01二次函数的复习(提高)

合集下载

二次函数总复习 [初中数学 讲课教案 ]

二次函数总复习 [初中数学 讲课教案 ]

二次函数的图象变换
第四章
二次函数图象的平移变换
向上平移:纵坐标增加,图像上移 向下平移:纵坐标减小,图像下移 向左平移:横坐标减小,图像左移 向右平移:横坐标增加,图像右移
二次函数图象的对称变换
横向平移:左加右减 纵向平移:上加下减 横向伸缩:伸缩系数大于1时,左加右减;伸缩系数小于1时,左减右加 纵向伸缩:伸缩系数大于1时,上加下减;伸缩系数小于1时,上减下加
二次函数的一般形式为 y=ax^2+bx+c
a的符号决定了抛物线的开口方向 和大小
添加标题
添加标题
a、b、c为常数,且a≠0
添加标题
添加标题
b和c决定了抛物线的位置
二次函数的图象
二次函数的基 本概念:一般
形式为 y=ax^2+bx+ c,其中a、b、 c为常数且a≠0
二次函数的开 口方向:由系 数a决定,a>0 时开口向上, a<0时开口向
翻折变换的应用:在解决二次函数问题时,可以通过翻折变换将复杂的问 题简化,从而更快地找到解题思路和方法。
二次函数图象的拉伸变换
横向拉伸:当a>0时,函数图像在x轴方向上拉伸;当a<0时,函数图像在 x轴方向上压缩。
纵向拉伸:当b>0时,函数图像在y轴方向上拉伸;当b<0时,函数图像 在y轴方向上压缩。
二次函数图象的翻折变换
翻折变换的定义:将二次函数的图象沿垂直或水平方向进行对称变换,使 得函数表达式中的x或y的部分系数取反。
翻折变换的作用:通过翻折变换可以改变二次函数的开口方向、开口大小 以及顶点位置,从而更好地理解和掌握二次函数的性质和图像特征。
翻折变换的步骤:首先确定对称轴,然后根据对称轴将图像分为两部分, 分别进行翻折操作,最后得到新的图像。

