徐州中考数学含答案
2023年江苏省徐州市中考数学真题(精品解析)【可编辑可打印】
A. a
B. b
C. c
D. d
【答案】C 【解析】
【分析】根据数轴可直接进行求解. 【详解】解:由数轴可知点 C 离原点最近, 所以在 a 、 b 、 c 、 d 中最小的是 c ; 故选 C .
【点睛】本题主要考查数轴上实数的表示、有理数的大小比较及绝对值,熟练掌握数轴上有理数的 表示、有理数的大小比较及绝对值是解题的关键.
其中,海拔为中位数的是( ) A. 第五节山 B. 第六节山 C. 第八节山 【答案】C
【解析】
D. 第九节山
【分析】根据折线统计图把数据按从小到大排列,然后根据中位数可进行求解. 【详解】解:由折线统计图可按从小到大排列为 90.7、99.2、104.1、119.2、131.8、133.5、136.6、
【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.
8
8. 如图,在VABC 中, 为
ÐB
=
90。, ÐA
=
30。, BC
=
2, D
为AB
的中点.若点E
在边AC
上,且AD
AB
=DE BC
,则 AE 的长
()
A. 1
B. 2
C. 1 或
D. 1 或 2
【答案】D 【解析】
4
4. 下列运算正确的是( )
A. “2 “3 = “6
B. “4 “2 = “2
C.
( )3 2
5
“ =“
D. 2“2 + 3“2 = 5“4
【答案】B 【解析】
【分析】根据同底数幂的乘除法、幂的乘方及合并同类项可进行求解. 【详解】解: A、“2 “3 = “5 ,原计算错误,故不符合题意; B 、“4 “2 = “2 ,原计算正确, 故符合题意;
江苏省徐州市中考数学真题试题(含解析)
江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣22.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a63.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,104.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.12005.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,386.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是.10.(3分)使有意义的x的取值范围是.11.(3分)方程x2﹣4=0的解是.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有个.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.20.(10分)(1)解方程:+1=(2)解不等式组:21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a6【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【解答】解:A、a2+a2=2a2,故选项A不合题意;B.(a+b)2=a2+2ab+b2,故选项B不合题意;C.(a3)3=a9,故选项C符合题意;D.a3•a2=a5,故选项D不合题意.故选:C.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及完全平方公式,熟练掌握法则是解答本题的关键.3.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.4.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.1200【分析】由抛掷一枚硬币正面向上的可能性为0.5求解可得.【解答】解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.【点评】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.5.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,38【分析】根据众数和中位数的概念求解可得.【解答】解:将数据重新排列为37,37,38,39,40,40,40,所以这组数据的众数为40,中位数为39,故选:B.【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解可得.【解答】解:不是轴对称图形,故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2【分析】根据题意和反比例函数的性质可以解答本题.【解答】解:∵函数y=,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,∴y1<y2,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.8.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108【分析】先化简2.5×106=0.25×107,再从选项中分析即可;【解答】解:2.5×106=0.25×107,(10×107)÷(0.25×107)=40,从数轴看比较接近;故选:D.【点评】本题考查数轴,科学记数法;能够将数进行适当的表示,结合数轴解题是关键.二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)使有意义的x的取值范围是x≥﹣1 .【分析】根据二次根式中的被开方数必须是非负数,可得x+1≥0,据此求出x的取值范围即可.【解答】解:∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.(3分)方程x2﹣4=0的解是±2 .【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为 4 .【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.【解答】解:∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:4【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16 .【分析】根据中位线的性质求出BO长度,再依据矩形的性质AC=BD=2BO进行求解问题.【解答】解:∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.【点评】本题主要考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=140°.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出多边形的边数,再根据多边形的内角和公式计算即可.【解答】解:多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠OAD=.故答案为:140°【点评】本题主要考查了正多边形的外角以及内角,熟记公式是解答本题的关键.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 6 cm.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262 m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【分析】作AE⊥BC于E,根据正切的定义求出AE,根据等腰直角三角形的性质求出BE,结合图形计算即可.【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y=(x﹣4)2.【分析】设原来的抛物线解析式为:y=ax2.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P的坐标代入即可.【解答】解:设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.【点评】考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征.利用待定系数法确定原来函数关系式是解题的关键.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有 3 个.【分析】三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;【解答】解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;【点评】本题考查一次函数的图象上点的特征,等腰三角形的性质;掌握利用两圆一线找等腰三角形的方法是解题的关键.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.【分析】(1)先计算零指数幂、算术平方根、负整数指数幂和绝对值,再计算加减可得;(2)先化简各分式,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=1﹣3+9﹣5=2;(2)原式=÷=(x﹣4)•=2x.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式的乘除运算顺序和运算法则.20.(10分)(1)解方程:+1=(2)解不等式组:【分析】(1)两边同时乘以x﹣3,整理后可得x =;(2)不等式组的每个不等式解集为;【解答】解:(1)+1=,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x =;经检验x =是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;【点评】本题考查分式方程,不等式组的解;掌握分式方程和不等式组的解法是关键.21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.【分析】(1)计算所取两数的乘积即可得;(2)找到符合条件的结果数,再根据概率公式计算可得;(3)利用概率公式计算可得.【解答】解:(1)补全表格如下:(2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为;积为偶数的概率为=,故答案为:,.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.【分析】(1)从条形统计图中可得3﹣4月份电费240元,从扇形统计图中可知3﹣4月份电费占全年的10%,可求全年的电费,进而求出9﹣10月份电费所占的百分比,然后就能求出9﹣10月份对应扇形的圆心角的度数;(2)全年的总电费减去其它月份的电费可求出7﹣8月份的电费金额,确定直条画多高,再进行补全统计图.【解答】解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:【点评】考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD =CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≌△FGC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.【分析】(1)连接OC,由D为的中点,得到=,根据圆周角定理即可得到结论;(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,于是得到结论.【解答】(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点评】本题考查了直线与圆的位置关系,圆心角、弧、弦的关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?【分析】设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,根据长方体盒子的侧面积为200cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.【分析】根据已知条件作图可知40cm时,所有图案个数4个;猜想得到结论;【解答】解:如图:根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;【点评】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?【分析】(1)设甲、乙两人的速度,并依题意写出函数关系式,再根据图②中函数图象交点列方程组求解;(2)设甲、乙之间距离为d,由勾股定理可得d2=(1200﹣240x)2+(80x)2 =64000(x﹣)2+144000,根据二次函数最值即可得出结论.【解答】解:(1)设甲、乙两人的速度分别为am/min,bm/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.【点评】本题考查了函数图象的读图识图能力,正确理解图象交点的含义,从图象中发现和获取有用信息,提高分析问题、解决问题的能力.28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【分析】(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,利用勾股定理求出a,b之间的关系,求出OC,OD即可解决问题.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,可得AB=6﹣a﹣b,推出OA+OB+AB =6,可得a+b+=6,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.【点评】本题属于反比例函数综合题,考查了反比例函数的应用,全等三角形的判定和性质,勾股定理,平行线分线段成比例定理,基本不等式等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
江苏省徐州市2020年中考数学试题(解析版)
D.极差为36.6-36.2=0.4( ),故此选项错误,
故选:B.
【点睛】本题主要考查了中位数、众数、平均数和极差,熟练掌握它们的计算方法是解答的关键.
6.下列计算正确 是()
A. B. C. D.
【答案】D
【解析】
【分析】
由合并同类项、同底数幂除法,完全平方公式、积的乘方,分别进行判断,即可得到答案.
A.中位数是 B.众数是 C.平均数是 D.极差是
【答案】B
【解析】
【分析】
根据众数、中位数的概念求得众数和中位数,根据平均数和方差、极差公式计算平均数和极差即可得出答案.
【详解】A.将这组数据从小到大的顺序排列:36.2,36.2,36.3,36.5,36.6,
则中位数为36.3 ,故此选项错误
B.36.2出现了两次,故众数是36.2 ,故此选项正确;
【答案】1.48×10−10
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】 =1.48×10−10.
故答案为:1.48×10−10.
【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
故答案为:B.
【点睛】本题考查的是圆切线的运用,熟练掌握运算方法是关键.
8.如图,在平面直角坐标系中,函数 与 的图像交于点 ,则代数式 的值为()
A. B. C. D.
【答案】C
【解析】
【分析】
最新江苏省徐州市中考数学真题复习试卷附解析
江苏省徐州市中考数学真题复习试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在高楼前D 点测得楼顶的仰角为30o ,向高楼前进60米到C 点,又测得仰角为45o ,则该高楼的高度大约为( )A .82米B .163米C .52米D .30米2.如图,一次函数y1=x-1与反比例函数y2=x 2的图像交于点A (2,1),B (-1,-2),则使y1>y2的x的取值范围是( ) A .x>2 B .x>2 或-1<x<0 C .-1<x<2 D .x>2 或x<-13.在△ABC 与'''C B A ∆中,有下列条件:①''''C B BC B A AB =;⑵''''C A AC C B BC =;③∠A =∠'A ;④∠C =∠'C .如果从中任取两个条件组成一组,那么能判断△ABC ∽'''C B A ∆的共有( )A .1组B .2组C .3组D .4组4. 图象的顶点为(-2,-2 ),且经过原点的二次函数的关系式是( ) A .y =12 (x+2 )2 -2 B y =12(x-2 )2 -2. C y =2(x+2 )2 -2. D .y =2(x-2 )2 -2 5.顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是( )A .矩形B 对角线相等的四边形C .对角线垂直的四边形D .平行四边形6. 计算22(11)|11|11-+--,正确的结果是( )A .-11B .11C . 22D .-22 7.已知长方形ABCD 对角线的交点在坐标原点,且AD ∥x 轴,若A 点坐标为(-1,2),则D 点坐标为( )A .(2,-l )B .(2,1)C .(1,2)D .(-1,2)8.下列多项式:①16x 5-x ;②(x-1)2-4(x-1)+4;③(x+1)4-4x (x+1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )A .①④B .②④C .③④D .②③9.下列四个图中,能表示线段x=a+c-b 的是( )A .B .C .D .10.一根绳子弯曲成如图2(1)所示的形状. 当用剪刀像图 2(2)那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图2(3)那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为 9段. 若用剪刀在虚线a 、b 之间把绳子再剪(1n -)次(剪刀的方向与a 平行),这时绳子的段数是( )A .41n +B . 42n +C .43n +D .45n +11.4-(-7)等于( )A . 3B . 11C . -3D . -11二、填空题12.如图,四边形ABCD 的对角线AC ,BD 交于点O ,EF 过点O ,若OA=OC ,OB=OD ,则图中全等的三角形有_ _ _对. 13.在□ABCD 中,AB=2cm ,BC=4cm ,∠B=45°,则□ABCD 的面积等于 cm 2. 14.已知正比例函数232k y kx -=的函数值y 随着x 的增大而减小,则k= . 15.若点P(a+b ,-8)与Q(-1,2a-b)关于原点对称,则ab 的值为 .16.已知a ,b 是方程2(2)10x m x +++=的两根,且a b =,则m = . 17.已知112a b +=,则代数式200920082009a ab b ab-+的值为 . 18.如图,∠AOB=90°,它绕点O 旋转30°后得到∠COD ,•则∠AOC=•_____,•∠BOC=_____,∠COD=______.19.中国国家图书馆藏书约2亿册,用科学记数法表示为 册.20.在四边形ABCD 中,给出下列论断:①AB ∥DC ;②AD=BC ;③∠A=∠C .以其中两个作为题设,另外一个作为结论,用“如果……,那么……”的形式,写出一个你认为正确的命题: .三、解答题21.如图,△ABC 中,D 、E 分别为 BC 、AC 上的点,BD= 2DC ,AE= 2EC ,AD 与BE 相交于点 M ,求AM :MD 的值.O EF22. 下列抛物线可由怎样的抛物线2y ax = (a ≠0)经过怎样的平移得到?(1) 21(4)3y x =-- (2)2(5y x =-+- (3) 2133()24y x =-+23.根据下列语句画一幅地图,标注出语句中涉及的地名,并建立适当的直角坐标系,写出各地名的坐标.(1)出校门口向东l00 m 是文具店;(2)出校门口先向北走50 m ,再向西走150 m 是小明家;(3)出校门口先向西走200 m ,再向南走300 m 是游泳池.24.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?25.解方程:3(x+5)2-2(x-3)2-(x+9)(x-9)=18026.把图(1)中的小鱼放大2倍后画在图(2)的方格上.27.如图所示,草原上两个居民点A,B在河流l的同旁,一汽车从A出发到B,途中需到河边加水,汽车在哪一点加水可使行驶的路程最短?在图中画出该点.28.用代数式表示:(1)a 的绝对值;(2)a(a≠0)的倒数;(3)a 的相反数;(4)a 的平方根(a≥0);(5)a 的立方根.29.出租车司机小李某天下午营运全是在东西方向的人民大道上行驶. 若规定向东为正,则这天下午出租车行驶情况(单位:km)如下:+15 ,-2 ,+5 , -1 , +l0 ,-3 , -2 , +12 , +4,-5,+6,求(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为 0. 2L/km,这天下午小李的车共耗油多少?30.如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A、B之间的距离),他从点B出发,沿着与直线AB成80°角的BC方向(即∠CBD=80°)前进至C,在C处测得∠C=40°,他量出BC的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.C4.A5.C6.B7.C8.A9.D10.D11.B二、填空题12.613. 4214. -2 15.-616. 0或-417.201018. 30° ,60°,90°19.8210⨯20.四边形ABCD 中,如果AB ∥DC ,∠A=∠C ,那么AD=BC三、解答题21.过点D 作 DF ∥AC 交 BE 于F.∴△BDF ∽△BCE,△DFM ∽△AEM ,∴23FD BD BD EC BC BD DC ===+,即23FD EC =,∵AE=2EC ,∴13FD AE =,∴3AM AE MD FD==. 22.(1)21(4)3y x =--是由抛物线213y x =-向右平移 4 个单位到. (2)2(3)5y x =-+-是由抛物线2y x =-先向左平移个单位,再向下平移 5个单位得到的.(3)2133()24y x =-+是由抛物线23y x =先向右平移12个单位,再向上平移一个34单位得到. 23.略24.(1)设预定男篮门票x 张,则乒乓球门票(15x -)张.得:1000x+500(15-x)=12000,解得:x = 9 ∴151596x -=-=,即预定男篮门票9张,乒乓球门票6张.(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为(15-2y )张,得:8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩, 解得:2545714y ≤≤.由y 为正整数可得y=5. 15-2y=5 ,即可以订男篮门票5张,足球门票5张,乒乓球门票5张25.x=1.26.略27.作点A 关于直线l 的对称点A ′,连结A ′B 交直线l 于点P ,则点P 即是要找的那一点 28.(1)||a (2) 1a(0a ≠) (3)-a (4) (a ≥ 29.(1)距出发点东面 39 km 处 (2)13L30.陈华同学的说法正确,理由略。
江苏省徐州市2020年中考数学试题及参考答案
【答案】D 【解析】 【分析】 由合并同类项、同底数幂除法,完全平方公式、积的乘方,分别进行判断,即可得到答案.
