抓住不变量解题
抓不变量解题技巧
抓不变量解题技巧
抓不变量是解题中重要的技巧之一。
不变量是指在问题的求解过程中保持不变的性质或条件。
通过抓住不变量,可以帮助我们更好地理解问题,分析问题,以及找到解决问题的方法。
以下是一些抓不变量的技巧:
1. 观察问题的性质:仔细观察问题,找出其中保持不变的性质。
这可能涉及到数据结构的变化、某种关系的变化或者特定的条件。
2. 列举特例:通过列举一些特殊情况,观察问题的变化规律。
这可以帮助我们找到问题保持不变的部分,并推导出通用的规律。
3. 使用归纳法:如果可以证明某种性质在问题的每一步都得以保持,那么该性质就是一个不变量。
使用归纳法来证明问题中的不变量,可以帮助我们更好地理解问题的解决过程。
4. 分析问题的关键步骤:将问题的求解过程分解为多个步骤,分析每个步骤中保持不变的性质。
这有助于我们更好地理解问题的解决方法,并指导我们进行下一步的求解。
5. 使用反证法:如果可以证明存在某个假设,使得问题的不变量被破坏,那么这个假设就是错误的。
通过使用反证法,可以帮助我们找到问题的不变量,并排除一些错误的假设。
6. 运用数学技巧:对于一些数学问题,我们可以使用一些数学技巧来抓住不变量。
例如,使用数学归纳法,找到问题中递推的关系等。
以上是一些常用的抓不变量的技巧,通过运用这些技巧,我们可以更好地分析和解决问题。
抓住不变量解应用题
应用题中的不变量一、部分量不变例1、育红小学六年级图书角原来有科技书与文艺书本数比是5∶6,借出10本科技书后,科技书与文艺书本数比是3∶4。
科技书原来有多少本?解法一:本题文艺书本数不变。
由原来有科技书是文艺书本数的56,现在科技书是文艺书本数的34,则文艺书本数是10÷(56-34)本,得科技书原来有的本数。
10÷(56-34)×56=10÷112×56=100(本)解法二:本题文艺书本数不变。
由科技书与文艺书本数比。
原来5∶6=10∶12现在3∶4=9∶12则文艺书本数的份数12不变,得科技书原来有的本数。
10÷(10-9)×10=100(本)例2、小军原有的钱数是小明的3/4,小军用去100元后,这时小军的钱数是两人总钱数的5/17。
小军原来有多少元钱?[思路点拔]:题中小军的钱数减少了,总钱数也减少了,但小明的钱数没有变,因此,我们可以把小明的钱数看作单位“1”。
这时“小军用去100元后,这时小军的钱数是两人总钱数的5/17”就转化为“小军用去100后,这时小军的钱数是小明的5/(17-5),即5/12”,再根据题中前两个条件可知,100元相当于小明的钱数的3/4-5/12=1/3。
因此小明的钱数是100÷1/3=300(元),小军原有钱数是300×3/4=400(元)例3、唐洋小学六(4)班男生人数占班级总人数的9/16,后来又转走了4名男生,这时男生人数占班级总人数的8/15,求六(4)班原来有学生多少名?[思路点拔]:从男生转走了4名看出,男生人数和班级总人数都发生了变化,但女生人数没有变。
因此可以把女生人数这个不变量看作单位“1”,原来男生人数占班级总人数的9/16,女生人数就占班级总人数的1-9/16=7/16,原来男生人数是女生人数的9/16÷7/16=9/7;现在男生人数占总人数的8/15,女生人数就占班级总人数的1-8/15=7/15,现在男生人数是女生人数的8/15÷7/15=8/7,男生人数减少了4名,分率减少了9/7-8/7=1/7,据此求出女生人数为4÷1/7=28(名),六(4)班原有学生人数是28÷7/16=64(名) 例4、有含糖率为7%的糖水600克,要使含糖率变为10%,需再加入多少克糖?[思路点拔]:糖水600克中有水:600*(1-7%)=558克,所以,现在糖水总量是:558/(1-10%)=620克那么要加糖:620-600=20克例5、鸡栏里有公鸡和母鸡共80只,其中公鸡,后来又买回若干只公鸡后,母鸡占总只数的,问又买回多少只公鸡?[思路点拔]:首先,找准不变量:母鸡只数,可以直接计算出来,算出其只数80×(1-)=44只。
