X 的概率密度函数为⎩⎨⎧<<=.,0;2.00,5)(其它x x f X因为X 和Y 相互独立,故X 和Y 的联合概率密度⎩⎨⎧><<==-.,0;0,2.00,25)()(),(5其它y x e y f x f y x f y Y X(2)12.005052.00)1(525),()(---≤=-===≤⎰⎰⎰⎰⎰e dx e dy e dx dxdy y x f X Y P x x y xy .【第三章】数字特征10、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤+-=,,0,21,)2(,10,)()(其它x x a x b x b a x f ,已知21)(=X E ,求:(1)b a ,的值;(2))32(+X E . 【解】(1)由概率密度的性质可知=⎰∞+∞-dx x f )(12)2(])[(2110=+=-++-⎰⎰ba dx x a dxb x b a ; 又dx x xf X E ⎰∞+∞-=)()(.216)2(])[(2110=+=-++-=⎰⎰b a dx x x a xdx b x b a联立方程组⎪⎩⎪⎨⎧=+=+,216,12b a b a 解得41=a ,23=b . (2) 由数学期望的性质,有432123)(2)32(=+⋅=+=+X E X E . 11、设随机变量X 的概率密度为⎩⎨⎧≤>=-.0,0,0,)(2x x Ae x f x求:(1)常数A ;(2))(X E 和)(X D .【解】(1)由概率密度的性质可知=⎰∞+∞-dx x f )(122==⎰∞+-Adx Ae x , 由此得2=A .(2)由数学期望公式得⎰⎰∞++∞-=-=⋅=0022212)(dt te dx ex X E t tx x21)2(Γ21==. 由于⎰∞+-⋅=02222)(dx ex X E xdt e t t tx ⎰+∞-==0224121!241)3(Γ41=⋅==,故利用方差计算公式得41)21(21)]([)()(222=-=-=X E X E X D .12、设),(Y X 的联合概率分布如下:XY1104/14/12/10(1)求Y X ,的数学期望)(X E ,)(Y E ,方差)(X D ,)(Y D .(2)求Y X ,的协方差),cov(Y X 与相 关系数),(Y X R .【解】 由),(Y X 的联合概率分布知Y X ,服从"10"-分布:4/1)0(==X P ,4/3)1(==X P , 2/1)0(==Y P ,2/1)1(==Y P ,由"10"-分布的期望与方差公式得16/3)4/11(4/3)(,4/3)(=-⨯==X D X E , 4/1)2/11(2/1)(,2/1)(=-⨯==Y D Y E ,由),(Y X 的联合概率分布知2/14/1114/1010104/100)(=⨯⨯+⨯⨯+⨯⨯+⨯⨯=XY E ,从而8/12/14/32/1)()()(),cov(=⨯-=-=Y E X E XY E Y X ,=),(Y X R 334/116/38/1)()(),cov(==Y D X D Y X .【第四章】正态分布13、假设某大学学生在一次概率论与数理统计统考中的考试成绩X (百分制)近似服从正态分布,已知满分为100分平均成绩为75分,95分以上的人数占考生总数的2.3%.(1)试估计本次考试的不及格率(低于60分为不及格);(2)试估计本次考试成绩在65分至85分之间的考生人数占考生总数的比例. [已知9332.0)5.1(,8413.0)1(≈≈ΦΦ,9772.0)2(=Φ]【解】 由题意,可设X 近似服从正态分布),75(2σN .已知%3.2)95(=≥X P ,即%3.2)20(1)7595(1)95(1)95(=-=--=<-=≥σΦσΦX P X P ,由此得977.0)20(=σΦ,于是220≈σ,10≈σ,从而近似有)10,75(~2N X .(1)0668.09332.01)5.1(1)5.1()107560()60(=-≈-=-=-=<ΦΦΦX P , 由此可知,本次考试的不及格率约为%68.6.(2))107565()107585()8565(---=≤≤ΦΦX P 6826.018413.021)1(2)1()1(=-⨯≈-=--=ΦΦΦ,由此可知,成绩在65分至85分之间的考生人数约占考生总数的%26.68.14、两台机床分别加工生产轴与轴衬.设随机变量X (单位:mm )表示轴的直径,随机变量Y (单位:mm )表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴 衬的内径与轴的直径之差在3~1mm 之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率.[已知9772.0)2(≈Φ]【解】 设X Y Z -=,由X 与Y 的独立性及独立正态变量的线性组合的性质可知,)4.03.0,5052(~22+--=N X Y Z , 即)5.0,2(~2N Z .于是所求概率为)2()2()5.021()5.023()31(--=---=≤≤ΦΦΦΦZ P .9544.019772.021)2(2=-⨯≈-=Φ【第五章】 数理统计基本知识15、设总体)1,0(~N X ,521,,,X X X 是来自该总体的简单随机样本,求常数0>k 使)3(~)2(25242321t X X X X X k T +++=.