北师大版七年级上册数学第二章有理数练习
北师大版数学七年级上册第二章第一节有理数习题
北师大版数学七年级上册第二章第一节有理数习题北师大版数学七年级上册第二章2.1有理数题及答案知识点1]用正数与负数表示相反意义的量1.下列说法中正确的是()A.一个数不是正数就是负数B.不存在既不是正数,也不是负数的数C.0既不是正数,也不是负数D.不带“-”号的数都是正数2.如果向东走3米记作+3米,那么向西走5米记作()A.-5米B.-5C.+5米D.+53.下面说法中,正确的是()A.“向东5米”与“向西10米”不是相反意义的量B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米C.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃D.如果将高1米设为标准,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米常识点2]有理数的观点及其分类4.下列语句。
①所有整数都是正数;②所有正数都是整数;③分数是有理数;④在有理数中除负数就是正数。
个中精确的语句的个数有()A.0个B.1个C.2个D.3个5.把下列各数填在相应的括号里:5,+,0.62,4.-1.1.-6.4,-7,-7,7.1)正整数:();(2)负整数:();(3)分数:();(4)整数:();(5)负有理数:();(6)正有理数:()。
[本领提升]6.有七个数:-5.2,-0.1.-,3.14.其中正数的个数是()A.1个B.2个C.3个D.4个7.如果“盈利10%”记为+10%,那么“亏损6%”记为()A.-16%B.-6%C.+6%D.+4%8.在,1,-2,-3.5这四个数中,是负整数的是()A.0B.1C.-2D.-3.59.下列说法中,正确的是()A.正整数和正分数统称为有理数B.整数和分数统称为有理数C.正整数和负整数统称为整数D.零不是有理数10.下列各数:4.443.-4,3.1159,-1000.个中有理数和非负数的个数划分是()A.5和5B.6和5C.6和4D.4和411.温度从-2℃上升3℃后是()A。
北师大版七年级上册数学第二章 有理数及其运算 含答案
北师大版七年级上册数学第二章有理数及其运算含答案一、单选题(共15题,共计45分)1、下列运算错误的是()A.﹣3﹣(﹣3+ )=﹣3+3﹣B.5×[(﹣7)+(﹣)]=5×(﹣7)+5×(﹣)C.[ ×(﹣)]×(﹣4)=(﹣)×[ ×(﹣4)]D.﹣7÷2×(﹣)=﹣7÷[2×(﹣)]2、计算1-2+3-4的结果为()A.2B.0C.﹣1D.﹣23、下列关于0的说法中错误的是()A.0是绝对值最小的数B.0的相反数是0C.0是整数D.0的倒数是04、下面四个数中比﹣4小的是()A.3B.2C.﹣3D.﹣55、中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A. 个B. 个C. 个D. 个6、下列计算结果正确的是()A. B. C.D.7、若(a﹣2)2+|b﹣3|=0,则以a、b为边长的等腰三角形的周长为()A.6B.7C.8D.7或88、某运动员在东西走向的公路上练习跑步,跑步情况记录如下(向东为正,单位:米):1000,﹣1200,1100,﹣800,1400,该运动员跑的路程共为()A.1500米B.5500米C.4500米D.3700米9、下列对使用四舍五入法得到的近似数描述正确的是()A.近似数5.1万精确到十分位B.2.709的近似数是3C.0.154精确到十分位为0.1D.近似数精确到千位10、瑞安市新行政区划调整为5镇10街道,市区总人口687498人,将这个总人口数保留两个有效数字并用科学记数法表示,则为()A.6.8×10 5B.6.9×10 5C.68×10 4D.69×10 411、下列计算结果最大的是()A.﹣4+7B.﹣4﹣7C.(﹣4)×7D.(﹣4)÷712、下列说法正确的是( )A.正数和负数统称为有理数B.两个数相除,所得商一定小于被除数 C.n个数相乘,积的符号由负因数的个数决定 D.绝对值最小的数是013、有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>bB.a<bC.ab>0D. >014、计算的结果等于()A.-9B.9C.-3D.315、用科学记数法表示439000,结果应为()A. B. C. D.二、填空题(共10题,共计30分)16、有理数a,b,c,d在数轴上对应的点的位置如图,则abc________0,abcd________0.(填“>”或“<”)17、太和殿(明朝称为奉天殿、黄极殿),俗称“金銮殿”,面积为2377.00m2,用科学记数法表示这个数是________.18、的平方的相反数的倒数是________.19、用“>”或“<”填空:|﹣1|________0.20、数轴上一点A表示的数为﹣5,将点A先向右移2个单位,再向左移10个单位,则这个点表示的数是________.21、如果存入2000记作“+2000元”,那么支出3000元记作________.22、计算:2×(﹣)=________ .23、随着台湾“塑化剂事件”的曝光,某市为了保护消费者权益,紧急下架275 000瓶有问题饮料.将275 000用科学记数法表示为________24、用表示一种运算,它的含义是:,如果,那么________.25、-6+0=________三、解答题(共5题,共计25分)26、计算:;27、把下列各数分别填入相应的集合里.⑴正数集合{ }⑵负数集合{ }⑶非负整数集合{ }⑷分数集合{ }28、有理数a既不是正数,也不是负数,b是最小的正整数,c表示下列一组数:-2,1.5,0,130%,,860,-3.4中非正数的个数,则a+b+c等于多少?29、已知a,b,c为三个不等于0的数,且满足abc>0,a+b+c<0,求+ + 的值.30、化简|1-a|+|2a+1|+|a|,其中a<-2.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、D5、C6、D7、D8、B9、D10、B11、A12、D13、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)
北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
北师大版七年级数学上册 第2章 有理数及其运算 单元测试卷(含解析)
北师大版七年级数学上册第 2章有理数及其运算单元测试卷一、选择题(本大题共10小题,共30分)1. 如果“盈利5%”记作+5%,那么−3%表示( )A. 盈利2%B. 亏损8%C. 亏损3%D. 少赚2%2. 在有理数−3,0,3,4中,最小的有理数是( )A. −3B. 0C. 3D. 43. 下列运算正确的是( )A. −22=4B. (−213)3=−8127 C. (−12)3=−18 D. (−2)3=−64. −22−(−2)4的值是( )A. −20B. 16C. −16D. −125. 数轴上点A 、B 表示的数分别是−3、8,它们之间的距离可以表示为A. −3+8B. −3−8C. |−3+8|D. |−3−8|6. 下列说法中正确的有( )①同号两数相乘,符号不变;②几个因数相乘,积的符号由负因数的个数决定;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值等于这两个有理数的绝对值的积. A. 1个B. 2个C. 3个D. 4个7. 高度每增加1千米,气温就下降2℃,现在地面气温是−10℃,那么离地面高度为7千米的高空的气温是( ) A. −4℃B. −14℃C. −24℃D. 14℃8. 一个数的立方是它本身,那么这个数是( )A. 0B. 0或1C. −1或1D. 0或−1或19. 为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统计,目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为( ) A. 0.35×104B. 3.5×103C. 3.5×102D. 35×10210. 计算:3−2×(−1)=( )二、填空题(本大题共6小题,共24分)11.若规定一种运算:a∗b=ab+a−b,则1∗(−2)=___________.12.绝对值小于2的所有整数的和是______.13.如果向南走5米,记作+5米,那么向北走8米应记作______米.14.在实数范围内定义运算“☆”,其规则为:a☆b=a2−b2,则(4☆3)☆6=__________。
最新北师大版七年级数学上册《有理数》课时练习及解析
北师大版数学七年级上册第二章第一节有理数课时练习一、选择题(共13题)1.如果气温上升3度记作+3度,下降5度记作-5度,那么下列(1)+5度;(2)-6度;各量分别表示什么?()A.上升5度;下降6度B.上升6度;下降6度C.上升5度;上升6度D.下降5度;下降6度答案:A解析:解答:根据正负数所表示的意义,可以判定答案为A.分析:考查正负数的定义,注意正负数表示意义相反的量2.向东走-8米的意义是()A.向东走8米 B.向西走8米 C.向西走-8米 D.以上都不对答案:B解析:解答:根据正负数所表示的意义,向东走负数就是向西走正数.分析:考查正负数的定义,注意正负数表示意义相反的量3.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数答案:B解析:解答:零既不是正数也不是负数分析:考查正负数,0是正负数的分界点4.下列说法中,正确的是()(可以看第4页课本)A.正整数、负整数和零统称整数 B.正分数、负分数统称有理数C.零既可以是正整数,也可以是负分数 D.所有的分数都是有理数答案:A解析:解答:根据对整数的认识我们可以知道正整数和负整数统称整数;故答案为A;分数有的不是有理数所以B、D错误;零既不是正数也不是负数所以C错误.分析:考查对整数分类的掌握.5.如果水位下降了3m记着-3m,那么,水位上升4m记作()A.1m B.7m C.4m D.-7m答案:C解析:解答:正负数表示具有相反意义的量,下降为负,反过来上升为正,水位上升4m记作4m.分析:考查对正负数意义的理解.6.向东行进-30米表示的意义是()A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米答案:C解析:解答:正负数表示的是意义相反的量,故向东走负数米就表示向西走正数米,所以答案选择C.分析:考查正负数表示的意义7.下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数答案:B解析:解答:A选项应该是正数、负数和零统称为有理数;C选项0不是最小的数,负数比0还要小;D选项0既不是正数也不是负数;故答案为B选项分析:考查对基本概念的掌握.8.下列不是具有相反意义的量是()A.前进5米和后退5米 B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克 D.超过5克和不足2克答案:C解析:解答:C选项中的身高和体重不是同一个单位量,所以这两个量的变化不具有相反的意义.分析:注意相反意义的量应该是表示的同一个单位量.9.下列说法中不正确的是()A.0是自然数B.0是正数C.0是整数D.0是非负数答案:B解析:解答:通过分析我们可知0既不是正数也不是负数,故答案为B分析:考查对0这个数的分类.10.下列说法不正确的是()A.0不是正数也不是负数B.负数是带“—”的数,正数是带有“+”的数C.非负数是正数或0D.0是一个特殊的整数,它并不只是表示“没有”答案:B解析:解答:—(—1)表示的是正数,所以正数并不一定都带有“+”,所以B选项错误.分析:注意对基本概念和定义的掌握.11.a一定表示()A.正数B.负数C.不是正数就是负数D.以上答案均不对答案:D解析:解答:a是一个字母,可以代表任何数,包括零,所以A、B、C选项错误,正确答案选D.分析:对字母表示的数如果没有限制条件那么就有可能代表所有的数.12.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃B.-6℃C.6℃D.10℃答案:D解析:解答:以0℃为标准,高于0℃记作正,低于0℃记作负,2℃表示比标准高2℃,-8℃表示比标准低8℃,所以最高和最低的差为10℃分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题13.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是()A.美美 B.多多 C.田田 D.乐乐答案:D解析:解答:85分为标准,高于标准为正,低于标准为负,因此可知乐乐高于标准,并且高于标准13分,即成绩最高的为乐乐,答案为D选项.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题二、填空题(共7题)14.如果收入15•元记作+•15•元,•那么支出20•元记作________元.答案:—20解析:解答:正负数是表示意义相反的量,如果收入为正那么支出为负,所以支出20元记作—20元.分析:注意正负数是表示意义相反的量15.某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是______克~390克.答案:380解析:解答:385克为标准,高于标准为正,低于标准为负,因此可知合格的范围为最多高于标准5克或是最多低于标准5克,因此可以判断合格范围是在385克的基础上加或减去5克.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题16.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
七年级数学上册第2章《有理数的混合运算》课堂练习(北师大版)
2.11 有理数的混合运算一、选择题1.若m>0,n<0,则有( ) .A .0>-n mB .0>+n mC .032>+m mD .032>+n n2.已知523--+=x x x y ,当x=-3时,y=-20,当x=3时,y 的值是( ) .A .-17B .44C .28D .173.如果()()01122=-++b a ,那么()b a -2的值为( ) . A .0 B .4 C .-4 D .24.代数式()522+-a 取最小值时,a 值为( ) .A .a=0B .a=2C .a=-2D .无法确定5.六个整数的积36-f e d c b a =⋅⋅⋅⋅⋅,f e d c b a 、、、、、互不相等,则 =+++++f e d c b a ( ) .A .0B .4C .6D .86.计算()()2002200122-+-所得结果为( ) .A .2B .20012C .20012-D .20022二、填空题1.有理数混合运算的顺序是__________________________.2.已知m 为有理数,则2m _________0,12+m _________0,22--m _______0. (填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4.()()()()=----10099654321Λ__________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.6.1-(-2)×(-3)÷3=____________;7.1-(-2)÷(-3)×3=____________.三、解答题1.计算(1)331624⨯÷+; (2))532(0)21(312-÷⨯--; (3))157125(24)3153(15-⨯-+-⨯; (4))8(161571)36()1855(-⨯+-⨯-; (5))]3()6.0321(4[2-÷⨯-+---; (6)])3(2[31)5.01(124--⨯⨯---. 2.计算:.)34()32()1()3(2)2.0(1)1(2220012222002÷+-⨯---+-⨯- 3.当n 为奇数时,计算nn2)1(1-+的值. 4.试设计一个问题,使问题的计算结果是26a .5.某户搬入新楼,为了估计一下该月的用水量(按30天计算).对该月的头6天水表的显示数进行了记录,如下表:而在搬家之前由于搞房屋装修等已经用了15吨水.问:(1)这6在每天的用水量;(2)这6天的平均日用水量;(3)这个月大约需要用多少吨水.6.如图,把一个面积为1的正方形等分成两个面积为21的长方形,接着把其中一个面积为21的长方形等分成两个面积为41的正方形,再把其中一个面积为41的正方形等分成两个面积为81的长方形,如此进行下去,试观察图形来计算:.2561814121++++Λ7.小明靠勤工俭学的收入维持上大学的费用,下面是小明一周的收支情况表(收入为正,单位:元)周一 周二 周三 周四 周五 周六 周日+15 +10 0 +20 +15 +10 +14-8 -12 -19 -10 -9 -11 -8(1)在一周内小明有多少节余;(2)照这样一个月(按30天计算)小明能有多少节余;(3)按以上支出,小明一个月(按30天计算)至少要赚多少钱,才以维持正常开支.参考答案一、选择题1.C 2.C 3.C 4.B 5.A 6.B二、填空题1.略;2.≥,>,<;3.4±,-2;4.1;5.-2.6.-17. -1三、解答题1.(1)70 (2)312 (3)542- (4)-385.5 (5)2.2 (6)61 2.4337- 3.04.以a 为棱长的正方体的表面积为26a 。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.若海平面以上500米,记作+500米,则海平面以下100米可记作( )A .100米B .-100米C .500米D .-500米2.已知x y ,为有理数,如果规定一种运算“*”,*1x y xy =+则()()2*5*3-的值是( )A .30-B .29-C .33-D .32-3.下列各组数中,互为相反数的是( )A .3与13-B .()2--与2C .25-与()25-D .7与7-4.据有关部门统计,2018 年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442 × 107B .0.1442 × 107C .1.442 × 108D .1442 × 1045.下列说法:①若a b =﹣1,则a 、b 互为相反数;①若a+b <0,且b a>0,则|a+2b|=﹣a ﹣2b ;①一个数的立方是它本身,则这个数为0或1;①若﹣1<a <0,则a 2>﹣1a;①若a+b+c <0,ab >0,c >0,则|﹣a|=﹣a ,其中正确的个数是( )A .2个B .3个C .4个D .5个 6.平面展开图按虚线折叠成正方体后,相对两个面上的数互为相反数,则x 、y 的值为( )A .2,3B .-2,-3C .-1,-3D .-1,-27.下列各组数中,运算结果相等的是( )A .22()3与223 B .﹣22与(﹣2)2C .﹣(﹣5)3与(﹣5)3D .﹣(﹣1)2015与(﹣1)2016 8.下列说法中正确的是( )A .两个有理数,绝对值大的反而小B .两个有理数的和为正数,则至少有一个加数为正数C .三个负数相乘,积为正数D .1的倒数是1,0的倒数是09.