高一数学《平面向量》单元测试
高中数学必修《平面向量》单元测试

平面向量单元测试卷(5)一、选择题1.在△OAB中,=,=,M为OB的中点,N为AB的中点,ON,AM交于点P,则=()A.﹣B.﹣+C.﹣D.﹣+2.已知向量≠,||=1,对任意t∈R,恒有|﹣t|≥|﹣|,则()A.⊥B.⊥(﹣)C.⊥(﹣)D.(+)⊥(﹣)3.已知A,B,C是坐标平面内不共线的三点,o是坐标原点,动点P满足(λ∈R),则点P的轨迹一定经过△ABC的()A.内心B.垂心C.外心D.重心4.已知平面上三点A、B、C满足,,,则的值等于()A.25 B.﹣25 C.24 D.﹣245.已知向量=(2,0),向量=(2,2),向量=(cosα,sinα),则向量与向量的夹角范围为()A.[0,]B.[,]C.[,]D.[,]6.设非零向量、、满足,则=()A.150°B.120°C.60°D.30°7.设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,则|•|的值一定等于()A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积8.设D是正△P1P2P3及其内部的点构成的集合,点P0是△P1P2P3的中心,若集合S={P|P∈D,|PP0|≤|PP i|,i=1,2,3},则集合S表示的平面区域是()A.三角形区域B.四边形区域C.五边形区域D.六边形区域9.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)} B.{(﹣1,1)} C.{(1,0)} D.{(0,1)}10.已知、是不共线的向量,=λ+,=+μ(λ,μ∈R),那么A、B、C三点共线的充要条件为()A.λ+μ=1 B.λ﹣μ=1 C.λμ=﹣1 D.λμ=1二、填空题11.若平面向量,满足,平行于x轴,,则=.12.给定两个长度为1的平面向量和,它们的夹角为120°.如图所示,点C在以O为圆心,以1半径的圆弧AB上变动.若=x+y,其中x,y∈R,则x+y的最大值是.13.在平行四边形ABCD中,E和F分别是边CD和BC的中点,若=λ+μ,其中λ、μ∈R,则λ+μ=.14.如图所示,把两块斜边长相等的直角三角板拼在一起,若=x+y,则x=,y=.三、解答题15.如图,已知点A(1,1)和单位圆上半部分上的动点B.(1)若,求向量;(2)求||的最大值.16.已知在△ABC中,三条边a、b、c所对的角分别为A、B、C,向量=(sinA,cosA),=(cosB,sinB),且满足.(1)求角C的大小;(2)若sinA、sinC、sinB成等差数列,且=18,求c的值.17.已知△ABC中,,∠ABC=120°,∠BAC=θ,记f(θ)=.(Ⅰ)求f(θ)关于θ的表达式;(Ⅱ)求f(θ)的值域.18.已知△ABC的面积为3,且满足,设和的夹角为θ.(Ⅰ)求θ的取值范围;(Ⅱ)求函数的最大值与最小值.19.设向量,,,,其中θ∈(0,).(1)求的取值范围;(2)若函数f(x)=|x﹣1|,比较f()与f()的大小.20.已知m∈R,,,.(Ⅰ)当m=﹣1时,求使不等式成立的x的取值范围;(Ⅱ)求使不等式成立的x的取值范围.《第2章平面向量》单元测试卷(5)参考答案一、选择题(共10小题,每小题4分,满分40分)1.B 2.C 3.D 4.B 5.D 6.B 7.A 8.D 9.A 10.D二、填空题(共4小题,每小题5分,满分20分)11.(-1,1)或(-3,1)12.2 13.14.三、解答题(共6小题,满分0分)15.16.17.18.19.20.。
高一数学单元测试题平面向量

高一数学单元测试题平面向量一、选择题1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。
A、-9B、-6C、9D、62.已知=(2,3), b=(-4,7),则在b上的投影为()。
A、B、C、D、3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得向量为()。
A、(2,3)B、(1,2)C、(3,4)D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。
A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形5.已知||=4, |b|=3, 与b的夹角为60°,则|+b|等于()。
A、B、C、D、6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。
A、B、C、D、7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。
A、重心B、垂心C、内心D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)(·b)2=2·b2;(2)|+b|≥|-b|;(3)|+b|2=(+b)2;(4)(b)-(a)b与不一定垂直。
其中真命题的个数是()。
A、1B、2C、3D、49.在ΔABC中,A=60°,b=1,,则等于()。
A、B、C、D、10.向量和b的夹角平分线上的单位向量是()。
A、+bB、C、D、11.台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为()。
A、0.5小时B、1小时C、1.5小时D、2小时12.设、b不共线,则关于x的方程x2+b x+=0的解的情况是()。