巧抓不变量解题
第5讲 巧抓不变量解题知识导航在解决分数应用题时,有些时候需要找准题目的不变量,抓不变量来解决。
共有三种形式:一是抓住和不变;二是抓住部分不变;三是抓住差不变。
精典例题例1:有含糖率为7%的糖水600克,要使含糖率变为10%,需再加入多少克糖? 思路点拨模仿练习有含盐率15%的盐水200千克,要使含盐率降为5%,需要加水多少千克?例2:某校合唱队人数是舞蹈队人数的23,如果将合唱队队员调10人到舞蹈队,则合唱队人数变为舞蹈队人数的87,原合唱队有多少人?思路点拨模仿练习某校一年级有两个班,一班人数是二班人数的53,从二班调5人到一班后,一班人数是二班的人数的97,求原来一、二班共有多少人?例3:将40千克含盐25%和60千克含盐10%的两种盐水混合在一起,求混合后盐水的浓度。
思路点拨模仿练习浓度为 70%的酒精溶液500克与浓度为50%的酒精溶液300克混合后所得的酒精溶液的浓度是多少?例4:某校六年级有学生260人,其中男生占全年级总数的138,为了让女生至少能占总人数的73,那么至少还要招多少名女生?模仿练习一个装有各种颜色钢笔的盒中,共装有36支,其中黑色钢笔支数占总数的125,后来又放进一些黑色钢笔,这时黑色钢笔占总数的32,后来放进多少支黑色钢笔?现在共有黑色钢笔多少支?拓展练习1. 五一班原计划抽51的人参加大扫除,临时又有2人主动参加,使实际参加大扫除的人数是余下人数的31,则原计划抽出多少人参加大扫除?2.某学校开学时中学生占10061,后来有50名小学生转入,这样中学生就只占全校人数的53。
那么开学时有小学生多少人?家庭作业1. 把含盐10%的盐水20千克,改制成含盐20%的盐水。
需要加盐多少千克?2. 有盐水750千克,含盐20%,加了一些水后含盐8%,加水多少千克?3. 将80千克含盐25%和20千克含盐10%的两种盐水混合在一起,求混合后盐水的浓度。
4.乙包糖的重量是甲包糖重量的41,如果从甲包中取出10克放入乙包后,乙包的重量就变为甲包的75。
完整六年级奥数 抓不变量解题
六年级奥数——抓“不变量”解题一、知识要点一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
二、精讲精练【例题1】437将的分子与分母同时加上某数后得,求所加的这个数。
619解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是7分母的,由此可求出新分数的分子和分母。
”97分母:(61-43)÷(1-)=8197分子:81×=63981-61=20或63-43=20437解法二:的分母比分子多18,的分母比分子多2,因为分数的与分母的差不变,所以6197将的分子、分母同时扩大(18÷2=)9倍。
97①的分子、分母应扩大:(61-43)÷(9-7)=9(倍)9777×963②约分后所得的在约分前是:==98199×9③所加的数是81-61=20答:所加的数是20。
1练习1:9721、分数的分子和分母都减去同一个数,新的分数约分后是,那么减去的数是多少?1815132、分数的分子、分母同加上一个数后得,那么同加的这个数是多少?13535 的分子、分母加上同一个数并约分后得、,那么加上的数是多少?31975824、将这个分数的分子、分母都减去同一个数,新的分数约分后是,那么减去的数是793多少?【例题2】42将一个分数的分母减去2得,如果将它的分母加上1,则得,求这个分数。
534解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得”5523可知,分母比分子的倍还多2。
由“分母加1得”可知,分母比分子的倍少1,432从而将原题转化成一个盈亏问题。
35分子:(2+1)÷(-)=12243分母:12× -1=172解法二:两个新分数在未约分时,分子相同。