第十四届中国(合肥)国际园林博览会在合肥骆岗中央公园举办,该公园占地面积12.7平方公里,是世界最大的城市中央公园.2023年中秋、国庆八天假期,接待总游客突破225万人,创造了历史记录.其中225万用科学记数法表示为( )A .62.2510⨯B .72.2510⨯C .52.2510⨯D .422510⨯10.下列说法正确的是( )A .如果0x =,那么x 一定是0B .如果3x =,那么x 一定是3C .3和8之间有4个正数D .1-和0之间没有负数了11.用四舍五入法按要求把2.05446取近似值,其中错误的是 ( )A .2.1(精确到0.1)B .2.05(精确到百分位)C .2.05(保留2个有效数字)D .2.054(精确到0.001)12.比1小2的数是( )A .2B .﹣2C .﹣1D .﹣2二、填空题13.2023年全国普通高校毕业生规模预计达到1158万人,数11580000用科学记数法表示为 . 14.79-的绝对值是 .15.已知|x+2|=1,则x=16.在247⎛⎫- ⎪⎝⎭中,底数是 ,指数是 ,乘方的结果为 . 17.下列7个数:47-,1.01001001与4333,0,-π,-6.9,0.12,其中分数有 个.三、解答题18.已知算式“()1825--⨯-”.(1)聪聪将数字“5”抄错了,所得结果为24-,则聪聪把“5”错写成了______;(2)慧慧不小心把运算符号“×”错看成了“+”,求慧慧的计算结果比原题的正确结果大多少?19.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣22,2,﹣1.5,0,|﹣3|和132.20.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小王把自家种的苹果放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周苹果的销售情况: 星期一 二 三 四 五 六 日 苹果销售超过或不足计划量情况(单位:千克) 4+ 6- 4- 10+ 8- 12+ 6+(1)小王第一周实际销售苹果超过或不足多少千克?实际销售苹果的总量是多少千克?(2)若小王按7元/千克进行苹果销售,成本为3元/千克,且平均运费为1元/千克,则小王第一周销售苹果的利润一共多少元?21.出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午的行程记录如下:(单位:千米)+15,-3,+14,-11,+10,-18,+14(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(2)若汽车的耗油量为0.06升/千米,油价为7.5元/升,这天下午共需支付多少油钱?22.小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,+-+-+--++-+他这天下午行车里程(单位:千米)如下:14,3,7,3,11,4,3,11,6,7,9(1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)李师傅这天下午共行车多少千米?(3)若李师傅的车平均行驶每千米耗油0.1升,则这天下午李师傅用了多少升油?23.如图,在平面直角坐标系中,点A 、B 的坐标分别为(),0A a ,(),0B b 且a 、b 满足240a b +-=,现同时将点A 、B 分别向右平移2个单位,再向上平移3个单位,得到点A 、B 的对应点C 、D ,连接AC 、BD 、CD .(1)请直接写出以下各点的坐标:A (____,____);B (____,____);C (____,____);D (____,____);(2)若点M 在x 轴上,且三角形ACM 的面积是平行四边形ABDC 面积的13,求M 点的坐标; (3)点Q 在线段CD 上,点P 是线段BD 上的一个动点,连接PQ 、PQ ,当点P 在线段BD 上移动时(不与点D 、B 重合),请找出AOP ∠、OPQ ∠和PQC ∠的数量关系,并证明你的结论.24.两百年前,德国数学家哥德巴赫发现:任何一个不小于6的偶数都可以写成两个奇素数(既是奇数又是素数)之和,简称:“1+1 ”.如633=+,1257=+等等.众多数学家用很多偶数进行检验,都说明是正确的,但至今仍无法从理论上加以证明,也没找到一个反例.这就是世界上著名的哥德巴赫猜想.你能检验一下这个伟大的猜想吗?请把偶数42写成两个奇素数之和.42= + ,或者42= + . 你是否有更大的发现:把42写成4个奇素数之和?42= + + + .参考答案1.B2.D3.C4.A5.B6.C7.D8.B9.A10.A11.C12.C13.71.15810⨯14.7915.-1或-316. - 472 1649 17.5/五18.(1)6(2)慧慧的计算结果比原题的正确结果大1119.212 1.502332-<-<<<-< 20.(1)超过14千克,实际销售苹果的总量为714千克;(2)利润一共为2142元.21.(1)将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米(2)这天下午共需支付油费38.25元22.(1)在下午出车点的东边38千米(2)78千米;(3)7.8升23.(1)2- ;0 ;4;0;0;3;6;3(2)()6,0-或()2,0(3)360PQC AOP OPQ +∠+∠=︒∠24.5,37;11,31;5,5,13,19。
北师大版数学七年级上册第二章有理数与其运算练习题(有答案)
第二章有理数及其运算2.1有理数基础题知识点 1认识正数与负数1.( 连云港中考 ) 下列各数中,为正数的是(A)1A. 3B.-2C.- 2D. 0 2.( 临沂中考 ) 四个数- 3, 0,1, 2,其中负数是 (A)A.- 3 B . 0C. 1D. 2 3.在- 1, 0, 1, 2 这四个数中,既不是正数也不是负数的是(B) A.- 1B. 0C. 1D. 24.下列各数:- 101.2 ,+ 18,0.002418,0.002 ,+ 3.2 ;属于负数的有,- 60,0,-,+ 3.2 ,属于正数的有+54- 101.2 ,- 60,-.5知识点 2用正、负数表示具有相反意义的量5.( 咸宁中考 ) 冰箱冷藏室的温度零上 5 ℃,记作+ 5 ℃,保鲜室的温度零下 7℃,记作 (B) A.7 ℃B.-7 ℃C.2 ℃D.- 12 ℃6.下列不具有相反意义的是(C)A.前进 5 m 和后退 5 mB.节约 3 t和浪费 3 tC.身高增加 2 cm 和体重减少 2 kgD.超过 5 g 和不足 5 g7.若火箭发射点火前 5 秒记作- 5 秒,则火箭发射点火后10 秒应记作 (D)A.- 10 秒B.-5秒C.+5秒D.+ 10 秒8.如果+ 80 m 表示向东走80 m,那么- 60 m 表示向西走 60__m.知识点 3有理数的概念及分类9.在 0, 1,- 2,- 3.5 这四个数中,为负整数的是 (C)A. 0B. 1C.- 2D.- 3.510.有理数可按正、负性质分类,也可按整数、分数分类:①按正、负性质分类:②按整数、分数分类:正整数正整数正有理数正分数整数有理数0有理数负整数负整数分数正分数负有理数负分数负分数1211.下列各数: 3,- 5,-2,0, 2, 0.97 ,- 0.21 ,- 6,9,3, 85, 1,其中正数有 7 个,负数有 4 个,正分数有 2 个,负分数有 2 个.12.如图是数学果园里的一棵“有理数”知识树,请仔细辨别分类,把各类数填在它所属的相应横线上.中档题313.在数- 5, 3, 0,-2, 100, 0.4 中,非负数有 (A)A.4 个B.3 个C.2 个D.1 个14.下列说法正确的是(D)A.+ 2 是正数,但 3 不是正数B.一个数不是正数就是负数C.含有负号的数就是负数D.- 0.25 是负分数15.请按要求填出相应的两个有理数:1 3(1)既是正数也是分数: 22,4( 答案不唯一 ) ;(2)既不是负数也不是分数: 2, 0( 答案不唯一 ) .16.“一只闹钟,一昼夜误差不超过±12 秒.”这句话的含义是:闹钟走一天的时间比标准时间最多慢12 秒或最多快12秒.17.下面是几个家庭五月份用电支出比上月支出变化情况:赵力减少25%肖刚增加10%王辉减少17%李玉增加5%田红增加8%陈佳减少12%分别用正、负数写出这几家五月用电支出比上月支出的增长率.解:这六家五月用电支出比上月支出的增长率分别为:赵力-25%,肖刚+ 10%,王辉- 17%,李玉+ 5%,田红+ 8%,陈佳- 12%.18.请用两种不同的分类标准将下列各数分类:3 1-15,+ 6,- 2,- 0.9 , 1,5, 0, 34, 0.63 ,- 4.95.解:分类一:整数:-15,+ 6,- 2, 1, 0;31分数:- 0.9 ,5, 34, 0.63 ,- 4.95.3 1分类二:正数:+ 6, 1,5, 34, 0.63 ;0;负数:- 15,- 2,- 0.9 ,- 4.95.19.小米家住黄河边的某市,黄河大堤高出某市区20 米,另有铁塔高约58 米,是该市的一大景观,小米和好朋友小华、玲玲出去玩,小米站在黄河大堤上,玲玲站在地面放风筝,顽皮的小华则爬上了铁塔顶,小米说:“以大堤为基准,记为 0 米,则玲玲所在的位置高为- 20 米,小华所在位置高为+ 58 米.”小华说:“以铁塔顶为基准,记为 0 米,则玲玲所在的位置高为- 58 米,小米所在的位置高为- 38 米.”玲玲说:“小华的位置比我高 58 米.”他们谁说得对?解:小华和玲玲说得对.理由:用正、负数表示具有相反意义的量时,由于“基准”(0 米点 ) 的选法不同,表示的结果也不同,小米以大堤为基准,玲玲所在的位置高为-20 米,小华所在位置高为38 米.综合题20.将一串有理数按下列规律排列,回答下列问题:(1)在 A 处的数是正数还是负数?(2)负数排在 A、 B、C、 D 中的什么位置?(3) 第 2 017 个数是正数还是负数?排在对应于A、 B、 C、D 中的什么位置?解: (1) 在 A 处的数是正数.(2)B 和 D位置是负数.(3) 第 2 017 个数是负数,排在对应于 B 的位置.2.2数轴基础题知识点 1认识数轴1.关于数轴,下列说法最准确的是(D)A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.下列各图中,所画数轴正确的是(D)知识点 2在数轴上表示数3.如图,在数轴上点 A 表示 (A)A.- 2B. 2C.± 2D. 04.在如图的数轴上,表示- 2.75 的点是 (D)A.点E B.点FC.点 G5.在数轴上表示数-A.0 个C.2 个D.点 H3, 0, 5,2,- 1 的点中,在原点右边的有B.1 个D.3 个(C)6.在数轴上,表示- 2 的点在原点的左侧,它到原点的距离是7.画数轴,并在数轴上表示下列各数:2 个单位长度.12,- 2.5 ,0,3,- 4.解:如图:知识点 3利用数轴比较有理数的大小8.如图,下列说法中正确的是(B)A. a> b B. b> aC. a> 0D. b> 09.( 成都中考A.- 3) 在- 3,- 1, 1,3 四个数中,比-B.- 12 小的数是C. 1(A)D. 310.已知有理数x, y 在数轴上的位置如图所示,则下列结论正确的是(C)A. x>0>y B. y>x>0C. x<0<y D. y<x<011 11.把下列各数在数轴上表示出来,并用“<”把各数连接起来:-2, 4,- 4, 0, 4.解:如图,大小关系为:-11 4<- 22< 0<4< 42.中档题12.下列语句中,错误的是(B)A.数轴上,原点位置的确定是任意的B.数轴上,正方向可以是从原点向右,也可以是从原点向左C.数轴上,单位长度可根据需要任意选取D.数轴上,与原点的距离等于8 的点有两个1(B) 13.( 济宁中考 ) 在 0,- 2, 1,这四个数中,最小的数是2A. 0B.- 2 C. 11 D.214.数轴上的点 A, B, C, D分别表示 a, b, c, d 四个数,已知A在 B的左侧, C在 A,B 之间, D在 B的右侧,则下列式子成立的是 (A)A. a<c<b<d B. a<b<c<dC. a<d<c<b D. a<c<d<b15.将一刻度尺如图所示放在数轴上( 数轴的单位长度是 1 cm) ,刻度尺上的“ 0 cm”和“ 15 cm ”分别对应数轴上的- 3.6和 x,则 (C)A. 9< x< 10B. 10< x<11C. 11< x<12D. 12< x<1316.若数轴上的点 A 表示+ 3,点 B 表示- 4.2 ,点 C 表示- 1,则点17.如图所示,数轴上的点 A 向左移动 2 个单位长度得到点B,则点A和点 B 中离点B 表示的数是-C较远的是点1.A.18.小红在做作业时,不小心将墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断被墨迹盖住的整数共有多少个?解:因为- 13<- 12.6 <- 12,- 8<- 7.4 <- 7,所以此段整数有-12,- 11,- 10,- 9,- 8 共 5 个;同理 10< 10.6 < 11,17< 17.8 < 18,所以此段整数有11,12,13,14,15,16,17 共 7 个,所以被墨迹盖住的整数共有5+7= 12( 个) .19.如图,点 A 表示的数是- 4.(1)在数轴上表示出原点 O;(2)指出点 B 所表示的数;(3) 在数轴上找一点 C,它与点解: (1) 如图.B 的距离为 2 个单位长度,那么点C表示什么数?(2)点 B表示 3.综合题20.(1) 借助数轴,回答下列问题.①从- 1 到 1 有 3 个整数,分别是-1、 0、 1;②从-2到2有5个整数,分别是-2、- 1、 0、 1、 2;③从-3到3有7个整数,分别是-3、- 2、- 1、 0、 1、2、 3;④从- 200 到 200有 401 个整数;⑤从- n 到 n(n 为正整数 ) 有(2n + 1)个整数;(2)根据以上规律,直接写出:从-2.9 到 2.9 有 5 个整数,从- 10.1 到 10.1 有 21 个整数;(3)在单位长度是 1 厘米的数轴上随意画出一条长为 1 000 厘米的线段 AB,求线段 AB盖住的整点的个数.解: 1 000 个或 1 001 个.2.3绝对值基础题知识点 1相反数的概念11.( 河南中考 ) -的相反数是 (B)311A.-3 B. 3C.- 3D. 3 2.相反数等于本身的数为(C)A.正数B.负数C. 0D.非负数3.下列各组数中互为相反数的是(D)1A.2 与- 3B.- 3 与-31C. 2 016 与- 2 015D.- 0.25 与44.下列说法中正确的是(C)A.一个数的相反数是负数B. 0 没有相反数C.只有一个数的相反数等于它本身D.表示相反数的两个点,可以在原点的同一侧115.6和-6互为相反数;- 2 017 的相反数是 2__017; 1 的相反数是- 1.知识点 2绝对值的意义及计算6.在数轴上表示- 2 的点到原点的距离等于(A)A. 2B.- 2C.± 2D. 47.( 安徽中考 ) - 2的绝对值是 (B)A.- 2B. 2C.± 21 D.28.若 | - a| = 5,则 a 的值是 (D)1A.- 5B. 5 C. 5D.± 59.- 3 的绝对值是3;- | - 2.5|=- 2.5 ;绝对值是 6 的数是± 6.10.计算: |4| + |0| -| - 3| =1.知识点 3绝对值的性质11.任何一个有理数的绝对值一定(D)A.大于 0B.小于 0C.不大于 0D.不小于 012.在有理数中,绝对值等于它本身的数有(D)A.一个B.两个C.三个D.无数个13.(1) ①正数: | + 5| = 5, |12|= 12;②负数: | - 7| = 7,| - 15| =15;③零: |0| = 0;(2) 根据 (1)中的规律发现:不论正数、负数和零,它们的绝对值一定是非负数,即|a| ≥ 0.知识点 4利用绝对值比较有理数的大小14.下列各式中正确的是 (D)A.| -3| >| -4|B.- 2> | -5|89C. 0> | - 0.000 1|D.| -9| >-1015.用“>”或“<”填空:(1) - 7<- 6.5;(2) - 3>- 4;(3) - 5<- 4.中档题16.如果 a 与 1 互为相反数,那么 |a| 等于 (C)A. 2B.- 2C. 1D.- 117.下列说法正确的是 (D)A.- |a| 一定是负数B.只有两个数相等时它们的绝对值才相等C.若 |a| =|b|,则 a 与 b 相等D.若一个数小于它的绝对值,则这个数为负数18.( 南京中考 ) 数轴上点 A, B 表示的数分别是5,- 3,它们之间的距离可以表示为 (D)A.- 3+ 5B.- 3- 5C.| -3+ 5|D. | -3- 5|19.如果 a>0, b<0, a<|b|,那么 a、 b、- a、- b 的大小顺序是 (A)A.- b>a>- a>b B. a>b>- a>- bC.- b>a>b>- a D. b>a>- b>- a20.绝对值小于 6 的整数有11 个,它们分别是±5,± 4,± 3,± 2,± 1,0;绝对值大于 3 且小于 6 的整数是± 5,± 4.21.( 河北中考改编) 若有理数m, n 满足 |m- 2| + |2 017 -n| = 0,则 m+ n= 2__019.22.比较下列各对数的大小:(1)0 和 | -2| ;解: 0<| - 2|.4 2(2)-5和-3;4 2解:- <- .5 3(3)-( -4)和| -4|.解:- (-4)=| -4|.23.计算:2(1)|+2 |×|-9|;38解:原式=3× 9= 24.3-7|.(2)| - | ÷|148382解:原式=4×15= 5.以上,则这袋奶粉视为不合格产品.现抽取10 袋样品进行质量检测,结果如下:( 单位:克 )袋号12345678910记作- 203- 4- 3- 5445- 3(1)这 10 袋奶粉中,有哪几袋不合格?(2)质量最大的是哪袋?它的实际质量是多少?解: (1) 第 4 袋和第 6 袋不合格.(2)质量最大的是第 9 袋,实际质量是 505 克.综合题25.已知 a,b, c 为有理数,且它们在数轴上的位置如图所示.(1)试判断 a, b, c 的正负性;(2)在数轴上分别标出 a, b,c 的相反数的位置;(3)根据数轴化简:①|a| =- a;② |b| = b;③ |c| = c;④| - a| =- a;⑤ | - b| = b;⑥ | - c| = c.(4)若 |a| =5.5 , |b| = 2.5 ,|c| = 7,求 a, b,c 的值.解:(1)a 为负, b 为正, c 为正.(2)如图.(4)a =- 5.5 , b= 2.5 , c= 7.小专题 ( 一)绝对值的应用类型 1利用绝对值比较大小1.比较下面各对数的大小: (1) - 0.1 与- 0.2 ;解:因为 | - 0.1| = 0.1 , | -0.2| = 0.2 ,且 0.1 < 0.2 ,所以- 0.1 >- 0.2.4 5 (2) -与-;5644 245 5 25解:因为 | -5| =5=30,| -6| =6=30,24 25且30<30,4 5所以- 5>- 6.2.比较下列各对数的大小: (1) - 8与-|-1|;21 71 1 解:- | -7| =- 7,881 1 3 8 1因为 | - 21| = 21, | -7| = 7= 21,且 21> 7,所以-8 21<- |1- 7|.2 0152 016(2) - 2 016 与-2017.2 015 2 015 2 0162 016解:因为 -2 016 =2 016, -2 017 = 2 017 ,2 015 2 016且2 016<2 017,2 015 >- 2 016所以- .2 016 2 017类型 2巧用绝对值的性质求字母的值3.