A、至少有一个实数解B、至多只有一个实数解C、至多有两个实数解D、可能有无数个实数解二、填空题13.把函数y=4x的图象按平移到F′, F′的函数解析式为y=4x-2-2, 则等于_____。
平面向量单元测试题及答案

平面向量单元测试题(一)2一,选择题:1,下列说法中错误的是 ( )A .零向量没有方向B .零向量与任何向量平行C .零向量的长度为零D .零向量的方向是任意的2,下列命题正确的是 ( )A. 若→a 、→b 都是单位向量,则 →a =→bB . 若AB =DC ,则A 、B 、C 、D 四点构成平行四边形C. 若两向量→a 、→b 相等,则它们是始点、终点都相同的向量D. AB 与BA 是两平行向量3,下列命题正确的是 ( )A 、若→a ∥→b ,且→b ∥→c ,则→a ∥→c 。
B 、两个有共同起点且相等的向量,其终点可能不同。
C 、向量AB 的长度与向量BA 的长度相等,D 、若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线。
4,已知向量(),1m =a ,若,a=2,则m =( )A .3 C. 1± D.3±5,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ∥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,6,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ⊥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,7,在ABC ∆中,若=+,则ABC ∆一定是 ( )A .钝角三角形B .锐角三角形C .直角三角形D .不能确定8,已知向量,,a b c 满足||1,||2,,a b c a b c a ===+⊥,则a b 与的夹角等于 ( )A .0120B 060C 030D 90o二,填空题:(5分×4=20分)9。
已知向量a 、b 满足==1,a 3-=3,则a +3=10,已知向量a =(4,2),向量b =(x ,3),且a //b ,则x =11,.已知 三点A(1,0),B(0,1),C(2,5),求cos ∠BAC =12,.把函数742++=x x y 的图像按向量a 经过一次平移以后得到2x y =的图像, 则平移向量a 是(用坐标表示)三,解答题:(10分×6 = 60分)13,设),6,2(),3,4(21--P P 且P 在21P P =,,则求点P的坐标14,已知两向量),1,1(,),31,,31(--=-+=b a 求a 与b 所成角的大小,15,已知向量a =(6,2),b =(-3,k ),当k 为何值时,有(1),a ∥b ?(2),a ⊥b ?(3),a 与b 所成角θ是钝角?16,设点A (2,2),B (5,4),O 为原点,点P 满足OP =OA +AB t ,(t 为实数);(1),当点P 在x 轴上时,求实数t 的值;(2),四边形OABP 能否是平行四边形?若是,求实数t 的值 ;若否,说明理由, 17,已知向量OA =(3, -4), OB =(6, -3),OC =(5-m, -3-m ),(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件;(2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值.18,已知向量.1,43),1,1(-=⋅=n m m n m 且的夹角为与向量向量π(1)求向量n ;(2)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈, 若0=⋅a n ,试求||b n +的取值范围.平面向量单元测试题2答案:一,选择题:A D C D B C C A二,填空题: 9,23; 10,6; 11,13132 12,)3,2(- 三,解答题:13,解法一:设分点P (x,y ),∵P P1=―22PP ,λ=―2 ∴ (x ―4,y+3)=―2(―2―x,6―y),x ―4=2x+4, y+3=2y ―12, ∴ x=―8,y=15,∴ P(―8,15)解法二:设分点P (x,y ),∵P P1=―22PP , λ=―2 ∴ x=21)2(24---=―8,y=21623-⨯--=15, ∴ P(―8,15)解法三:设分点P (x,y ),∵212PP P P =,∴―2=24x+, x=―8,6=23y+-, y=15, ∴ P(―8,15)14,解:a=22, b =2 , cos <a ,b >=―21, ∴<a ,b >=1200, 15,解:(1),k=-1; (2), k=9; (3), k <9,k ≠-116,解:(1),设点P (x ,0),AB =(3,2),∵OP =OA +AB t ,∴ (x,0)=(2,2)+t(3,2),⎩⎨⎧+=+=,22032,t t x 则由∴⎩⎨⎧-=-=,11t x 即(2),设点P (x,y ),假设四边形OABP 是平行四边形,则有OA ∥BP , ⇒ y=x ―1,OP ∥AB ⇒ 2y=3x ∴⎩⎨⎧-=-=32y x 即……①,又由OP =OA +AB t ,⇒(x,y)=(2,2)+ t(3,2),得 ∴⎩⎨⎧+=+=t y t x 2223即……②,由①代入②得:⎪⎪⎩⎪⎪⎨⎧-=-=2534t t ,矛盾,∴假设是错误的, ∴四边形OABP 不是平行四边形。
(完整版)平面向量单元测试卷及答案