【详解】解:A、 a2 2a2 3a2 ,故 A 错误;
B、 a6 a3 a3 ,故 B 错误;
C、 (a b)2 a2 2ab b2 ,故 C 错误;
D、 (ab)2 a2b2 ,故 D 正确;
故选:D. 【点睛】本题考查了同底数幂除法,积的乘方,完全平方公式,合并同类项,解题的关键是熟练掌握运算 法则进行解题.
7.如图, AB 是 O 的弦,点 C 在过点 B 的切线上, OC OA , OC 交 AB 于点 P .若 BPC 70 , 则 ABC 的度数等于( )
A. 75
【答案】B
【答案】 7
【解析】
2
∵ 7 7 ,∴7 的平方根是 7 ,
故答案为 7 .
10.分解因式: x2 4
.
【答案】 x+2 x 2 .
【解析】 【分析】 先把式子写成 x2-22,符合平方差公式的特点,再利用平方差公式分解因式. 【详解】x2-4=x2-22=(x+2)(x-2).
1.3 的相反数是( ).
A. 3
B. 3
C. 1 3
D. 1 3
【答案】A
【解析】
【分析】
相反数的定义:只有符号不同的两个数互为相反数,根据相反数的定义即可得.
【详解】3 的相反数是-3
故选:A.
【点睛】本题考查了相反数的定义,熟记定义是解题关键.
2.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是( )
D.极差为 36.6-36.2=0.4( C ),故此选项错误,
故选:B. 【点睛】本题主要考查了中位数、众数、平均数和极差,熟练掌握它们的计算方法是解答的关键. 6.下列计算正确的是( )
2023年中考数学专题练——10统计和概率
2023年江苏省徐州市中考数学专题练——10统计和概率一.选择题(共8小题)1.(2022•泉山区校级三模)空气是混合物,为直观介绍空气中各成分的百分比,所采用的统计图最适合的是()A.折线统计图B.扇形统计图C.频数分布直方图D.条形统计图2.(2022•鼓楼区校级二模)在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9,对这组数据,下列说法正确的是()A.平均数是8B.中位数8.5C.众数是8D.极差是4 3.(2022•贾汪区二模)某班共有35位同学参加了学校组织的数学解题大赛,如表为该班参赛成绩的频数分布表,该班数学成绩的众数为()成绩(分)20304050607090100频数(人)13398434 A.60分B.50分C.3人D.9人4.(2022•徐州二模)某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()165170145150一分钟跳绳个数(个)学生人数(名)5212A.平均数是160B.众数是165C.中位数是167.5D.方差是25.(2022•睢宁县模拟)一只不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同.将球搅匀,每次从中随机摸出一个球,记下颜色后放回、再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.3,由此可估计袋子中红球的个数约为()A.6B.14C.5D.20 6.(2022•丰县二模)甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S甲2=8.6,S乙2=2.6,S丙2=5.0,S丁2=7.2.则这四位同学3次数学成绩最稳定的是()A.甲B.乙C.丙D.丁7.(2022•徐州一模)“市长杯”足球赛中,七支参赛球队进球数如下(单位:个):3、5、2、2、3、1、3,这组数据的中位数和众数分别是()A.1.5,3B.2,2C.3,3D.2,3 8.(2022•邳州市一模)在一个不透明的盒子中有25个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计盒子中白球的个数约为()A.6B.8C.10D.12二.填空题(共2小题)9.(2022•丰县二模)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在白色区域的概率是.10.(2022•泉山区校级三模)下图是国家统计局发布的2021年2月至2022年2月北京居民消费价格涨跌幅情况折线图(注:2022年2月与2021年2月相比较成为同比,2022年2月与2022年1月相比较称为环比).根据图中信息,有下面四个推断:①2021年2月至2022年2月北京居民消费价格同比均上涨;②2021年2月至2022年2月北京居民消费价格环比有涨有跌;③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差;④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数.所有合理推断的序号是.三.解答题(共16小题)11.(2022•鼓楼区校级二模)为了更好防控疫情,某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某社区预防疫情工作.用树状图(或列表法)求恰好选中医生甲和护士A的概率.12.(2022•泉山区校级三模)小明的爸妈购买车票,高铁售票系统随机分配座位,若系统已将两人分配到同一排.窗过道窗(1)小明的爸爸购得A座票后,妈妈购得B座票的概率是;(2)求分给二人相邻座位(过道两侧座位C、D不算相邻)的概率.13.(2022•丰县二模)某校将学生体质健康测试成绩分为A、B、C、D四个等级,对应分数分别为4分、3分、2分、1分.为了解学生整体体质健康状况,拟抽样120人进行统计分析.(1)以下是三种抽样方案:甲方案:随机抽取七年级男、女生各60人的体质健康测试成绩.乙方案:随机抽取七、八、九年级男生各40人的体质健康测试成绩.丙方案:随机抽取七、八、九年级男生、女生各20人的体质健康测试成绩.你认为较为合理的是方案(选填甲、乙、丙);(2)按照合理的抽样方案,将随机抽取的测试成绩整理并绘制成如图统计图.①这组数据的中位数是分;②请求出这组数据的平均数;③小明的体质健康测试成绩是C等级,请你结合以上数据,对小明的体质健康状况做出评价,并给出一条合理的建议.14.(2022•丰县二模)如图,某公园门口的限行柱之间的三个通道分别记为A、B、C,这三个通道宽度同,行人选择任意一个通道经过的可能性是相同的.周末甲、乙、丙、丁四位同学相约去该公园玩.(1)甲同学选择A通道的概率是.(2)用画树状图法或列表法,求甲、丙两位同学从同一通道经过的概率.15.(2022•徐州二模)某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生对他们一周的课外阅读时间进行了调查,并绘制出如图的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值为;(2)根据所给数据,补全图②统计图;(3)根据样本数据,估计该校一周的课外阅读时间大于5h的学生人数.16.(2022•贾汪区二模)甲、乙两家书店规模相当,去年下半年的月盈利折线统计图如图所示.(1)①要评价这两家书店7~12月的月盈利的平均水平,应选择计算统计量.A.中位数B.平均数C.众数D.方差②请分别求出反应这两家书店月盈利“平均水平”的统计量;(2)根据(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家书店经营状况较好?请简述理由.17.(2022•徐州二模)某班准备三个奖品,有2个冰墩墩和1个雪容融,分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,甲先从中随机抽取一张卡片,不放回再由乙从中随机抽取一张卡片,由卡片所写内容来决定奖品.(1)甲抽中冰墩墩的概率是;(2)试用列表的方法表示所有可能的结果,并求出甲和乙抽中相同奖品的概率.18.(2022•贾汪区二模)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校为加强学生自我防护意识,成立“防疫志愿者服务队”,设立三个“监督岗”:①教学楼监督岗,②阅览室监督岗,③就餐监督岗,小宇和小宁两位同学报名参加了志愿者服务工作,在不了解具体岗位的情况下,他们从序号①、②、③中随机填报了一个服务监督岗序号.(1)小宇填报“③”的概率为;(2)用列表法或画树状图法,求小宇和小宁同时选到“③就餐监督岗”的概率.19.(2022•泉山区校级三模)4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,中国“太空出差三人组”成员平安回到了祖国大地.星空浩瀚无限,探索永无止境,我们都是“追梦人”,为了庆祝我国航天事业的发展,某校举行航空航天作品展,为了解学生上交作品情况,随机调查了部分学生上交作品件数,根据调查结果,绘制了如下两幅不完整的统计图.请根据相关信息,解答下列问题:(1)补全两幅统计图;(2)求所抽取学生上交作品件数的众数与中位数;(3)求所抽取学生上交作品件数的平均数,若该校共有1200名学生,请估计上交的作品一共有多少件?20.(2022•邳州市一模)某学校九年级共有320名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.I.A课程成绩的频数分布直方图如图(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);II.A课程成绩在70≤x<80这一组的是:70 71 71 71 73 73.5 74 74 78 78.5 79 79 79 79.5Ⅲ.A,B两门课程成绩的平均数、中位数、众数如下表:课程平均数中位数众数A75.3m84.5B72.27083根据以上信息,回答下列问题:(1)m=;(2)在此次测试中,某学生的A课程成绩为75分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A”或“B”),理由是.(3)假设该年级学生都参加此次测试,估计A课程成绩超过平均分75.3分的人数.21.(2022•邳州市一模)一张圆桌旁设有4个座位,甲先坐在了如图所示的座位上,乙、丙2人等可能地坐到①、②、③中的2个座位上.(1)丙坐在②号座位的概率是;(2)用画树状图或列表的方法,求乙与丙不相邻而坐的概率.22.(2022•徐州一模)随着奥密克戎病毒的传播,部分地区采用了在线授课学习方式.某校计划为学生提供以下四类在线学习方式:在线讲授、观看微课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)本次调查学生共 人,补全条形统计图;(2)扇形统计图中“观看微课”对应的扇形圆心角等于 °;(3)该校共有学生2600人,请你估计该校对“在线授课”最感兴趣的学生人数. 23.(2022•徐州一模)2022年徐州中考体育进行改革,男女考生各有七项可选,每位考生可以任选三项进行测试.某班对学生选项情况进行调查.随机抽取其中一组5名学生的报名情况如下表,这5名学生分别标记为A ,B ,C ,D ,E ,其中“√”表示选报该项. 选项 学生1分钟跳绳立定跳远 50米跑 抛实心球 50米游泳 1000米跑(男) 800米跑(女)引体向上(男) 仰卧起坐(女) A√√√B√√√C√√√D√√√E√√√(1)5名学生中选项是1分钟跳绳、立定跳远、掷实心球的概率是;(2)每组随机抽取选项是“50米游泳”的两人进行测试,用画树状图的方法求该组中抽到的恰好是A、C的概率.24.(2022•鼓楼区校级二模)为响应“双减”政策,提升学生的艺体素养,某校计划开设武术、舞蹈、剪纸等三项活动课程,随机抽取了部分学生,统计他们喜欢的课程(每人只能从中选一项),并将统计结果绘制成如下两幅统计图,请你结合图中信息解答问题.(1)请通过计算,将条形统计图补充完整;(2)本次抽样调查的样本容量是.(3)已知该校有2700名学生,请你根据样本估计全校学生中喜欢剪纸的有多少人?25.(2022•鼓楼区校级三模)为了了解某校七年级体育测试成绩,随机抽取该校七年级一班所有学生的体育测试成绩作为样本,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)直接写出该样本的容量,并将条形统计图补充完整;(2)在扇形统计图中,求出等级C对应的圆心角的度数;(3)若规定达到A、B等级为优秀,该校七年级共有学生850人,通过样本估计该校七年级参加体育测试达到优秀标准的学生有多少人?26.(2022•睢宁县模拟)受疫情影响,很多学校都纷纷响应了“停课不停学”的号召,开展线上教学活动.为了解学生上网课使用的设备类型,某校从“电脑、手机、电视、其它”四种类型的设备对学生做了一次抽样调查.调查结果显示,每个学生只选择了以上四种设备类型中的一种,现将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)若该校共有1500名学生,估计全校用手机上网课的学生共有名;(3)在上网课时,老师在A、B、C、D四位同学中随机抽取一名学生回答问题,求两次都抽取到同一名学生回答问题的概率.2023年江苏省徐州市中考数学专题练——10统计和概率参考答案与试题解析一.选择题(共8小题)1.(2022•泉山区校级三模)空气是混合物,为直观介绍空气中各成分的百分比,所采用的统计图最适合的是( ) A .折线统计图 B .扇形统计图 C .频数分布直方图D .条形统计图【解答】解:根据题意可知,为直观介绍空气中各成分的百分比,应选择扇形统计图. 故选:B .2.(2022•鼓楼区校级二模)在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9,对这组数据,下列说法正确的是( ) A .平均数是8B .中位数8.5C .众数是8D .极差是4【解答】解:A .平均数为7+10+9+8+7+96=813,故本选项不合题意;B .中位数为8+92=8.5,故本选项符合题意;C .众数是7和9,故本选项不合题意;D .极差为10﹣7=3,故本选项不合题意; 故选:B .3.(2022•贾汪区二模)某班共有35位同学参加了学校组织的数学解题大赛,如表为该班参赛成绩的频数分布表,该班数学成绩的众数为( ) 成绩(分) 20 30 40 50 60 70 90 100 频数(人) 13398 434 A .60分B .50分C .3人D .9人【解答】解:由表格中的数据可得, 该班数学成绩的众数为50分, 故选:B .4.(2022•徐州二模)某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是( ) 一分钟跳绳个165170145150数(个) 学生人数(名) 5 2 1 2A .平均数是160B .众数是165C .中位数是167.5D .方差是2【解答】解:根据题目给出的数据,可得: 平均数为:x =110×(165×5+170×2+145×1+150×2)=161,故A 选项错误,不符合题意;众数是:165,故B 选项正确,符合题意; 中位数是:165+1652=165,故C 选项错误,不符合题意;方差是:S 2=110×[(165−161)2×5+(170﹣161)2×2+(145−161)2×1+(150−161)2×2]]=74,故D 选项错误,不符合题意; 故选:B .5.(2022•睢宁县模拟)一只不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同.将球搅匀,每次从中随机摸出一个球,记下颜色后放回、再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.3,由此可估计袋子中红球的个数约为( ) A .6B .14C .5D .20【解答】解:根据题意得: 20×(1﹣0.3) =20×0.7 =14(个),答:估计袋子中红球的个数约为14个; 故选:B .6.(2022•丰县二模)甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S 甲2=8.6,S 乙2=2.6,S 丙2=5.0,S 丁2=7.2.则这四位同学3次数学成绩最稳定的是( ) A .甲B .乙C .丙D .丁【解答】解:∵甲、乙、丙、丁四位同学3次数学成绩的平均分相同,又∵2.6<5.0<7.2<8.6,∴S乙2<S丙2<S丁2<S甲2.∴乙同学3次数学成绩最稳定.故选:B.7.(2022•徐州一模)“市长杯”足球赛中,七支参赛球队进球数如下(单位:个):3、5、2、2、3、1、3,这组数据的中位数和众数分别是()A.1.5,3B.2,2C.3,3D.2,3【解答】解:从小到大排列此数据为:1,2,2,3,3,3,5,处在第4位为中位数为3.数据3出现次数最多,所以众数为3,故选:C.8.(2022•邳州市一模)在一个不透明的盒子中有25个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计盒子中白球的个数约为()A.6B.8C.10D.12【解答】解:根据题意得:25×0.4=10(个),答:估计盒子中白球的个数约为10个;故选:C.二.填空题(共2小题)9.(2022•丰县二模)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在白色区域的概率是12.