二次函数知识点复习

二次函数知识点复习
(其中x1、x2是二次函数与x轴的两个交点的横 坐标).
二次函数y=ax2+bx+c(a≠0)的图象与性质
1、开口方向:当a>0时,函数开口方向向上;
当a<0时,函数开口方向向下;
2、增减性:
v 当a>0时,在对称轴左侧,y随着x的增大
而减少;在对称轴右侧,y随着x的增大而增大;
v 当a<0时,在对称轴左侧,y随着x的增大
2. 抛物线与x轴交于(2,0)、(5,0)
9
两点,其顶点到x轴的距离是 ,则抛物
4
线的解析式为____________。 y x2 7x 10或y x2 7x 10
的下巴非常离奇。这巨神有着仿;无极3登录:/ ;佛螺栓样的肩胛和特像鼓锤般的翅膀,这巨神彪悍的银橙色熏鹅一般的胸脯闪着冷光,如同馄饨般的 屁股更让人猜想。这巨神有着极似软管形态的腿和海蓝色蒲扇样的爪子……笨拙的亮黄色蘑菇一般的六条尾巴极为怪异,青古磁色木瓜样的皮箱银兽肚子有种野蛮的霸气。银
橙色银剑般的脚趾甲更为绝奇。这个巨神喘息时有种天蓝色桃核一般的气味,乱叫时会发出葱绿色花生一样的声音。这个巨神头上鹅黄色面条般的犄角真的十分罕见,脖子上 活似狮子般的铃铛的确绝对的稀有和绚丽!蘑菇王子和知知爵士见情况突变,急忙变成了一个巨大的包子峰皮魔!这个巨大的包子峰皮魔,身长八十多米,体重二十多万吨。 最奇的是这个怪物长着十分惊人的峰皮!这巨魔有着水青色黄瓜一样的身躯和亮青色细小板尺似的皮毛,头上是深紫色邮筒造型的鬃毛,长着纯黑色海马一样的航标仙月额头 ,前半身是淡青色毛笔一样的怪鳞,后半身是高贵的羽毛。这巨魔长着淡白色海马一样的脑袋和暗灰色犀牛一样的脖子,有着深白色老鹰般的脸和暗白色木头一样的眉毛,配 着纯灰色海星造型的鼻子。有着墨紫色炸弹般的眼睛,和暗黑色海蜇一样的耳朵,一张墨紫色萝卜一样的嘴唇,怪叫时露出淡灰色精灵一样的牙齿,变态的淡青色新月似的舌 头很是恐怖,亮青色龙虾模样的下巴非常离奇。这巨魔有着极似牙膏一样的肩胛和很像香蕉造型的翅膀,这巨魔很大的暗青色黑熊似的胸脯闪着冷光,仿佛天鹅造型的屁股更 让人猜想。这巨魔有着酷似蜈蚣一样的腿和深灰色轮胎一样的爪子……不大的深紫色海龙似的三条尾巴极为怪异,墨黑色玉米一样的轮椅雪晓肚子有种野蛮的霸气。暗青色布 条造型的脚趾甲更为绝奇。这个巨魔喘息时有种纯灰色鸡窝似的气味,乱叫时会发出纯白色霉菌般的声音。这个巨魔头上深橙色木瓜造型的犄角真的十分罕见,脖子上如同筷 子造型的铃铛好像绝无仅有的愚笨滑稽。这时那伙校霸组成的巨大穿山甲兽腮神忽然怪吼一声!只见穿山甲兽腮神转动绝种的羽毛,一嚎,一道淡青色的奇影酷酷地从低沉的 葱绿色花生一样的声音里面滚出!瞬间在巨穿山甲兽腮神周身形成一片白杏仁色的光栅!紧接着巨大的穿山甲兽腮神最后穿山甲兽腮神颤动威风的仿佛螺栓样的肩胛一声怪吼 !只见从天边涌来一片棉际的恐怖恶浪……只见棉际的恐怖轰鸣翻滚着快速来到近前,突然间密如蜂群的才子在一个个小穿山甲兽腮神的指挥下,从轰鸣翻滚的恐怖中冒了出 来!“这有什么艺术性?!咱俩也玩一个让他们看看!”蘑菇王子一边说着一边抛出法宝。“就是!就是!”知知爵士一边说着一边念动咒语。这时蘑菇王子和知知爵士变成 的巨大包子峰皮魔也怪吼一声!只见包子峰皮魔摇动傻傻的肚子,摇,一道亮青色的鬼光威猛地从花哨的皮毛里面流出!瞬间在巨包子峰皮魔周身形成一片白象牙色的光墙! 紧接着巨大的包子峰皮魔功底深厚的强劲腹部瞬间抖出魔奇雨烟色的油花嫩摇味……呆板古旧、像神徒一样的墨黑色学究服渗出怪哼瘟神声和嘀嘀声……乌光闪闪、两头尖尖 的飞艇菱角鞋忽亮忽暗跃出飘渺美动般的飞舞。最后包子峰皮魔抖动肥大的犄角一声怪吼!只见从天边涌来一片棉际的海潮巨浪……只见棉际的狂流轰鸣翻滚着快速来到近前 ,突然间麻密如虾的大副在一个个小包子峰皮魔的指挥下,从轰鸣翻滚的狂流中冒了出来!