《平面向量》单元测试卷一、选择题:(本题共10小题,每小题4分,共40分) 1.下列命题中的假命题是( ) A 、→-→-BA AB 与的长度相等; B 、零向量与任何向量都共线; C 、只有零向量的模等于零;D 、共线的单位向量都相等。
2.;;④;③∥;②是单位向量;①是任一非零向量,若1|b |0|a |b a |b ||a |b a ±=>>→→→→→→→→),其中正确的有(⑤→→→=b a a|| A 、①④⑤B 、③C 、①②③⑤D 、②③⑤3.首尾相接能,,;命题乙:把命题甲:是任意三个平面向量,,,设→→→→→→→→→→=++c b a 0c b a c b a 围成一个三角形。
则命题甲是命题乙的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、非充分也非必要条件 4.)的是(下列四式中不能化简为→-AD A 、→-→-→-++BC CD AB )(B 、)()(→-→-→-→-+++CD BC MB AM C 、)()(→-→-→-→--++CB AD AB ACD 、→-→-→-+-CD OA OC5.),则(),(,),(设21b 42a -=-=→→A 、共线且方向相反与→→b a B 、共线且方向相同与→→b a C 、不平行与→→b aD 、是相反向量与→→b a6.如图1,△ABC 中,D 、E 、F 分别是边BC 、CA 和AB 的中点,G 是△ABC 中的重心,则下列各等式中不成立的是( )A 、→-→-=BE 32BG B 、→-→-=AG 21DG C 、→-→--=FG 2CGD 、→-→-→-=+BC 21FC 32DA 31图17.)(,则锐角∥,且),(,),(设=-+=--=→→→→θθθb a 41cos 1b cos 12aA 、4πB 、6πC 、3πD 、36ππ或 8.)所成的比是(分,则所成比为分若→-→--CB A 3AB C A 、23-B 、3C 、32-D 、-29.)的范围是(的夹角与,则若θ→→→→<⋅b a 0b a A 、)20[π,B 、)2[ππ,C 、)2(ππ,D 、]2(ππ,10.→→→→→→→→b a 4a b 3b a b a 的模与,则方向的投影为在,方向的投影为在都是非零向量,若与设 的模之比值为( ) A 、43B 、34 C 、73 D 、74二、填空题(本题共4小题,每题5分,共20分) 11.。
高一数学《平面向量》测试题

学习必备 欢迎下载高一数学《平面向量》单元测试题一、选择题1.有下列命题:①两个相等向量,它们的起点相同,终点也相同;②若|a |=|b |,则a =b ;③若|AB |=|DC |,则四边形ABCD 是平行四边形;④若m =n ,n =k ,则m =k ;⑤若a ∥b ,b ∥c ,则a ∥c ;⑥有向线段就是向量,向量就是有向线段。
其中,假命题的个数是 A .2 B .3 C .4 D .5 2. 下列结论正确的是A .单位向量都相等B .对于任意a ,b ,必有|a +b |≤|a |+|b |C .若a ·b =0,则a =0或b =0D .若a ∥b ,则一定存在实数λ,使a =λb3. 设向量a ,b 满足|a |=2,a ·b =32,|a +b |=,则|b |等于A .12B .1C .32D .24. 已知非零向量a ,b 满足|a +b |=|a -b |,则||||||a b a b +-的取值范围是A .(0,1)B .(1,2)C.(1,+∞)D .(1]5. 已知点A (1,3),A (4,-1),则与向量AB 同方向的单位向量为A .(35,-45)B .(45,35)C .(35,45)D .(45,-35)6. 在△ABC 中,G 为重心,记a =AB ,b =AC ,则CG =A .13a -23bB .13a +23bC .23a -13bD .23a +13b7. 在△ABC 中,BC =3,C =90°,且MB +2MA =0,则CM ·2CB =A .2B .3C . 4D .68. 如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +AC 29,则实数m 的值为A .13B .19C .1D .39. 如图,在直角梯形ABCD 中,AB ∥CD ,AD ⊥DC ,E 是CD 的中点DC =1,AB =2,则EA ·AB =A .5B .-5C .1D .- 1 10. 已知向量a =(2,1,4),b =(1,0,2),且a +b 与k a -b 互相垂直,则k 的值是A .1B .15C .35D .153111. 平面向量a ,b 满足|a |=4,|b |=2,a +b 在a 上的投影为5,则|a -2b |的模为A .2B .4C .8D .1612. 如图,在正六边形ABCDEF 中,有下列四个命题:①AC +AF =2BC ;②AD =2AB +2AF ;③AC ·AD =AD ·AE ④(AD ·AF )·EF =AD ·(AF ·EF ) 其中真命题的个数是A .1B .2C .3D .4二、填空题 13. 设θ∈(0,2),向量a =(cos θ,2),b =(-1,sin θ),若a ⊥b ,则tan θ=__________。
《平面向量》单元检测题-高中数学单元检测题附答案(最新整理)

即(2te1+7e2)·(e1+te2)<0.整理得:2te21+(2t2+7)e1·e2+7te2<0.(*)
∵|e1|=2,|e2|=1,〈e1,e2〉=60°.∴e1·e2=2×1×cos 60°=1 1
∴(*)式化简得:2t2+15t+7<0.解得:-7<t<- . 2
当向量 2te1+7e2 与 e1+te2 夹角为 180°时,设 2te1+7e2=λ(e1+te2) (λ<0).