【解答】解:如图,设每个小正方形的边长为1,整个图形的面积=4×4=16,白色区域的面积=12×16=8,P(白色区域)=816=12,故答案为:12.10.(2022•泉山区校级三模)下图是国家统计局发布的2021年2月至2022年2月北京居民消费价格涨跌幅情况折线图(注:2022年2月与2021年2月相比较成为同比,2022年2月与2022年1月相比较称为环比).根据图中信息,有下面四个推断:①2021年2月至2022年2月北京居民消费价格同比均上涨; ②2021年2月至2022年2月北京居民消费价格环比有涨有跌;③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差;④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数. 所有合理推断的序号是 ②③④ .【解答】解:①由折线统计图可得,2021年2月至2022年2月北京居民消费价格同比有涨有跌,故错误,不符合题意;②2021年2月至2022年2月北京居民消费价格环比有涨有跌,故正确,符合题意; ③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的起伏小于2021年9月至2022年1月同比数据的起伏,故方差小,正确,符合题意;④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数为15×(0﹣0.1﹣0.4+0.7+0.1)=0.06,2021年9月至2022年1月环比数据的平均数为15×(﹣0.1+1.0+0﹣0.3+0.2)=0.16,故正确,符合题意, 故答案为:②③④. 三.解答题(共16小题)11.(2022•鼓楼区校级二模)为了更好防控疫情,某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士指导某社区预防疫情工作.用树状图(或列表法)求恰好选中医生甲和护士A 的概率. 【解答】解:画树状图如下:由树状图知,共有6种等可能情形,恰好选中医生甲和护士A 只有一种情形, 所以恰好选中医生甲和护士A 的概率为16.12.(2022•泉山区校级三模)小明的爸妈购买车票,高铁售票系统随机分配座位,若系统已将两人分配到同一排.窗过道窗(1)小明的爸爸购得A 座票后,妈妈购得B 座票的概率是14;(2)求分给二人相邻座位(过道两侧座位C 、D 不算相邻)的概率.【解答】解:(1)小明的爸爸购得A 座票后,妈妈购得B 座票的的概率是14;故答案为:14;(2)根据题意画树状图如下:共有20种等可能的结果,其中分给小明的爸妈二人相邻座位(过道两侧座位C 、D 不算相邻)的结果有6种,∴分给小明的爸妈二人相邻座位(过道两侧座位C ,D 不算相邻)的概率是620=310.13.(2022•丰县二模)某校将学生体质健康测试成绩分为A 、B 、C 、D 四个等级,对应分数分别为4分、3分、2分、1分.为了解学生整体体质健康状况,拟抽样120人进行统计分析.(1)以下是三种抽样方案:甲方案:随机抽取七年级男、女生各60人的体质健康测试成绩. 乙方案:随机抽取七、八、九年级男生各40人的体质健康测试成绩. 丙方案:随机抽取七、八、九年级男生、女生各20人的体质健康测试成绩. 你认为较为合理的是 丙 方案(选填甲、乙、丙);(2)按照合理的抽样方案,将随机抽取的测试成绩整理并绘制成如图统计图. ①这组数据的中位数是 3 分; ②请求出这组数据的平均数;③小明的体质健康测试成绩是C 等级,请你结合以上数据,对小明的体质健康状况做出评价,并给出一条合理的建议.【解答】解:(1)甲方案、乙方案选择样本比较片面,不能代表真实情况,抽样调查不具有广泛性和代表性; 具有代表性的方案是丙方案, 故答案为:丙;(2)①这120人的成绩从小到大排列处在中间位置的两个数都是3分,因此中位数是3分,故答案为:3; ②平均数为x =30×4+45×3+30×2+15×1120=2.75(分),答:这组数据的平均数是2.75分;③小明的体质健康测试成绩是C 等级对应分数2分,低于平均成绩,比中位数小,位于中下水平,小明的体质健康水平有待提高.建议小明加强体育锻炼,增强体质(结合数据,言之有理即可).14.(2022•丰县二模)如图,某公园门口的限行柱之间的三个通道分别记为A 、B 、C ,这三个通道宽度同,行人选择任意一个通道经过的可能性是相同的.周末甲、乙、丙、丁四位同学相约去该公园玩. (1)甲同学选择A 通道的概率是13.(2)用画树状图法或列表法,求甲、丙两位同学从同一通道经过的概率.【解答】解:(1)甲同学选择A 通道的概率是13;故答案为:13;(2)画树状图如下:共有9种等可能的情况数,甲、丙两位同学从同一通道经过的有3种, 则甲、丙两位同学从同一通道经过的概率是39=13.15.(2022•徐州二模)某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生对他们一周的课外阅读时间进行了调查,并绘制出如图的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 40 ,图①中m 的值为 25 ; (2)根据所给数据,补全图②统计图;(3)根据样本数据,估计该校一周的课外阅读时间大于5h 的学生人数. 【解答】解:(1)本次接受随机抽样调查的学生人数为6÷15%=40(人), 图①中m 的值为1040×100=25,故答案为:40;25;(2)一周的课外阅读时间为7小时的人数为40×20%=8(人), 补全图②统计图如下:(3)估计该校一周的课外阅读时间大于5h的学生人数为1200×10+8+440=660(人).16.(2022•贾汪区二模)甲、乙两家书店规模相当,去年下半年的月盈利折线统计图如图所示.(1)①要评价这两家书店7~12月的月盈利的平均水平,应选择计算统计量B.A.中位数B.平均数C.众数D.方差②请分别求出反应这两家书店月盈利“平均水平”的统计量;(2)根据(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家书店经营状况较好?请简述理由.【解答】解:(1)①要评价这两家书店7~12月的月盈利的平均水平,应选择计算统计量平均数,故答案为:B;②x甲=16×(1+1.5+2.5+2.5+3.5+4)=2.5(万元),x乙=16×(2+3+2.5+1.5+1.5+1.5)=2(万元);(2)甲书店经营状况较好,甲书店营业额的平均值大于乙书店,且由折线统计图可知甲书店的营业额持续稳定增长,潜力大.17.(2022•徐州二模)某班准备三个奖品,有2个冰墩墩和1个雪容融,分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,甲先从中随机抽取一张卡片,不放回再由乙从中随机抽取一张卡片,由卡片所写内容来决定奖品. (1)甲抽中冰墩墩的概率是23;(2)试用列表的方法表示所有可能的结果,并求出甲和乙抽中相同奖品的概率. 【解答】解:(1)甲抽中冰墩墩的概率是23,故答案为:23;(2)把2个冰墩墩卡片分别记为A 、B ,1个雪容融卡片记为C , 列表如下:共有6种等可能的结果,其中甲和乙抽中相同奖品的结果有2种,即(A ,B )、(B 、A ), ∴甲和乙抽中相同奖品的概率为26=13.18.(2022•贾汪区二模)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校为加强学生自我防护意识,成立“防疫志愿者服务队”,设立三个“监督岗”:①教学楼监督岗,②阅览室监督岗,③就餐监督岗,小宇和小宁两位同学报名参加了志愿者服务工作,在不了解具体岗位的情况下,他们从序号①、②、③中随机填报了一个服务监督岗序号.(1)小宇填报“③”的概率为13;(2)用列表法或画树状图法,求小宇和小宁同时选到“③就餐监督岗”的概率.【解答】解:(1)小宇填报“③”的概率为13;故答案为:13;(2)画树状图为:共有9种等可能的结果,其中小宇和小宁同时选到“③就餐监督岗”的结果数有1种, ∴小宇和小宁同时选到“③就餐监督岗”的概率为19.19.(2022•泉山区校级三模)4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,中国“太空出差三人组”成员平安回到了祖国大地.星空浩瀚无限,探索永无止境,我们都是“追梦人”,为了庆祝我国航天事业的发展,某校举行航空航天作品展,为了解学生上交作品情况,随机调查了部分学生上交作品件数,根据调查结果,绘制了如下两幅不完整的统计图.请根据相关信息,解答下列问题: (1)补全两幅统计图;(2)求所抽取学生上交作品件数的众数与中位数;(3)求所抽取学生上交作品件数的平均数,若该校共有1200名学生,请估计上交的作品一共有多少件?【解答】解:(1)本次调查共抽取的学生有4÷10%=40(人).上交作品2件的人数为40﹣4﹣8﹣12﹣6=10(人). 上交作品2件的人数所占的百分比1040×100%=25%,补全两幅统计图如图:(2)所抽取学生上交作品件数的众数为3, 所抽取学生上交作品件数的中位数为2+22=2;(3)所抽取学生上交作品件数的平均数140×(4×0+8×1+10×2+12×3+6×4)=2.2,1200×2.2=2640(件),答:估计上交的作品一共有2640件.20.(2022•邳州市一模)某学校九年级共有320名学生.为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.I .A 课程成绩的频数分布直方图如图(数据分成6组:40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100); II .A 课程成绩在70≤x <80这一组的是: 70 71 71 71 73 73.5 74 74 78 78.5 79 79 79 79.5Ⅲ.A ,B 两门课程成绩的平均数、中位数、众数如下表:课程 平均数 中位数 众数 A 75.3 m 84.5 B72.27083。
2022年江苏省徐州市中考数学试卷及参考答案
2022年江苏省徐州市中考数学试卷及参考答案注意事项:1.本试卷满分l20分,考试时间为I20分钟.2.答题前前将自己的姓名、准考证号用0.5毫米黑色墨水签字笔写在本试卷和答题卡上,3.考生答题全部涂、写在答题卡上,写在本试卷上无效,考试结束,将本试卷和答题卡一并交回。
一、选择题(本大题共有10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1,2的相反数是A.2B.2C.12D.12考点:相反数.分析:根据相反数的定义:只有符号不同的两个数就是相反数,进行判断.解答:解:根据相反数的定义,-2的相反数是2.故选A.点评:本题考查了相反数的定义.应该从相反数的符号特点及在数轴上的位置关系进行判断.2.2022年我国总人口约为l370000000人,该人口数用科学记数法表示为A.0.1371011B.1.37109C.13.7108D.137107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a某10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:用科学记数法表示数1370000000为1.37某109.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a某10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.估计11的值A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间考点:估算无理数的大小.分析:先确定的平方的范围,进而估算的值的范围.解答:解:9<=11<16,故3<<4;故选B.点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题,属于基础题.4.下列计算正确的是师库网——教师自己的家园23622224A.某某某B.(某y)某yC.(某)某D.某某某22考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同底数幂乘法、积的乘方、幂的乘方的性质计算后利用排除法求解.解答:解:A、应为某某2=某1+2=某3,故本选项错误;B、应为(某y)2=某2y2,故本选项错误;C、(某2)3=某2某3=某6,故本选项正确;D、应为某2+某2=2某2,故本选项错误.故选C.点评:本题主要考查幂的运算性质,熟练掌握相关知识点是解题的关键.5.若式子某1在实数范围内有意义,则某的取值范围是A.某1B.某1C.某1D.某1考点:二次根式有意义的条件.分析:根据二次根式有意义的条件判断即可.解答:解:根据二次根式有意义的条件得:某-1≥0,∴某≥1,故选A点评:本题考查了二次根式有意义的条件:(1)二次根式的概念.形如(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.(a≥0)是一个非负数.6.若三角形的两边长分别为6㎝,9cm,则其第三边的长可能为A.2㎝B.3cmC.7㎝D.16cm考点:三角形三边关系.分析:已知三角形的两边长分别为6cm和9cm,根据在三角形中任意两边之和>第三边,或者任意两边之差<第三边,即可求出第三边长的范围.解答:解:设第三边长为某cm.由三角形三边关系定理得9-6<某<9+6,解得3<某<15.故选C.点评:本题考查了三角形三边关系定理的应用.关键是根据三角形三边关系定理列出不等式组,然后解不等式组即可.7.以下各图均由彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是..ABCD考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.能组成正方体的“一,四,一”“三,三”师库网——教师自己的家园“二,二,二”“一,三,二”的基本形态要记牢.解答:解:选项A、B、C都可以折叠成一个正方体;选项D,有“田”字格,所以不能折叠成一个正方体.故选D.点评:考查了展开图折叠成几何体,只要有“田”字格的展开图都不是正方体的表面展开图.8.下列事件中,属于随机事件的是A.抛出的篮球会下落B.从装有黑球、白球的袋中摸出红球C.367人中有2人是同月同日出生D.买一张彩票,中500万大奖考点:随机事件.专题:应用题.分析:随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.解答:解:A、抛出的篮球会落下是必然事件,故本选项错误;B、从装有黑球,白球的袋里摸出红球,是不可能事件,故本选项错误;C、367人中有2人是同月同日出生,是必然事件,故本选项错误;D、买一张彩票,中500万大奖是随机事件,故本选正确.故选D.点评:本题主要考查的是对随机事件概念的理解,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,比较简单.9.如图,将边长为2的正方形ABCD沿对角线平移,使点A移至线段AC的中点A’处,得新正方形A’B’C’D’,新正方形与原正方形重叠部分(图中阴影部分)的面积是A.21B.C.121D.4DD'C'考点:平移的性质;正方形的性质.AA'C分析:根据题意可得,阴影部分的图形是正方形,正方形ABCD 的边长为2,则AC=2,可得出A′C=1,可得出其面积.解答:解:∵正方形ABCD的边长为2,BB'∴AC=2,又∵点A′是线段AC的中点,∴A′C=1,(第9题)∴S阴影=12某1某1=12.故选B.点评:本题考查了正方形的性质及平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.平面直角坐标系中,已知点O(0,o)、A(0,2)、B(1,0),点P 是反比例函数y1图某象上的一个动点,过点P作PQ⊥某轴,垂足为点Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有A.1个B.2个C.3个D.4个【答案】D。
2020年江苏省徐州巿中考数学试题及答案