无比壮观的景象出现了,随着恐怖和海潮的高速碰撞!翻滚狂舞其中的所有物体和 碎片都被撞向十几万米的高空,半空中立刻形成一道杀声震天、高速上升的巨幕,双方的斗士一边快速上升一边猛烈厮杀……战斗结束了,校霸们的队伍全军覆灭,垂死挣扎 的穿山甲兽腮神如同蜡像一样迅速熔化……双方斗士残碎的肢体很快变成金币和各种各样的兵器、珠宝、奇书……纷纷从天落下!这时由R.布基希大夫和另外四个校霸怪又 从地下钻出变成一个巨大的野猪缸须神!这个巨大的野猪缸须神,身长八十多米,体重二十多万吨。最奇的是这个怪物长着十分疯狂的缸须!这巨神有着中灰色海星般的身躯 和淡黑色细小香肠样的皮毛,头上是碳黑色烟囱模样的鬃毛,长着嫩黄色邮筒般的哑铃水云额头,前半身是钢灰色手杖般的怪鳞,后半身是闪闪发光的羽毛。这巨神长着深红 色邮筒般的脑袋和银橙色木偶般的脖子,有着亮红色馅饼造型的脸和亮橙色画笔般的眉毛,配着火橙色恐龙模样的鼻子。有着粉红色砂锅造型的眼睛,和米黄色门扇般的耳朵 ,一张粉红色海豹般的嘴唇,怪叫时露出土黄色火舌般的牙齿,变态的钢灰色灵芝样的舌头很是恐怖,淡黑色怪藤形态的下巴非常离奇。这巨神有着酷似竹竿般的肩胛和活像 麦穗模样的翅膀,这巨神轻灵的土灰色秤砣样的胸脯闪着冷光,极似怪石模样的屁股更让人猜想。这巨神有着活似鲜笋般的腿和烟橙色火苗般的爪子……瘦瘦的碳黑色路灯样 的八条尾巴极为怪异,水绿色豆包般的药罐流光肚子有种野蛮的霸气。土灰色茄子模样的脚趾甲更为绝奇。这个巨神喘息时有种火橙色手电筒样的气味,乱叫时会发出暗红色 小路造型的声音。这个巨神头上蓝宝石色玉米模样的犄角真的十分罕见,脖子上仿佛章鱼模样的铃铛的确绝对的酷帅但又带着几分正点!蘑菇王子和知知爵士见情况突变,急 忙变成了一个巨大的古树闪臂魔!这个巨大的古树闪臂魔,身长八十多米,体重二十多万吨。最奇的是这个怪物长着十分美妙的闪臂!这巨魔有着暗黄色粉条造型的身躯和鹅 黄色细小弯月一样的皮毛,头上是暗绿色镜子形态的鬃毛,长着亮紫色驴肾造型的警灯雪川额头,前半身是深黄色玩具造型的怪鳞,后半身是神气的羽毛。这巨魔长着深蓝色 驴肾一般的脑袋和暗青色蒜头造型的脖子,有着亮蓝色水牛模样的脸和海蓝色柴刀一般的眉毛,配着天青色铁塔形态的鼻子。有着葱绿色奖章模样的眼睛,和紫红色枕木造型 的耳朵,一张葱绿色牛屎造型的嘴唇,怪叫时露出湖青色花灯一般的牙齿,变态的深黄色灯柱一样的舌头很是恐怖,鹅黄色钉子一样的下巴非常离奇。这巨魔有着活似长号一 般的肩胛和美如柳叶形态的翅膀,这巨魔摇晃的亮黄色胶卷一样的胸脯闪着冷光,酷似香肠形态的屁股更让人猜想。这巨魔有着如同扫帚造型的腿和亮青色榴莲一般的爪子… …紧缩的暗绿色熊胆一样的五条尾巴极为怪异,紫宝石色花豹一般的地图枫翠肚子有种野蛮的霸气。亮黄色樱桃形态的脚趾甲更为绝奇。这个巨魔喘息时有种天青色馄饨一样 的气味,乱叫时会发出墨蓝色贝壳模样的声音。这个巨魔头上墨绿色豆包形态的犄角真的十分罕见,脖子上极似扫帚形态的铃铛好像极品的潇洒同时还隐现着几丝风趣……这 时那伙校霸组成的巨大野猪缸须神忽然怪吼一声!只见野猪缸须神颤动极似怪石模样的屁股,一吼,一道淡绿色的流光快速从深红色邮筒般的脑袋里面涌出!瞬间在巨野猪缸 须神周身形成一片银橙色的光盔!紧接着巨大的野猪缸须神最后野猪缸须神扭动粗犷的牙齿一声怪吼!只见从天边涌来一片无垠无际的指示恶浪……只见无垠无际的指示轰鸣 翻滚着快速来到近前,突然间满天乱舞的毒瘤在一个个小野猪缸须神的指挥下,从轰鸣翻滚的指示中冒了出来!“这有什么狂的?!咱俩也玩一个让他们看看!”蘑菇王子一 边说着一边抛出法宝。“就是!就是!”知知爵士一边说着一边念动咒语。这时蘑菇王子和知知爵士变成的巨大古树闪臂魔也怪吼一声!只见古树闪臂魔抖动傻傻的额头,甩 ,一道墨绿色的妖影变态地从虔诚的暗绿色镜子形态的鬃毛里面喷出!瞬间在巨古树闪臂魔周身形成一片橙白