第21周--抓不变量解题【六年级举一反三】学习资料
第二十一周 抓“不变量”解题专题简析:一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
例1.将4361 的分子与分母同时加上某数后得79,求所加的这个数。
解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是分母的79 ,由此可求出新分数的分子和分母。
”分母:(61-43)÷(1-79 )=81分子:81×79 =6381-61=20或63-43=20解法二:4361 的分母比分子多18,79的分母比分子多2,因为分数的 与分母的差不变,所以将79 的分子、分母同时扩大(18÷2=)9倍。
① 79 的分子、分母应扩大:(61-43)÷(9-7)=9(倍)② 约分后所得的79 在约分前是:79 =7×99×9 =6381③ 所加的数是81-61=20答:所加的数是20。
练习1:1、 分数97181 的分子和分母都减去同一个数,新的分数约分后是25 ,那么减去的数是多少?2、 分数113 的分子、分母同加上一个数后得35 ,那么同加的这个数是多少?3、319 的分子、分母加上同一个数并约分后得57,那么加上的数是多少? 4、 将5879 这个分数的分子、分母都减去同一个数,新的分数约分后是23,那么减去的数是多少?例2:将一个分数的分母减去2得45 ,如果将它的分母加上1,则得23 ,求这个分数。
解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得45 ”可知,分母比分子的54 倍还多2。
由“分母加1得23 ”可知,分母比分子的32 倍少1,从而将原题转化成一个盈亏问题。
分子:(2+1)÷(32 -54 )=12分母:12×32-1=17解法二:两个新分数在未约分时,分子相同。
第五讲 六年级数学分数除法应用题(三)“不变量”解题
第五讲 分数除法应用题(三)“不变量”解题一、夯实基础有些分数应用题,数量变化多,分析难度大,不易列式计算。
但是,如果我们仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的“不变量”。
对于这类分数应用题,我们通常是抓住“不变量”,巧设单位“1”,把其他分率统一转化为同一个单位“1”,求出单位“1”的量,把它作为解题的中间条件,问题就迎刃而解了。
运用“量不变”的思维方法解题时,大体上有以下几种情况:(1)分量发生变化,总量没有变化;(2)总量发生变化,但其中有的分量没有发生变化;(3)总量和分量都发生变化,但分量之间的差没有发生变化。
二、典型例题例1.学校阅览室里有36名学生在看书,其中女生占94,后来又有几名女生来看书,这时女生人数占所有看书人数的199。
问后来又有几名女生来看书?例2.有两缸金鱼,如果从甲缸中取出1尾放入乙缸,则两缸的金鱼尾数相等,如果从乙缸中取出1尾放入甲缸,则乙缸是甲缸的21。
求原来甲、乙两缸各有金鱼多少尾?例3.一筐香蕉,筐的重量是香蕉的121,卖掉19千克后,剩下的香蕉重量是筐重量的25倍,求原来筐里有香蕉多少千克?三、熟能生巧1.某校原有科技书和文艺书共630本,其中科技书占20%,后来又买进一些科技书,这时科技书占总数的30%,求又进科技书多少本?2.小芳在看一本小说,晚饭前,已看的页数是未看的71,晚饭后,她又看了8页,这时已看的页数是未看的61,这本小说有多少页?3.某车间男工人数是女工人数的2倍,若调走21个男工,那么女工人数是男工人数的2倍。
这个车间的女工有多少人?四、拓展演练1.一批葡萄运进仓库时的质量是100千克,测得含水量为99%,过一段时间,测得含水量为 98%,这时葡萄的质量是多少千克?2.有甲、乙两个粮库,原来甲粮库存粮的吨数是乙粮库的75。
如从乙粮库调6吨到甲粮库,甲粮库存粮的吨数就是乙的54。