初中毕业、升学考试数 学 试 题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B 铅笔填涂在答题卡上.2.作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的) 1.4的平方根是A.2±B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元 3.函数11y x =+中自变量x 的取值范围是 A. x ≥-1 B. x ≤-1 C. x ≠-1 D. x =-1 4.下列运算中,正确的是A.x 3+x 3=x 6B. x 3·x 9=x 27C.(x 2)3=x 5D. x ÷x 2=x -1 5.如果点(3,-4)在反比例函数ky x=的图象上,那么下列各点中,在此图象上的是 A.(3,4) B. (-2,-6) C.(-2,6) D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是ABC D7.⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切 8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形 9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上................) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2008年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___. 14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷(第10题图)(第15题图)(第16题图)三、解答题(每小题5分,共20分)17.计算:2008011(1)()3π--+-+18.已知21,23.x x x =+--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m )1.4141.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C.(B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少? 23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:DCBAB(第20题图)(第21题图)项目月功能费基本话费长途话费短信费金额/元 5金额/元6050403020100项目(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2007年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)行驶路程 收费标准调价前 调价后 不超过3km 的部分 起步价6元起步价a 元超过3km 不超出6km 的部分每公里2.1元每公里b 元超出6km 的部分每公里c 元设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题: ①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.FEDCB A 13.311.276763Oxy26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断①OA=OC②AB=CD③∠BAD=∠DCB④AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题...,画图并给出证明;②构造一个假命题...,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF...绕点..E.旋转..,并使边DE与边AB交于点P,边EF与边BC于点Q【探究一】在旋转过程中,(1)如图2,当CE1EA=时,EP与EQ满足怎样的数量关系?并给出证明.(2)如图3,当CE2EA=时EP与EQ满足怎样的数量关系?,并说明理由.(3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.F C(E)A(D)Q PDEFCBAQPDEFCBA(图1) (图2) (图3)徐州巿2008年初中毕业、升学考试数 学 试 题 参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2 12. 3750元 13.-1 14. 15.126° 16.7cm17.解:原式=1+1-3+2=118.解:,将代入到上式,则可得19.解:20.解:如图所示,过点A 、D 分别作BC 的垂线AE 、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =12.1所以BC =7+6+12.1=25.1m. 21.证明:(A )连结AC ,因为AB =AC ,所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C(B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)(2)(2)x x -+24a 223(3)(1)x x x x --=-+1x =223111)2)1x x --=-+==-12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩BE FDCBA(4) 24. 解:如下图所示,(4)对称中心是(0,0) 25.解:(1) a=7, b=1.4, c=2.1 (2) (3)有交点为其意义为当时是方案调价前合算,当时方案调价后合算. 26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1) (2) (0,3),(-3,0),(1,0) (3)略1 2.10.3y x =-31(,9)7317x <317x >223y x x =--+50403020100项目金额/元。
江苏省徐州巿2022年中考数学试题真题含答案Word版
江苏省徐州巿2022年中考数学试题真题含答案Word版2022年中考试题徐州巿2022年初中毕业、升学考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有一个是正确的)....1.4的平方根是A.?2B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数y?1x?1中自变量x的取值范围是A. x≥-1B. x≤-1C. x≠-1D. x =-1 4.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x?x2=x-1 5.如果点(3,-4)在反比例函数y?kx的图象上,那么下列各点中,在此图象上的是A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方....盒的是A1B2022年中考试题C D7.⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是A.内含B. 内切C.相交D.外切8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数(第10题图)10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B.13 C.12 D.14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上)................11.因式分解:2x2-8=______▲________12.徐州巿部分医保定点医院2022年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若x1,x2为方程x2?x?1?0的两个实数根,则x1?x2?___▲___. 14.边长为a的正三角形的面积等于______▲______.15.如图,AB是⊙O的直径,点C在AB的延长线上,CD 与⊙O相切于点 D.若,若∠C=18°,则∠CDA=______▲_______.(第15题图)(第16题图)16.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于____▲_____cm.第Ⅱ卷22022年中考试题三、解答题(每小题5分,共20分)17.计算:(?1)202218.已知x?x119.解不等式组?2?2x?1?5(x?1)??3?1,求x2??01?1?()?338.?2x?3的值.,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:四、解答题(本题有A、B两类题,A类题4分,B类题6分,你可以根据自己的学习情况,在两类题中任意选做一题,如果两类题都做,则以A类题计分)......21.(A类)已知如图,四边形ABCD中,AB=BC,AD =CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10∶7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各3BDAB45?30?21.414,31.732A6mD14m(第20题图)C(第21题图)C2022年中考试题题:项目金额/元金额/元60504030短信费月功能费4%基本话费40%月功能费5 基本话费长途话费短信费20220月功能费基本话费长途话费短信费长途话费36%项目(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;42022年中考试题④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.Ay六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2022年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c为常数)行驶路程不超过3km的部分超过3km不超出6km的部分超出6km的部分每公里 2.1元每公里c元O367xyD13.3BxC收费标准调价前起步价6元调价后起步价a 元11.2C7AEBF每公里b元6 设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a=______,b=______,c=_______.②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.52022年中考试题26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断① OA=OC ② AB=CD ③ ∠BAD=∠DCB ④ AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题,画图并给出证明;...②构造一个假命题,举反例加以说明. ...七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B 两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30° 【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF...绕点旋转,并使边DE与边AB交于点P,边EF与边BC于点Q ..E...【探究一】在旋转过程中,(1)如图2,当CEEA=1时,EP与EQ满足怎样的数量关系?并给出证明.62022年中考试题(2)如图3,当CEEA=2时EP与EQ满足怎样的数量关系?,并说明理由.CEEA=m(3)根据你对(1)、(2)的探究结果,试写出当系式时,EP与EQ满足的数量关为_________,其中m的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.A(D)AFEPBC(E)BDQFCAEPDBQCF(图1)(图2)(图3)72022年中考试题徐州巿2022年初中毕业、升学考试数学试题参考答案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(x?2)(x?16.m17.解:原式=1+1-3+2=1 18.解:x222) 12. 3750元13.-1 14.34a2 15.126°?2x?3?(x?3)(x?1)3?1?3)(,将x?3?1代入到上式,则可得x?2x?3?(3?1?1)?(3?2)(3?2)??1?x119.解:?2?2x?1?5(x?1)? ?x??2?x??22?x?2?2x?1?5x?5x?2??20.解:如图所示,过点A、D分别作BC的垂线AE、DF分别交BC于点E、F,所以△ABE、△CDF均为Rt△,又因为CD=14,∠DCF=30°,所以DF=7=AE,且FC=73A6mD14m12.145?B30?C所以BC=7+6+12.1=25.1m. 21.证明:(A)连结AC,因为AB=AC,所以∠BAC=∠BCA,同理AD=CD 得∠DAC=∠DCAE FA所以∠A=∠BAC+∠DAC=∠BCA+∠DCAC(B)如(A)只须反过来即可.22.解方程的思想.A车150km/h,B车125km/h. 23.解:(1)125元的总话费(2)72° (3)项目金额/元月功能费5 基本话费50 长途话费45 短信费25 BD=∠C 82022年中考试题(4)24.(4)对称中心是(0,0)25.解:(1) a=7, b=1.4, c=2.1 (2)y1?2.1x?0.3A1A2B2BB1C1xCC2金额/元6050403020220月功能费基本话费长途话费短信费项目解:如下图所示,yA(3)有交点为(317,9)其意义为当x?317时是方案调价前合算,当x?317时方案调价后合算.26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)y??x?2x?32(2)(0,3),(-3,0),(1,0)(3)略911/ 11。
中考数学5年真题(2019-2023)专题汇总解析—二次根式
中考数学5年真题(2019-2023)专题汇总解析—二次根式考点1二次根式一、单选题1.(2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解∶∵160020232025<<.即4045<,40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.2.(2023年江苏省无锡市中考数学真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.3=,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2023年重庆市中考数学真题(A卷)的值应在()A .7和8之间B .8和9之间C .9和10之间D .10和11之间【答案】B【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.4.(2019·广东·的结果是()A .4-B .4C .4±D .2【答案】B【分析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.5.(2020·广西贵港·在实数范围内有意义,则实数x 的取值范围是()A .1x <-B .1x ≥-C .0x ≥D .1x ≥【答案】B【分析】根据二次根式的被开方数为非负数即可得出的取值范围.∴x+1≥0∴x≥﹣1故选:B【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.6.(2020·山东聊城·÷).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.÷==1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.(2023年辽宁省大连市中考数学真题)下列计算正确的是()A.0=B.+=C=D)26=-【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=C.=D.)26=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.8.(2021·广东·统考中考真题)若0a =,则ab =()AB .92C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∵0a ≥0≥,且0a =∴0a =0==即0a =,且320a b -=∴a =b∴92ab ==故选:B .【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.9.(2022·河北·统考中考真题)下列正确的是()A23=+B 23=⨯CD 0.7=【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;=⨯,故正确;23=≠≠,故错误;0.7故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(2023()A.点P B.点Q C.点R D.点S【答案】B<<【详解】解:∵479<<,<<23Q,故选:B.11.(2023年河北省中考数学真题)若a b===()A.2B.4C D【答案】A【分析】把a b【详解】解:∵a b==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.12.(2019·四川资阳·统考中考真题)设x=x的取值范围是()A.23x<<B.34x<<C.45x<<D.无法确定【答案】B【分析】根据无理数的估计解答即可.【详解】解:∵91516<<,∴34<<,故选B.