已知 |x -3| + |y -5| = 0,求 x + y 的值. 解:由 |x -3| + |y -5| = 0,得 x - 3= 0, y - 5= 0. 解得 x = 3, y = 5. 所以 x + y = 3+ 5= 8.4.若 x 的相反数是- 3, |y| =5,且 x <y ,求 y -x 的值.解:因为 x 的相反数是- 3,所以 x = 3. 因为 |y| = 5,所以 y =± 5. 因为 x < y ,所以 x =3, y = 5. 所以 y - x = 5- 3= 2.类型 3绝对值在生活中的应用5.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正,向北为负,他这天下午行车里程如下 ( 单位:千米 ) :+ 15,- 3,+ 14,- 11,+ 10,+ 4,- 26. 若汽车耗油量为0.1 L/km ,这天下午汽车共耗油多少升?解: 0.1 × (| +15| +| -3| +| +14| +| -11| +| + 10| +| +4| + | -26|)= 8.3(L).6.在活动课上,有 6 名学生用橡皮泥做了 6 个乒乓球,直径可以有0.02毫米的误差,超过规定直径的毫米数记作正数,不足的记为负数,检查结果如下表:做乒乓李明张兵王敏余佳赵平蔡伟球的同学检测结果+ 0.031- 0.017+ 0.023- 0.021+ 0.022- 0.011(1)请你指出哪些同学做的乒乓球是合乎要求的?(2)指出哪个同学做的乒乓球质量最好,哪个同学做的质量最差?(3)请你对 6 名同学做的乒乓球质量按照最好到最差排名;(4)用学过的绝对值知识来说明以上问题.解: (1) 张兵、蔡伟.(2)蔡伟做的乒乓球质量最好、李明做的乒乓球质量最差.(3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用,对误差来说绝对值越小越好.小专题 ( 二)三种方法比较有理数的大小方法 1 利用数轴比较大小1.如图,在数轴上有 a, b, c,d 四个点,则下列说法正确的是 (C)A. a>b B. c<0C. b<c D.- 1>d2.有理数 a 在数轴上对应的点如图所示,则a,- a,- 1 的大小关系是 (C)A.- a<a<- 1B.- a<- 1<aC. a<- 1<- a D. a<- a<- 13.大于- 2.5 而小于 3.5的整数共有 (A)A.6 个B.5 个C.4 个D.3 个4.在数轴上表示下列各数,并把这些数用“>”连接起来.13. 5, 3.5 的相反数,-2,绝对值等于3的数,最大的负整数.1解:各数分别为: 3.5 ,- 3.5 ,-,± 3,-1.在数轴上表示如图:1这些数由大到小用“>”连接为: 3.5 >3>-2>- 1>- 3>- 3.5.5.点 A、 B 在数轴上的位置如图所示,它们分别表示数a、b.(1)请将 a, b, 1,- 1 四个数按从小到大的顺序排列起来;(2)若将点 B 向右移动 3 个单位长度,请将 a、 b、- 1 三个数按从小到大的顺序排列起来.解:(1)b< - 1<a<1.(2)- 1<a<b.方法 2利用比较大小的法则比较大小6.下列各式成立的是(B)A.- 1>0B. 3>- 2C.- 2<- 5 7.( 安徽中考A.- 4D. 1<- 2) 在- 4, 2,- 1,3 这四个数中,比-B.2C.- 12 小的数是D. 3(A)8.( 西双版纳中考) 若75a=- 8,b=- 8,则a, b 的大小关系是a< b( 填“>”“<”或“=”) .9.已知数: 0,- 2,1,- 3,5. (1)用“ >”把各数连接起来;解: 5>1>0>- 2>- 3.(2)用“ <”把各数的相反数连接起来;解:- 5<-1<0<2<3.(3)用“ >”把各数的绝对值连接起来.解: |5|>|-3|>|-2|>|1|>|0|.方法 3利用特殊值比较大小10.如图,数轴上的点表示的有理数是a, b,则下列式子正确的是(B)A.- a< b B. a<bC. |a| < |b|D.- a<- b11.a, b 两数在数轴上的对应点的位置如图,下列各式正确的是(D)A. b> a B.- a< bC. |a| > |b|D. b<- a< a<- b2.4有理数的加法第 1课时有理数的加法法则基础题知识点 1 有理数的加法法则1.下列各式的结果,符号为正的是(C)A.( -3) +( -2)B.( -2) +0C.( -5) +6D.( -5) +52.( 天津中考 ) 计算 ( - 3) + ( -9) 的结果是 (B)A. 12B.- 12C. 6D.- 63.( 梅州中考 ) 计算 ( - 3) + 4 的结果是 (C)A.- 7B.- 1C. 1D. 74.已知 a,b 两数互为相反数,则a+ b= (C)A. 2a B. 2bC. 0D. 15.下列结论不正确的是 (D)A.若 a>0, b>0,则 a+ b>0B.若 a<0, b<0,则 a+ b<0C.若 a>0, b<0,且 |a|>|b|,则 a+ b>0D.若 a<0, b>0,且 |a|>|b|,则 a+ b>06.在每题的横线上填写和的符号或结果.(1)( +3) +( +5) =+ (3 + 5)=8;(2)( -3) +( -5) =- (3 + 5)=- 8;(3)( - 16) + 6=- (16 - 6) =- 10;(4)( - 6) +8=+ (8 - 6) = 2;(5)( - 2 015) + 0=- 2__015.7.计算:(1)( -4) +( -6) ;解:原式=- 10.(2)( - 12) + 5;解:原式=- 7.1(3)0 +( -2) ;1解:原式=-.(4)( - 2.5) + ( - 3.5) .解:原式=- 6.知识点 2有理数加法的应用8.小明家冰箱冷冻室的温度为-A.4 ℃5 ℃,调高B.9 ℃4 ℃后的温度为(C)C.- 1℃D.- 9℃9.一个物体在数轴上做左右运动,规定向右为正,按下列方式运动,列出算式表示其运动后的结果:(1)先向左运动 2 个单位长度,再向右运动7 个单位长度.列式:-2+ 7;10 .某人某天收入 265 元,支出 200 元,则该天节余 65 元.11 .已知飞机的飞行高度为 10 000 m ,上升 3 000 m 后,又上升了-5 000 m ,此时飞机的高度是 8__000m.中档题12 .( 玉林、防城港中考 ) 下面的数中,与- 2 的和为 0 的是 (A) A . 2 B .- 2 C. 1 12 D .-213 .有理数 a 、 b 在数轴上对应的位置如图所示,则 a + b 的值 (A)A .大于 0B .小于 0C .小于 aD .大于 b14.如果两个数的和是正数,那么 (D)A .这两个数都是正数B .一个为正,一个为零C .这两个数一正一负,且正数的绝对值较大D .必属上面三种情况之一 15 .一个数是 25,另一个数比 25 的相反数大- 7,则这两个数的和为 (B) A . 7 B .- 7 C . 57 D .- 5716 .若 x 是- 3 的相反数, |y| = 5,则 x + y 的值为 (D)A . 2B . 8C .-8或 2D .8 或- 217 .已知 A 地的海拔高度为-53 米,而 B 地比 A 地高 30 米,则 B 地的海拔高度为-23 米.18 .如图,三个小球上的有理数之和等于-2.19.计算:3 3 (1)+(- );22解:原式= 0.1(2)1 6+( -4);5解:原式=- 26.13(3)7 5+ ( - 25) ;13解:原式=+ (7 5- 25)3 = 45.1(4) -8.75 +( -34).1解:原式=- (8.75 + 34)=- 12.20.已知有理数a, b,c 在数轴上的位置如图所示,请根据有理数的加法法则判断下列各式的正负性:①a;② b;③- c;④ a+ b;⑤ a+ c;⑥ b+ c;⑦ a+ ( -b) .解:①③⑦为正;②④⑤⑥为负.综合题21.若 |a - 2| 与 |b + 5| 互为相反数,求a+ b 的值.解:因为 |a - 2| 与 |b + 5| 互为相反数,所以 |a - 2| + |b + 5| = 0.所以 a= 2, b=- 5.所以 a+ b= 2+ ( - 5) =- 3.第 2 课时 有理数的加法运算律基础题知识点 1有理数的加法运算律1 3 32 1.计算 3+( -2 ) +5 +( - 8 ) 时,用运算律最为恰当的是 (B)4545133 2A . [3 4+ ( -25)] + [5 4+ ( - 85)]1 3 32 B .(3 4+54) +[( -25) +( -85)] 1 2 3 3 C . [3 4+ ( -85)] + [( - 25) +54]3 3 1 2D .[( -2 ) +5 ] +[34 +( -8 )]5 4557 + ( -6.71) 的结果为 (D)2.计算 +( + 4.71)+1212A .-2B .3C .-3D .-13.在下面的计算过程后面填上运用的运算律. 计算: (-2)+(+3)+(-5)+(+4).解:原式= ( -2) +( -5) +( +3) +( +4)( 加法交换律 )= [( - 2) +( - 5)] +[( + 3) +( + 4)]( 加法结合律 )= ( -7) + (+7) = 0.2 3 22 2 4.在计算3 + ( - 2.53)+ ( - 2 ) + 3.53 + ( - ) 时,比较简便的计算方法是先计算3 +( - ) 和 (-2.53) +3.53 .3 5 3335.计算:(1)( - 0.8) + 1.2 + ( - 0.7) +( - 2.1) = [( - 0.8) + ( - 0.7) + ( - 2.1)] + 1.2 =- 3.6 + 1.2 =- 2.4 ; (2)32.5 + 46+ ( - 22.5)= [32.5 + ( - 22.5)] + 46= 10+46= 56. 6.运用加法的运算律计算下列各题: (1)24 + ( -15) + 7+( - 20) ;解:原式= (24 + 7) + [( - 15) + ( - 20)] = 31+ ( - 35) =- 4.(2)18 + ( -12) + ( -18) + 12;解:原式= [18 + ( -18)] + [( -12) + 12]= 0+ 0 = 0.3 14 2(3)1 7+ ( - 23) + 27+( - 13) .3 4 12解:原式= (1 7 +27) +[( -23) +( -13)] = 4+( -4) = 0.知识点 2 有理数加法运算律的应用7.李老师的银行卡中有5 500 元,取出 1 800 元,又存入 1 500 元,又取出 2 200 元,这时银行卡中还有 3__000元钱.8.检修小组从 A 地出发,在东西路上检修线路.如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下 ( 单位:千米 ) :- 4,+ 7,- 9,+ 8,+ 6,- 4,- 3. 那么收工时距 A 地东 1 千米. ( 说明方向和距离 ) 9.某公司 2016 年前四个月盈亏的情况如下 ( 盈余为正 ) :- 160.5 万元,- 120 万元,+ 65.5 万元, 280 万元.试问 2016 年前四个月该公司总的盈亏情况.解: ( - 160.5) + ( -120) + ( +65.5) + 280= [( - 160.5) + ( + 65.5)] +[( - 120) + 280]= ( - 95) +160= 65( 万元 ).答:盈余 65 万元.中档题10 .下列算式正确的是 (B) A .3+( - 2)=2+ 3B .4+( - 6)+3= (-6) + 4+3C . [5 + ( -2)] + 4=[5 + ( -4)] + 2151 5D. 6+( -1)+( +6) =( 6+ 6) +( + 1)115 111 .计算 0.75 + ( - 4 ) + 0.125 + ( - 7) +( - 48) 的结果是 (B)5 5C .522 A . 6B .- 67 D .- 57 7712 .已知 a +c =- 2 016 , b + ( - d) = 2 017 ,则 a + b + c + ( - d) =1.13 .上周五某股民小王买进某公司股票1 000 股,每股 35 元,下表为本周内每日股票的涨跌情况(单位:元 ):星期 一 二 三 四 五每股涨跌+ 4+ 4.5-1- 2.5- 6则在星期五收盘时,每股的价格是 34 元.14 .用适当方法计算:(1)0.36 + ( - 7.4) +0.5 + ( -0.6) + 0.14 ;解:原式= (0.36 + 0.14) + [( -7.4)+ ( - 0.6)] +0.5= 0.5 + ( -8) + 0.5 =- 7.(2)( -51) +( +12) +( -7) +( -11) +( + 36) ;解:原式= [( -51) +( -7) +( -11)] +[( +12)+ ( +36)]=- 69+ 48=- 21.1 11 (3)( -1) +2+( - 3) + 6;1 1 1解:原式= ( -1) +[ 2+( -3) + 6]1 =( -1) +32=- .33 1 1) +5 .(4)3 + (-8 )+(+ 2 ( -1 )3115解:原式= [3 4+ ( + 22)] + [( - 86) + ( -16)]1=64+ ( - 10)3=- 34.15.每袋大米的标准重量为50 千克, 10 袋大米称重记录如下:+ 1.2 ,- 0.4 ,+ 1,0,- 1.1 ,- 0.5 ,+ 0.3 ,+0.5 ,- 0.6 ,- 0.9( 超过记为正,不足记为负) .问这 10 袋大米总计超过多少千克或不足多少千克?10 袋大米的总重量是多少千克?解: 1.2 + ( - 0.4) + 1+0+ ( - 1.1) + ( - 0.5) + 0.3 + 0.5 + ( - 0.6) + ( - 0.9) = (1.2 + 1+ 0+ 0.3 + 0.5) + [( - 0.4)+( -1.1) +( -0.5) +( - 0.6) +( -0.9)] =3+( -3.5) =- 0.5( 千克 ) ,50× 10+ ( - 0.5) = 499.5( 千克 ) .答:这 10 袋大米总计不足 0.5 千克, 10 袋大米的总重量是499.5 千克.综合题16.一只小虫从某点 O出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为 ( 单位:厘米 ) :+ 5,- 3,+ 10,- 8,- 6,+ 12,- 10. 问:(1) 小虫最后是否回到出发点O?(2)小虫离开出发点 O最远是多少厘米?(3)在爬行过程中,如果每爬行1 厘米奖励 2 粒芝麻,则小虫一共得到多少粒芝麻?解: (1)( +5) + ( -3) + ( +10) +( -8) +( -6) +( +12) +( - 10) = [( +5) +( +12)] +[( - 3) +( - 8)+( -6)] +[( + 10) + ( - 10)] =17+ ( -17) + 0=0( 厘米 ) .答:小虫最后回到出发点O.(2) 小虫每次爬行后分别到达位置为:+5,+ 2,+ 12,+ 4,- 2,+ 10, 0. 故小虫离开出发点O最远是 12 厘米.(3)2 ×(| +5| +| -3| +| +10| +| -8| +| -6| +| +12| +| -10|) =108( 粒) .答:小虫一共得到108 粒芝麻.2.5有理数的减法基础题知识点 1有理数的减法法则1.( 甘孜中考 ) 计算 2- 3 的结果是 (B)A.- 5B.- 1C. 1D.5 2.( 天津中考 ) 计算 ( - 2) - 5 的结果等于 (A)A.- 7B.- 3C. 3D.7 3.与- 3 的差为0 的数是 (B)A. 3B.- 311C. 3D.-34.已知 a,b 在数轴上的位置如图所示,则a- b 的结果的符号为 (B)A.正B.负C. 0D.无法确定5.下列计算正确的是 (B)A.( -14) -( +5) =- 9B.0-( - 3)=3C.( -3) -( -3) =- 6D.|5 -3| =- (5 -3)6.计算:(1)( - 6) -9;(2)( -6) -( -9) ;解:原式=- 15.解:原式= 3.(3)0 - 57;(4)( -2.8) - 2;解:原式=- 57.解:原式=- 4.8.(5)1.8 - ( - 2.6);(6)(12-2 )-4 .33解:原式= 4.4.解:原式=- 7.知识点 2 有理数减法的应用7.( 宁夏中考 ) 某地一天的最高气温是8℃,最低气温是- 2 ℃,则该地这天的温差是(A)A.10 ℃B.- 10 ℃C.6 ℃D.-6 ℃8.甲地的海拔是150 m,乙地的海拔是130 m,丙地的海拔是-105 m,甲地的海拔最高,丙地的海拔最低,最高的地方比最低的地方高255 米,丙地比乙地低 235 米.9.某日,北京、大连等 6 个城市的最高气温与最低气温记录如下表,哪个城市温差最大?哪个城市温差最小?分别是多少?城市北京大连哈尔滨沈阳武汉长春最高气温12℃ 6 ℃ 2 ℃ 3 ℃18 ℃ 3 ℃最低气温2℃- 2 ℃-12 ℃- 8 ℃ 6 ℃-10 ℃解:北京: 12- 2= 10( ℃ ) ;大连: 6- (-2) = 8(℃) ;哈尔滨: 2-( -12) =14( ℃) ;沈阳: 3- (-8) = 11(℃) ;武汉: 18-6= 12( ℃) ;长春: 3- ( - 10)=13( ℃) .所以哈尔滨温差最大,为14 ℃;大连温差最小,为8 ℃.中档题10.如图,数轴上 A 点表示的数减去 B 点表示的数,结果是(B)A. 8B.- 8C. 2D.- 211.下列说法正确的是(D)A.减去一个数,等于加上这个数B.零减去一个数仍得这个数C.两个相反数相减得零D.在有理数加法或减法中,和不一定比加数大,被减数不一定比减数或差大12.当 x>0,y<0, |x|>|y| 时, x、 x+ y、x- y、 y 中最大的是 (C)A. x B. x+ yC. x- y D. y13.如果- 2+△=- 6,那么“△”表示的数是- 4.14.( 济南中考 ) 计算: | - 7- 3| = 10.15.填空: (1)( - 5) -5=- 10; (2)15 -28=- 13;11(3)0 -2=-2; (4)12 - ( - 13) = 25.16.北京与巴黎两地的时差是- 7( 带正号的数表示同一时间比北京早的小时数) ,如果现在北京时间是7:00,那么巴黎的时间是0: 00.17.武汉地区 2 月 5 日早上 6 时的气温为- 1 ℃,中午12 时为 3 ℃,晚上11 时为- 4 ℃,中午 12时比早上 6 时高4℃,晚上 11 时比早上低 3℃ .18.计算:4 2(1)( -3) -( -3) ;4 2解:原式= ( -3) +( +3)4 2=- ( 3-3)2=-.31 1(2)( -23) -( -32) ;1 1解:原式= ( -2 ) +3327=.6(3)3 -( - 8)-( - 7)-18;解:原式= 3+ 8+ 7+ ( - 18)=0.(4)( - 5) -( - 7)-( -6) -10.解:原式= ( - 5)+ 7+ 6+ ( -10)=- 2.高度相差多少?