【解】 由)1,0(~N X 知)5,0(~221N X X +,于是)1,0(~5221N X X +,又由2χ分布的定义知)3(~2252423χX X X ++,所以)3(~2533/)(5/)2(2524232125242321t X X X X X X X X X X T +++⋅=+++=,比较可得53=k .16、设总体)5 ,40(~2N X ,从该总体中抽取容量为64的样本,求概率)1|40(|<-X P . 【解】 由题设40=μ,5=σ,64=n ,于是)1,0(~8540N X nX u -=-=σμ从而)58|8/540(|)1|40(|<-=<-X P X P .8904.019452.021)6.1(2)58|(|=-⨯≈-=<=Φu P【第六章】参数估计17、设总体X 的概率密度为⎩⎨⎧≥=--,,0,2,);()2(其它x e x f x λλλ其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本,n x x x ,,,21 为样本观测值.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量. 【解】(1)21)2(),()(02)2(2+=+===-+∞=---+∞+∞∞-⎰⎰⎰λλλλλλdt e t dx ex dx x xf X E t tx x ,令)(X E X =,即21+=λX ,解得参数λ的矩估计量为21-=∧X λ. (2)样本似然函数为∑====--=--=∏∏ni i i n x nni x n i i eex f L 1)2(1)2(1),()(λλλλλλ,上式两边取对数得∑--==ni i n X n L 1)2(ln )(ln λλλ,上式两边对λ求导并令导数为零得=λλd L d )(ln 0)2(1=∑--=n i i n x nλ, 解得2121-=∑-==x nx nni i λ,从而参数λ的最大似然估计量为 21-=∧X λ. 18、设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,0,0;0,e 1);(2x x x xf x λλλ 其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本, n x x x ,,,21 为样本观测值. (1)求参数λ的最大似然估计量.(2)你得到的估计量是不是参数λ的无偏估计,请说明理由. 【解】(1)样本似然函数为,e1e1),()(1121211∏∏∏=-=-=∑⋅====n i x inni x i n i i ni iixx x f L λλλλλλ上式两边取对数得∑∑==-+-=ni i ni i x x n L 111ln ln 2)(ln λλλ, 求导数得∑=+-=ni i x n L d d 1212)(ln λλλλ, 令0)(ln =λλL d d解得2211x x n n i i==∑=λ,于是参数λ的极大似然估计量为 221ˆ1X X n n i i ==∑=λ. (2)dx x X E x λλ/202e 1)(-+∞⎰=dx x x λλ/20e )(-+∞⎰=dx t t t x -∞+=⎰=e 02λλλΓλ2)3(==, λλλ=⋅====221)(21)(21)2()ˆ(X E X E X E E , 于是221ˆ1X X n ni i ==∑=λ是λ的无偏估计.【第七章】假设检验19、矩形的宽与长之比为618.0(黄金分割)时将给人们视觉上的和谐美感. 某工艺品厂生产矩形裱画专用框架. 根据该厂制定的技术标准,一批合格产品的宽与长之比必须服从均值为618.00=μ的正态分布. 现从该厂某日生产的一批产品中随机抽取25个样品,测得其宽与长之比的平均值为,646.0=x 样本标准差为093.0=s . 试问在显著性水平05.0=α水平上能否认为这批产品是合格品?【解】由题意,待检验的假设为0H : 618.00==μμ; 1H : 618.0≠μ.因为σ未知,所以检验统计量为)24(~)618.0(525/618.0/0t S X S X n S X t -=-=-=μ, 关于0H 的拒绝域为 06.2)24()1(||025.02/==->t n t t α. 现在646.0=x ,093.0=s ,所以统计量t 的观测值为505.1093.0)618.0646.0(5=-=t . 因为)24(06.2505.1||025.0t t =<=,即t 的观测值不在拒绝域内,从而接受..原假设,即可以认为这批产品是合格品.20、已知某种口服药存在使服用者收缩压(高压)增高的副作用. 临床统计表明,在服用此药的人群中收缩压的增高值服从均值为220=μ(单位:mmHg ,毫米汞柱)的正态分布. 现在研制了一种新的替代药品,并对一批志愿者进行了临床试验. 现从该批志愿者中随机抽取16人测量收缩压增高值,计算得到样本均值)mmHg (5.19=x ,样本标准差)mmHg (2.5=s . 试问这组临床试验的样本数据能否支持“新的替代药品比原药品副作用小”这一结论 (取显著性水平05.0=α).【解】由题意,待检验的假设为0H : 220==μμ; 1H : 22<μ.因为σ未知,所以取统计量)15(~)22(4/0t S X nS X t -=-=μ, 且关于0H 的拒绝域为 753.1)15()1(05.0-=-=--<t n t t α. 现在5.19=x ,2.5=s ,所以统计量t 的观测值为923.12.5)225.19(4-≈-=t . 因为)15(753.1923.105.0t t -=-<-≈,即t 的观测值在拒绝域内,从而拒绝..原假设,即认为这次试验支持“新的替代药品比原药品副作用小”这一结论.。