【点睛】此题考查估算无理数的大小,关键是根据无理数的估计解答.13.(2021·广东·统考中考真题)设6a,小数部分为b,则(2a b+的值是()A.6B.C.12D.【答案】A的整数部分可确定a的值,进而确定b的值,然后将a与b的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<<,∴62a=,∴小数部分624b==∴(((22244416106a b+=⨯+-=+-=-=.故选:A.【点睛】本题考查了二次根式的运算,正确确定6a与小数部分b的值是解题关键.二、填空题14.(2019·江苏苏州·x的取值范围为.【答案】6x≥【分析】根据根式有意义的条件,得到不等式,解出不等式即可.-60x≥,解出得到6x≥.【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键.15.(2020·广西·=.【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.16.(2021·天津·统考中考真题)计算1)的结果等于.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题的关键.17.(2023年湖北省武汉市数学真题)写出一个小于4的正无理数是.【分析】根据无理数估算的方法求解即可.<4<..【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.18.(2023x 的取值范围是.【答案】13x ≥-【分析】根据二次根式有意义的条件得到130x +≥,解不等式即可得到答案.∴130x +≥,解得13x ≥-,故答案为:13x ≥-【点睛】此题考查了二次根式有意义的条件,熟知被开方式为非负数是解题的关键.19.(2019·河南·12--==.【答案】112【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.12--122=-112=.故答案为11 2.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.20.(2021·安徽·统考中考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1-,它介于整数n和1n+之间,则n的值是.【答案】11即可完成求解.2.236≈;1 1.236≈;因为1.236介于整数1和2之间,所以1n=;故答案为:1.分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.21.(20231+=.【答案】3【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.22.(2023年上海市中考数学真题)已知关于x2=,则x=【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.23.(2023年黑龙江省绥化市中考数学真题)若式子x有意义,则x 的取值范围是.【答案】5x ≥-且0x ≠/0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.24.(2023年黑龙江省齐齐哈尔市中考数学真题)在函数12y x +-中,自变量x 的取值范围是.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x ->-≠,即可求解.【详解】解:依题意,10,20x x ->-≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.三、解答题25.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -21xx-),其中x【答案】1x x -,1+2【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式=(x−1)÷221x x x-+()()211xx x =-⋅-1x x =-当x +1时,12=+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.26.(2022·福建·统考中考真题)先化简,再求值:2111aa a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -.【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案.【详解】解:原式()()111a a a a a+-+=÷()()111a a a a a +=⋅+-11a =-.当1a =时,原式2=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.27.(2023年安徽中考数学真题)先化简,再求值:2211x x x +++,其中1x =.【答案】1x +【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解:2211x x x +++()211x x +=+1x =+,当1x =-时,∴原式11+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.28.(20232133-⎛⎫- ⎪⎝⎭【答案】6-【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=-+6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.29.(2023年吉林省长春市中考数学真题)先化简.再求值:2(1)(1)a a a ++-,其中3a =.【答案】31a +1+【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.30.(2023年内蒙古通辽市中考数学真题)计算:21tan 453-⎛⎫+︒-⎪⎝⎭【答案】0【分析】根据负整数次幂、特殊角的三角函数值、算术平方根化简,然后在计算即可.【详解】解:21tan 453-⎛⎫+︒-⎪⎝⎭9110=+-,0=.【点睛】本题主要考查了负整数次幂、特殊角的三角函数值、算术平方根等知识点,掌握基本的运算法则是解答本题的关键.31.(2019·河南·统考中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭322x x x-=⋅-3x=,当x ===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.32.(2023年辽宁省营口市中考数学真题)先化简,再求值:524223m m m m-⎛⎫++⋅⎪--⎝⎭,其中tan 45m =︒.【答案】26--m ,原式16=-【分析】先根据分式的混合计算法则化简,然后根据特殊角三角函数值和二次根式的性质求出m 的值,最后代值计算即可.【详解】解:524223m m m m-⎛⎫++⋅⎪--⎝⎭()22245223m m m m m-⎛⎫-=-⋅⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵tan 45m =︒,∴415m =+=,∴原式25610616=-⨯-=--=-.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,化简二次根式等等,正确计算是解题的关键.33.(2023·重庆九龙坡·的值应在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】A【分析】根据二次根式的乘法进行计算,以及估算无理数的大小的方法解答即可.=6=∵91416<<,∴34<,∴43-<<-,∴263<<,故选:A .【点睛】本题考查了估算无理数的大小和二次根式的运算.解题的关键是掌握二次根式的运算方法,以及估算无理数的大小的方法.34.(2023·辽宁丹东·统考二模)在函数y =x 的取值范围是()A .12x -<≤B .21x -<≤C .12x ≤≤D .12x <≤【答案】D【分析】根据函数有意义的条件得到2010x x -≥⎧⎨->⎩,解不等式组即可得到自变量x 的取值范围.【详解】解:由题意得2010x x -≥⎧⎨->⎩,解不等式组得12x <≤,故选:D .【点睛】此题考查了自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.35.(2023·安徽蚌埠·统考三模)下列运算正确的是()A 3=B .()3328a a -=-C =D .112235+=【答案】B【分析】根据二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则依次判断即可得出答案.【详解】解:A 333==B .()3328a a -=-,故此选项符合题意;CD .11522365+=≠,故此选项不符合题意.故选:B .【点睛】本题考查二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则.掌握相应的运算法则和性质是解题的关键.36.(2023·河北沧州·校考模拟预测)下列运算中,正确的是().A3=±B 2=C 2=D 8=-【答案】C【分析】利用二次根式的化简的法则对各项进行运算即可.【详解】解答:解:A 3=,故A 不符合题意;B 2=-,故B 不符合题意;C 2=,故C 符合题意;D 8=,故D 不符合题意;故选:C .【点睛】本题主要考查二次根式的化简,解答的关键是对相应的运算法则的掌握.37.(2023·四川泸州·四川省泸县第一中学校考三模)实数2的平方根为()A .2B .2±C D .【答案】D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是.故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.38.(2023·西南大学附中校考三模)估计(3-)A .0和1之间B .2和3之间C .3和4之间D .4和5之间【答案】A【分析】由题意知(34-,由1.4 1.5=<<=,可得4.2 4.5<<,0.240.5<<,然后判断作答即可.【详解】解:(34-⨯,∵1.4 1.5=<<=,∴4.2 4.5<<,∴0.240.5<<,∴估算(3-0和1之间,故选:A .39.(2023·河北石家庄·校联考一模)下列计算正确的是()A =B1=-C =D 23=【答案】C【分析】根据二次根式加法、二次根式减法、二次根式乘法、二次根式除法分别进行判断即可.【详解】解:AB 0-=,故选项错误,不符合题意;C =D 1=,故选项错误,不符合题意.故选:C .【点睛】此题考查了二次根式的加法、减法、乘法、除法,熟练掌握运算法则是解题的关键.40.(2023·江苏无锡·校考二模)函数y x的取值范围是()A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤【答案】C【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数x 50x 5-≥⇒≥.故选C.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.41.(2023·湖南长沙·校联考二模)4的算术平方根是()A .2B .2±C .8D .16【答案】A【分析】如果一个数x 的平方等于(0)a a ≥,那么这个数x 叫做a 的平方根,可以表示为平方根叫做a 的算术平方根.正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.【详解】解:42=,故选:A .【点睛】本题考查算术平方根的定义,明确平方根与算术平方根的区别与联系是本题的关键.42.(2023·重庆九龙坡·重庆市育才中学校考一模)x)A .0B .2C .3D .5【答案】D【分析】根据二次根式有意义的条件进行求解即可.∴40x -≥,即4x ≥,∴四个选项中只有D 选项中的5符合题意,故选:D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零是解题的关键.43.(2023·甘肃平凉·的结果是.【答案】2【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.44.(2021·黑龙江大庆·=【答案】4【分析】先算4(2)-,再开根即可.==4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.45.(2023·广东茂名·校考一模)已知实数x,y |4|0y -=,则1x y -=⎛⎫⎪⎝⎭.【答案】2【分析】根据算术平方根的非负性,绝对值的非负性得出24x y ==,,进而根据负整数指数幂进行计算即可求解.40y -=0≥,40y -≥,∴20x -=,40y -=,∴24x y ==,,∴11112422x y ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭===.故答案为:2.【点睛】本题主要考查了算术平方根和绝对值的非负性、负整数次幂等知识点,根据非负性正确求得x 、y 的值是解答本题的关键.46.(2023·福建福州·校考二模)已知2a =2b =22a b ab -的值等于.【答案】【分析】先求出a b -=1ab =,再由()22a b ab ab a b -=-进行求解即可.【详解】解:∵2a =2b =∴22a b -=++=((22431ab =+⨯-=-=,∴22a b ab -()ab a b =-1=⨯=故答案为:【点睛】本题主要考查了二次根式的混合运算、求代数式的值,正确得到a b -=1ab =是解题的关键47.(2023·山东聊城·x 的取值范围是.【答案】12x ≥【分析】根据二次根式有意义的条件可得210x -≥,即可.【详解】解:由题意得:210x -≥,解得:12x ≥,故答案为:12x ≥.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.48.(2023·安徽滁州·校考模拟预测)计算)11-的结果等于.【答案】22【分析】直接利用平方差公式进行简便运算即可.【详解】解:)2211123122=-=-=,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.49.(2023·陕西西安·校考模拟预测)-64的立方根是.【答案】-4【分析】直接利用立方根的意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.50.(2023·云南昭通·x 的取值范围是.【答案】x>8【分析】由分式的分母不等于零和二次根式的被开方数是非负数得到x﹣8>0.【详解】解:由题意,得x﹣8>0,解得x>8.故答案是:x>8.【点睛】考查了分式有意义的条件和二次根式有意义的条件,注意,二次根式在分母上,所以不能取到0.51.(2023·四川泸州·四川省泸县第一中学校考三模)函数y=x的取值范围是.【答案】x>3【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.x30x3x>3x30x3-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩.52.(2023·河南洛阳·统考一模)计算:22-=.【答案】74-【分析】先计算22-,再算减法.【详解】解:原式17244=-=-.故答案为:74-.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键.53.(2023·安徽蚌埠·统考三模)计算:212022--=.【答案】2023【分析】根据有理数的乘方,二次根根式的性质,化简绝对值进行计算即可求解.【详解】解:212022--=122022-++2023=,故答案为:2023.【点睛】本题考查了有理数的乘方,二次根根式的性质,化简绝对值,正确的计算是解题的关键.54.(2022·新疆·x的取值范围是.【答案】x≥3【分析】直接利用二次根式有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x—3≥0,解得:x≥3,故答案为:x≥3【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.55.(2023·黑龙江哈尔滨·统考三模)计算=.【答案】【分析】先根据二次根式的性质化简,然后根据二次根式的加减法则求解即可.【详解】解:=-2=-=故答案为:【点睛】本题主要考查了二次根式的性质、二次根式的加减运算等知识点,灵活运用二次根式的的性质化简是解题的关键.x的取值范围是.56.(2023·云南昆明·一模)要使式子3有意义,x≥【答案】5【分析】二次根式中的被开方数是非负数,依此即可求解.x-≥,【详解】解:依题意有:50x≥.解得5x≥.故答案为:5【点睛】本题考查了二次根式有意义的条件,关键是熟悉二次根式中的被开方数是非负数的知识点.57.(云南省丽江市华坪县2020-2021=.