5
3 由 5c=-3a-4b 两边平方得 a·b=0,∴a·(b+c)=a·b+a·c=- .故选 B.
5
【第 12 题解析】若 a=(m,n)与 b=(p,q)共线,则 mq-np=0,依运算“⊙”知 a⊙b=0,故 A 正确.由
于 a⊙b=mq-np,又 b⊙a=np-mq,因此 a⊙b=-b⊙a,故 B 不正确.对于 C,由于 λa=(λm,λn),
k+t2 y=-ka+tb,且 x⊥y,试求 的最小值.
t
→
→
→
20.(本小题满分 12 分)设OA=(2,5),OB=(3,1),OC=(6,3).在线段 OC 上是否存在点 M,使 MA⊥MB?
若存在,求出点 M 的坐标;若不存在,请说明理由.
21.(本小题满分 12 分)设两个向量 e1、e2 满足|e1|=2,|e2|=1,e1、e2 的夹角为 60°,若向量 2te1+7e2 与 e1+te2 的夹角为钝角,求实数 t 的取值范围.
14.a,b 的夹角为 120°,|a|=1,|b|=3,则|5a-b|=________.
1 15.已知向量 a=(6,2),b=(-4, ),直线 l 过点 A(3,-1),且与向量 a+2b 垂直,则直线 l 的方程为
高一数学《平面向量》单元测试

高一数学《平面向量》单元测试 姓名 : 班级 : 一、 选择题(共 8小题,每题 5分)1. 以下命题正确的选项是 ( )A .单位向量都相等B . 任一直量与它的相反向量不相等C .平行向量不必定是共线向量D .模为 0 的向量与随意愿量共线2.已知向量 a =( 3,4 ), b =( sin α, cos α),且 a ∥ b ,则 tan α等于( )A . 3B . 3C . 4D . 4 4 4 3 33.在以下对于向量的命题中,不正确的选项是 ( )A .若向量 a =( x , y ) ,向量 b =( - y , x )( x 、 y ≠ 0) ,则 a ⊥ bB .四边形 ABCD 是菱形的充要条件是 AB =DC ,且 | AB |=| AD |C .点 G 是△ ABC 的重心,则 GA + GB +CG =0D .△ ABC AB和 CA 的夹角等于 180 °- A中,4.设 P ( 3, 6),Q ( 5, 2), R 的纵坐标为 9,且 P 、 Q 、 R 三点共线,则 R 点的横坐标为 ( )A . 9B . 6C .9D . 6 r r r r r r r r r ) 5.若 | a | 1,| b | 2, c a b ,且 c a ,则向量 a 与 b 的夹角为 ( A .30° B . 60° C . 120° D .150°6.在△ ABC 中, A > B 是 sin A >sin B 建立的什么条件( )A .充足不用要B .必需不充足C .充要D .既不充足也不用要7.若将函数 y sin 2x 的图象按向量 a 平移后获得函数 y sin(2x ) -1 的图象 , 则向量 a能够是: 4 ( ) . ( , 1) B .( ,1) C . ( ,1) D . (, 1) A 8 8 4 48.在△ ABC 中,已知 | AB | 4,| AC | 1, S ABC 3,则 AB AC 的值为( )A .- 2B . 2C .±4D .± 2 二、 填空题(共 4小题,每题 5分)9.已知向量 a 、 b 的模分别为 3,4,则| a - b |的取值范围为 . r r r r r2,则 10.已知 e 为一单位向量, a 与e 之间的夹角是 120O , 而 a 在 e 方向上的投影为- r a .11.设 e 、e 是两个单位向量,它们的夹角是 60 ,则 ( 2e e ) ( 3e 2e ) 1 2 1 2 1 212.在 ABC 中, a =5, b=3,C=1200 , 则 sin A 三、 解答题(共 40分)13.设 e 1 ,e 2是两个垂直的单位向量,且 a ( 2e 1 e 2 ) ,b e 1 e 2(1) 若 a ∥ b ,求 的值; (2) 若 a b ,求 的值 . ( 12 分)14.设函数 f ( x) a b ,此中向量 a =(2cos x , 1) , b =(cos x , sin2 x ) ,x ∈ R.(1)若 f(x) =1-且 x ∈ [ -, ] ,求 x ; ( 2)若函数 y =2sin2 x 的图象按向量 c =(m , n) (|m|<) 平移后获得函数y=f(x) 的图象,务实数m 、 n 的值 . ( 14 分)15. 已知△ ABC 三个内角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,向量C CCC.m (cos , sin ) , n (cos , sin ) ,且 m 与 n 的夹角为 2 2 2 2 3(1)求角 C 的值; ( 2)已知 c 7 3 3b 的值 .(14 分) 2,△ ABC 的面积 S ,求 a 2。
平面向量单元测试(含答案)