二次函数专题复习

二次函数专题复习
(3) y=-2(x-2)2+3是由 y=-2向x2 平右移 2个单位 ,再向 上平移 3个单位得到 (4) y=2x2+4x-5是由 y=2向x2 左平移 1个单位,再向 下平移 7 个单位得到
(5) y=2x2向左平移2个单位,再向下平移3个单位得到
函数解析式是 y=2(x+2)2-3。
(6)已知二次函数y=x2-4x-5 , 求下列问题
△PAB,求P的坐标;
(4)第(3)题改为在直线y= -x+3上是否存在 点坐P标,;使若S不△PA存C=在,12说S明△P理AB?由若。存答在案,一求样出吗点?P的
P
y
(0,3) C
A
Q
o
y
(0,3) CP
B(3,0) A
x
oQ
(B 3,0) x
再见
得的图象解析式是 y=3x2

4、已知二次函数y=a(x-h)2+k的图象过原点, 最小值是-8,且形状与抛物线y=0.5x2-3x-5的形
状相同,其解析式为 y=0.5(x-16。)2-8
5、若x为任意实数,则二次函数y=x2+2x+3的函
数值y的取值范围是 y≥2 。
6、抛物线y=2x2-4x-1是由抛物线y=2x2-bx+c向
1.已知一个二次函数的图象经过点 (0,0),(1,﹣3),(2,﹣8)。
2.已知二次函数的图象的顶点坐标为 (-2,-3),且图象过点(-3,-2)。
3.已知二次函数的图象的对称轴是直线x=3, 并且经过点(6,0),和(2,12)
4.矩形的周长为60,长为x,面积为y,则y关于
x的函数关系式

如何判别a、b、c、b2-4ac,2a+b,a+b+c的符 号

二次函数学基础复习

二次函数学基础复习

二次函数基础回顾 第1部 二次函数的概念一、学习准备1.函数的定义:在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称 是 的函数,其中 是自变量, 是因变量。

2.一次函数的关系式为y= (其中k 、b 是常数,且k≠0);正比例函数的关系式为y = (其中k 是 的常数);反比例函数的关系式为y= (k 是 的常数)。

二、解读教材——数学知识源于生活3.某果园有100棵橙子树,每一棵树平均结600个橙子。

现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。

根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。

假设果园增种x 棵橙子树,那么果园共有 棵橙子树,这时平均每棵树结 个橙子,如果果园橙子的总产量为y 个,那么y= 。

4.如果你到银行存款100元,设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存。

那么你能写出两年后的本息和y(元)的表达式(不考虑利息税)吗? 。

5.能否根据刚才推导出的式子y=-5x 2+100x+60000和y=100x 2+200x+100猜想出二次函数的定义及一般形式吗?一般地,形如y =ax 2+bx+c(a ,b ,c 是常数,a≠0)的函数叫做x 的二次函数。