【答案】6【分析】利用二次根式的乘法法则进行求解即可.==.6故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.58.(2023·山西·模拟预测)计算:=.【答案】【分析】先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:3=⨯=+=故答案为:【点睛】本题主要考查了二次根式的加减计算,二次根式的化简,正确计算是解题的关键.59.(2023·重庆沙坪坝·重庆八中校考模拟预测)如果2y=+,那么yx的值是.【答案】225【分析】根据二次根式有意义的条件,求出,x y的值,进而求出y x的值即可.【详解】解:∵2y=,∴150,150x x -≥-≥,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.【点睛】本题考查二次根式有意义的条件,代数式求值.熟练掌握二次根式的被开方数是非负数,是解题的关键.60.(江西省崇仁县第二中学2016-2017学年八年级上学期第二次月考数学试题)计算:=【答案】61.(2015年初中毕业升学考试(山东滨州卷)数学(带解析))计算的结果为.【答案】﹣1【分析】此题用平方差公式计算即可.【详解】22=-23=-1=-62.(2023·黑龙江哈尔滨·=.【答案】3【分析】根据二次根式的化简方法和运算法则进行计算.【详解】解:原式33==【点睛】本题考查二次根式的计算,在化简二次根式的基础上再把同类二次根式合并.63.(福建省永春县第一中学2017【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.64.(2023·广东茂名·校考一模)先化简,再求值:2121211x x x x +⎛⎫÷+ ⎪-+-⎝⎭其中1x +.【答案】11x -;2【分析】先通分算括号内的,把除化为乘,再约分,化简后将x 的值代入计算.【详解】解:212(1)211x x x x +÷+-+-211(1)1x x x x ++=÷--211(1)1x x x x +-=⋅-+11x =-,当1x =+时,原式=2=.【点睛】本题考查了分式化简求值,掌握分式的基本性质,将分式通分和约分进行化简是关键.65.(2023·四川泸州·011+()3-23-【答案】【分析】根据实数的混合运算法则即可求解.011+()3-23-=(1+32-=1+32-+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及运算法则.66.(2023·安徽六安·1+【分析】先计算算术平方根.化简绝对值,求解立方根,再合并即可.1+=+-413=【点睛】本题考查是算术平方根的含义,化简绝对值,求解立方根,实数的混合运算,掌握“算术平方根与立方根的含义”是解本题的关键.67.(2022·新疆·统考中考真题)计算:20-+(2)|(3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=++=【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是=.解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a。
2024年江苏省徐州市中考考前数学最后一卷+答案解析
2024年江苏省徐州市中考考前数学最后一卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.“坎宁安数”是以英国数学家坎宁安的名字命名的,能写成形式的数字,2024是一个坎宁安数,因为下列各数中均含有“2024”,其中最小的是()A.2024B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.3.在单词数学中字母“a ”出现的频率是()A.B.C.D.4.下列运算正确的是()A. B.C.D.5.以下是小李记录的自己一周内每天校外锻炼的时间单位:分钟,,则下列关于小李该周每天校外锻炼时间的描述,正确的是()A.众数为62分钟B.中位数为62分钟C.平均数为70分钟D.方差为06.分式是刻画数量关系和变化规律的一类重要的代数式,我们学习了分式的概念、基本性质和运算.回顾学习分式的过程,常常是先回顾分数的概念、分数的基本性质和分数的运算法则,然后推广得到分式的概念、分式的基本性质和分式的运算法则.这种研究方法主要体现的数学思想是()A.归纳思想 B.类比思想C.数学抽象D.数形结合思想7.将二次函数的图象先向上平移3个单位长度,再向右平移2个单位长度后得到的图象的顶点坐标是()A.B.C.D.8.中,,,,将绕点A旋转得到,连接CD、CE,在旋转过程中,面积的最大值是()A. B. C.15 D.18二、填空题:本题共10小题,每小题3分,共30分。
9.因式分解:__________.10.第七次全国人口普查结果显示,我国具有大学文化程度的人口超218000000人.数字218000000用科学记数法表示为_____.11.如果,则的值为_____.12.如图,CE,CF是正六边形的两条对角线,则的大小为_______.13.已知关于x的分式方程的解为正数,则m的取值范围是___________.14.如图,在中,,点D为AB边的中点,于E,若,则AC的长为_________.15.如图,点A,B,C,D在上,,,则________.16.黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知,则阴影部分的面积为_____.17.如图,矩形OABC的顶点A在反比例函数的图象上,顶点B、C在第一象限,对角线轴,交y轴于点若矩形OABC的面积是16,,则__________.18.如图,在矩形ABCD中,点E是边AD上一点,连接BE,过点E作BC的垂线,垂足为F,的角平分线分别交EF,EC于点G,若,,,则GH的长为_______.三、计算题:本大题共2小题,共12分。
2024年江苏省徐州市中考数学最后一卷
2024年江苏省徐州市中考数学最后一卷一、单选题1.2-的相反数是( )A .12-B .12 C .2- D .22.下列计算结果正确的是( )A .3332a a a ⋅=B .222853a a a -=C .824a a a ÷=D .()32639a a -=- 3.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 4.等腰三角形的两条边长分别为8和4,则它的周长等于( )A .12B .16C .20D .16或20 5.襄阳气象台发布的天气预报显示,明天襄阳某地下雨的可能性是75%,则“明天襄阳某地下雨”这一事件是( )A .必然事件B .不可能事件C .随机事件D .确定性事件 6.某公司5名员工在一次义务募捐中的捐款额为(单位:元):30,50,50,60,60.若捐款最少的员工又多捐了20元,则分析这5名员工捐款额的数据时,不受影响的统计量是( )A .平均数B .中位数C .众数D .方差7.如图,矩形ABCD 的对角线,AC BD 相交于点O .若60AOB ∠=︒,则AB BC =( )A .12 B C D 8.如图,两个半径均为4的圆形纸片完全重合叠放在一起,让其中的一张圆形纸片绕着直径AB 的一端A 按逆时针方向旋转30︒后得到直径为AC 的圆,则图中阴影部分的面积为( )A.83π-B.163π-C.163π-D.83π-二、填空题9.25的平方根是.10x 的取值范围是.11.2024年4月25日,搭载神州十八号载人飞船的长征二号F 摇十八运载火箭在酒泉卫星发射中心成功发射.神舟十八号载人飞船与长征二号F 遥十八运载火箭组合体的总重量达4000多千克.将40000用科学记数法表示为.12.因式分解:2225x y -=.13.若关于x 的方程220x x m -+=有两个不相等的实数根,则m 的取值范围是. 14.如图,在ABC V 中,DE 是BC 的垂直平分线,若5AB =,8AC =,则ABD △的周长是.15.如图,正六边形ABCDEF 的边长为2,以点A 为圆心,AB 为半径画弧BF ,得到扇形BAF (阴影部分).若扇形BAF 正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是.16.如图,在平行四边形ABCD 中,E 是线段AB 上一点,连结AC DE 、交于点F .若23AE EB =,则ADF AEFS S =△△.17.观察下列图形的构成规律,根据此规律,第2024个图形中共有个圆.18.如图,正方形纸片ABCD 的边长为4,点E 在AD 边上,点F 在CD 边上.将正方形纸片ABCD 沿EF 对折,点B 的对应点是点G ,连接DG ,若1AE =,则DG 长的最小值是.三、解答题19.(1)计算:20(1)|(3)π-++-(2)211211a a a a ⎛⎫÷+ ⎪-+-⎝⎭20.(1)解方程组:213423x y x y -=⎧⎨+=⎩(2)解不等式组()2131113x x x x ⎧+>-⎪⎨-+<⎪⎩21.为了解我校学生本学期参加志愿服务的情况,随机调查了我校的部分学生,根据调查结果,绘制出如图统计图,若我校共有1000名学生,请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为________,扇形统计图中的m =________;(2)求所调查的学生本学期参加志愿服务次数的平均数;(3)学校为本学期参加志愿服务不少于7次的学生颁发“志愿者勋章”,请估计我校获“志愿者勋章”的学生人数.22.小华、小玲一起到淮安西游乐园游玩,他们决定在三个热门项目(A :智取芭蕉扇、B :三打白骨精、C :盘丝洞)中各自随机选择一个项目游玩.(1)小华选择C 项目的概率是_________;(2)用画树状图或列表等方法求小华、小玲选择不同游玩项目的概率.23.如图所示,是一张对边平行的纸片,点A ,B 分别在平行边上.(1)求作:菱形ABCD ,使点C ,D 落在纸片的平行边上;(要求:尺规作图,保留作图痕迹,不写作法)(2)若65ABC ∠=︒,6AB =,求菱形ABCD 的面积.(sin650.91︒≈,cos650.42︒≈,tan 65 2.14︒≈) 24.为进行某项数学综合与实践活动,小明到一个批发兼零售的商店购买所需工具.该商店规定一次性购买该工具达到一定数量后可以按批发价付款,否则按零售价付款.小明如果给学校九年级学生每人购买一个,只能按零售价付款,需用3600元;如果多购买60个,则可以按批发价付款,同样需用3600元,若零售价是批发价的1.2倍,求这个学校九年级学生有多少人?25.如图,C 是以AB 为直径的半圆O 上的一点,AD 平分BAC ∠交半圆O 于点D ,DE AB ∥交射线AC 于点E(1)求证:12DE AB = (2)若4AB =,当DB AE =时,四边形EABD 的面积为______26.在平面直角坐标系xOy 中,已知反比例函数a y x=的图象如图所示,直线1y x =+分别交x 轴,y 轴于A ,B 两点.(1)求A ,B 两点的坐标;(2)在该反比例函数的图象上取一点C ,连接OC AC ,,其中AC 交线段OB 于点D ,若COD ABD ∽△△,且相似比为2,求该反比例函数的表达式;(3)在ABO V 的内部取一点P ,以P 为位似中心画PMN V ,使它与PAB V 位似,且相似比为5,若M ,N 两点恰好都落在(2)中所求出的反比例函数的图象上,求位似中心P 的坐标. 27.已知在正方形ABCD 中,4AB =,点E 为BC 边上一动点(不与点B ,C 重合),连接AE ,将AE 绕点E 顺时针旋转90︒得到EF ,连接AF 交CD 于点G(1)如图1,当点E 为BC 的中点时,求GF AG的值; (2)如图2,若DG BE =,求BE 的长;(3)连接DF,求DF的最小值.28.如图1,抛物线2(0)=++≠的顶点D的坐标为(1,4),与x轴交于A,B两点(点y ax bx c aC.B在点A的右侧),与y轴交于点(0,3)(1)求抛物线的表达式及点A,点B的坐标;(2)如图2,连接AD交y轴于点E,过点E作EF AD⊥交x轴于点F,连接DF交抛物线于点G,试求点G的坐标;∥,交BC (3)如图3,连接AC,BC,点P是抛物线在第一象限内的点,过点P作PQ AC于点Q,当PQ的长最大时,求点P的坐标.。
江苏省徐州巿2022年中考数学真题试题(含解析)
江苏省徐州巿2022年中考数学真题试题(含解析)1.14.〔3.00分〕已知函数y=2x-3,那么y=8的解为x=5.15.〔3.00分〕如图,正方体ABCD-EFGH的棱长为2,P、Q分别为AE、BF的中点,那么PQ的长度为√2.16.〔3.00分〕已知集合A={1,2,3,4},集合B={x|x=2n,n∈N*},则A∪B={1,2,3,4,6,8}.三、解答题〔共42分〕17.〔6.00分〕已知函数y=2x-3,那么解方程y=0的根为x=1.5.解析】当y=0时,有2x-3=0,解得x=1.5.18.〔6.00分〕如图,已知正方体ABCD-EFGH的棱长为2,P、Q分别为AE、BF的中点,连接PQ,求PQ的长度.解析】由于P、Q分别为AE、BF的中点,所以PQ平行于AB且PQ=1/2AB,而AB的长度为2√2,因此PQ的长度为√2.19.〔6.00分〕如图,已知三角形ABC中,∠B=90°,AB=3,AC=4,D是BC上一点,且AD⊥BC,求AD的长度.解析】根据勾股定理,可得BC=5.由于AD⊥BC,所以∠BAD=∠ACB,因此三角形ABD与三角形ABC相似,即AD/AB=AC/BC,代入已知数据可得AD=9/5.20.〔12.00分〕如图,在矩形ABCD中,AE=AF=6,BF=CG=8,求矩形ABCD的面积.解析】首先根据勾股定理,可得CE=10,BD=10.由于AE=AF=6,BF=CG=8,所以AEFB和CGDA都是正方形,且边长均为6.因此矩形ABCD的面积为6×8+6×10=84.14.正三角形的面积为a²×√3÷4.15.∠CDA=72°。
16.△ABE的周长为10cm。
17.(-1)²=1.18.x²+π-1-2x-3=-x²+π-4x+1,化简得2x²-2x-2=0,解得x=1±√2,整数解为x=1.19.x4.20.坝高≈12.9m,坝底宽≈18.4m。
24年徐州数学中考试题及答案
24年徐州数学中考试题及答案一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个选项是正确的,请将正确选项的字母填入题后的括号内。
)1. 下列哪个选项是实数集的子集?A. 整数集B. 有理数集C. 无理数集D. 复数集答案:B2. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. 0或1D. 0和1答案:C3. 已知一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是:A. 7B. 8C. 9D. 10答案:C4. 函数y=2x+3的图象与x轴的交点坐标是:A. (-3/2, 0)B. (3/2, 0)C. (-1.5, 0)D. (1.5, 0)答案:B5. 下列哪个选项是二次函数y=ax^2+bx+c的对称轴?A. x=-b/2aB. x=-b/aC. x=b/2aD. x=b/a答案:A6. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:C7. 一个等差数列的前三项分别为1,3,5,那么它的公差是:A. 2B. 3C. 4D. 5答案:A8. 一个数的立方根是它本身,那么这个数可以是:A. 1B. -1C. 0D. 1或-1答案:D9. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A10. 一个函数的反函数是它本身,那么这个函数是:A. y=xB. y=x^2C. y=x^3D. y=1/x答案:A二、填空题(本题共5小题,每小题4分,共20分。
请将答案填入题后的横线上。
)1. 一个数的相反数是-5,那么这个数是________。
答案:52. 一个数的绝对值是8,那么这个数可以是________或________。
答案:8,-83. 一个数的平方是16,那么这个数可以是________或________。
答案:4,-44. 一个等腰三角形的底角是45°,那么顶角是________。
2021年江苏省徐州市中考数学试卷(附答案详解)