原来甲、乙粮库各存粮多少吨?3.袋中有若干个皮球,其中花皮球占125,后来往袋中又放入了6个花皮球,这时花皮球占皮球总数的21,现在袋中有多少个皮球?星级挑战★1.小强和小明各有图书若干本。
小六培优专题23-分数应用题(抓住不变量)
抓住不变量解分数应用题一、夯实基础有些分数应用题,数量变化多,分析难度大,不易列式计算。
但是,如果我们仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的“不变量”。
对于这类分数应用题,我们通常是抓住“不变量”,巧设单位“1”,把其他分率统一转化为同一个单位“1”,求出单位“1”的量,把它作为解题的中间条件,问题就迎刃而解了。
运用“量不变”的思维方法解题时,大体上有以下几种情况:(1)分量发生变化,总量没有变化;(2)总量发生变化,但其中有的分量没有发生变化;(3)总量和分量都发生变化,但分量之间的差没有发生变化。
二、典型例题例1.学校阅览室里有36名学生在看书,其中女生占94,后来又有几名女生来看书,这时女生人数占所有看书人数的199。
问后来又有几名女生来看书? 分析:解这道题的关键在于抓住不变量(男生人数前后未变),根据男生人数占原来看书总人数的1-94=95,可求出原来看书的男生有多少人。
根据男生人数占现在看书人数的1-199=1910,可求出现在看书的总人数,进而可求出新来了几名女生。
解:36×(1-94)÷(1-199)-36=38-36=2(人) 答:后来又有2名女生来看书。
例2.有两缸金鱼,如果从甲缸中取出1尾放入乙缸,则两缸的金鱼尾数相等,如果从乙缸中取出1尾放入甲缸,则乙缸是甲缸的21。
求原来甲、乙两缸各有金鱼多少尾?分析:本题中,甲、乙两缸金鱼的尾数都在变,但两缸中金鱼的总尾数不变,所以把两缸的金鱼总尾数作为单位“1”。
由题意可知,从甲缸中取出1尾放入乙缸时,乙缸中的金鱼是总尾数的21;从乙缸中取出1尾放入甲缸时,乙缸中的金鱼是总尾数的211+=31 。
两种情况,乙缸中的金鱼相差1+1=2(尾),这2尾就是总尾数的21-31=61 。
所以总尾数为:2÷61=12(尾)。
解:2÷(21-211+)=12(尾) 甲缸原有:12÷2+1=7(尾)乙缸原有:12-7=5(尾)答:甲缸原有7尾,乙缸原有5尾。
抓“不变量”解题
例6、现有浓度为20%的食盐水80克。把这些食盐水变为浓度为75%的食盐水,需要再加食盐多少克?
举一反三(易错点、方法、技巧、知识串联)
培优题
课 堂 札 记
1、育才小学六(1)班原有学生56人,其中女生人数占全班人数的3/7,现又转入若干名女生,这时,女生人数占全班的13/29。问又转入多少名女生?
例题精讲
基础题
课 堂 札 记
考点一:总量不变
题中两个变化的量中,一个量在增加,另一个量减少,但是增加的和减少的同样多,所以两个量的总和保持不变。解题时,一般把两个量的总和看作单位“1”或者把其中一个量看作是1倍的量。
例1、有一个书架,上层与下层书的数量比是7:8,现从上层拿10本给下层,这时上层与下层的数量比是8:7,求原来上、下层各有多少本?
例2、小丽有故事书108本,小芳有故事书140本,小芳借了若干本故事书给小丽后,小丽的故事书的本数是小芳的3倍。问小芳借了多少本故事书给小丽?
例3、有一个书架,上层与下层书的数量比是2:3,现从上层拿15本书给下层,这时上层与下层书的数量比是3:扫除的人数是未参加的 ,后来又有2个同学主动参加,实际参加的人数是未参加人数的 ,问某班五年级有学生多少人?
9、在阅览室里,女生占全室人数的 ,后来又进来5名女生,这时女生占全室人数的 ,阅览室原有多少人?
10、现有浓度为20%的食糖水160克,把这些食糖水变为浓度为75%的食糖水,需加食糖多少克?
11、乙队原有人数是甲队的 。现在从甲队派30人到乙队,则乙队人数是甲队的 .甲乙两队原来各有多少人?
课堂小结
4、甲、乙两个书架放图书册数的比是7︰5,从甲书架上拿78册到乙书架,甲、乙书架上的图书册数的比变为3︰4。甲书架原有图书多少册?