解: 8 844 - ( - 392) = 8 844 + 392= 9 236(m) .答:两处高度相差9 236 m.20.已知有理数a, b,c 在数轴上的位置如图所示,请判断下列各式的正负性:(1)a - b; (2)a - c;(3)c - b.解: (1) 为正. (2) 为正. (3) 为负.综合题21.若 a、 b、 c 是有理数, |a| = 3, |b| = 10, |c| = 5,且 a、 b 异号, b、 c 同号,求 a- b- ( - c) 的值.解:由题意,当 a=- 3, b=10, c= 5 时,a- b- ( - c) =- 3-10- ( -5) =- 8;当 a= 3, b=- 10,c=- 5 时,a- b- ( - c) = 3- ( - 10) - 5=8.2.6有理数的加减混合运算第 1 课时有理数的加减混合运算基础题知识点有理数的加减混合运算1.计算 (2 -3) + ( - 1) 的结果是 (A)A.- 2B. 0C. 1D. 22.计算 ( - 25) - ( - 16) + 2 的结果是 (B)A. 7B.- 7C. 8D.- 8733.- 3 减去-5与-5的和的结果是(D)1911A.-5B.-5C.- 5D.- 114.已知 a=- 12, b=- 2, c=2,则 |a| + |b| - |c| 等于 (A)11A. 12B.-1211C. 52D.-25.某天上午 6: 00 虹桥水库的水位为 30.4 米,到上午11: 30 水位上涨了 5.3 米,到下午 6:00 水位下跌了 0.9米,则到下午 6: 00 水位为 (B)A.26 米B. 34.8 米C. 35.8 米D. 36.6 米6.计算:(1)( -9) -( +6) +( -8) -( -10) =- 13;(2)1 -2+ 3- 4+ 5-6=- 3.7.若 a= 5,b=- 3, c=- 7,则 a- b+c 的值为 1.8.某地一天早晨的气温是-7 ℃,中午气温上升了 11℃,下午又下降了9 ℃,晚上又下降了 5 ℃,则晚上的温度为-10℃.9.计算:12(1) 3-3+ 1;1解:原式=-3+ 12= .367(2)( -13) +( -13) -2;解:原式=- 1- 2=- 3.(3)5 - 9+ 7- 4;解:原式= (5 + 7) -(9 + 4)=12- 13=- 1.1112(4) -2+( -6) -( -4) -( +3) .2 12解:原式=-3+4-313=-12.中档题10.计算 ( -5) - ( + 3) + ( - 9) - ( - 7) +1,所得结果正确的是(B) A.- 10B.- 9C. 8D.- 2311.设A. 2a 是最大的负整数, b 是绝对值最小的有理数,B. 1c 是最小的正整数,则b- c+ a 的值是(D)C.- 1D.- 212.- 7,- 12,+ 2 的和比它们的绝对值的和小A.- 38B.- 4(D)C.4D.3813.小明近期几次数学测试成绩如下:第一次88 分,第二次比第一次高8 分,第三次比第二次低12 分,第四次又比第三次高10 分,那么小明第四次测试成绩是(C)A.93 分B.78 分C.94 分D.84 分14.河里的水位第一天上升了 6 厘米,第二天下降了 5 厘米,第三天又下降了 3 厘米,第四天上升了7 厘米,则第四天河水水位比刚开始时的水位上升了 5 厘米.15.根据如图所示的程序计算,若输入的值为1,则输出的值为- 5.16.计算:(1)( -49) -( +91) -( -5) +( -9) ;解:原式=- 49- 91+ 5- 9=- 144.(2)- 7.2 -0.9 - 5.6 + 1.7 ;解:原式=- 8.1 - 5.6 + 1.7=- 13.7 +1.7=- 12.25(3)( -5) + ( -6) - ( -4.9) - 0.6.37 493解:原式=-30+10-546=15.小明:,4.5) 3.2,1.1) 1.4小红:,8)2,-6)- 7解:小明:- 4.5 + 3.2 - 1.1 + 1.4 =- 1,小红:- 8+ 2- ( - 6) - 7=- 7.因为- 7<-1,所以小红的结果小,为胜者.综合题18.若“三角”表示运算a- b+ c,“方框”表示运算x- y+z+ w,求+表示的运算,并计算结果.解:根据题意得:+= (1-1+1)+ [( -2) -3+( - 6) +3] =( -1)+(-8)=-81.4261212第 2 课时有理数加减混合运算中的简便计算基础题知识点有理数加减混合运算中的简便计算5351.计算-+(-2) 的结果是 (C)6885511 A.- 36B.- 26C.- 26D.26 2.计算 ( - 3)+( +2.5) + ( -0.5) +4- (-3) 的结果是 (B)A. 3B. 6C. 7D. 942113.计算: 1+5-( +3) -( -5) -( +13) =0.4.计算: (1)- 4.27 + 3.8 - 0.73 + 1.2 =0;131461(2)8 4+ 67- 34+ 57-37= 137.5.计算:(1)- 8- 6+ 22- 9;解:原式=- 23+ 22=- 1.(2)0 - 16+( - 29) -( - 7) -( + 11) .解:原式=- 16- 29+ 7- 11=- 56+ 7=- 49.中档题6.计算:1312(1)2 + 6+( -2)+(-5 );3535解:原式= [21132+ (-2 )] +[6+( -5 )] 33551=0+ 151=15.137(2)0.25+(-8)-4-|-8|.1 1 37解:原式=4-8-4-81 317=( 4-4) -( 8+8)1=-2-13=-.27.某气象站每天下午 4 点需要测量一次气温,下面是某地星期一至星期五气温变化情况,该地上个星期日下午4点的气温是 12 ℃ . 求该地星期五下午 4 点的气温.星期一二三四五气温的变升降升升降化( 与前0.2 ℃0.7 ℃0.3 ℃0.8 ℃0.6 ℃一天比较 )解:由题意,得(0.2 - 0.7 + 0.3 +0.8 - 0.6)+ 12=(0.2 + 0.3 + 0.8) + ( - 0.7 - 0.6) +12=1.3 - 1.3 + 12=12.答:该地星期五下午 4 点的气温是 12℃.综合题8.(1) 有 1、2、 3、, 11、 12 共 12 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为 0;(2) 有 1、2、3、, 2 015 、2 016 共 2016个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(3)根据 (1)(2) 的规律,试判断能否在 1、 2、 3、, 2 016、 2 017,共 2 017 个数字的每两个数字之间添上“+”或“-”,使它们的和为 0. 若能,请说明添法;若不能,请说明理由.解: (1)1 -2+ 3- 4+ 5- 6-7+ 8- 9+10- 11+12= 0.( 答案不唯一 )(2)1 与 2 016 是正的, 2 与 2 015 是负的; 3 与 2 014 是正的, 4 与 2 013是负的;依次类推,1007 与 1010 是正的, 1 008 与 1 009 是负的.即: 1- 2+3- 4+, + 1 007 - 1 008 -1 009 +1 010 -, - 2 013 +2 014-2 015 +2 016 =0.(3) 不能,因为由 (1)(2)可知:数字的总个数应该是偶数个.第 3课时有理数加减混合运算的应用基础题知识点有理数加减混合运算的应用1.某运动员先后参加了 10 次百米竞赛,成绩的变化情况如下表( 第一次成绩为10.8 秒) :序号2345678910成绩( 与+ 0.1+ 0.1- 0.3+ 0.5-0.1- 0.3+0.2- 0.3+ 0.2前一次相比 )请问这位运动员跑10 次百米竞赛的平均成绩为(A)A. 10.91 秒B. 10.92 秒C. 10.93 秒D. 10.94 秒2.下表为张先生家的一张存折的一部分,从表中可知,截止2017 年 3 月 2 日,此张存折还结余4__800 元.日期摘要存入(+)/ 支出(-)余额操作柜员20161020现存+5 800 5 800aklj20161220现取-2 000aklj20170302现存+1 000aklj3.检查一商店某水果罐头 10 瓶的质量,超出记为“+” ,不足记为“-” ,情况如下:- 3 克,+ 2 克,- 1 克,- 5 克,- 2 克,+ 3 克,- 2 克,+ 3 克,+ 1 克,- 1 克.(1)总的情况是超出还是不足?超出或不足多少?(2)这些罐头平均超出或不足为多少?(3)最多与最少相差是多少?解: (1) - 3+ 2- 1-5- 2+ 3-2+ 3+ 1-1=- 5( 克 ) ,即总的情况是不足 5 克.(2)5÷ 10=0.5( 克 ) ,即平均不足 0.5 克.(3)3- ( - 5) = 8( 克 ) ,即最多与最少相差8 克.中档题4.红星中学初一 (1) 班学生期末数学平均成绩是90 分.(1)下表给出了该班 6 名同学的成绩情况,试完成下表:姓名小新小雪小丽丁丁小天小亮成绩9188908610085成绩与平均+1- 20-4+ 10- 5成绩的差值(2)谁的成绩最好?谁的成绩最差?(3)成绩最好的比成绩最差的高多少分?解: (2) 小天成绩最好,小亮成绩最差.(3)100 - 85= 15( 分 ) .综合题5.小明去一水库进行水位变化的实地测量,他取警戒线作为0 m,记录了这个水库一周内的水位变化情况( 测量前一天的水位达到警戒水位,单位:m):10 月10 月10 月10 月10 月10 月10 月时间5 日6 日7 日8 日9 日10 日11 日水位- 0.2+ 0.13- 0.1+0.14- 0.25+ 0.15+ 0.15变化 (m)注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)这一周内,哪一天水库的水位最高?哪一天水库的水位最低?它们位于警戒线水位之上,还是位于警戒线水位之下,与警戒线水位的距离分别是多少?(2)与测量前一天比,一周内水库的水位是上升了,还是下降了?(3)以警戒线水位为 0 点,用折线统计图表示这一周的水位变化情况.解: (1) 这一周内, 10 月 5 日的水位最高,是+0.15 m , 10 月 10 日的水位最低,是-0.13 m ; 10 月 5 日水位位于警戒线之上,距离是0.15 m ; 10 月 10 日水位位于警戒线之下,距离是0.13 m.(2)与测量前一天比,一周内水库的水位是上升了.(3)折线统计图如图.周周练 (2.1 ~ 2.6)( 时间: 45 分钟满分:100分)一、选择题 ( 每小题 3 分,共 24 分 )1.( 甘孜中考 ) - 3 的绝对值是 (C)11A. 3B.-3C. 3D.- 32.( 河南中考 ) 下列各数中,最小的数是(D)1A. 0 B. 31C.-3D.- 33.( 梅州中考 ) 计算 ( - 3) + 4 的结果是 (C)A.- 7B.- 1C. 1D.74.下面说法正确的是 (D)A.两数之和不可能小于其中的一个加数B.两数相加就是它们的绝对值相加C.两个负数相加,和取负号,绝对值相减D.不是互为相反数的两个数,相加不能得零5.( 哈尔滨中考 ) 哈市某天的最高气温为28 ℃,最低气温为21 ℃,则这一天的最高气温与最低气温的差为(C)A.5 ℃B.6 ℃C.7 ℃D.8 ℃6.下列各式中,其和等于 4 的是 (D)1 1A.(-1 )+(-2 )4 41 5 3B.3 -5 -| -7 |28413C.( -2) -( -4) +235D.( -4) +0.125 -( -48)7.( 宁波中考 ) 杨梅开始采摘啦!每筐杨梅以 5 千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这 4 筐杨梅的总质量是 (C)A. 19.7千克B. 19.9千克C. 20.1千克D. 20.3千克8.已知有理数 a, b, c 在数轴上的位置如图,则下列结论错误的是(C)A. c- a< 0B. b+ c< 0C. a+ b- c< 0D. |a + b| = a+ b二、填空题 ( 每小题 4 分,共 24 分 )9.如果将低于警戒线水位0.27 m 记作- 0.27 m ,那么+ 0.42 m 表示高于警戒线水位0.42__m.10.按规定,食品包装袋上都应标明袋内装有食品多少克,下表是几种饼干的检验结果,“+”“-”号分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是酥脆.威化咸味甜味酥脆+ 10(g)- 8.5(g)+5(g)- 3(g)11. 从- 5 中减去- 1,- 3, 2 的和,所得的差是-3.12.如果 a 的相反数是最小的正整数, b 是绝对值最小的数,那么a+b=- 1, b- a= 1.13.一只小虫从数轴上表示- 1 的点出发,先向左爬行 2 个单位长度,再向右爬行 5 个单位长度到点C,则点 C 表示的数是 2.14.已知 |m| = 15, |n| = 27,且 m+ n>0,则 m- n=- 12 或- 42.三、解答题 ( 共 52 分)15.(8 分 ) 将下列各数填在相应的集合里:31+6,- 2,- 0.9 ,- 15, 1,5, 0, 34, 0.63 ,- 4.92.15316.(8分 ) 在数轴上表示下列各数:-2, | - 2| ,- ( - 3) , 0,2,- ( +2) ,并用“ <”将它们连接起来.解:在数轴上表示数略.315-( +2)< -2<0<| - 2|< 2<- ( -3) .17.(16 分 ) 计算:(1)( -10) +( +7) ;解:原式=- 3.5 1(2)( +2) -( -3) ;176(3)12 - ( -18) + ( -7) - 15;解:原式= 12+ 18-(7 + 15)=30- 22=8.12411(4)2+(-3)-(-5)+(-2)-(+3).11214解:原式= ( 2-2) +(-3-3) +5=0-1+451=-5.(1)求 a, b 的值;(2)求 8- a+ b- c 的值.解: (1) 因为 a 的相反数是3, b 的绝对值是7,所以 a=- 3, b=± 7.(2)因为 a=- 3, b=± 7, c 与 b 的和是- 8,所以当 b=7 时, c=- 15,当 b=- 7 时, c=- 1.当 a=- 3, b= 7, c=- 15 时,8- a+ b- c= 8- ( -3) + 7-( - 15) =33;当 a=- 3, b=- 7, c=- 1 时,8- a+ b- c= 8- ( -3) + ( -7) - ( - 1) = 5.19.(10 分 ) 某自行车厂本周计划每天生产100 辆自行车,由于工人实行轮休,每天上班人数不一定相等,实际每天产量与计划产量对比如下表:( 超出的辆数为正数,不足的辆数为负数)星期一二三四五六日增减-5+4-3+4+10-2-15(1)本周总产量与计划产量相比,增加( 或减少 ) 了多少辆?(2)日平均产量与计划产量相比,增加( 或减少 ) 了多少辆?解: (1)( -5) +4+( -3) +4+10+( -2)+( -15) =- 7( 辆) .答:本周总产量与计划产量相比,减少了7 辆.(2)( - 7) ÷7=- 1( 辆 ) .答:日平均产量与计划产量相比,减少了 1 辆.。
北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题(含答案)
北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题专题(一) 有理数的加减运算1、计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.2、计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.3、计算:(1)-23-35+78-13-25+18; 解:原式=(-23-13)+(-35-25)+(78+18) =-1-1+1=-1.(2)-479-(-315)-(+229)+(-615). 解:原式=[-479-(+229)]+[-(-315)+(-615)] =-7-3=-10.4、计算:|-0.75|+(-3)-(-0.25)+|-18|+78. 解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3 =1+1-3=-1.5、计算:-156+(-523)+2434+312. 解:原式=(-1-56)+(-5-23)+(24+34)+(3+12) =[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12] =21+(-14) =2034. 6、计算:634+313-514-312+123. 解:原式=6+34+3+13-5-14-3-12+1+23=(6+3-5-3+1)+(34+13-14-12+23) =2+1=3.7、计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(3)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(4)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(5)-478-(-512)+(-412)-318;解:原式=-478+512-412-318=(-478-318)+(512-412) =-8+1=-7.(6)0.25+112+(-23)-14+(-512); 解:原式=14+112+(-23)-14+(-512) =(14-14)+[112+(-23)+(-512)] =-1.(7)|-12|-(-2.5)-(-1)-|0-212|; 解:原式=12+2.5+1-212=(12+1)+(2.5-212) =112.(8)-205+40034+(-20423)+(-112); 解:原式=(-205)+400+34+(-204)+(-23)+(-1)+(-12) =(400-205-204-1)+(34-23-12)=-10+(-512) =-10512.(9)0+1-[(-1)-(-37)-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37-5+47]+4 =1-[(-1+37+47)-5]+4 =10.(10)-12-16-112-120-130-142-156-172; 解:原式=-(12+16+112+120+130+142+156+172) =-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1=0.8、观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110; (2)计算12+16+112+120+…+19 900的值为99100.专题(二) 有理数的混合运算1、计算:531×(-29)×(-2115)×(-412). 解:原式=-531×29×3115×92=-(531×3115)×(29×92) =-13×1 =-13.2、计算:(14-16+124)×(-48). 解:原式=14×(-48)-16×(-48)+124×(-48) =-12+8-2=-6.3、计算:4×(-367)-3×(-367)-6×367. 