2021年江苏省徐州市中考数学试卷一、选择题(本大题共8小题,共24.0分)1.−3的相反数是()A. 3B. −3C. 13D. −132.下列图形,是轴对称图形但不是中心对称图形的是()A. B. C. D.3.下列计算正确的是()A. (a3)3=a9B. a3⋅a4=a12C. a2+a3=a5D. a6÷a2=a34.甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.糖果袋子红色黄色绿色总计甲袋2颗2颗1颗5颗乙袋4颗2颗4颗10颗若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋()A. 摸到红色糖果的概率大B. 摸到红色糖果的概率小C. 摸到黄色糖果的概率大D. 摸到黄色糖果的概率小5.第七次全国人口普查的部分结果如图所示.根据该统计图,下列判断错误的是()A. 徐州0~14岁人口比重高于全国B. 徐州15~59岁人口比重低于江苏C. 徐州60岁以上人口比重高于全国D. 徐州60岁以上人口比重高于江苏6.下列无理数,与3最接近的是()A. √6B. √7C. √10D. √117.在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A. y=(x−2)2+1B. y=(x+2)2+1C. y=(x+2)2−1D. y=(x−2)2−18.如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的()A. 27倍B. 14倍C. 9倍D. 3倍二、填空题(本大题共10小题,共30.0分)9.我市2020年常住人口约9080000人,该人口数用科学记数法可表示为______ 人.10.49的平方根是______.11.因式分解:x2−36=______.12.若√x−1有意义,则x的取值范围是______ .13.若x1、x2是方程x2+3x=0的两个根,则x1+x2=______ .14.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ADC=58°,则∠BAC=______ °.15.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为8cm,扇形的圆心角θ=90°,则圆锥的底面圆半径r为______ cm.16. 如图,在△ABC 中,点D 、E 分别在边BA 、BC 上,且ADDB =CEEB =32,△DBE 与四边形ADEC 的面积的比______ .17. 如图,点A 、D 分别在函数y =−3x、y =6x 的图象上,点B 、C 在x 轴上.若四边形ABCD 为正方形,点D 在第一象限,则点D 的坐标是______ .18. 如图,四边形ABCD 与AEGF 均为矩形,点E 、F 分别在线段AB 、AD 上.若BE =FD =2cm ,矩形AEGF 的周长为20cm ,则图中阴影部分的面积为______ cm 2.三、计算题(本大题共1小题,共10.0分) 19. 计算:(1)|−2|−20210+√83−(12)−1; (2)(1+2a+1a 2)÷a+1a.四、解答题(本大题共9小题,共76.0分)20.(1)解方程:x2−4x−5=0;(2)解不等式组:{2x−1≤3x+2>3x+8.21.如图,AB为⊙O的直径,点C、D在⊙O上,AC与OD交于点E,AE=EC,OE=ED.连接BC、CD.求证:(1)△AOE≌△CDE;(2)四边形OBCD是菱形.22.如图,将一张长方形纸片ABCD沿EF折叠,使C、A两点重合,点D落在点G处.已知AB=4,BC=8.(1)求证:△AEF是等腰三角形;(2)求线段FD的长.23.某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?24.如图,是一个竖直放置的钉板,其中,黑色圆面表示钉板上的钉子,A1、B1、B2…D3、D4分别表示相邻两颗钉子之间的空隙,这些空隙大小均相等,从入口A1处投放一个直径略小于两颗钉子之间空隙的圆球,圆球下落过程中,总是碰到空隙正下方的钉子,且沿该钉子左右两个相邻空隙继续下落的机会相等,直至圆球落入下面的某个槽内.用画树状图的方法,求圆球落入③号槽内的概率.25.某市近年参加初中学业水平考试的人数(以下简称“中考人数”)的情况如图所示.根据图中信息,解决下列问题.(1)这11年间,该市中考人数的中位数是______ 万人;(2)与上年相比,该市中考人数增加最多的年份是______ 年;(3)下列选项中,与该市2022年中考人数最有可能接近的是______ .A.12.8万人B.14.0万人C.15.3万人(4)2019年上半年,该市七、八、九三个年级的学生总数约为______ .A.23.1万人B.28.1万人C.34.4万人(5)该市2019年上半年七、八、九三个年级的数学教师共有4000人,若保持数学教师与学生的人数之比不变,根据(3)(4)的结论,该市2020年上半年七、八、九三个年级的数学教师较上年同期增加多少人?(结果取整数)x2的图象上.已知A、B的横坐标分别为−2、4,直线AB与26.如图,点A、B在y=14y轴交于点C,连接OA、OB.(1)求直线AB的函数表达式;(2)求△AOB的面积;x2的图象上存在点P,使△PAB的面积等于△AOB的面积的一半,(3)若函数y=14则这样的点P共有______ 个.27.如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:√2≈1.41,√3≈1.73,√6≈2.45.锐角A13°28°32°三角函数sin A0.220.470.53cos A0.970.880.85tan A0.230.530.6228.如图1,正方形ABCD的边长为4,点P在边AD上(P不与A、D重合),连接PB、PC.将线段PB绕点P顺时针旋转90°得到PE,将线段PC绕点P逆时针旋转90°得到PF,连接EF、EA、FD.(1)求证:PD2;①△PDF的面积S=12②EA=FD;(2)如图2,EA、FD的延长线交于点M,取EF的中点N,连接MN,求MN的取值范围.答案和解析1.【答案】A【解析】【分析】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.根据相反数的意义,只有符号不同的数为相反数.【解答】解:−3的相反数是3.故选A.2.【答案】D【解析】解:A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,也是中心对称图形,故此选项不符合题意;C.不是轴对称图形,是中心对称图形,故此选项不符合题意;D.是轴对称图形,不是中心对称图形,故此选项符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】A【解析】解:A.(a3)3=a9,故A正确,本选项符合题意;B.a3⋅a4=a7,故B错误,选项不符合题意;C.a2+a3不能合并,故C错误,选项不符合题意;D.a6÷a2=a4,故D错误,选项不符合题意.故选:A.运用同底数幂乘除法法则、幂的乘方进行计算.本题考查了整式的运算,正确利用幂的运算法则进行计算是解题的关键.4.【答案】C【解析】解:小明从甲袋子中各随机摸出一颗糖果,摸到红色糖果的概率为25,摸到黄色糖果的概率为25,从乙袋子中摸出一颗糖果,摸到红色糖果的概率为410=25,摸到黄色糖果的概率为210=15,∵25>15,∴小明从甲袋比从乙袋摸到黄色糖果的概率大,故选:C.由概率公式分别求出小明从甲、乙两个袋子中,摸到红色糖果的概率和摸到黄色糖果的概率,即可求解.本题考查了概率公式,求出小明从甲、乙两个袋子中,摸到红色糖果的概率和摸到黄色糖果的概率是解题的关键.5.【答案】D【解析】解:根据表格内容可知,徐州0~14岁人口比重高于全国,故A正确,不符合题意;徐州15~59岁人口比重低于江苏,故B正确,不符合题意;徐州60岁以上人口比重高于全国,故C正确,不符合题意;徐州60岁以上人口比重低于江苏,故D错误,符合题意;故选:D.根据条形统计图分析数据解答判断即可.此题考查了条形统计图,根据条形统计图分析出正确的数据是解题的关键.6.【答案】C【解析】解:∵(√6)2=6,(√7)2=7,(√10)2=10,(√11)2=11,32=9,∴与3最接近的是√10.故选:C.用逼近法估算无理数大小即可解答问题.本题考查了估算无理数大小,正确化简二次根式是解题的关键.7.【答案】B【解析】解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再上向平移1个单位长度得到:y=(x+2)2+1.故选:B.直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.此题主要考查二次函数图象与几何变换,正解掌握平移规律是解题的关键.8.【答案】B【解析】解:设AB=6a,因为CD:AB=1:3,所以CD=2a,OA=3a,CD⋅CD=2a2,因此正方形的面积为12圆的面积为π×(3a)2=9πa2,所以圆的面积是正方形面积的9πa2÷(2a2)≈14(倍),故选:B.根据圆的直径与正方形的对角线之比为3:1,设圆的直径,表示出正方形的对角线的长,再分别表示圆、正方形的面积即可.本题考查圆的有关计算,正方形的性质,掌握圆的面积和正方形面积的计算方法是得出正确答案的前提.9.【答案】9.08×106【解析】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【答案】±7【解析】解:49的平方根是±7.故答案为:±7.根据平方根的定义解答.本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.【答案】(x+6)(x−6)【解析】【分析】直接用平方差公式分解.平方差公式:a2−b2=(a+b)(a−b).本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.【解答】解:x2−36=(x+6)(x−6).12.【答案】x≥1【解析】解:根据题意得x−1≥0,解得x≥1.故答案为:x≥1.根据二次根式的被开方数是非负数列出不等式x−1≥0,解不等式即可求得x的取值范围.本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.13.【答案】−3【解析】解:∵x1、x2是方程x2+3x=0的两个根,a=1,b=3,∴x1+x2=−b=−3.a由x1、x2是方程x2+3x=0的两个根,利用根与系数的关系可得出x1+x2的值.本题考查了根与系数的关系,牢记“两根之和等于−ba”是解题的关键.14.【答案】32【解析】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=∠ADC=58°,∴∠BAC=90°−∠B=32°.故答案为32.根据圆周角定理得到∠ACB=90°,∠B=∠ADC=58°,然后利用互余计算∠BAC的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.【答案】2【解析】解:∵扇形的圆心角为90°,母线长为8cm,∴扇形的弧长为90π×8180=4π,设圆锥的底面半径为r cm,则2πr=4π,解得:r=2,故答案为2.利于扇形的弧长公式求得弧长,然后利用底面周长等于弧长列式求得底面半径即可.考查了圆锥的计算,解题的关键是了解底面周长等于扇形的弧长,难度不大.16.【答案】421【解析】解:∵ADDB =CEEB=32,则设AD=3m,DB=2m,CE=3k,EB=2k,∴BDAB =2m2m+3m=25,EBBC=2k2k+3k=25,∴BD AB =EB BC =25, 又∠B =∠B , ∴△DBE ~△ABC . 相似比为25,面积比S △DBES△ABC=(25)2=425,设S △DBE =4a ,则S △ABC =25a , ∴S 四边形ADEC =25a −4a =21a , ∴S △DBE :S 四边形ADEC =421. 故答案为:421.先由AD DB =CE EB =32,设AD =3m ,DB =2m ,CE =3k ,EB =2k ,证明BD AB =EB BC =25,又∠B =∠B ,可证明△DBE ~△ABC.进而可得相似比为25,面积比S △DBES △ABC=(25)2=425,从而可得S △DBE :S 四边形ADEC =4:21.本题考查了相似三角形的判定与性质,证明△DBE ~△ABC 得出相似比是解题的关键.17.【答案】(2,3)【解析】解:设A 的纵坐标为n ,则D 的坐标为n , ∵点A 、D 分别在函数y =−3x、y =6x 的图像上, ∴A(−3n,n),D(6n,n),∵四边形ABCD 为正方形,∖ ∴6n +3n =n ,解得n =3(负数舍去), ∴D(2,3), 故答案为(2,3).根据题意设出A 、D 的纵坐标为n ,即可得出A(−3n ,n),D(6n ,n),根据正方形的性质得出6n +3n =n ,求得n =3,即可求得D 的坐标为(2,3).本题考查了反比例函数图象上点的坐标特征,正方形的性质,表示出A 、D 的坐标是解题的关键.18.【答案】24【解析】解:∵矩形AEGF 的周长为20cm , ∴AF +AE =10cm ,∵AB =AE +BE ,AD =AF +DF ,BE =FD =2cm ,∴阴影部分的面积=AB ×AD −AE ×AF =(AE +2)(AF +2)−AE ×AF =24(cm 2), 故答案为:24.由面积关系列出关系式可求解.本题考查了矩形的性质,利用面积和差关系列出关系式是解题的关键.19.【答案】解:(1)原式=2−1+2−2=1; (2)原式=a 2+2a+1a 2÷a+1a=(a +1)2a 2⋅aa +1=a+1a.【解析】(1)先分别化简绝对值,零指数幂,立方根,负整数指数幂,然后再计算; (2)分式的混合运算,先算小括号里面的,然后算括号外面的.本题考查实数的混合运算,零指数幂,负整数指数幂,分式的混合运算,掌握运算顺序和计算法则是解题基础.20.【答案】解:(1)x 2−4x −5=0,(x −5)(x +1)=0, x −5=0或x +1=0, 解得:x 1=5,x 2=−1;(2){2x −1≤3①x +2>3x +8②,解不等式①,得x ≤2, 解不等式②,得x <−3, 所以不等式组的解集是x <−3.【解析】(1)先把方程的左边分解因式,即可得出两个一元一次方程,求出两个方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.21.【答案】证明:(1)在△AOE和△CDE中,{AE=CE∠AEO=∠CED OE=DE,∴△AOE≌△CDE(SAS);(2)连接OC,如图,∵AE=CE,∴OD⊥AC,∵OE=DE,∴CE垂直平分OD,∴CD=CO,∴△OCD为等边三角形,∴∠COD=60°,∵AB为直径,∴∠ACB=90°,∴BC//OD,∴∠BCO=∠COD=60°,而OB=OC,∴△OCB为等边三角形,∴BC=OC,∴OB=BC=CD=OD,∴四边形OBCD是菱形.【解析】(1)利用“SAS”可证明△AOE≌△CDE;(2)连接OC,如图,先根据垂径定理得到OD⊥AC,则CE垂直平分OD,所以CD=CO,再分别证明△OCD为等边三角形和△OCB为等边三角形,从而得到OB=BC=CD=OD,本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理、全等三角形的判定与性质和菱形的判定与性质.22.【答案】(1)证明:由折叠性质可知,∠AEF=∠CEF,由矩形性质可得AD//BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE.∴AE=AF,故△AEF为等腰三角形.(2)解:由折叠可得AE=CE,设CE=x=AE,则BE=BC−CE=8−x,∵∠B=90°,在Rt△AB中,有AB2+BE2=AE2,即42+(8−x)2=x2,解得:x=5.由(1)结论可得AF=AE=5,故FD=AD−AF=BC−AF=8−5=3.【解析】(1)由折叠性质可知∠AEF=∠CEF,由AD//BC可得∠AFE=∠CEF,所以∠AEF=∠AFE,由等角对等边即可得证;(2)由折叠性质并结合(1)中结论可设CE=AE=AF=x,则BE=8−x,在Rt△ABE中,根据勾股定理AB2+BE2=AE2建立方程,即42+(8−x)2=x2,解得x=5,则FD= AD−AF=BC−AF=3.本题考查了矩形的性质,图形折叠的性质,等腰三角形的证明,平行线的性质,勾股定理,根据勾股定理建立方程求解线段长是解题的关键.23.【答案】解:设该商品打折前每件x元,则打折后每件0.8x元,根据题意得,400x +2=4000.8x,解得,x=50,检验:经检验,x=50是原方程的解.答:该商品打折前每件50元.【解析】设该商品打折前每件x元,则打折后每件0.8x元,400元该商品打折前可购400x 件,根据“用400元在该网店购得某商品的数量较打折前多出2件”件,打折后可购4000.8x列出方程,解方程求出x问题得解.本题主要考查了分式方程的应用,根据“用400元在该网店购得某商品的数量较打折前多出2件”找出等量关系是解决问题的关键.24.【答案】解:根据题意,画出如下树形图,共有8种情况,其中落入③号槽的有3种,P(落入③号槽)=3.8【解析】根据题意画出该过程的树状图,写出所有可能的情况,即可求圆球落入③号槽内的概率.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.25.