《平面向量》单元测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1所示,D 是△ABC 的边AB 上的中点, 则向量=CD ( )A .BA BC 21+- B .BA BC 21--C .BA BC 21-D .BA BC 21+2.与向量a ==⎪⎭⎫ ⎝⎛b ,21,27⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是( )A .⎪⎭⎫- ⎝⎛53,54B .⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 C .⎪⎭⎫- ⎝⎛31,322 D .⎪⎭⎫-⎝⎛31,322或⎪⎭⎫⎝⎛-31,322 3.设a r 与b r 是两个不共线向量,且向量a b λ+r r 与()2b a --r r共线,则λ=( )A .0B .-1C .-2D .0.54.已知向量()1,3=a ,b 是不平行于x 轴的单位向量,且3=⋅b a ,则b =( )A .⎪⎪⎭⎫ ⎝⎛21,23 B .⎪⎪⎭⎫ ⎝⎛23,21 C .⎪⎪⎭⎫ ⎝⎛433,41 D .(1,0)5.如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量 的数量积中最大的是( )A .3121P P P P ⋅B .4121P P P P ⋅C .5121P P P P ⋅D .6121P P P P ⋅ 6.在OAB ∆中,OA a =u u u r ,OB b =u u u r ,OD 是AB 边上的高,若AD AB λ=u u u r u u u r,则实数λ等 于 ( )A .2()a b a a b⋅-- B .2()a a b a b⋅--C .()a b a a b⋅--D .()a a b a b⋅--7.设1(1,)2OM =u u u u r ,(0,1)ON =u u u r ,则满足条件01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r 的动点P 的 变化范围(图中阴影部分含边界)是( )A .B .C .D . 8.将函数f (x )=tan(2x +3π)+1按向量a 平移得到奇函数g(x ),要使|a |最小,则a =( )A .(,16π-)B .(,16π-)C .(,112π)D .(,112π--)9.已知向量a r 、b r 、c r 且0a b c ++=r r r r ,||3a =r ,||4b =r ,||5c =r .设a r 与b r 的夹角为1θ,b r与c r 的夹角为2θ,a r 与c r的夹角为3θ,则它们的大小关系是( )A .123θθθ<<B .132θθθ<<C .231θθθ<<D .321θθθ<<10.已知向量),(n m a =,)sin ,(cos θθ=b ,其中R n m ∈θ,,.若||4||b a =,则当2λ<⋅b a 恒成立时实数λ的取值范围是( )A .2>λ或2-<λB .2>λ或2-<λC .22<<-λD .22<<-λ11.已知1OA =u u u r,OB =u u u r ,0OA OB ⋅=u u u r u u u r ,点C 在AOB ∠内,且30oAOC ∠=,设OC mOA nOB =+u u u r u u u r u u u r (,)m n R ∈,则mn等于( )A .13B .3 C.3D12.对于直角坐标平面内的任意两点11(,)A x y ,22(,)B x y ,定义它们之间的一种“距离”:2121.AB x x y y =-+-给出下列三个命题:①若点C 在线段AB 上,则;AC CB AB += ②在ABC ∆中,若90,o C ∠=则222;AC CB AB +=③在ABC ∆中,.AC CB AB +> 其中真命题的个数为( )A .0B .1C .2D .3二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.在中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r,M 为BC 的中点,则MN =u u u u r _______.(用a b r r 、表示)14.已知()()2,1,1,1,A B O --为坐标原点,动点M 满足OM mOA nOB =+u u u u r u u u r u u u r,其中,m n R ∈且2222m n -=,则M 的轨迹方程为 .15.在ΔABC 中,O 为中线AM 上的一个动点,若AM=2,则)(+⋅的最小值为 .16.已知向量)3,5(),3,6(),4,3(m m ---=-=-=,若点A 、B 、C 能构成三角形,则实数m 满足的条件是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量)sin 1,sin 1(x x -=,)2cos ,2(x =.(1)若]2,0(π∈x ,试判断与能否平行?(2)若]3,0(π∈x ,求函数x f ⋅=)(的最小值.18.(本小题满分12分)(2006年湖北卷)设函数()()c b a x f +⋅=,其中向量()()x x b x x a cos 3,sin ,cos ,sin -=-=,()R x x x c ∈-=,sin ,cos .(1)求函数()x f 的最大值和最小正周期;(2)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .19.(本小题满分12分)(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(1)若a⊥b,求θ;(2)求|a+b|的最大值.20.