解:原式=-367×(4-3+6) =-27.4、计算:(16-27+23)÷(-542). 解:原式=(16-27+23)×(-425) =16×(-425)-27×(-425)+23×(-425) =-75+125-285=-235.5、计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112)÷(-214); 解:原式=-34×(-32)×(-49)=-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45÷(-25)×34; 解:原式=32×45×52×34=94.(4)-14+16÷(-2)3×(-3-1);解:原式=-1+16÷(-8)×(-4)=-1+8=7.(5)(-5)÷(-127)×(-214)÷7; 解:原式=-5×79×94×17=-54.(6)0.7×1949+234×(-14)+0.7×59+14×(-14); 解:原式=0.7×(1949+59)-14×(234+14) =0.7×20-14×3=-28.(7)391314×(-14); 解:原式=(40-114)×(-14)=40×(-14)-114×(-14) =-560+1=-559.(8)1318÷(-7); 解:原式=1318×(-17) =(14-78)×(-17) =-2+18=-178.(9)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)(-5)-(-5)×110÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5)=-5-25=-30.(11)(-42)÷(223)2+512×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(12)148÷(38-56+14); 解:因为(38-56+14)÷148=(38-56+14)×48 =38×48-56×48+14×48 =18-40+12=-10,所以148÷(38-56+14)=-110.(13)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(14)(-2)3-16×(38-1)+2÷(12―14―16). 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)一、选择题1.−3的绝对值是()A.3B.13C.−13D.−32.2022年春季开学后,济南市的天气突然降温,2月16日的最高气温是2℃,最低气温是−4℃,那么这天的温差是()A.6℃B.−6℃C.2℃D.−2℃3.−|−2021|的相反数为()A.−2021B.2021C.−12021D.1 20214.党的十八大以来,以习近平同志为核心的党中央重视技能人才的培育与发展.据报道,截至2021年底,我国高技能人才超过65000000人,将数据65000000用科学记数法表示为()A.6.5×106B.65×106C.0.65×108D.6.5×1075.下列说法中,错误的是()A.数轴上表示−3的点距离原点3个单位长度B.规定了原点、正方向和单位长度的直线叫做数轴C.有理数0在数轴上表示的点是原点D.表示十万分之一的点在数轴上不存在6.下列各式:①−(−2);②−|−2|;③−22;④(−2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个7.小明在写作业时不慎将两滴墨水滴在数轴上,如图所示,此时墨迹盖住的整数共有()个.A.3B.4C.5D.68.计算:1−(+2)+3−(+4)+5−(+6)+⋯−(+2022)=()A.2022B.−2022C.−1011D.10119.若|x|=7,|y|=9,则x−y为()A.±2和±16B.±16C.−2和−16D.±210.有理数a,b在数轴上对应的位置如图所示,则()A.|a|<|b|B.ab>0C.a+b<0D.a−b>0 11.如图,a,b,c,d,e,f均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a−b+c−d+e−f的值为()A.1B.−3C.7D.812.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2022,则这只小球的初始位置点P0所表示的数是()A.−1971B.1971C.−1972D.197213.已知|x|=6,y2=4,且xy<0.则x+y的值为()A.4B.−4C.4或−4D.2或−214.某路公交车从起点经过A,B,C,D站到达终点,各站上、下乘客人数如下表所示(用正数表示上车的人数,负数表示下车的人数)站点起点A B C D终点上车人数x1512750下车人数0−3−4−10−11−29若此公交车采用一票制,即每位上车乘客无论哪站下车,车票都是2元,问该车这次出车共收入()A.114元B.228元C.78元D.56元二、填空题15.A、B为同一数轴上两点,且A、B两点间的距离为3个单位长度,若点A所表示的数是-1,则点B所表示的数是.16.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a−b+c的值为 .17.体育课上规定时间内仰卧起坐的满分标准为46个,高于标准的个数记为正数.如某同学做了50个记作“+4”,那么“-5”表示这位同学作了 个.18.有理数 a 、 b 在数轴上的位置如图所示,则下列各式:①a +b >0 ;②a −b >0 ;③b >a ;④ab <0 ;⑤|b −a|=a −b 正确的有 .(填式子前面的序号即可)19.《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2m 记作 +2 m ,则下降1m 记作 m .三、计算题20.计算题(1)−20+(−14)−(−18);(2)(−38−16+34)×(−24);(3)−8÷2×(−12)×0.25;(4)−14−8÷(−4)×|−6+4|.21.计算:(1)9+5×(−3)−(−2)2÷4; (2)(−5)3×[2−(−6)]−300÷5(3)(−13)×3÷3×(−13);(4)(−14−56+89)÷(−16)2+(−2)2×(−14)22.(1)12+(−5)−7−(−24)(2)(−36)×(13−12)+16÷(−2)3四、解答题23.阅读下面文字:对于(−556)+(−923)+1734+(−312)可以按如下方法进行计算:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−5 4)=−54.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(−202156)+(−202023)+404223+(−112)24.在数轴上表示下列各数:5,3.5,−212,−1,并把它们用“<”连接起来.25.如图,数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当t=2时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.26.某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+3,-8,+4,+7,-6,+8,-7,+10.(1)问收工时,检修队在A地哪边?据A地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.2升,则汽车共耗油多少升?27.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?五、综合题28.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“−”表示出库)+21,−32,−16,+35,−38(1)经过这6天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?29.已知数轴上三点M,O,N对应的数分别为−1,0,3,点P为数轴上任意一点,其对应的数为x(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,求t 的值30.李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)周一周二三四五六日+15+100+20+15+10+14-8-12-19-10-9-11-8(1)到这个周末,李强有多少节余?(2)照这样,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?31.已知a 是最大的负整数,b 是15的倒数,c 比a 小1,且a 、b 、c 分别是A 、B 、C 在数轴上对应的数.若动点P 从点A 出发沿数轴正方向运动,动点Q 同时从点B 出发也沿数轴负方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度.(1)在数轴上标出点A 、B 、C 的位置;(2)运动前P 、Q 两点间的距离为 ;运动t 秒后,点P ,点Q 运动的路程分别为 和 ;(3)求运动几秒后,点P 与点Q 相遇?(4)在数轴上找一点M ,使点M 到A 、B 、C 三点的距离之和等于11,直接写出所有点M 对应的数.32.有理数a ,b ,c 在数轴上的位置如图所示(1)a 0;b 0;c 0. (2)化简|a|+|a +b|−|c −b|.33.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期 一 二 三 四 五 六 日 增减+100−200+400−100−100+350+150(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?34.出租车司机小主某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”,他这天下午行车情况如下:(单位:千米) ﹣2,+5,﹣8,﹣3,+6,﹣2(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若出租车每公里耗油0.3升,求小王回到出发地共耗油多少升?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米(不足1千米按1千米计算)还需收4元钱,小王今天是收入是多少元?答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】D13.【答案】C14.【答案】A15.【答案】2或-416.【答案】217.【答案】4118.【答案】②④⑤19.【答案】-120.【答案】(1)解:原式=−20−14+18=−34+18 =−16;(2)解:原式=−38×(−24)−16×(−24)+34×(−24)=9+4−18=−5;(3)解:原式=−4×(−12)×14=4×12×14=12;(4)解:原式=−1−(−2)×2=−1−(−4) =−1+4=3.21.【答案】(1)解:9+5×(−3)−(−2)2÷4=9−15−4÷4 =9−15−1=−7(2)解:(−5)3×[2−(−6)]−300÷5=−125×8−60 =−1000−60 =−1060(3)解:(−13)×3÷3×(−13)=−1×13×(−13) =19(4)解:(−14−56+89)÷(−16)2+(−2)2×(−14)=(−14−56+89)×36+4×(−14) =−14×36−56×36+89×36−56=−9−30+32−56=−6322.【答案】(1)解:12+(−5)−7−(−24)=12−5−7+24 =12−12+24=24;(2)解:(−36)×(13−12)+16÷(−2)3=(−36)×13−(−36)×12+16÷(−8)=−12+18+(−2) =4.23.【答案】解:原式=[(−2021)+(−56)]+[(−2020)+(−23)]+(4042+23)+[−1+(−12)]=(−2021−2020+4042−1)+(−56−23+23−12)=0+(−4 3)=−43.24.【答案】解:数轴如图所示:用“<”连接起来:−212<−1<3.5<5.25.【答案】(1)0(2)5(3)2t;2t﹣4(4)1,3,7,926.【答案】(1)解:+3-8+4+7-6+8-7+10=11(千米).故收工时,检修队在A地南边,距A地11千米远.(2)解:|+3|+|-8|+|+4|+|+7|+|-6|+|+8|+|-7|+|+10|=53(千米).故汽车共行驶53千米.(3)解:53+11=64(千米),64×0.2=12.8(升).故汽车共耗油12.8升.27.【答案】(1)解:+17-9+7-15-3+11-6-8+5+16=+15(千米)答:养护小组最后到达的地方在出发点的东边,距出发点15千米远;(2)解:(17+|-9|+7+|-15|+|-3|+11+|-6|+|-8|+5+16)×0.5=48.5(升)答:这次养护共耗油48.5升.28.【答案】(1)减少了(2)解:460+50=510(吨)答:6天前仓库里有货品510吨.(3)解:21+32+16+35+38+20=162(吨)则装卸费为:162×5=810(元).答:这6天要付810元装卸费.29.【答案】(1)4(2)1(3)解:①当点P 在点M 的左侧时根据题意得:−1−x +3−x =8解得:x =−3②P 在点M 和点N 之间时,则x −(−1)+3−x =8,方程无解,即点P 不可能在点M 和点N 之间③点P 在点N 的右侧时解得:x =5∴x 的值是−3或5;(4)解:设运动t 分钟时,点P 到点M ,点N 的距离相等,即PM =PN点P 对应的数是−t ,点M 对应的数是−1−2t ,点N 对应的数是3−3t①当点M 和点N 在点P 同侧时,点M 和点N 重合所以−1−2t =3−3t ,解得t =4,符合题意②当点M 和点N 在点P 异侧时,点M 位于点P 的左侧,点N 位于点P 的右侧(因为三个点都向左运动,出发时点M 在点P 左侧,且点M 运动的速度大于点P 的速度,所以点M 永远位于点P 的左侧)故PM =−t −(−1−2t )=t +1,PN =(3−3t )−(−t )=3−2t所以t +1=3−2t ,解得t =23,符合题意综上所述,t 的值为23或430.【答案】(1)解:根据题意列得:(+15)+(-8)+(+10)+(-12)+0+(-19)+(+20)+(-10)+(+15)+(-9)+(+10)+(-11)+(+14)+(-8)=7则李强有7元的节余;(2)解:30×(7÷7)=30则李强一个月能有30元的节余;(3)解:根据题意列得:(-8)+(-12)+(-19)+(-10)+(-9)+(-11)+(-8)=-77 ∴至少支出77元,即每天至少支出11元则一个月至少有330元的收入才能维持正常开支.31.【答案】(1)解:∵a 是最大的负整数∴a=-1∵b 是15的倒数∴b=5∵c 比a 小1∴c=-2如图所示:(2)6;3t ;t(3)解:依题意有3t+t=6解得t=1.5.故运动1.5秒后,点P 与点Q 相遇;(4)解:设点M 表示的数为x ,使P 到A 、B 、C 的距离和等于11①当M 在C 点左侧,(-1)-x+5-x+(-2)-x=11.解得x=-3,即M 对应的数是-3.②当M 在线段AC 上,x-(-2)-1-x+5-x=11解得:x=-5(舍);③当M 在线段AB 上(不含点A ),x-(-1)+5-x+x-(-2)=11解得x=3,即M 对应的数是3.④当M 在点B 的右侧,x-(-1)+x-5+x-(-2)=11解得:x=133(舍)综上所述,点M 表示的数是3或-3.32.【答案】(1)<;<;>(2)解:由题意得,a<b<0<c∴a<0,a+b<0,c−b>0∴|a|+|a+b|−|c−b|=−a−a−b−c+b=−2a−c.33.【答案】(1)解:(+100−200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)解:+400−(−200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)解:5000×7+(100−200+400−100−100+350+150)=35600(个)0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.34.【答案】(1)解:-2+5-8-3+6-2=-4(千米)∴小王将最后一名乘客送到目的地时,小王在下午出车的出发地的北方,距下午出车的出发地4千米.(2)解:|-2|+|5|+|-8|+|-3|+|6|+|-2|=26(千米)26×0.3=7.8(升)∴小王回到出发地共耗油7.8升.(3)解:根据出租车收费标准,可知小王今天是收入是10+[10+(5-3)×4]+[10+(8-3)×4]+10+[10+(6-3)×4]+10=100(元)∴小王今天是收入是100元.。
【北师大版】七年级上册数学:第二章《有理数及其运算》课时练习(含答案)