它就是二次函数的一般形式,理解并熟记几遍。

例1 下列函数中,哪些是二次函数?(1)2321xy +−= (2)112+=x y(3)x y 222+= (4)251t t s++= (5)22)3(x x y −+= (6)210r s π=即时练习:下列函数中,哪些是二次函数? (1)2x y = (2)252132+−=x x y(3))1(+=x x y (4)1132−−=)(x y(5)c ax y −=2 (6)12+=x s三、挖掘教材6.对二次函数定义的深刻理解及运用 例2 若函数1232++=+−kx x y k k 是二次函数,求k 的值。

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。

二次函数(复习课)课件

二次函数(复习课)课件
详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。

(完整版)二次函数知识点复习

(完整版)二次函数知识点复习

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:上加下减。

3. ()2y a x h =-的性质:左加右减。

4.()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y ax bx c =++的比较 从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y axbx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a =-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab 3. 常数项c ⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点. 1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.下面以0a >时为例,揭示二次函数和一元二次方程之间的内在联系:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数图像与性质复习 知识点很全

二次函数图像与性质复习 知识点很全

在车辆刹车过程中,速度与时间的关 系可以用二次函数来描述。通过分析 这个函数,可以了解车辆的刹车性能 和安全性能。
数学中的二次函数应用案例
解二次方程
二次函数可以用来解二次方程。通过将方程转化为二次函 数的形式,可以更容易地找到方程的根。
最小值问题
二次函数的最小值问题在数学中非常重要。通过分析二次 函数的开口方向和顶点坐标,可以找到函数的最小值。
步骤。
技巧分享
分享一些解题技巧,如如何快速 判断二次函数的开口方向、顶点 坐标、对称轴等,以及如何运用
数形结合的方法解决问题。
拓展应用
将二次函数的解题思路和技巧应 用到其他数学问题中,如一元二 次方程、不等式等问题,提高学 生的数学思维能力和解题能力。
WENKU DESIGN
WENKU DESIGN
函数的图像和性质
二次函数的图像和性质是数学中的重要内容。通过研究二 次函数的图像和性质,可以了解函数的单调性、对称性等 特征,从而更好地理解和应用二次函数。
PART 06
二次函数的综合练习与提 高
综合练习题解析与解答过程展示
典型例题解析
选取具有代表性的二次函数综合 练习题,如涉及二次函数的性质 、图像、最值等各方面的题目, 进行详细解析和解答过程展示。
二次函数图像关于顶点 对称
二次函数图像关于对称 轴对称
PART 03
二次函数的性质与特点
开口方向与二次项系数的关系
01
二次项系数大于0时,抛物线开口 向上;
02
二次项系数小于0时,抛物线开口 向下。
顶点坐标与一次项系数的关系
一次项系数为正时,顶点在x轴下方 ;
一次项系数为负时,顶点在x轴上方。
02