(本小题满分12分)在ABC △中,2AB AC AB AC ⋅=-=u u u r u u u r u u u r u u u r. (1)求22AB AC +u u u r u u u r 的值;(2)当ABC △的面积最大时,求A ∠的大小.21.(本小题满分12分)(2006陕西卷)如图,三定点A (2,1),B (0,-1),C (-2,1); 三动点D ,E ,M 满足]1,0[,,,∈===t t t t (1)求动直线DE 斜率的变化范围; (2)求动点M 的轨迹方程.22.(本小题满分14分)已知点P 是圆221x y +=上的一个动点,过点P 作PQ x ⊥轴于点Q ,设OM OP OQ =+u u u u r u u u r u u u r .(1)求点M 的轨迹方程;(2)求向量OP uuu r 和OM u u u u r夹角的最大值,并求此时P 点的坐标参考答案1.21+-=+=,故选A . 2.B 设所求向量e r=(cos θ,sin θ),则由于该向量与,a b r r 的夹角都相等,故e b e a e b e a ⋅=⋅⇔=⋅||||||||7117cos sin cos sin 2222θθθθ⇔+=-⇔3cos θ=-4sin θ,为减少计算量,可将选项代入验证,可知B 选项成立,故选B .3.D 依题意知向量a b λ+r r 与-2共线,设a b λ+r rk =(-2),则有)()21(=++-k k λ,所以⎩⎨⎧=+=-0021λk k ,解得5.0=k ,选D . 4.解选B .设(),()b x y x y =≠,则依题意有1,y =+=1,22x y ⎧=⎪⎪⎨⎪=⎪⎩ 5.解析:利用向量数量积121(1,2,3,4,5,6)i PP PP i =u u u u r u u u rg 的几何意义:数量积121i PP PP u u u u r u u u rg 等于12P P u u u u r的长度12PP u u u u r 与1i PP u u u r 在12P P u u u u r 的方向上的投影1121cos ,i iPP PP PP <>u u u r u u u u r u u u r的乘积.显然由图可知13P P u u u u r 在12P P u u u u r 方向上的投影最大.所以应选(A).6.B (),,AD AB OD OA OB OA λλ=∴-=-u u u r u u u r u u u r u u u r Q 即得()()11,OD OA OB a b λλλλ=-+=-+u u u r u u u r u u u r又OD Q 是AB 边上的高,0OD AB ∴⋅=u u u r u u u r即()()()0,10OD OB OA a b b a λλ⋅-=∴-+⋅-=⎡⎤⎣⎦u u u r u u u r u u u r ,整理可得()2(),b a a a b λ-=⋅-即得()2a ab a bλ⋅-=-,故选B . 7.A 设P 点坐标为),(y x ,则),(y x =.由01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r得⎩⎨⎧≤≤≤+≤10220y y x ,在平面直角坐标系中画出该二元一次不等式组表示的平面区域即可,选A .8.A 要经过平移得到奇函数g(x),应将函数f(x)=tan(2x+3π)+1的图象向下平移1个单位,再向右平移)(62Z k k ∈+-ππ个单位.即应按照向量))(1,62(Z k k a ∈-+-=ππ进行平移.要使|a|最小,应取a=(,16π-),故选A .9.B 由0a b c ++=r r r r得)(+-=,两边平方得1222cos ||||2||||||θ++=,将||3a =r ,||4b =r ,||5c =r 代入得0cos 1=θ,所以0190=θ;同理,由0a b c ++=r r r r得)(b c a +-=,可得54cos 2-=θ,53cos 3-=θ,所以132θθθ<<.10. B 由已知得1||=b ,所以4||22=+=n m a ,因此)sin(sin cos 22ϕθθθ++=+=⋅n m n m b a 4)sin(4≤+=ϕθ,由于2λ<⋅恒成立,所以42>λ,解得2>λ或2-<λ.11.答案B ∵ 1OA =u u u r,OB =u u u r,0OA OB ⋅=u u u r u u u r∴△ABC 为直角三角形,其中1142AC AB ==∴11()44OC OA AC OA AB OA OB OA =+=+=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ∴31,44m n == 即3m n= 故本题的答案为B . 12.答案B 取特殊值、数形结合A BC在ABC ∆中, 90oC ∠=,不妨取A (0,1), C (0,0),B (0,1),则 ∵2121AB x x y y =-+- ∴ 1AC = 、1BC =、|10||01|2AB =-+-= 此时222AC CB +=、24AB = 、222AC CB AB +≠;AC CB AB +=即命题②、③是错误的.