第二章 有理数及其运算1 有理数1.下列各数中是负数的是( ) A.-3 B.0 C.1.7 D.122.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列说法正确的是( )A.非负数包括0和整数B.正整数包括自然数和0C.0是最小的整数D.整数和分数统称为有理数4.在“1,-0.3,+13,0,-3.3”这五个数中,非负有理数是 (写出所有符合题意的数).5.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .6.把下列各数填入表示它所在的数集的圈里.-18,227,3.1416,0,2001,-35,-0.142857,95%.数 轴1.下列所画数轴正确的是( )2.如图,点M 表示的数是( )A.1.5B.-1.5C.2.5D.-2.53.在0,-2,1,12这四个数中,最小的数是( )A.0B.-2C.1D.124.比较下列各组数的大小: (1)-3 1; (2)0 -2.3; (3)-23 -35.5.在数轴上,与表示数-1的点的距离为1的点表示的数是 .6.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .7.在数轴上表示下列各数,并用“〉”连接起来.1.8,-1,52,3.1,-2.6,0,1.3 绝对值第1课时 相反数1.-3的相反数是( ) A.-3 B.3 D.-13 D.132.下列各组数互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12 D.0和03.若一个数的相反数是1,则这个数是 .4.写出下列各数的相反数:(1)-3.5的相反数为 ; (2)35的相反数为 ;(3)0的相反数为 ; (4)28的相反数为 ; (5)-2018的相反数为 .第2课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )3.比较大小:-5 -2,-12 -23(填“〉”或“〈”).4.计算:(1)|7|= ; (2)⎪⎪⎪⎪⎪⎪-58= ;(3)|5.4|= ; (4)|-3.5|= ; (5)|0|= .4 有理数的加法第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2016)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某运动员在东西走向的公路上练习跑步,跑步情况记录如下(向东为正,单位:m):1000,-1200,1100,-800,1400,该运动员跑完后位于出发点的什么位置?有理数的减法1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?有理数的加减混合运算第1课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( )A .7+3-5-2B .7-3-5-2C .7+3+5-2D .7+3-5+22.计算8+(-3)-1所得的结果是( )A .4B .-4C .2D .-23.算式“-3+5-7+2-9”的读法正确的是( )A .3、5、7、2、9的和B .减3正5负7加2减9C .负3,正5,减7,正2,减9的和D .负3,正5,负7,正2,负9的和4.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( )A .-1B .0C .1D .25.计算下列各题:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713.6.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.第2课时 有理数加减混合运算中的简便运算1.下列各题运用加法结合律变形错误的是( )A .1+(-0.25)+(-0.75)=1+[(-0.25)+(-0.75)]B .1-2+3-4+5-6=(1-2)+(3-4)+(5-6)C .34-16-12+23=⎝ ⎛⎭⎪⎫34+12+⎝ ⎛⎭⎪⎫-16+23 D .7-8-3+6+2=(7-3)+(-8)+(6+2)2.计算-256+15-116的结果是( )A .-345 B .345 C .-415 D .4153.计算:(1)27+18-(-3)-18; (2)23-18-⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫-38;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718;(5)7.54+(-5.72)-(-12.46)-4.28; (6)0.125+⎝ ⎛⎭⎪⎫-418+⎝ ⎛⎭⎪⎫-234+0.75.第3课时有理数加减混合运算的应用1.下表是某种股票某一周每天的收盘价情况(收盘价:股票每天交易结束时的价格):(1)填表,并回答哪天的收盘价最高,哪天的收盘价最低;(2)最高价与最低价相差多少?2.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,低于80分的分数记为负,成绩记录如下:+10,-2,+15,+8,-13,-7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测该小组成员中得分最高与最低相差多少分?7 有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( )A .-1B .-5C .-6D .12.-74的倒数是( )A .-74B .74C .-47D .473.下列运算中错误的是( )A .(+3)×(+4)=12B .-13×(-6)=-2 C .(-5)×0=0 D .(-2)×(-4)=84.下列计算结果是负数的是( )A .(-3)×4×(-5)B .(-3)×4×0C .(-3)×4×(-5)×(-1)D .3×(-4)×(-5)5.填表(想法则,写结果):6.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 有理数乘法的运算律1.用简便方法计算(-27)×(-3.5)+27×(-3.5)时,要用到( )A .乘法交换律B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律2.计算(-4)×37×0.25的结果是( ) A .-37 B .37 C .73 D .-733.下列计算正确的是( ) A .-5×(-4)×(-2)×(-2)=80B .-9×(-5)×(-4)×0=-180C .(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0 D .-2×(-5)+2×(-1)=(-2)×(-5-1)=12 4.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A .(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B .(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12C .2×3-(-2)×⎝ ⎛⎭⎪⎫-12D .(-2)×3+2×⎝ ⎛⎭⎪⎫-125.填空: (1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10) =21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16) =14× +18× +12× (分配律) = = .1计算(-18)÷6的结果是( )A .-3B .3C .-13D .132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A .-64 B .64 C .1 D .-13.下列运算错误的是( )A .13÷(-3)=3×(-3)B .-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C .8÷(-2)=-8×12D .0÷3=04.下列说法不正确的是( ) A .0可以作被除数 B .0可以作除数C .0的相反数是它本身D .两数的商为1,则这两数相等5.(1)6的倒数是 ;(2)-12的倒数是 . 6.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.1.计算(-3)2的结果是( ) A .-6 B .6 C .-9 D .92.下列运算正确的是( )A .-(-2)2=4B .-⎝ ⎛⎭⎪⎫-232=49C .(-3)4=34D .(-0.1)2=0.13.把34×34×34×34写成乘方的形式为 ,读作 . 4.计算:(1)(-2)3; (2)-452; (3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.10 科学记数法1.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A .1.3×104B .1.3×105C .1.3×106D .1.3×1072.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( ) A .182000千瓦 B .182000000千瓦C .18200000千瓦D .1820000千瓦3.用科学记数法表示下列各数:(1)地球的半径约为6400000m ;(2)赤道的总长度约为40000000m .11 有理数的混合运算1.计算-5-3×4的结果是( )A .-17B .-7C .-8D .-322.下列各式中,计算结果是负数的是( )A .(-1)×(-2)×(-3)×0B .5×(-0.5)÷(-0.21)C .(-5)×|-3.25|×(-0.2)D .-(-3)2+(-2)23.计算(-8)×3÷(-2)2的结果是( ) A .-6 B .6 C .-12 D .124.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x 平方乘以2减去5输出5.计算: (1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32.6.室温是32℃,小明开空调后,温度下降了6℃,关掉空调后,空气温度每小时回升2℃,求关掉空调2小时后室内的温度.12 用计算器进行运算1.用完计算器后,应该按( )A .DEL 键B .=键C .ON 键D .OFF 键2.用计算器求(-3)5的按键顺序正确的是( ) A .(-)()3x ■5= B .3x ■5()(-)= C .()(-)3x ■5= D .()(-)35x ■= 3.按键顺序1-3x ■2÷2×3=对应下面算式( )A .(1-3)2÷2×3B .1-32÷2×3C .1-32÷2×3D .(1-3)2÷2×34.用计算器计算7.783+(-0.32)2≈ (精确到0.01).第二章 有理数及其运算1 有理数1.A2.C3.D4.1,+13,0 5.中国队输1场 6.解:2 数 轴1.C2.D3.B4.(1)〈 (2)〉 (3)〈5.0或-26.-1,0,1,27.解:在数轴上表示如下:由数轴可得3.1〉52〉1.8〉1〉0〉-1〉-2.6.3 绝对值第1课时 相反数1.B2.D3.-14.(1)3.5 (2)-35(3)0 (4)-28 (5)2018 第2课时 绝对值1.C2.B3.〈 〉4.(1)7 (2)58(3)5.4 (4)3.5 (5)0 4 有理数的加法第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2016.(4)原式=0.(5)原式=4.(6)原式=-59. 第2课时 有理数加法的运算律1.D2.交换 结合 -17 +19 23.解:(1)原式=(-6)+(-4)+8+12=-10+20=10.(2)原式=147+37+⎝ ⎛⎭⎪⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:1000+(-1200)+1100+(-800)+1400=(1000+1100+1400)+[(-1200)+(-800)]=3500+(-2000)=1500(m).答:该运动员跑完后位于出发点的东边1500m 远处.有理数的减法1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15.(2)原式=-5+(-2)=-7.(3)原式=0+(-9)=-9.(4)原式=-812-112+312=-12. 5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.有理数的加减混合运算第1课时 有理数的加减混合运算1.A2.A3.D4.C5.解:(1)原式=-3.5+1.7+2.8+(-5.3)=-4.3.(2)原式=⎝ ⎛⎭⎪⎫-312+523+713=912. 6.解:-2+5-8=-5(℃).答:该地清晨的温度是-5℃.第2课时 有理数加减混合运算中的简便运算1.C2.A3.解:(1)原式=27+3+18-18=30.(2)原式=23+13+⎝ ⎛⎭⎪⎫-18+⎝ ⎛⎭⎪⎫-38=12. (3)原式=⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+(-14)+234=32. (4)原式=314+534+⎝ ⎛⎭⎪⎫-718+718=9. (5)原式=7.54+12.46+(-5.72)+(-4.28)=10.(6)原式=18+⎝ ⎛⎭⎪⎫-418+⎝⎛⎭⎪⎫-234+34=-6. 第3课时 有理数加减混合运算的应用1.解:(1)13.8 13.15 星期三的收盘价最高,星期五的收盘价最低.(2)13.8-13.15=0.65(元),即最高价与最低价相差0.65元.2.解:(1)80+15=95(分).答:成绩最好为95分.(2)10-2+15+8-13-7=11(分).答:该小组实际总成绩与计划相比超过11分.(3)最高分为80+15=95(分),最低分为80-13=67(分),95-67=28(分).答:最高分与最低分相差28分.有理数的乘法第1课时 有理数的乘法法则1.C2.C3.B4.C5.从左往右、从上往下依次填:- 48 -48 - 80 -80 + 36 36 + 160 1606.解:(1)原式=-5.(2)原式=0.(3)原式=-125. (4)原式=356. 第2课时 有理数乘法的运算律1.D2.A3.A4.A5.(1)-621 -45 -621-10 -6 8 -48 (2)(-16) (-16) (-16) -4-2-8 -14有理数的除法1.A2.B3.A4.B5.(1)16(2)-2 6.解:(1)原式=(-6)×4=-24.(2)原式=0.(3)原式=⎝ ⎛⎭⎪⎫-53÷⎝ ⎛⎭⎪⎫-52=53×25=23. (4)原式=-34×73×67=-32. 有理数的乘方1.D2.C3.⎝ ⎛⎭⎪⎫344 34的4次方⎝ ⎛⎭⎪⎫或34的4次幂 4.解:(1)原式=-8.(2)原式=-425. (3)原式=-949.(4)原式=-827.科学记数法1.C2.C3.解:(1)6.4×106m.(2)4×107m. 有理数的混合运算1.A2.D3.A4.135.解:(1)原式=9×1-8=1.(2)原式=-3+12×12-23×12+9=-3+6-8+9=4. 6.解:32-6+2×2=30(℃).答:关掉空调2小时后室内的温度为30℃.用计算器进行运算1.D2.C3.B4.471.01。
七年级数学上册《第二章-有理数的乘方》练习题-带答案(北师大版)
七年级数学上册《第二章有理数的乘方》练习题-带答案(北师大版)一、选择题1.35的4次幂的相反数记做( )A.(-354) B.345C.-(35)4 D.-35×42.下列说法正确的是( )A.23表示2×3的积B.任何有理数的偶次方都是正数C.一个数的平方是9,这个数一定是3D.-32与(-3)2互为相反数3.下列各对数中,是互为相反数的是( )A.+(﹣2)和﹣(+2)B.﹣(﹣2)和﹣2C.+(+2)和﹣(﹣2)D.(﹣2)3和324.下列计算错误的是( )A.(﹣1)2028=1B.﹣3﹣2=﹣1C.(﹣1)×3=﹣3D.0×2027×(﹣2028)=05.下列各式中,一定成立的是( )A.(-3)2=32B.(-3)3=33C.-32=|-32|D.(-3)3=|(-3)3|6.计算(-2)3-(-2)2的结果是( )A.-4B.4C.12D.-127.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有( )A.4个B.3个C.2个D.1个8.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( )A.9999B.10000C.10001D.10002二、填空题9.计算:(﹣2)3= .10.计算:|﹣22|=11.计算:(1)(-5)2=_______;(2)-52=_______;(3)(-27)3=_____;(4)-237=______.12.将它们-24,(-2)3,(-2)2按从小到大的顺序排列.13.如果(x+3)2+|y﹣2|=0,则x y= .14.将从1开始的连续自然数按以下规律排列:第1行 1第2行 2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行25 24 23 22 21 20 19 18 17…则2023在第行.三、解答题15.计算:(-1)2029×(-2);16.计算:-(-3)2÷(-2)3;17.计算:-(-3-5)+(-2)2×5+(-2)318.计算:22×(5-7)÷(-0.5)+3×(-2)2.19.(1)在数轴上把下列各数表示出来:﹣1,﹣|﹣2.5|,﹣(﹣2),(﹣1)100,﹣22 (2)将上列各数用“<”连接起来: .20.a,b为有理数,若规定一种新的运算“⊕”,定义a⊕b=a2-b2-ab+1,请根据“⊕”的定义计算:(1)-3⊕4;(2)(-1⊕1)⊕(-2).21.已知|a|=5,b2=4,且a<b,求ab-(a+b)的值.22.先阅读材料,再根据材料中所提供的方法解答下列问题:我们在求1+2+3+…+99+100的值时,可以用下面的方法:我们设S=1+2+3+…+99+100①,那么S=100+99+98+…+3+2+1②.然后,我们由①+②,得2S=(100+1)+(99+2)+(98+3)+…+(99+2)+(100+1),共100个101.2S=101+101+101+…+101=100×101所以S=100×101÷2=5050.依据上述方法,求下列各式的值:(1)1+3+5+…+97+99;(2)5+10+15+…+195+200.参考答案1.C2.D3.B4.B5.A6.D7.B8.A.9.答案为:﹣8.10.答案为:4.11.答案为:(1)25 (2)-25 (3)-8343(4)-8712.答案为:-24<(-2)3<(-2)213.答案为:9.14.答案为:45.15.解:原式=(-1)×(-2)=2.16.解:原式=-9÷(-8)=9 8 .17.解:原式=1418.解:原式=4×(-2)(-2)+3×4=16+12=28.19.解:如图所示;(2)由图可知,﹣22<﹣|﹣2.5|<﹣1<(﹣1)100<﹣(﹣2).20.解:(1)-3⊕4=(-3)2-42-(-3)×4+1=6(2)(-1⊕1)⊕(-2)=[(-1)2-12-(-1)×1+1]⊕(-2)=2⊕(-2)=22-(-2)2-2×(-2)+1=5 21.解:由|a|=5得:a=±5,由b2=4得b=±2又∵a<b,∴a=-5,b=±2∴当a=-5,b=2时,ab-(a+b)=(-5)×2-(-5+2)=-7;当a=-5,b=-2时,ab-(a+b)=(-5)×(-2)-[-5+(-2)]=1722.解:(1)设S=1+3+5+…+97+99①,那么S=99+97+…+5+3+1②①+②,得2S=(1+99)+(3+97)+…+(97+3)+(99+1),共50个100.2S=100+100+…+100=50×100,所以S=2500即1+3+5+…+97+99=2500.(2)设S=5+10+15+…+195+200①,那么S=200+195+…+15+10+5②①+②得2S=(5+200)+(10+195)+(15+190)+…+(195+10)+(200+5),共40个205. 2S=205+205+…+205=205×40,所以S=4100即5+10+15+…+195+200=4100.。
(常考题)北师大版初中数学七年级数学上册第二单元《有理数及其运算》测试题(含答案解析)