【2021苏科版中考数学】二次函数实际应用提升复习(一)含答案

【2021苏科版中考数学】二次函数实际应用提升复习(一)含答案

2021年苏科版九年级中考一轮复习二次函数实际应用提升复习(一)1.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD ,在AB 和BC边各有一个2米宽的小门(不用铁栅栏).若所用铁栅栏的长为40米,矩形ABCD 的边AD 长为x 米,AB 长为y 米,矩形的面积为S 平方米,且x <y .(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)求S 与x 的函数关系式,并求出矩形场地的最大面积.2.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且每件的利润率不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y =﹣x +120.(1)若该服装获得利润为w (元),试写出利润w 与销售单价x 之间的关系式;销售单价定为多少时,商场可获得利润最大,最大利润是多少元?(2)若该商场获得利润不低于500元,试确定销售单价x 的取值范围.3.2020年12月12日零时,某电商平台“双十二”购物狂欢节预售付尾款活动正式开启,如图是织里童装某产品每小时的成交量y (万件)与时间x (时)的函数图象,y 与x 的关系正好可用两段二次函数y 1,y 2的图象来表示,点A 是两段函数的顶点,其中0≤x ≤1时,图象的解析式为y 1=﹣3x 2+mx ;1≤x ≤7时,图象的解析式为y 2;(1)根据函数图象,求几时成交量达到最大值?最大值为多少?(2)系统平台显示,当成交量达到2.25万件以上时(包括2.25万件),需要专门安排后台技术人员做维护,请问:需要维护多少时间才能保证系统全程正常运行?4.某商场经营某种品牌童装,进货时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低0.5元,就可多售出10件.(1)当销售单价为58元时,每天销售量是件.(2)求销售该品牌童装获得的利润y(元)与销售单价x(元)之间的函数关系式;(3)若商场规定该品牌童装的销售单价不低于57元且不高于60元,则销售该品牌童装获得的最大利润是多少?5.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,该山区组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元,试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)15 20 30 …y(袋)25 20 10 …(1)若日销售量y(袋)是每袋的销售价x(元)的一次函数,求y与x之间的函数关系式;(2)假设后续销售情况与试销阶段效果相同,设每日销售土特产的利润为w(元);①求w与x之间的函数关系式;②要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?6.某种农副产品的生产成本为8元/千克,售价不低于成本,且不超过20元/千克,根据某农贸市场的销售情况,发现该农副产品一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.…10000 9400 9200 8560 7600 …销售量y(千克)…12 13.5 14 15.6 18 …售价x(元/千克)(1)求该农副产品一天的销售量y(千克)与该天的售价x(元/千克)之间的函数关系.(2)如果该农贸市场某天销售这种农副产品获利48000元,那么这天该农副产品的售价为多少元/千克?(3)该农贸市场将这种农副产品售价定为多少元/千克时,当天获利最大?最大利润为多少?7.水果店购进某种水果的成本为10元/千克,经市场调研,获得销售单价p(元/千克)与销售时间t(1≤t≤15,t为整数)(天)之间的部分数据如表:销售时间t(1≤t≤15,t为整数)(天) 1 4 5 8 12销售单价p(元/千克)20.25 21 21.25 22 23 已知p与t之间的变化规律符合一次函数关系.(1)试求p关于t的函数表达式;(2)若该水果的日销量y(千克)与销售时间t(天)的关系满足一次函数y=﹣2t+120(1≤t≤15,t为整数).①求销售过程中最大日销售利润为多少?②在实际销售的前12天中,公司决定每销售1千克水果就捐赠n元利润(n<3)给“精准扶贫”对象.现发现:在前12天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.8.某超市销售一种商品,成本价为20元/千克,经市场调查,每天销售量y(千克)与销售单价x(元/千克)之间的关系如图所示,规定每千克售价不能低于30元,且不高于80元.(1)求y与x之间的函数关系式;(2)设每天的总利润为w元,当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?9.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数表达式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数表达式;②未来两年内,当月销售量P为时,月毛利润为w达到最大.10.有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出该矩形材料面积的最大值;如果不能,说明理由.参考答案1.解:(1)根据题意,知x+(y﹣2)+(x﹣2)=40,∴y=﹣2x+44,自变量x的取值范围是5≤x<;(2)S=xy=x(﹣2x+44)=﹣2x2+44x=﹣2(x﹣11)2+242,∴当x=11时,S取得最大值,最大值为242,即矩形场地的最大面积为242m2.2.解:(1)由题意得:w=(﹣x+120)(x﹣60)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵二次项系数为负,抛物线开口向下,∴当x≤90时,w随x的增大而增大,∵销售单价不低于成本单价,且每件的利润率不得高于45%,∴60≤x≤45%×60+60,即60≤x≤87,∴当x=87时,商场可获得最大利润,此时,w=﹣(87﹣90)2+900=891(元).