抓住“不变量”解题
一些数学问题,常常会出现数量的增减变化,但与之相关的另外一些量没有改变,如果能抓住题中的“不变量”去分析数量关系,往往会起到重要的作用。
【例1】原来学校田径队女生人数占田径队总人数的13,后来又有6名女生加入,这样女生人数就占田径队总人数的49。
现在田径队有女生多少人?【思路分析】根据条件可知,女生人数发生了变化,总人数也随着发生了变化,但男生人数没有变。
由女生人数占田径队总人数的13,可知女生人数占男生人数的12。
后来有6名女生加入,这样女生人数就占田径队总人数的49。
可以想到,这时女生占男生人数的45。
6名女生就占男生人数的(45-12),根据一个数乘分数的意义,◎相子凡住不变量解题(扫描二维码可见答案,扫码仅需一元)可以求出男生人数,接着就能求出女生人数。
列式解答:6÷(45-12)=20(人)……男生人数20×45=16(人)……女生现在的人数答:现在田径队有女生16人。
【例2】分数319的分子和分母同时加上同一个数,约分后是57,加上的这个数是多少?【思路分析】一个分数的分子和分母同时加上一个相同的数,分母和分子的差是不变的。
所以分数319的分子和分母同时加上同一个数后,分母与分子的差还是19-3=16,而约分后的分数是57,其分母与分子的差是7-5=2,缩小了16÷2=8倍。
要得到约分前的分数,57的分子和分母要分别乘8,即5×87×8=4056,因此加上的数就是40-3=37或56-19=37。
列式解答:19-3=16,7-5=2,16÷2=85×87×8=4056,40-3=37或56-19=37答:加上的这个数是37。
【挑战自我】分数1186的分子和分母同时加上一个相同的数,使得分数变成27,加上的这个数是多少?。
六年级奥数第15讲-抓“不变量”解题(教)
学科教师辅导讲义学员编号:年级:六年级课时数:3学员姓名:辅导科目:奥数学科教师:授课主题第15讲——抓“不变量”解题授课类型T同步课堂P实战演练S归纳总结掌握“总量不变”,“相差量不变”和“部分量不变”三种不变量思想,并能用这些思想解决现实教学目标生活中的问题。
授课日期及时段T(Textbook-Based)——同步课堂知识梳理一个数量的变化,往往会引起其他数量的变化。
如“某班转走3名女生”,女生人数变了,总人数也跟着变了,男生与女生、女生与总人数之间的倍数关系也变了……只有注意到这些变化,才能防止出错。
但在这些数量变化时,与它们相关的另外一些数量却没有改变。
在分析数量关系时,这种不变量常常会起到非常重要的作用。
抓住不变量进行思考,可以顺利解答一些经典的应用题,能达到事半功倍的效果。
根据不变量的不同,可以将“量不变”应用题分为三种类型:“总量不变”应用题、“相差量不变”应用题和“部分量不变”应用题。
典例分析考点一:总量不变题中两个变化的量中,一个量在增加,另一个量减少,但是增加的和减少的同样多,所以两个量的总和保持不变。
解题时,一般把两个量的总和看作单位“1”或者把其中一个量看作是1倍的量。
例1、有一个书架,上层与下层书的数量比是7:8,现从上层拿10本给下层,这时上层与下层的数量比是8:7,求原来上、下层各有多少本?来男生人数是女生人数的9/16÷7/16=9/7;现在男生人数占总人数的8/15,女生人数就占班级总人数的1-8/15=7/15,现在男生人数是女生人数的8/15÷7/15=8/7,男生人数减少了4名,分率减少了9/7-8/7=1/7,据此求出女生人数为4÷1/7=28(名),六(4)班原有学生人数是28÷7/16=64(名)。
P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、育才小学六(1)班原有学生56人,其中女生人数占全班人数的3/7,现又转入若干名女生,这时,女生人数占全班的13/29。
不变量解题四种方法
不变量解题四种方法一、引言不变量是数学中一个重要的概念,它可以帮助我们解决各种问题。
在解题过程中,我们可以根据不变量的特性来判断某些事物是否发生了改变,从而得出结论。
本文将介绍四种使用不变量解题的方法。
二、方法一:数学归纳法1. 定义不变量:在使用数学归纳法时,需要定义一个与题目相关的不变量。
2. 假设成立:假设当n=k时,不变量成立。
3. 证明当n=k+1时也成立:利用假设成立的条件和题目条件,证明当n=k+1时,不变量仍然成立。
4. 结论:由数学归纳法可知,在所有正整数下,该不变量均成立。
三、方法二:矛盾法1. 假设反面命题为真:在使用矛盾法时,需要先假设反面命题为真。
2. 推导出矛盾结论:通过推导和逻辑推理,得出与已知事实相矛盾的结论。
3. 得出结论:由于假设反面命题为真会导致矛盾结论出现,因此原命题为真。
四、方法三:最值法1. 寻找最值:在使用最值法时,需要寻找一个与题目相关的最值。
2. 证明不变量:通过对最值的分析,得出一个与题目相关的不变量。
3. 利用不变量解题:根据不变量的特性,可以得出结论。
五、方法四:反证法1. 假设反命题为真:在使用反证法时,需要假设反命题为真。
2. 推导出矛盾结论:通过推导和逻辑推理,得出与已知事实相矛盾的结论。
3. 得出结论:由于假设反命题为真会导致矛盾结论出现,因此原命题为真。
六、总结以上四种方法都是基于不变量的思想来解决问题。
在实际应用中,我们可以根据具体问题选择合适的方法。
同时,在使用这些方法时也需要注意分析问题、定义不变量等细节问题。
抓不变量解题1
6、笑笑和淘气各有若干元钱,若淘气,若笑笑 给淘气10元,则两人钱数相等,两人各有多 少钱?