中国石油大学《概率论与数理统计》复习题及答案

中国石油大学《概率论与数理统计》复习题及答案

《概率论与数理统计》期末复习题一、填空题1.(公式见教材第10页P10) 设A,B 为随机事件,已知P(A)=0.7,P(B)=0.5,P(A-B)=0.3,则P (B-A )= 。

2.(见教材P11-P12) 设有20个零件,其中16个是一等品,4个是二等品,今从中任取3个,则至少有一个是一等品的概率是 . 3.(见教材P44-P45) 设()4 ,3~N X ,且c 满足()()c X P c X P ≤=>,则=c 。

4. (见教材P96) 设随机变量X 服从二项分布,即===n p EX p n B X 则且,7/1,3),,(~ .5.(见教材P126) 设总体X 服从正态分布)9,2(N ,921,X X X 是来自总体的样本,∑==9191i i X X 则=≥)2(X P 。

6. (见教材P6-7)设B A ,是随机事件,满足===)(,)(),()(B P p A P B A P AB P 则 .7. (见教材P7) B A ,事件,则=⋃B A AB 。

8. (见教材P100-P104) 设随机变量Y X ,相互独立,且)16,1(~),5,1(~N Y N X,12--=Y X Z 则的相关系数为与Z Y9.(见教材P44-P45) 随机变量=≤≤-=Φ=Φ}62{,9772.0)2(,8413.0)1(),4,2(~X P N X 则 . 10. (见教材P96)设随机变量X 服从二项分布,即===n p EX p n B X 则且,5/1,3),,(~ .11 (见教材P42) 连续型随机变量X 的概率密度为()⎩⎨⎧≤>=-00,0,3x x e x f x λ则=λ .12.(见教材P11-P12) 盒中有12只晶体管,其中有10只正品,2只次品.现从盒中任取3只,设3只中所含次品数为X ,则()==1X P .13. (见教材P73-P74) 已知二维随机变量221212(,)~(,;,;)X Y N μμσσρ,且X 与Y 相互独立,则ρ=______.二、选择题1.(见教材其分布函数为F(x),则F(3)= .A. 0B. 0.3C. 1D. 0.82.(见教材P39-40) 设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,x x x x x f则X 落在区间()2.1 ,4.0内的概率为( ).(A) 0.64;(B) 0.6;(C) 0.5;(D) 0.42.3. (见教材P133-136)矩估计是( )A. 点估计B. 极大似然估计C. 区间估计D. 无偏估计4. (见教材P31)甲乙两人下棋,每局甲胜的概率为0.4,乙胜的概率为0.6,。