∴利润w与销售单价x之间的关系式为w=﹣x2+180x﹣7200;销售单价定为87元时,商场可获得利润最大,最大利润是891元.(2)当w=500时,则有:500=﹣x2+180x﹣7200,整理得:x2﹣180x+7700=0,解得:x1=70,x2=110,∵抛物线开口向下,对称轴为直线x=90,∴若该商场获得利润不低于500元,则有70≤x≤110,又∵60≤x≤87,∴销售单价x的取值范围为:70≤x≤87.3.解:(1)∵x=﹣=﹣=1,∴m=6,∴y1=﹣3x2+6x,∴当x=1时,y1有最大值,最大值为:﹣3+6=3.(2)由(1)可知,顶点A(1,3),设y2=n(x﹣1)2+3,把(7,0)代入得:0=n(7﹣1)2+3,解得:n=﹣,∴y2=﹣(x﹣1)2+3,当y1=2.25时,2.25=﹣3x2+6x,解得:x1=1.5(舍),x2=0.5;当y2=2.25时,2.25=﹣(x﹣1)2+3,解得:x3=﹣2(舍),x4=4.4﹣0.5=3.5(小时).∴需要维护3.5小时才能保证系统全程正常运行.4.解:(1)200+(60﹣58)×20=240(件),故答案为:240;(2)设该品牌童装获得的利润为y元,根据题意得,y=(x﹣40)(﹣20x+1400)=﹣20x2+2200x﹣56000,∴销售该品牌童装获得的利润y元与销售单价x元之间的函数关系式为:y=﹣20x2+2200x﹣56000;(3)根据题意得57≤x≤60,y=﹣20(x﹣55)2+4500,∵a=﹣20<0∴抛物线开口向下,当57≤x≤60时,y随x的增大而减小,∴当x=57时,y有最大值为4420元,∴商场销售该品牌童装获得的最大利润是4420元.5.解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得,故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40;(2)①依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x﹣400;②w=﹣x2+50x﹣400=﹣(x﹣25)2+225;∵﹣1<0∴当x=25时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.6.解:(1)设销售量y(千克)与该天的售价x(元/千克)之间的函数关系为:y=kx+b,将点(12,10000)、(18,7600)代入上式得:,解得:,故销售量y与该天的售价x之间的函数关系为:y=﹣400x+14800(8≤x≤20);(2)由题意得:(﹣400x+14800)(x﹣8)=48000,解得:x=32或13,而8≤x≤20,故x=13,故某天销售这种农副产品获利48000元时的售价为13元/千克;(3)设销售利润为w元,由题意得:w=y(x﹣8)=(﹣400x+14800)(x﹣8)=﹣400(x﹣37)(x﹣8),∵﹣400<0,故w有最大值,函数的对称轴为:x=(37+8)=22.5,而8≤x≤20,故x=20时,w取得最大值为:﹣400(20﹣37)(20﹣8)=81600,故售价定为20元/千克时,当天获利最大,最大利润为81600元.7.解:(1)设p与t之间的变化的一次函数关系为:p=kt+b,将点(4,21)、(8,22)代入上式得:,解得:,故p关于t的函数表达式为:p=t+20(1≤t≤15,t为整数);(2)①设日销售利润为w,由题意得:w=y(p﹣10)=﹣(t﹣60)(t+40)(1≤t≤15,t为整数),∵<0,故w有最大值,当t=10时,w的最大值为1250;故销售过程中最大日销售利润为1250元;②设捐赠后的日销售利润为m,由题意得:m=w﹣n=﹣(t﹣60)(t+40)﹣n=﹣t2+(10+2n)t+1200﹣120n,∵在前12天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∴﹣>11.5,∴n>.又∵n<3,∴n的取值范围为<n<3.8.解:(1)将点(30,150)、(80,100)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣x+180;(2)由题意得:w=(x﹣20)(﹣x+180)=﹣(x﹣100)2+6400,∵﹣1<0,故当x<100时,w随x的增大而增大,而30≤x≤80,∴当x=80时,w有最大值,此时,w=6000,故销售单价定为80元时,该超市每天的利润最大,最大利润6000元.9.解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴当8<t≤24时,求P关于t的函数解析式为:P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;综上所述,w关于t的函数解析式为:w=,②当0<t≤8时,w=240;当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当t=12时,w取得最大值,最大值为448,当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=21时,w取得最大值529,∵529>448>240∴t=21时,w取得最大值此时P=t+2=23.故答案为:23.10.解:(1)①若所截矩形材料的一条边是BC,如图1所示,过点C作CF⊥AE于点F,又∵∠A=∠B=90°,∴四边形ABCF为矩形,∵AB=AE=6,BC=5,∴S=AB•BC=6×5=30;1②若所截矩形材料的一条边是AE,如图2所示,过点E作EF∥AB交CD于点F,FG⊥AB于点G,过点C作CH⊥FG于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠DCB=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S=AE•AG=6×5=30.2(2)能,如图3,在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C作CG⊥FM于点G,则四边形ANFM为矩形,四边形BCGM为矩形,∴MG=BC=5,BM=CG,∵∠DCB=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴FG=CG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.。