一、选择题1.有理数a ,b 在数轴上的对应点的位置如下图所示,则下列结论正确的是( )A .b a <-B .0ab >C .a b >D .02ba-< 2.关于几个“本身”,下列说法错误的是( ) A .倒数等于它本身的数有2个B .相反数等于它本身的数有1个C .立方(三次方)等于它本身的数有2个D .绝对值等于它本身的数有无数个 3.“全民行动,共同节约”,我国14亿人口如果都响应国家号召每人每年节约1度电,一年可节的1400000000度,这个数用科学记数法表示,正确的是( ) A .81410⨯B .91.410⨯C .100.1410⨯D .101.410⨯4.有理数a ,b 在数轴上的对应点如图,下列式子:①0a b >>;②b a >;③0ab <;④a b a b ->+;⑤1ab<-,其中错误的个数是( )A .1B .2C .3D .45.截至2020年10月末,全国核酸日检测能力是65.7610⨯人份,实现了“应检尽检”、“愿检尽检”.数据65.7610⨯原来的数是( ) A .576000B .576万C .57600000D .57.6万6.数轴上有O ,A ,B ,C ,D 五个点,各点的位置与所表示的数如图所示,且35d <<.若数轴上有一点M ,M 所表示的数为m ,且3m d m -=-,则关于点M 的位置,下列叙述正确的是( )A .M 在O ,B 之间 B .M 在O ,C 之间 C .M 在C ,D 之间D .M 在A ,D 之间7.定义:如果x a N =(0a >,且1a ≠),那么x 叫做以a 为底N 的对数,记做log a x N =.例如:因为2749=,所以7log 492=;因为35125=,所以5log 1253=.则下列说法正确的序号有( )①6log 636=;②3log 814=;③若4log (14)3a +=,则50a =;④222log 128log 16log 8=+ A .①③ B .②③ C .①②③ D .②③④ 8.在有理数中,有( )A .最大的数B .最小的数C .绝对值最小的数D .绝对值最大的数9.5-的相反数是( ) A .15-B .5-C .5D .1510.如图所示的运算程序中,若开始输入的x 值为24,我们发现第1次输出的结果为12,第2次输出的结果为6,……则第2021次输出的结果为( )A .6B .3C .24D .1211.下列计算中,结果等于5的是( )A .()()94---B .()()94-+-C .94-+-D .9+4-+ 12.数M 精确到0.01时,近似数是2.90,那么数M 的范围是( )A .2.8≤M<3B .2.80≤M≤3.00C .2.85≤M<2.95D .2.895≤M<2.905二、填空题13.规定*是一种运算符号,且a*b=ab-2a ,例1*2=1×2-2×1=0,则4*(-2*3)=_. 14.5-的相反数是________,5-的倒数是________,5-的绝对值是________. 15.某地一天的最高气温是12C ︒,最低气温是2C -︒,则该地这天的温差是_________C ︒.16.“数形结合”思想在数轴上得到充分体现,如在数轴上表示数5和2-的两点之间的距离,可列式表示为()52--,或25--;表示数x 和3-的两点之间的距离可列式表示为()33x x --=+.已知31239x x y y ++-+++-=,则x y +的最大值为______.17.||8a =,4b =-,则-a b 的值为__________. 18.若|a|=3,|b|=4且a b >,则a b +=_______.19.一百货大楼地上共有30层,地下共有3层,若某人乘电梯从地下2层升至地上16层,则电梯一共升了______________层. 20.计算:(1)()()91143---+---;(2)()23217222⎛⎫--⨯-÷- ⎪⎝⎭. 三、解答题21.计算:2334[28(2)]--⨯-÷-22.计算:2202013(1)(2)4(1)2-÷-⨯---+-.23.中华人民共和国公民身份证号码从左到右有十八位,具体构成如下表中示例:是330624,出生日期码是出生年月日,顺序码的前两位是所在地派出所的代码,顺序码的第三位表示性别,奇数分配给男性,偶数分配给女性校验码的生成方式如下:(第1位数字×7+第2位数字×9+第3位数字×10+第4位数字×5+第5位数字×8+第6位数字×4+第7位数字×2+第8位数字×1+第9位数字×6+第10位数字×3+第11位数字×7+第12位数字×9+第13位数字×10+第14位数字×5+第15位数字×8+第16位数字×4+第17位数字×2)÷11,所得余数对应校验码如下表:(2)一个女孩于2000年1月1日在新昌七星街道出生,且她的顺序码为04a ,校验码为3,按上述规则,请求出a 的值并写出该女孩的身份证号码. 24.计算: (1)4(2)3--⨯ (2)221(9)33-⨯-+25.某公司去年1~3月平均每月亏损3.8万元,4~6月平均每月盈利3.6万元,7~10月平均每月盈利2.5万元,11~12月平均每月亏损3.5万元.(1)如果把7~10月平均每月的盈利额记为 2.5+万元,那么,11~12月平均每月的盈利额可记为______万元;(2)请通过计算说明这个公司去年的盈亏情况;(3)这个公司去年下半年平均每月盈利比上半年平均每月盈利多多少万元? 26.计算: (1)31113+(0.25)(4)3444---+-- (2)31(2)93--÷(3)1125100466()46311-⨯-⨯-⨯【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据数轴上点对应数的符号、有理数乘法的符号法则及绝对值的意义求解 . 【详解】解:由图可知:a>2,所以-a<-2,而b>-2,所以b>-a ,A 错误;由图可知,a>0,b<0,所以ab<0,-b>0,2a>0,02ba->,所以B 、D 错误; 由图可知,|a|>2,|b|<2,所以|a|>|b|,C 正确; 故选C . 【点睛】本题考查数轴的应用,熟练掌握有理数乘法的符号法则及绝对值的意义是解题关键.2.C解析:C 【分析】直接利用立方、相反数、倒数、绝对值的性质分别分析得出答案. 【详解】解:A 、倒数等于它本身的数有2个,正确,不合题意; B 、相反数等于它本身的数有1个,正确,不合题意; C 、立方等于它本身的数有3个,故原说法错误,符合题意; D 、绝对值等于它本身的数有无数个,正确,不合题意; 故选:C . 【点睛】此题主要考查了相反数、倒数、绝对值等定义,正确掌握相关定义是解题关键.3.B解析:B 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数. 【详解】解:1400000000=1.4×109, 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C解析:C 【分析】先由数轴得a <0<b ,且|a|>|b|,再逐个序号判断即可. 【详解】 解:如图:由数轴可得:a <0<b ,且|a|>|b| ①由a <0<b 可知,a >0>b 不正确; ②由|a|>|b|可知|b|>|a|不正确; ③由a ,b 异号,可知ab <0正确; ④由b >0,可知a-b >a+b 不正确; ⑤由a <0<b ,|a|>|b|,则1ab<-,正确; ∴错误的有3个; 故选:C . 【点睛】本题考查了借助数轴进行的有理数的相关运算,明确相关运算法则并数形结合,是解题的关键.5.B解析:B 【分析】将科学记数法a×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数. 【详解】解:65.7610⨯=5760000=576万. 故选:B . 【点睛】本题考查写出用科学记数法表示的原数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.6.B解析:B 【分析】根据O 、A 、B 、C 、D 五个点在数轴上的位置和绝对值的定义即可得到结论. 【详解】解:由题意可得:点A 表示的数为-5,点B 表示的数为3,点C 表示的数为-1,点D 表示的数为d ,且AC=BC ∵3m d m -=-, ∴MD=BD , 又∵-5<d <-1<3 ∴M 点介于O 、C 之间, 故选:B . 【点睛】本题考查的是数与数轴,利用数形结合思想解题是关键.7.D解析:D 【分析】根据定义公式分别计算再判断. 【详解】∵6=6,∴6log 61=,故①错误; ∵4381=,∴3log 814=,故②正确; ∵4log (14)3a +=,∴3414a =+,解得a=50,故③正确; ∵72128=,∴2log 1287=,∵43216,28==,∴22log 164,log 83==, ∴22log 16log 87+=,∴222log 128log 16log 8=+,故④正确; 故选:D . 【点睛】此题考查新定义计算,有理数的乘方计算,正确理解题中计算公式是解题的关键.8.C解析:C 【分析】根据有理数和绝对值的意义求解 . 【详解】解:根据有理数的意义,没有最大的有理数,也没有最小的有理数,所以A 、B 都是错误的;根据绝对值的意义可知,对于一个数a ,|a|≥0,所以没有绝对值最大的数,绝对值最小的数为0,所以D 错误,C 正确. 故选C . 【点睛】本题考查有理数、绝对值的应用,熟练掌握有理数、绝对值的应用与性质是解题关键.9.C解析:C 【分析】直接利用只有符号不同的两个数叫做互为相反数,进而得出答案. 【详解】由相反数的定义可知,−5的相反数为5. 故选:C . 【点睛】此题主要考查了相反数,正确掌握定义是解题关键.10.B解析:B 【分析】根据数字的变化类规律,比较输入与输出结果的规律即可得结论. 【详解】解:根据运算程序,得 第1次输出的结果为12, 第2次输出的结果为6, 第3次输出的结果为3, 第4次输出的结果为6, 第5次输出的结果为3, ……∴(2021-1)÷2=1010 ∴第2021次输出的结果为3. 故选:B . 【点睛】本题考查了数字的变化规律、有理数的混合运算、代数式求值,解决本题的关键是输入数字后准确计算输出的结果.11.A解析:A 【分析】根据绝对值的性质化简化简求解. 【详解】A.()()94---=9455-+=-=,故正确;B. ()()94941313-+-=--=-=,故错误;C. 949413-+-=+=,故错误;D.9+4-+=9413+=,故错误; 故选A . 【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.12.D解析:D【分析】精确到0.01求近似数要看千分位上的数进行四舍五入,近似值为2. 90,有两种情况,千分位上的数舍去,和千分位上的数要进一,找出舍去的和进一的数字即可解答.【详解】干分位舍去的数有,1、2、3、4,即数M可能是2.901 、2.902 、2.903 、2.904;千分位进一的数有5、6、7、8、9,因为千分位进一,得到近似数是2.90,所以原来的小数的百分位上是10-1=9,百分位9+1=10又向十分位进一,即原数的十分位原来是9-1=8 ,即数M可能是2.895、2.896 、 2.897、2.898 、2.899;∴数M精确到0.01时,近似数是2.90,那么数M的范围是2.895≤M<2.905,故选:D.【点睛】此题考查近似数及其求法,正确理解近似数的精确方法“四舍五入法”,从所精确的数位的后一位舍去或进一两种方法解决问题是解题的关键.二、填空题13.-16【分析】结合题意根据有理数混合运算的性质计算即可得到答案【详解】根据题意得:故答案为:-16【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数混合运算的性质从而完成求解解析:-16【分析】结合题意,根据有理数混合运算的性质计算,即可得到答案.【详解】根据题意得:()-4*2*3()=⨯--⨯42*324()()=⨯-⨯-⨯--423228⎡⎤⎣⎦()=⨯----4648⎡⎤⎣⎦()=⨯--428=--88=-16故答案为:-16.【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数混合运算的性质,从而完成求解.14.5【分析】根据相反数倒数绝对值的概念及性质解题【详解】解:的相反数是5;的倒数是;的绝对值是5故答案为:55【点睛】此题考查了相反数倒数绝对值的定义注意区分概念不要混淆解析:15- 5【分析】根据相反数、倒数、绝对值的概念及性质解题.【详解】解:5-的相反数是5; 5-的倒数是15-; 5-的绝对值是5.故答案为:5,15-,5. 【点睛】此题考查了相反数、倒数、绝对值的定义,注意区分概念,不要混淆.15.14【分析】根据题意用最高气温12℃减去最低气温-2℃根据减去一个负数等于加上这个数的相反数即可得到答案;【详解】℃故答案为:14【点睛】本题主要考查有理数的减法运算关键在于正确的列式计算解析:14 【分析】根据题意用最高气温12℃减去最低气温-2℃,根据减去一个负数等于加上这个数的相反数即可得到答案; 【详解】()122=14--℃,故答案为:14. 【点睛】本题主要考查有理数的减法运算,关键在于正确的列式计算.16.4【分析】根据题意分别得到和的最小值结合得到=4=5根据x 和y 的范围得到x+y 的最大值【详解】解:由题意可得:表示x 与-3的距离和x 与1的距离之和表示y 与-2的距离和y 与3的距离之和∴当-3≤x≤1解析:4 【分析】根据题意分别得到31x x ++-和23y y ++-的最小值,结合31239x x y y ++-+++-=得到31x x ++-=4,23y y ++-=5,根据x 和y的范围得到x+y 的最大值. 【详解】解:由题意可得:31x x ++-表示x 与-3的距离和x 与1的距离之和, 23y y ++-表示y 与-2的距离和y 与3的距离之和,∴当-3≤x≤1时,31x x ++-有最小值,且为1-(-3)=4, 当-2≤x≤3时,23y y ++-有最小值,且为3-(-2)=5, ∵31239x x y y ++-+++-=, ∴31x x ++-=4,23y y ++-=5, ∴x+y 的最大值为:1+3=4, 故答案为:4. 【点睛】本题考查了数轴上两点之间的距离,绝对值的意义,,用几何方法借助数轴来求解,数形结合是解答此题的关键.17.12或-4【分析】根据绝对值的定义即可求出答案【详解】解:由题意可知:a =±8当a =8b =﹣4时a ﹣b =8+4=12当a =﹣8b =﹣4时a ﹣b =﹣8+4=﹣4故答案:12或-4【点睛】本题考查绝对值解析:12或-4 【分析】根据绝对值的定义即可求出答案. 【详解】解:由题意可知:a =±8,4b =-, 当a =8,b =﹣4时, a ﹣b =8+4=12, 当a =﹣8,b =﹣4时, a ﹣b =﹣8+4=﹣4, 故答案:12或-4. 【点睛】本题考查绝对值的定义,解题的关键是熟练运用绝对值的定义,本题属于基础题型.18.-1或-7【分析】根据a >b 得出ab 的值再代入计算即可【详解】解:∵∴a=±3b=±4又∵a >b ∴a=3b=-4或a=-3b=-4当a=3b=-4时a+b=3+(-4)=-1当a=-3b=-4时a+解析:-1或-7 【分析】根据3a =,b 4=,a >b ,得出a 、b 的值,再代入计算即可. 【详解】解:∵3a =,b 4=,∴a=±3,b=±4,又∵a>b,∴a=3,b=-4或a=-3,b=-4,当a=3,b=-4时,a+b=3+(-4)=-1,当a=-3,b=-4时,a+b=(-3)+(-4)=-7,因此a+b的值为:-1或-7.故答案为:-1或-7.【点睛】本题考查了有理数的加法,绝对值的意义,掌握有理数加法的计算方法是正确计算的前提,根据绝对值的意义求出a、b的值是得出答案的关键.19.17【分析】地下为负地上为正所以可以看做从-2层上升到+16层由于没有0层所以应该再减去1计算即可求得【详解】16-(-2)-1=18-1=17(层)∴电梯一共升了17层故答案为:17【点睛】本题主解析:17【分析】地下为负,地上为正,所以可以看做从-2层上升到+16层,由于没有0层,所以应该再减去1,计算即可求得.【详解】16-(-2)-1=18-1=17(层)∴电梯一共升了17层.故答案为:17【点睛】本题主要考查正负数的应用及有理数的运算,先根据数的意义确定出正负再进行计算,易错点是从地下1层到地上1层只上升了1层.20.(1);(2)15【分析】(1)先去括号化简绝对值再计算有理数的加减法即可得;(2)先计算有理数的乘方再计算有理数的乘除法然后计算有理数的加法即可得【详解】(1)原式;(2)原式【点睛】本题考查了含解析:(1)5-;(2)15.【分析】(1)先去括号、化简绝对值,再计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的乘除法,然后计算有理数的加法即可得.【详解】(1)原式91143=-+--,243=--,23=--,5=-;(2)原式()149284 =--⨯-÷,49164=-+⨯,4964=-+,15=.【点睛】本题考查了含乘方的有理数混合运算等知识点,熟练掌握有理数的运算法则是解题关键.三、解答题21.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.22.33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 23.(1)女性;(2)a =4,3306242000010443.【分析】(1)判断顺序码第三位是奇数还是偶数即可;(2)根据题意,把号码的前17位数写出来,再依次乘以对应的系数,再把积相加,结果除以11,根据余数得情况求出结果即可.【详解】解:(1)∵顺序码的第三位是6,∴示例中的人是女性.(2)由题意得:该女孩的身份证号码前17位为3306242000010104a ,∴(37390106528442201060307190⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ 101508442)11a +⨯+⨯+⨯+⨯÷(1442)11a =+÷13(12)11a =++÷∵a 是0到9的整数,当5a <时,余数为12a +,当5a ≥时,余数为1211a +-.∵校验码为3,∴余数为9,∴129a +-,得4a =.或12119a +--,得9.5a =(不是整数不合题意,舍去),∴该女孩身份证号码为3306242000010443.【点睛】此题考查了用数字表示事件,关键是理解掌握阅读知识中规定的运算.24.(1)10;(2)-18【分析】(1)先计算乘法,再计算加法即可;(2)先计算乘方,再计算乘法,最后计算加法.【详解】解:(1)原式46=+10=;(2)原式18193=-⨯+ 279=-+18=-.【点睛】此题考查有理数的混合运算,掌握有理数的乘方运算,乘法运算及加法计算法则啊解题的关键.25.(1)-3.5;(2)盈利2.4万元;(3)0.6万元【分析】(1)根据盈利为正,亏损为负可得结果;(2)根据题意列式求出一年的盈利与亏损的和,进一步根据计算结果判定即可; (3)用下半年平均每月盈利额减去上半年平均每月盈利额.【详解】解:(1)根据盈利为正,亏损为负可得:11~12月平均每月的盈利额可记为-3.5万元;(2)-3.8×3+3.6×3+2.5×4-3.5×2=2.4万元,这个公司去年盈利2.4万元;(3)由题意可得:(2.5×4-3.5×2)÷6-(-3.8×3+3.6×3)÷6=0.6万元,∴这个公司去年下半年平均每月盈利比上半年平均每月盈利多0.6万元.【点睛】此题主要考查正负数在实际生活中的意义,以及有理数的混合运算,熟练掌握运算法则是解题的关键.26.(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+- =183+=21(2)31(2)93--÷=893--⨯=827--=35- (3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。
七年级数学上册《第二章 有理数及其运算》单元测试题及答案-北师大版
七年级数学上册《第二章 有理数及其运算》单元测试题及答案-北师大版一、单选题(本大题共12小题,每小题3分,共36分)1.小明竟然不知道(|﹣1|﹣1)的相反数是什么,他上课一定没有听课,你认为(|﹣2013|﹣2013)的相反数是( ).A .4026B .-4026C .0D .20132.“中国政治协商会议第十三届委员会第三次会议”和“中华人民共和国第十三届全国代表大会第三次会议”分别于2020年5月21日、5月22日在北京胜利召开。