概率论与数理统计期末复习知识点

概率论与数理统计期末复习知识点

fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n

Ai Ai
Ai Ai
i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》期末复习题
一 选择题
1.设事件A 与事件B 满足P(AB)=0,则
(A) A,B 互不相容 (B)A,B 相互独立 (C) P(A)=1-P(B) (D) ()1P A B +=
2.某人向同一目标独立重复射击,每次命中目标的概率为p, 则此人第三次射击恰好第二次命中目标的概率为
2()2(1)A p p -2()3(1)B p p -22()2(1)C p p - 22()3(1)D p p -
3. 设F 1(x )、F 2(x ) 分别为随机变量X 1与X 2的分布函数,为使 F(x ) = a F 1(x ) + b F 2(x ) 是某一随机变量的分布函数,在下列给定的各组数值中,应取
(A) a =
53, b = 5
2- (B) a = 32, b = 32 (C) a = 21-, b = 23 (D) a = 21, b = 23- 4.设随机变量X ~N(0,1),Y ~N(1,9),且X,Y 的相关系数ρ=-1,则
(A) P(Y=-3X+1)=1 (B) P(Y=3X-1)=1 (C) P(Y=-3X-1)=1 (D) P(Y=3X+1)=1
5.设随机变量X 的分布函数F(x)=0.2Φ(x)+0.8Φ[(x-1)/2], 其中Φ(x)为标准正态分布的分布函数,则EX=
(A)0 (B) 0.2 (C) 0.8 (D) 1
6.设随机变量X,Y 独立同分布,且X 的分布函数为F(x),则Z=min(X,Y)的分布函数为:
(A) F 2(x) (B)F(x)F(y) (C) 1-[1-F(x)]2 (D) [1-F(x)][1-F(y)]
7.设随机变量X 和Y 都服从正态分布,且它们不相关,则
(A) X 与Y 一定独立. (B) X 与Y 未必独立.
(C) (X,Y)服从二维正态分布. (D) X+Y 服从一维正态分布.
8. 对于任意两个随机变量X 和Y ,若E ( X Y ) = E X E Y , 则
(A) D ( X Y ) = D X D Y (B) D ( X + Y ) = D X + D Y
(C) X 和Y 相互独立 (D) X 和Y 不相互独立
9. 在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且都服
从正态分布N(a, 0.01). 若以X 表示n 次称量结果的算术平均值,则为使 P ( | X - a | < 0.1 ) ≥ 0.95
n 的最小值应为不小于自然数(Φ(1.65)=0.95, Φ(1.96)=0.975)
(A) 2 (B) 3 (C) 4 (D) 5
10.
设X 1,X 2,……,X n 是来自正态总体N (μ, σ2 )的简单随机样本, 已知σ2 ,对均值 μ进行检验. 设H 0: μ = μ0, H 1: μ ≠ μ0,则
(A )若显著性水平α=0.05下拒绝H 0,则显著性水平α=0.01下必拒绝H 0
(B )若显著性水平α=0.05下拒绝H 0,则显著性水平α=0.01下必接受H 0
(C )若显著性水平α=0.05下接受H 0,则显著性水平α=0.01下必拒绝H 0
(D )若显著性水平α=0.05下接受H 0,则显著性水平α=0.01下必接受H 0
二 填空题 1. 在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为________。

2. 有三个箱子,第一个箱子中有4个黑球,1个白球; 第二个箱子中有3个黑球,3个白球; 第三个箱子中有2个黑球,8个白球。

现随机地取一个箱子,再从这个箱子中取出一个球,这个球为白球的概率为_________________.
3. 设一批产品中有8个正品,2个次品,从中任意取两次,每次取1个,取后不再放回,以X 表示两次取出的次品总数,则EX = ______.
4. 设相互独立的两个随机变量X 、Y 具有同一分布率,且X 的分布率为 X 0 1
P 41 4
3
则随机变量Z = X + Y 的分布函数为 。

5.设随机变量X 的概率密度为 ⎪⎩⎪⎨⎧<≥=-0
0)(22
2x x ce
x f x σ 则c = _________,E X=________________. 6.设总体X 服从二项分布B(10,0.5),n X X X ,,,21 为来自总体X 的简单
随机样本,则当∞→n 时,∑==n i i n X n Y 1
21依概率收敛于 _ __ . 7. 设12,,,n X X X 是来自正态分布总体),(2σμN 的简单随机样本, X
为样本均值,2S 为样本方差,2
T X S =-, 则ET= __ .
8.设随机变量X,Y 相互独立,都服从正态分布N(0,1), 则当 ______________时,(aX-bY)2服从2
χ(1)分布.
9.设一次考试的成绩服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取256个考生的成绩,测得样本均值60x =,样本标准差16s =,则μ的置信度为0.90的置信区间是(用上侧分位数表示)___________。

三.袋中有一个红球,两个黑球,三个白球,从袋中无放回的取两次球,每次取一个,以X,Y 分别表示取出红球,黑球的个数,
求 (I) 随机变量(X,Y)的概率分布
(II) 判断X 与Y 是否独立,为什么?
四.设随机变量(X,Y)的概率密度为 0(,)0x e y x f x y -⎧<<=⎨⎩其它
求 (I) 条件概率P(X<1|Y<1)
(II) (X,Y)的边缘概率密度()X f x
五. 设二维随机变量(X,Y)的概率密度为
3,01,0,(,)0,
.x x y x f x y <<<<⎧=⎨⎩其他 求:Z X Y =-的概率密度).(z f Z
六.设随机变量X 的分布函数为2
1(,)0x F x x x αααα⎧⎛⎫-≥⎪ ⎪=⎨⎝⎭⎪<⎩
其中参数α>0, 设12,,,n X X X 为来自总体X 的简单随机样本,求未知参数α的矩估计量和最大似然估计量.。

相关文档
最新文档