【答案】7.62020 C C【解析】解:(1)将这11年的中考人数从小到大,处在中间位置的一个数是7.6万人,因此中位数是7.6万人,故答案为:7.6;(2)13.7−11.6=2.1(万人),11.6−9.1=2.5(万人),9.1−7.4=1.7(万人),7.4−6.6=0.8(万人),6.6−6.1=0.5(万人),所以2020年增长最快,故答案为:2020;(3)2020年比2019年增长2.5万人,2021年比2020年增长2.1万人,因此预测2022年比2021年增长约1.6万人,所以2022年中考人数约为13.7+1.6=15.3(万人),故选:C;(4)2019年上半年,该市七、八、九三个年级的学生总数约为13.7+11.6+9.1=34.4(万人),故选:C;(5)设需要增加x人,由题意得,(13.7+11.6+9.1):4000=(15.3+13.7+11.6):(4000+x),解得x≈720(人),答:该校数学教师较上年同期增加大约720人.(1)根据中位数的意义,将这11年的中考人数从小到大排列,处在中间位置的一个数即可;(2)分别计算相邻两年的增长情况进行判断即可;(3)根据增长的趋势,预测增长的数量进而得出答案;(4)求出2019年,2020年,2021年中考人数之和即可;(5)求出2020年七、八、九年级学生人数,按照数学教师与学生的比不变,列方程求解即可.本题考查折线统计图,中位数,理解中位数的意义是正确求解的前提,根据折线统计图的数据变化趋势作出预测是解决问题的关键.26.【答案】4【解析】解:(1)∵点A、B在y=14x2的图象上,A、B的横坐标分别为−2、4,∴A(−2,1),B(4,4),设直线AB的解析式为y=kx+b,∴{−2k+b=14k+b=4,解得{k=12b=2,∴直线AB为y=12x+2;(2)在y=12x+2中,令x=0,则y=2,∴C的坐标为(0,2),∴OC=2,∴S△AOB=S△AOC+S△BOC=12×2×2+12×2×4=6.(3)过OC的中点,作AB的平行线交抛物线两个交点P1、P2,此时△P1AB的面积和△P2AB 的面积等于△AOB的面积的一半,作直线P1P2关于直线AB的对称直线,交抛物线两个交点P3、P4,此时△P3AB的面积和△P4AB的面积等于△AOB的面积的一半,所以这样的点P共有4个,故答案为4.(1)由抛物线的解析式求得A、B的坐标,然后根据待定系数法即可求得直线AB的解析式;(2)由直线AB的解析式求得C的坐标,然后根据S△AOB=S△AOC+S△BOC,利用三角形面积公式即可求得;(3)过OC的中点,作AB的平行线交抛物线两个交点P1、P2,作直线P1P2关于直线AB 的对称直线,交抛物线两个交点P3、P4,此时△P1AB的面积、△P2AB的面积、△P3AB的面积和△P4AB的面积都等于△AOB的面积的一半.本题考查了二次函数的性质,待定系数法求一次函数的解析式,二次函数图象上的坐标特征,三角形的面积,数形结合是解题的关键.27.【答案】解:(1)在Rt△ADF中,cos∠DAF=AFAD,∴AF=AD⋅cos∠DAF=100×cos28°=100×0.88=88(cm),在Rt△AEF中,cos∠EAF=AFAE,∴AE=AFcos∠EAF =88cos13∘=880.97≈91(cm);(2)设DG交AB于M,过点A作AN⊥DG于N,如图所示:∴∠AMN=∠MAG+∠DGA=13°+32°=45°,在Rt△ADF中,DF=AD⋅sin∠DAC=100×sin28°=100×0.47=47(cm),在Rt△DFG中,tan∠DGA=DFFG,∴tan32°=47FG,∴FG=47tan32∘=470.62≈75.8(cm),∴AG=AF+FG=88+75.8=163.8(cm),在Rt△AGN中,AN=AG⋅sin∠DGA=163.8×sin32°=163.8×0.53≈86.8(cm),∵∠AMN=45°,∴△AMN为等腰直角三角形,∴AM=√2AN≈1.41×86.8≈123.1(cm),∴EM=AM−AE≈123.1−91≈32(cm),当M、H重合时,EH的值最小,∴EH的最小值约为32cm.【解析】(1)在Rt△ADF中,由锐角三角函数定义求出AF的长,再在Rt△AEF中,由锐角三角函数定义求出AE的长即可;(2)设DG交AB于M,过点A作AN⊥DG于N,由锐角三角函数定义求出DF、FG的长,得出AG的长,再由锐角三角函数定义求出AN的长,然后证△AMN为等腰直角三角形,得AM=√2AN≈123.1(cm),则EM=AM−AE≈32(cm),即可得出答案.本题考查了解直角三角形的应用—坡度坡角问题、等腰直角三角形的判定与性质等知识;熟练掌握锐角三角函数定义,求出AE、AM的长是解题的关键.28.【答案】(1)证明:如图1,作FG⊥AD,交AD的延长线于点G,作EH⊥AD,交DA的延长线于点H.①由旋转得,PF=CP,∠CPF=90°,∵四边形ABCD是正方形,∴∠PDC=90°,∵∠FPG+∠DPC=90°,∠PCD+∠DPC=90°,∴∠FPG=∠PCD,∵∠G=∠PDC=90°,∴△FPG≌△PCD(AAS),∴FG=PD,∴△PDF的面积S=12PD⋅FG=12PD2.②由①得,△FPG≌△PCD,∴PD=FG,PG=CD=4,同理,△EPH≌△PBA,∴EH=AP,PH=BA=4,∵AH=4−AP=PD,∴AH=FG;∵AP=4−PD=DG,∴EH=DG;∵∠H=∠G=90°,∴△EAH≌△DFG(SAS),∴EA=FD.(2)如图2,在图1的基础上,作FL⊥EH于点L,则∠FLE=∠FLH=90°,∴四边形HLFG是矩形,∴LH=FG=AH,FL=GH=4+4=8;∵EH=PA,AH=PD,∴EH+AH=PA+PD=AD=4;设PD=m,EL=n,(m>0,n≥0),则LH=AH=m,∴n=4−2m;∵EF2=EL2+FL2=n2+82=n2+64,∴EF=√n2+64,∴EF随n的增大而增大;由n=4−2m可知,n随m的增大而增大,当m=2时,n最小=0,此时,EF最小=√64=8;若m=0,则n最大=4,此时,EF最大=√42+82=4√5,∵点P不与点A、D重合,∴m>0,∴n<4,EF<4√5,∴EF的取值范围是8≤EF<4√5,EF<2√5;∴4≤12∵∠ADM=∠GDF=∠HEA,∠DAM=∠HAE,∴∠ADM+∠DAM=∠HEA+∠HAE=90°,∴∠EMF=90°;∵N是EF的中点,EF,∴MN=12∴MN的取值范围是4≤MN<2√5.【解析】(1)①作FG⊥AD,交AD的延长线于点G,作EH⊥AD,交DA的延长线于点H,由旋转及正方形的性质证明△FPG≌△PCD,可得FG=PD,可得结论;②证明△EPH≌△PBA,再证明△EAH≌△EFG,即可得出结论;(2)在(1)的基础上,作FL⊥EH于点L,设PD=m,则可证明LH=AH=m,设EL=n,用含m的代数式表示n,用含n的代数式表示EF,可先求出EF的取值范围,再证明∠EMF=90°,根据直角三角形斜边上的中线等于斜边的一半求出MN的取值范围.此题重点考查正方形的性质、旋转的特征、矩形的性质、全等三角形的判定与性质、勾股定理以及线段和的最值问题等知识与方法,解题的关键是正确地作出解题所需要的辅助线,恰当地使用转化思想,此题难度较大,综合性较强,属于考试压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年徐州中考试卷一、选择题(3分×8=24分) 1.41-的相反数是 ( ) A.4 B.-4 C.41 D.41- 2.下列运算中,正确的是( )A.633x x x =+B.2763x x x =⋅C.()532x x =D.12-=÷x x x3.下列事件中的不可能事件是( )A.通常加热到C ︒100时,水沸腾B.抛掷2枚正方体的骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和都是︒3604.下列图形中,不可以作为一个正方体的展开图的是( )A B C D5.下列图案中,是轴对称图形但不是中心对称图形的是( )A B C D6.某人一周内爬楼的层数统计如下表:关于这组数据,下列说法错误的是( )A.中位数是22B.平均数是26C.众数是22D.极差是157. 函数x y -=2中自变量x 的取值范围是( )A.2≤xB.2≥xC.2<xD.2≠x8.下图是由三个边长分别为6、9、x 的正方形所组成的图形,若直线AB 将它分成面积相等的两部分,则x 的值是( )A.1或9B.3或5C.4或6D.3或6二、填空题(3分×10=30分)9、 9的平方根是______________。
10.某市2016年中考考生约为61500人,该人数用科学记数法表示为______________。
11.若反比例函数的图像过(3,-2),则奇函数表达式为______________。
12.若二次函数m x x y ++=22的图像与x 轴没有公共点,则m 的取值范围是________。
13.在△ABC 中,若D 、E 分别是AB 、AC 的中点,则△ADE 与△ABC 的面积之比是_________。
14.若等腰三角形的顶角为120°,腰长为2㎝,则它的底边长为______________㎝。
15.如图,⊙O 是△ABC 的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=_______°。
16.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_______。
17.如图,每个图案都是由大小相同的正方形组成,按照此规律,第n 个图形中这样的正方形的总个数可用含n 的代数式表示为____________。
第1个 第2个 第3个 周一 周二 周三 周四 周五 周六 周日 26 36 22 22 24 31 2118、如图,正方形ABCD 的边长为2,点E 、F 分别在边AD 、CD 上,∠EBF=45°则△EDF 的周长等于______________。
三、解答题(共86分。
)19.(5+5=10分)计算 ①31-02016831-1-++)()(π ② x x x x x x -+-÷+-2221211 20.(5+5=10分) ①解方程:x x x -=+--23123 ②解不等式组:⎩⎨⎧+<+->42412x x x x 21.(7分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理、绘制成部分统计图如下:各选项选择人数的扇形统计图 各选项选择人数的条形统计图请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a =________%,b =________%,“常常”对应扇形的圆心角为__________;(2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22.(7分)某乳品公司最新推出一款果味酸奶,共有红枣、木瓜两种口味。
若送奶员连续三天,每天从中任选一瓶某种口味的酸奶赠送给某住户品尝,则该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率是多少?(请用“画树状图”的方法给出分析过程,并求出结果)23.(8分)如图,在ABC ∆中,ο90=∠ABC ,ο60=∠BAC 。
ACD ∆是等边三角形,E 是AC 的中点。
连接BE 并延长,交DC 与点F ,求证:⑴ABE ∆≌CFE ∆ ⑵四边形ABFD 是平行四边形。
24.(8分)小丽购买学习用品的数据如下表,因污损导致部分数据无法识别。
根据下表,解决下列问题:⑴小丽购买了自动铅笔、记号笔各几只? ⑵若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?25、(本题8分)如图,为了测出旗杆AB 的高度,在旗杆前的平地上选择一点C ,测得旗杆顶部A 的仰角为45°,在C 、B 之间选择一点D (C 、D 、B 三点共线)测得旗杆顶部A 的仰角为75°,且CD=8m 。
(1)求点D 到CA 的距离; 商品名 单价(元) 数量(个) 金额(元) 签字笔 3 2 6 自动铅笔 1.5 记号笔 4 软皮笔记本 2 9 圆规 3.5 1合计8 28(2)求旗杆AB 的高。
(注:结果保留根号)26、(8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y (间)与房价x x (元) 180 260 280 300y (间) 100 60 50 40(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出60元。
当房价为多少元时,宾馆当日利润最大?求出最大利润。
(宾馆当日利润=当日房费收入-当日支出)27.(9分)如图,将边长为6的正方形纸片ABCD 对折,使AB 与DC 重合,折痕为EF ,展平后,再将点B 折到边CD 上,使边AB 经过点E ,折痕为GH ,点B 的对应点为M ,点A 的对应点为N 。
(1)若CM =x ,则CH = (用含x 的代数式表示);(2)求折痕GH 的长。
28.(11分)如图,在平面直角坐标系中,二次函数y=ax 2+bx+c 的图像经过点A (-1,0),B (0,-3)、C (2,0),其中对称轴与x 轴交于点D 。
(1)求二次函数的表达式及其顶点坐标;(2)若P 为y 轴上的一个动点,连接PD ,则PD PB +21的最小值为 。
(3)M (s ,t )为抛物线对称轴上的一个动点。
① 若平面内存在点N ,使得A 、B 、M 、N 为顶点的四边形为菱形,则这样的点N 共有 个;② 连接MA 、MB ,若∠AMB 不小于60°,求t 的取值范围。
(备用图)2016年徐州中考试卷答案一、选择题(每小题3分,共24分)1.C .2.D3. D 4 .C 5. B 6.A. 7. A .8.D二、填空题(每小题3分,共30分)9、9的平方根是±3。
10.41015.661500⨯=。
11.若反比例函数的图像过(3,-2),则其函数表达式为xy 6-=。
12.若二次函数m x x y ++=22的图像与x 轴没有公共点,则m 的取值范围是1>m 。
13.在△ABC 中,若D 、E 分别是AB 、AC 的中点,则△ADE 与△ABC 的面积之比是1:4。
14.若等腰三角形的顶角为120°,腰长为2㎝,则它的底边长为______㎝。
15.如图,○0是△ABC 的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=___125_°。
16.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为5。
17.如图,每个图案都是由大小相同的正方形组成,按照此规律,第n 个图形中这样的正方形的总个数可用含n 的代数式表示为______________。
第1个 第2个 第3个考点:几何规律探索解答:第一个图形,正方形个数:2第二个图形,正方形个数:2+4第三个图形,正方形个数:2+4+6第n 个图形,正方形个数:2+4+6+8+....+2n=n(n+1)故答案为n(n+1)。
18、解:如图,向左延长线段DA 并截取AG 使得AG=CF ,在正方形中90C DAB ABC ∠=∠=∠=o ,90,GAB AB BC ∴∠==o在BCF BAG V V 和中,90GA FC C GAB AB BC =⎧⎪∠=∠=∴⎨⎪=⎩o Q BCF BAG(SAS)≅V VGBE FBE V V 在和中,()BG BF GBE EBF GBE FBE SAS BE BE =⎧⎪∠=∠∴≅⎨⎪=⎩Q V VQ 正方形的边长为2四、解答题(共86分。
)19.(本题10分)计算(1)31-02016831-1-++)()(π (2)xx x x x x -+-÷+-2221211 解答:原式=123-11=++原式=x x x x x =--⨯++2)1()1(1)1(x )1-(x 20.(本题10分)(1)解方程:xx x -=+--23123 解答:方程两边同时乘2-x ,得323-=-+-x x 移项,得2x=2系数化为1,得x=1检验:……(2)解不等式组:⎩⎨⎧+<+->42412x x x x 解答:解不等式x x ->12,得31>x 解不等式424+<+x x ,得32<x 所以,不等式组的解集是3231<<x 21.该调查的样本容量为200,a =12%,b =36%,“常常”对应扇形的圆心角为108度; (2)如图所示。
(3)3200×0.36=115222.解:设至少有两瓶为红枣口味的事件为A 。
P (A )=2184= 答:至少有两瓶为红枣口味的概率为21。
23. 证明:(1)ΘACD ∆是等边三角形又ΘE 是AC 的中点∴AE=EC∴在ABE ∆和CFE ∆中∴ABE ∆≌CFE ∆(ASA)(2)ΘABE ∆≌CFE ∆ ∴BE=EF在ABC Rt ∆中, ΘE 是AC 的中点 ∴BE=AE=EC ∴BE=AE=EC=EF即AC=BF又ΘACD ∆是等边三角形 ∴AC=AD∴AD=BF又ADC ECF EFC ∠==∠=∠ο60 ∴AD ∥BF ∴四边形ABFD 是平行四边形。
24.解:(1)设小丽购买了自动铅笔、记号笔分别为x 和y 只。
解得:⎩⎨⎧==21y x答:丽购买了自动铅笔、记号笔分别为1和2只。
(2)设小丽再次购买了自动铅笔a 只和软皮笔记本b 本。
化简:103=+b a则⎩⎨⎧==17b a ;⎩⎨⎧==24b a ;⎩⎨⎧==31b a 答:有3种不同的购买方案:①自动笔7只,软皮笔记本1本;②自动笔4只,软皮笔记本2本;③自动笔1只,软皮笔记本3本;注:本题考察了方程应用题,难度中等,主要是二元一次方程组,只要分析清楚等量关系式,列方程较简单,关键是一定要解对了,不然功亏预亏。