在百度上搜索关键词“两会”显示,截止到2020年5月26日,搜索结果显示为75 900 000条.将75 900 000用科学记数法表示为()A .70.75910⨯B .77.510⨯C .77.5910⨯D .675.910⨯3.端午节小长假期间,沈阳某景区接待游客约为 85000人,将数据85000用科学记数法表示为( ) A .38510⨯ B .48.510⨯ C .50.8510⨯ D .58.510⨯4.下列各数中,比0大的数是( )A .1B .0C .﹣1D .﹣25.如果收入100元记作100+元,那么20-元表示( )A .支出20元B .支出80元C .收入20元D .收入80元7.和圆周率“π”一样,自然常数“e ”也是自然界中经常用到的常数之一, 2.71828e ≈精确到千分位为( ) A .2.7 B .2.71 C .2.718 D .2.71828.下列说法中正确的是( )A .在有理数中,0的意义仅表示没有B .非正有理数即为负有理数C .正有理数和负有理数组成有理数集合D .0是自然数9.在各数中,正有理数的个数有( ) A .2个 B .3个 C .4个 D .5个10.钓鱼岛是中国固有领土,位于东海,面积为4400000平方米,用科学记数法表示为( )平方米A .4 4×105B .4. 4×106C .4. 4×107D .0.44×10811.如果规定收入为正,支出为负,收入375元记作375+元,那么支出235元应记作( )A .-375元B .-235元C .235元D .375元12.“天文单位”是天文学中测量距离的基本单位,1天文单位约等于149600000千米,149600000这个数用科学记数法表示为( )A .5149610⨯B .8149610⨯C .51.49610⨯D .81.49610⨯二、填空题(本大题共8小题,每小题3分,共24分)13.人类的遗传物质就是DNA ,人类的DNA 是很长的链,最短的22号染色体也长达30000000个核苷酸,三、解答题(本大题共5小题,每小题8分,共40分)。
北师大版七年级数学上册第二章有理数应用练习卷
七年级数学上册第二章有理数的应用典型例题15道类型一:与质量有关的问题1.某超市出售的三种品牌的洗衣液上分别标有净重(800±2)g,(800±3)g,(800±5)g的字样,从中任意拿出两袋,它们的质量最多相差g。
答案:10考点:正负数的含义分析:理清“±”符号的含义,方法一:800±2表示最多800+2=802,最少800-2=798;800±3表示最多800+3=803,最少800-3=797;800±5表示最多800+5=805,最少800-5=795.用最大数减去最小数就是它们质量的最多差值:805-795=10方法二:简便算法:最大袋比800多5,最小袋比800少5,所以最大差值是:5-(-5)=102.有四包真空包装的火腿,枚包以标准克数(450g)为基准,超过的记为正数,不足的记为负数,一下数据是记录结果,其中表示实际克数最接近标准克数的是()A.2B.-3C.+3D.±4答案:A考点:绝对值的意义分析:最接近标准,即是与标准的差值的绝对值最小, 2的绝对值是2,-3的绝对值是3,3的绝对值时,±4的绝对值是4,所以选A3.某面粉厂购进标有50千克的面粉10袋,复称时发现误差如下(超过记为正,不足记为负):+0.8 ,+1.6 ,-2.1 ,+0.3 ,-1.6 ,-0.8 ,+0.3 ,+1.6 ,+0.8 ,-0.7(1)问该面粉厂实际收到面粉多少千克?平均质量是多少?(2)若质量误差高于0.8千克以上的,则这袋面粉为不合格,这10袋面粉中有哪几袋不合格?(3)质量最多的是哪袋?它的实际质量是多少?(4)质量最少的是哪袋?它的实际质量是多少?考点:有理数的加法;绝对值的意义;有理数大小比较.分析:(1)理解各袋质量误差之和就是总质量的误差;(2)误差高于0.8千克,可以比标准质量50千克多0.8千克以上或少0.8千克以上,即误差的绝对值大于0.8千克的都不合格;计算各个误差数据的绝对值,再与0.8进行比较。
北师大版七年级上册数学第二章 有理数及其运算 含答案
北师大版七年级上册数学第二章有理数及其运算含答案一、单选题(共15题,共计45分)1、如果=5,,且< 0,则的值是()A.-1B.-9C.±1或±9D.-1或-92、有理数的相反数是()A. B. C.3 D.–33、若α、β为实数,且|α+β-3|+|αβ-2|=0,则下列方程中以α、β为根的一元二次方程正确的是()A.x 2+3x+2=0B.x 2-3x-2=0C.x 2+3x-2=0D.x 2-3x+2=04、从河北省政府新闻办新闻发布会上了解到,到2022年,河北省将培养1.5万名冰雪项目社会体育指导员,数据1.5万用科学记数法表示成a×104,则a的值为()A.0.15B.1.5C.15D.15 0005、已知点P(a,b)到x轴的距离是2,到y轴的距离是5,且,则P点的坐标是()A.(5,2)B.(2,−5)C.(5,2)或(5,−2)D.(2,−5)或(5,2)6、四个数中,最大数与最小数的积为()A.-4B.-9C.-36D.-17、﹣的倒数是()A.﹣B.4C.﹣4D.8、下列各数中,是准确数的是()A.小明身高大约165cmB.天安门广场约44万平方米C.天空中有8只飞鸟D.国庆长假到北京旅游的有60万人9、下列式子中,化简结果正确的是()A.﹣|﹣5|=5B.|﹣5|=5C.|﹣0.5|=﹣D.+(﹣)=10、在0,﹣2,1,5这四个数中,最小的数是()A.0B.﹣2C.1D.511、下列语句错误的是()A.相反数是它本身的数是0B.0是最小的有理数C.自然数就是0和正整数D.绝对值等于它本身的数是非负数12、尽管受到国际金融危机的影响,但湖州市经济依然保持了平稳增长.据统计,截止到今年4月底,该市金融机构存款余额约为1193亿元,用科学记数法应记为 ( )A.1.193×10 10元B.1.193×10 11元C.1.193×10 12元 D.1.193×10 13元13、①0是绝对值最小的有理数;②相反数大于自身的数是负数;③任何一个有理数的绝对值都是非负数;④两个数相互比较,绝对值大的反而小;⑤符号不同的两个数是互为相反数.③绝对值等于本身的数是0和1.其中正确的有()A.2个B.3个C.4个D.5个14、数 a 与数 b 在数轴上的位置如图所示,则有()A.a<bB.C.D.15、8的相反数是()A.8B.C.﹣8D.-二、填空题(共10题,共计30分)16、若a为有理数,则|a﹣3|+|a+4|的最小值是________,|a+2|﹣|a﹣1|的最大值是________.17、当a=________时,|1﹣a|+2会有最小值,且最小值是________.18、截止5月17日,检察反腐力作《人民的名义》在爱奇艺上的点播量约为6820 000 000次,请将6820 000 000用科学记数法表示为________.19、若+|b+1|+(c+1)2=0,则a+b﹣c=________.20、使等式成立的的值为________.21、将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1《数怎么不够用》练习题一、选择题:1.下列各组数中,不是互为相反意义的量的是()A.向东走5米和向西走2米B.收入100元和支出20元C.上升7米和下降5米D.长大1岁和减少2公斤2.向东行进-30m表示的意义是()A.向东行进30m B.向南行进30m C.向西行进-30m D.向西行进30m 3.温度升高50C,再升高-50C,结果是()A.温度升高了100C B.温度下降了50C C.温度不变D.温度下降了100C 4.下列说法中正确的是()A.正整数、负整数统称为整数B.正分数和负分数统称为分数C.零既可以是正整数,也可以是负整数D.一个有理数不是正数就是负数5.正整数集合与负整数集合合并在一起构成的集合是()A.整数集合B.有理数集合C.自然数集合D.以上说法都不对6.羽毛球比赛,如果胜2局,记做+2,那么输3局,记做_______。
7.某地某日的最高温度是零上80C,记做+80C,那么当日最低温度零下60C,应记做_____。
8.一只蚂蚁向东南方爬行3米记做+3米,那么这只蚂蚁爬行-2米表示_______。
9.小明的姐姐在银行工作,她把存入2万元记做+2万元,那么支取3万元应记做______。
10.哈尔滨市2000年冬天的某一天的月平均气温是零下320C,用负数表示这个温度是______。
二、填空题:1、用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;(2)球赛时,如果胜2局记作+2,那么-2表示______ ;(3)若-4万表示亏损4万元,那么盈余3万元记作______;(4)+150米表示高出海平面150米,低于海平面200米应记作______;2、最小的自然数是,最大的负整数是,最小的非负整数是;大于-5.1的所有负整数为,_____ 既不是正数,也不是负数.分数有_____ ,_____ .三、解答题:1、 把下列各数分别填在题后相应的集合中:25-,0,1-,0.73,2,5-,87,52.29-,+28。
(1)正数集合:(2)负数集合:(3)整数集合:(4)分数集合:(5)正整数集合:(6)负整数集合:(7)正分数集合: 2、某地一天中午12时的气温是6°C ,傍晚5时的气温比中午12时下降了4°C ,凌晨4时的温度比傍晚5时还低4°C ,问傍晚5时的气温是多少?凌晨4时的气温是多少?2.2数轴同步练习1.下列所画的数轴中正确的是( ) A . B .C .D .2.在数轴上表示数-3,0,5,2,52的点中,在原点右边的有( ) A .0个 B .1个 C .2个 D .3个3.在数轴上原点以及原点左边的点表示的数是( ) A .正数 B .负数 C .零和正数 D .零和负数4.如图所示,根据有理数a ,b ,c 在数轴上的位置,下列关系正确的是( ) A .b>a>0>c B .a<b<0c C .b<a<0<c D .a<b<c<05.比较-2,-21,0,0.02的大小,正确的是( ) A .-2<-21<0<0.02 B .-21<-2<0<0.02 C .-2<-21<0.02<0 D .0<-21<-2<0.026.数轴上表示-3的点在原点____侧,距原点的距离是______;+7.3在原点的_____侧,距原点的距离是_____。
7.若一点P 在数轴上且到原点的距离为2,则点P 表示的数是_____。
8.若a =+3.2,则-a =_____;若a =-41,则-a =_____; 若-a =1,则a =_____;若-a =-2,则a =_____。
9.不大于432的非负整数有______ ;不小于-3的负整数有_______ 。
10.如图,一只蚂蚁从原点O 出发,它先向右爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,然后向左爬了9个单位长度到达点C 。
(1)写出A ,B ,C 三点表示的数;(2)根据C 点在数轴上的位置回答蚂蚁实际上是从原点出发,向什么方向爬行了几个单位长度?11.画一条数轴,然后在数轴上画出表示下列各数的点;并比较大小。
-121,2,3,-2.7,131,-3,012.数轴上A ,B 两点分别表示-21和21,这两点间的点表示的有理数能有多少个?试写出其中五个。
13.已知有理数a ,b ,c 如图数轴所示,试比较a ,-a ,b ,-b ,c ,-c ,0的大小,并用符号“<”连接起来。
14.求下列各数的相反数.(1)-(+7) (2)+(-m )15.m ,n 在数轴上位置如图2—5,则下面结论正确的是…( )图2—5A .m >0,n <0B .m >0,n >0C .m <0,n <0D .m <0,n >02.3绝对值同步练习1.若a=-3则-a =( )A.-3B.3C.-3或3D.以上都不对 2.下列各组数中,互为相反数的是A .3232--与 B. 2332--与 C. 3232与- D. 2332与-3.用“>”连接,2-,-3-,0,正确的是( ) A .2->-3->0 B. 2->0>-3- C. -3-<2-< 0 D.0< -3-<2-4.下列各式中,正确的是A .-16->0 B. 2.0>2.0 C. 74->75- D. 6-<0 5.在-0.1,21,1,21-这四个数中,最小的一个数是( )A. -0.1B. 21- C. 1 D. 216.任何一个有理数的绝对值一定( )A .大于0B .小于0C .不大于0D .不小于0 7.若a >0,b <0,且|a|<|b|,则a+b 一定是( )A .正数B .负数C .非负数D .非正数 8.下列说法正确的是( )A .一个有理数的绝对值一定大于它本身B .只有正数的绝对值等于它本身C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数 9.下列结论正确的是( )A .若|x|=|y|,则x=-yB .若x=-y ,则|x|=|y|C .若|a|<|b|,则a <bD .若a <b ,则|a|<|b| 10.|21a|=-21a ,则a 一定是( )A .负数B .正数C .非正数D .非负数11.一个数在数轴上对应点到原点的距离为m ,则这个数为( )A .-mB .mC .±mD .2m12.如果一个数的绝对值等于这个数的相反数,那么这个数是( )A .正数B .负数C .正数、零D .负数、零 二、填空题1.互为相反数的两个数的绝对值_____.2.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____. 3.绝对值最小的数是_____.4.绝对值等于5的数是_____,它们互为_____. 5.若b <0且a=|b|,则a 与b 的关系是______. 6.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”). 7.如果|a|>a ,那么a 是_____. 8.如果-|a|=|a|,那么a=_____.9.(1) 51+=_______;5.3-=_______;- 3-=_______;-37.0+=_______;(3) 8-+2-=_______;36-÷-=_______;2155.6---=_______.10.已知a =2,b =2,c =3,且有理数a, b, c 在数轴上的位置如图2-5 所示,计算a+b+c 的值。
11.把-3.5、|-2|、-1.5、|0|、331、|-3.5|记在数轴上,并按从小到大的顺序排列出来.四、解答题1.若|x -2|+|y+3|+|z -5|=0 计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值.2.若2<a<4,化简|2-a|+|a -4|.2.4有理数的加法一.选择题(1)如果两个数的和是正数,那么( ) A .这两个加数都是正数B .一个加数为正,另一个加数为0C .这两个加数一正一负,且正数的绝对值较大D .必属于上面三种情况之一(2)两数相加,其和小于每一个加数,那么( ) A .这两个加数必有一个数是0 B .这两个加数必是两个负数C .这两个加数一正一负,且负数的绝对值较大D .这两个加数的符号不能确定3.一个数是5,另一个数比5的相反数大2,则这两个数的和为( ) A .2 B .-2 C .7 D .124.若|a |=3,|b |=2,则|a +b |等于( ) A .5 B .1 C .5或1 D .±5或±1 5.下列运算结果的符号是正的个数有( )①(-3.2)+(-2.8) ②(+0.5)+(-0.7)③(-51)+(-52) ④(-91)+(+95)A .1B .2C .3D .4 6.若a +b =b a +,则a,b 的关系是( )A.a,b 的绝对值相等;B.a ,b 异号;C.a ,-b 的和是非负数;D.a ,b 同号或其中至少一个为零. 7、对于任意两个有理数,a,b,成立的是( ) A.若a+b=0,a=-b; B.若a+b>0,则a>0,b>0; C.若a+b<0,则a<b<0; D.若a+b<a,则a<0. 8.一个数加上-0.11,得-0.011,那么这个数是( ). A.-0.111 B.0.099 C.-0.099 D.0.1 9.下列说法正确的是( ).A.两数之和不可能小于其中的一个加数;B.两数相加就是它们的绝对值相加;C.两个负数相加,和取负号,绝对值相减;D.不是互为相反数的两个数,相加不能得零. 10.若a =3, b =5,则b a += ( )A.2B.8C.2或8D.-2或-811.有理数a ,b 在数轴上对应位置如图所示,则a+b 的值为( )A .大于0B .小于0C .等于0D .大于a二.计算:(1)(-10)+(-5); (2)(-54)+43(3)0+(-6.6); (4)(-2103)+(+353) (5)(-4.8)+5.2 (6)17+(-17);三.解答题1、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?2、某检修小组从A 地出发,在东西路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下:(单位:千米)-4,+7,-9,+8,+6,-4,-3求收工时距A 地多远?若每千米耗油0.3升,问从出发到收工共耗油多少升?2.5有理数的减法练习1.计算: (1)(-52)-(-53) (2)(-1)-(+121)(3)4.2-5.7(4)152-(-2.7) (5)0-(-74) (6) (-21)-(-21)2.计算: (1)(-32)-(+21)-(-65)-(-31); (2)(-831)-(+12)-(-7021)-(-831); (3)(-1221)-[-(+6.5)-(-6.3)-651]; (4)(-17)-(-8)-(-9)-(+6)-(-14);3.选择题(1).如果a<0,那么a 和它的相反数的差的绝对值等于( ). A .a; B .0; C .-a; D .-2a. (2).若两个有理数的差是正数,那么( )A .被减数是正数,减数是负数;B .被减数和减数都是正数;C .被减数大于减数;D .被减数和减数不能同为负数. (3).下列等式成立的是( ). A .0=-+a a B .-a-a=0 C .0=--a aD .-a-a =0(4).如果的关系是则n m n m ,,0=-( ) A. 互为相反数;B. m=±n,且n ≥0;C. 相等且都不小于0;D. m 是n 的绝对值.(5).已知a,b 是两个有理数,那么a-b 与a 比较,必定是( ) A.a-b>a; B.a-b<a; C.a-b>-a; D.大小关系取决于b.4.已知m 是5的相反数,n 比m 的相反数小6,求n 比m 大多少?5.填空题: (1)267-=276;-(-31)=2; (2)341-552=; -64-64-=. (3)比-3小5的数是 ;比-5小-7的数是;(4)比a 小-5的数是.(4)-32与52的差的相反数是;比-32小-52的数的绝对值是6.a,b 是两个任意有理数,试比较:(1)a+b 与a-b 的大小; (2)b a -与a-b 的大小.2.6有理数加减运算一、 填空题:1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。