设如图所示共线三点11(,)A x y ,22(,)B x y ,33(,)C x y ,则1313||||||||||||AC x x y y AC CC ''-+-=+==||||||||AB B C C C C C ''''''''+++ =||||||||AB B B BC C C ''''''+++1212||||||||||||AB x x y y AB BB ''=-+-=+ 2323||||||||||||BC x x y y BC C C ''''=-+-=+∴ AC CB AB += 即命题①是正确的. 综上所述,真命题的个数1个,故本题的答案为B .13.解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12AM a b =+u u u u r r r,所以3111()()4244MN a b a b a b =+-+=-+u u u u r r r r r r r .14.2222=-y x 设),(y x M ,则),(y x =,又)1,1(),1,2(-=-=,所以由OM mOA nOB =+u u u u r u u u r u u u r 得),(),2(),(n n m m y x -+-=,于是⎩⎨⎧+-=-=nm y n m x 2,由2222m n -=消去m, n 得M 的轨迹方程为:2222=-y x . 15.2- 如图,设x AO =,则x OM -=2,所以)(+⋅OM OA OM OA ⋅⋅-=⋅=222)1(242)2(222--=-=--x x x x x ,故当1=x 时,OM mOA nOB =+u u u u r u u u r u u u r取最小值-2.AC 'CBB 'C ''16.21≠m 因为)3,5(),3,6(),4,3(m m ---=-=-=,所以),1(),1,3(m m ---==.由于点A 、B 、C 能构成三角形,所以与不共线,而当AB 与BC 共线时,有m m -=--113,解得21=m ,故当点A 、B 、C 能构成三角形时实数m 满足的条件是21≠m .17.解析:(1)若与平行,则有2sin 12cos sin 1⋅-=⋅x x x ,因为]2,0(π∈x ,0sin ≠x ,所以得22cos -=x ,这与1|2cos |≤x 相矛盾,故a 与b 不能平行.(2)由于x f ⋅=)(xx x x x x x x x sin 1sin 2sin sin 21sin 2cos 2sin 2cos sin 22+=+=-=-+=,又因为]3,0(π∈x ,所以]23,0(sin ∈x , 于是22sin 1sin 22sin 1sin 2=⋅≥+x x x x ,当xx sin 1sin 2=,即22sin =x 时取等号.故函数)(x f 的最小值等于22.18.解:(Ⅰ)由题意得,f(x)=a·(b+c)=(sinx,-cosx)·(sinx -cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π). 所以,f(x)的最大值为2+2,最小正周期是22π=π. (Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z , 于是d =(832ππ-k ,-2),,4)832(2+-=ππk d k ∈Z. 因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求. 19.解析:解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.20.解:(Ⅰ)由已知得:222,2 4.AB AC AB AB AC AC ⎧⋅=⎪⎨-⋅+=⎪⎩u u u r u u u r u u u r u u u r u u u r u u u r 因此,228AB AC +=u u u r u u u r . (Ⅱ)2cos AB AC A AB AC AB AC⋅==⋅⋅u u u r u u u ru u u r u u u r u u u r u u ur , 1sin 2ABC S AB AC A =⋅u u ur u u u r △12AB =⋅u u ur u u=≤=.(当且仅当2AB AC ==u u u r u u u r 时,取等号),当ABC △1cos 2AB AC A AB AC⋅==⋅u u u r u u u ru u u r u u u r,所以3π=∠A . 解:(I )由条件知: 0a b =≠r r 且2222(2)444a b a b a b b +=++=r r r r r r r g42-=⋅, 设a b r r 和夹角为θ,则41||||cos -==b a θ, ∴1cos 4arc θπ=-,故a b r r 和的夹角为1cos 4arc π-,(Ⅱ)令)a a b -r r r和(的夹角为βQ a b a -===r r r, ∴41021cos 222=+===β∴ )a a b -r r r和(的夹角为21.解析:如图,(Ⅰ)设D(x 0,y 0),E(x E ,y E ),M(x ,y).由AD →=tAB →, BE → = t BC →,知(x D -2,y D -1)=t(-2,-2). ∴⎩⎨⎧x D =-2t+2y D =-2t+1 同理 ⎩⎨⎧x E =-2ty E =2t -1.