7 9
7、甲组人数是乙组的 ,如果从乙班 15 转3人到甲班,这时甲班人数是乙班的 17 甲班原有多少人?
4、有甲乙两个工程队,如果从甲队调18人到乙队,这
时乙队人数是甲队的140%,如果从乙队调12人到甲队 ,这时甲队人数是乙队的2倍,甲乙两队各有多少人?
5、
5 占两个书架总本数的 如果从甲 8
书架多 ?
甲乙两个书架各有书若干本,甲书架书
书架取出90本放到乙书架,则乙书架比甲
1 2
甲乙两书架各有书多少本
例1.甲队人数是乙队的80%,从乙队
抓不变量解题之一:两个量的和不变 。
调8人到甲队,这时甲乙两队的人 数比是8:7,原来甲乙两队各有多少 人?
练一练:
2、甲乙两堆煤,如果从甲堆运5吨到乙堆,则甲
堆是乙堆的 ,如果从乙堆运5吨到甲堆,则两堆 一样多,甲乙两堆各有多少吨?
2 3
3、学校买回一批书,分别放在甲乙两个书架上, 甲书架放了这批书的52%,若从甲书架拿出120本 放在乙书架上,那么甲乙两书架的本数比是2:3, 这批书共有多少本?
六年级奥数抓不变量解题
六年级奥数抓不变量解题
在六年级奥数中,抓不变量是一种常用的解题方法。
抓不变量是指在问题的每一步变换中,通过找到一个保持不变的性质来解决问题。
以下是一些常见的抓不变量解题方法和例子:
1. 总数不变:问题中的某些属性总数保持不变。
例子:有一串递增的连续整数,如果删除其中一个数,则剩下的数可以排成递增的连续整数。
这里总数不变的抓不变量是递增的连续整数的总数。
2. 和不变:问题中的某些数的和保持不变。
例子:一个棋盘上有若干个棋子,每次转动或移动棋盘上的一行或一列。
证明每次转动或移动后,棋盘上白色棋子的和与黑色棋子的和保持相同。
这里和不变的抓不变量是白色棋子的和与黑色棋子的和。
3. 差不变:问题中的某些数之间的差保持不变。
例子:有一组数字,每次选择其中的两个数a和b,然后将它们替换为a+b 和|a-b|。
证明无论选择哪两个数,替换后的数列的最小值都保持不变。
这里差不变的抓不变量是任意两个数的差的绝对值。
抓不变量方法通常需要通过观察问题的性质和变换规律来发现,并根据它们构造合适的抓不变量。
通过抓不变量,可以简化问题的复杂性,提供思考方向,使问题的解决更加直观和简单。
六年级奥数--抓不变量解题
一、知识要点一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有 变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转 化并解答。
二、精讲精练437 将的的分子与分母同时加上某数后得G ,求所加的这个数。
61 9解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18, 所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是g分母的G ,由此可求出新分数的分子和分母。
”9g分母:(61-43)+(1— )=819 g分子:81X- =63981-61=20或63-43=20 43 g解法二:所的分母比分子多18,-的分母比分子多2,因为分数的与分母的差不变,所以 61 9-将5的分子、分母同时扩大(18+2=)9倍。
9 -①Q 的分子、分母应扩大:(61-43)・(9-7)=9 (倍) 9 - - -X9 63②约分后所得的G 在约分刖是:Q =不二 =*9 9 9X9 81③ 所加的数是81-61=20答:所加的数是20。
练习1:97 21、 分数有 的分子和分母都减去同一个数,新的分数约分后是三,那么减去的数是多少?181 5六年级奥数——抓“不变量”解题【例题1】43132、分数百的分子、分母同加上一个数后得三,那么同加的这个数是多少?13 5353、w的分子、分母加上同一个数并约分后得亍,那么加上的数是多少?19 758 24、将元这个分数的分子、分母都减去同一个数,新的分数约分后是耳,那么减去的数是79 3多少?【例题2】42将一个分数的分母减去2得耳,如果将它的分母加上1,则得3,求这个分数。
4解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得5 ”可知,分母比分子的5倍还多2。
由“分母加i得2 ”可知,分母比分子的2倍少1, 从而将原题转化成一个盈亏问题。