∴k DE = y E -y D x E -x D = 2t -1-(-2t+1)-2t -(-2t+2)= 1-2t. ∴t ∈[0,1] , ∴k DE ∈[-1,1].(Ⅱ) 如图, OD →=OA →+AD → = OA →+ tAB →= OA →+ t(OB →-OA →) = (1-t) OA →+tOB →,OE →=OB →+BE → = OB →+tBC → = OB →+t(OC →-OB →) =(1-t) OB →+tOC →,OM → = OD →+DM →= OD →+ tDE →= OD →+t(OE →-OD →)=(1-t) OD →+ tOE →= (1-t 2) OA → + 2(1-t)tOB →+t 2OC →.设M 点的坐标为(x ,y),由OA →=(2,1), OB →=(0,-1), OC →=(-2,1)得 ⎩⎨⎧x=(1-t 2)·2+2(1-t)t ·0+t 2·(-2)=2(1-2t)y=(1-t)2·1+2(1-t)t ·(-1)+t 2·1=(1-2t)2 消去t 得x 2=4y, ∵t ∈[0,1], x ∈[-2,2]. 故所求轨迹方程为: x 2=4y, x ∈[-2,2]22.解析:(1)设(,)P x y o o ,(,)M x y ,则(,)OP x y =o o u u u r ,(,0)OQ x =o u u u r,(2,)OM OP OQ x y =+=o o u u u u r u u u r u u u r222212,1,124x x x x x x y y y y y y⎧==⎧⎪∴⇒+=∴+=⎨⎨=⎩⎪=⎩o o o o o o Q .(2)设向量OP uuu r 与OM u u u u r的夹角为α,则22cos ||||OP OMOP OM α⋅===⋅u u u r u u u u r u u u r u u u u r 令231t x =+o,则cos α==≥当且仅当2t =时,即P点坐标为(时,等号成立.第21题解法图OP u u u r 与OM u u u u r夹角的最大值是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学《平面向量》单元测试
姓名: 班级:
一、 选择题(共8小题,每题5分)
1. 下列命题正确的是 ( )
A .单位向量都相等
B . 任一向量与它的相反向量不相等
C .平行向量不一定是共线向量
D .模为0的向量与任意向量共线
2.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于( )
A .34
B .34-
C .43
D .43- 3.在以下关于向量的命题中,不正确的是 ( )
A .若向量a =(x ,y ),向量b =(-y ,x )(x 、y ≠0),则a ⊥b
B .四边形ABCD 是菱形的充要条件是=,且||=||
C .点G 是△ABC 的重心,则GA +GB +CG =0
D .△ABC 中,AB 和的夹角等于180°-A
4.设P (3,-6),Q (-5,2),R 的纵坐标为-9,且P 、Q 、R 三点共线,则R 点的横坐标为
( )
A .-9
B .-6
C .9
D .6 5.若||1,||2,a b c a b ===+ ,且c a ⊥ ,则向量a 与b 的夹角为( )
A .30°
B .60°
C .120°
D .150°
6.在△ABC 中,A >B 是sin A >sin B 成立的什么条件( )
A .充分不必要
B .必要不充分
C .充要
D .既不充分也不必要
7.若将函数x y 2sin =的图象按向量平移后得到函数)42sin(π-
=x y -1的图象,则向量可以是: ( )
A . )1,8(-π
B . )1,8(π-
C . )1,4(π
D .)1,4
(--π 8.在△ABC 中,已知S ABC ⋅=
==∆则,3,1||,4||的值为( ) A .-2 B .2 C .±4 D .±2
二、 填空题(共4小题,每题5分)
9.已知向量、的模分别为3,4,则|-|的取值范围为 .
10.已知e 为一单位向量,a 与e 之间的夹角是120O ,而a 在e 方向上的投影为-2,则
a = .
11.设21e e 是两个单位向量,它们的夹角是
60,则=+-⋅-)23()2(2121e e e e
12.在∆ABC 中,a =5,b=3,C=0120,则=A sin 三、 解答题(共40分)
13.设21,e e 是两个垂直的单位向量,且2121,)2(e e e e λ-=+-=
(1)若a ∥b ,求λ的值; (2)若⊥,求λ的值.(12分)
14.设函数x f ⋅=)(,其中向量=(2cos x ,1),=(cos x ,
3sin2x ),x ∈R. (1)若f(x)=1-3且x ∈[-3π,3
π],求x ; (2)若函数y =2sin2x 的图象按向量c =(m ,n) (|m|<2π)平移后得到函数y=f(x)的图象,求实数m 、n 的值. (14分)
15. 已知△ABC 三个内角A 、B 、C 的对边分别为a 、b 、c ,向量
)2sin ,2(cos C
C
=,)2sin ,2(cos C C n -=,且n m 与的夹角为.3π
(1)求角C 的值; (2)已知27=c ,△ABC 的面积23
3=S ,求b a +的值.
(14分)。