中考复习:二次函数综合能力提升——各种题型逐一突破

中考复习:二次函数综合能力提升——各种题型逐一突破

二次函数综合能力提升 ——各类题型逐一突破一、【二次函数的定义】二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数具备三个条件,缺一不可:(1)是整式;(2)是一个自变量的二次式;(3)二次项系数不为0(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 例1、下列函数中,是二次函数的是 . ①y=x 2-2x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ;⑧y=-∏x 。

2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。

3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

4、若函数y=(m -2)x m2 -2+5x+1是关于x 的二次函数,则m 的值为 。

5、k 为何值时,y=(k +2)x 622--k k 是关于x 的二次函数?训练题:1.已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数. 2.当m 时,y=(m -2)x22-m 是二次函数.3.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.4.在物理学内容中,如果某一物体质量为m ,它运动时的能量E 与它的运动速度v 之间的关系是E=21mv 2(m 为定值).v 1 2 3 4 5 6 7 8E(2)若物体的运动速度变为原来的2倍,则它运动时的能量E 扩大为原来的多少倍? 5、请你分别给a ,b ,c 一个值,让c bx ax y ++=2为二次函数,且让一次函数y=ax+b 的图像经过一、二、三象限6.下列不是二次函数的是( )A .y=3x 2+4 B .y=-31x 2C .y=52-xD .y=(x +1)(x -2)7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围.9.如图,在矩形ABCD 中,AB=6cm ,BC=12cm .点P 从点A 开始沿AB 方向向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向C 以2cm/s 的速度移动.如果P 、Q 两点分别到达B 、C 两点停止移动,设运动开始后第t 秒钟时,五边形APQCD 的面积为Scm 2,写出S 与t 的函数表达式,并指出自变量t 的取值范围.10.已知:如图,在Rt △ABC 中,∠C=90°,BC=4,AC=8.点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF .设DE=x ,DF=y .(1)AE 用含y 的代数式表示为:AE= ; (2)求y 与x 之间的函数表达式,并求出x 的 取值范围;(3)设四边形DECF 的面积为S ,求S 与x 之间的函数表达式.二、【二次函数y=ax 2+bx+c 的图象特征与a 、b 、c 的关系】* a 决定开口方向,a > 0,开口向上;a < 0,开口向下。

《二次函数》全章复习与巩固—巩固练习(提高)

《二次函数》全章复习与巩固—巩固练习(提高)

《二次函数》全章复习与巩固—巩固练习(提高)【巩固练习】 一、选择题1.已知抛物线2:310C y x x =+-,将抛物线C 平移得到抛物线C '.若两条抛物线C 、C '关于直线x =1对称.则下列平移方法中,正确的是( ). A .将抛物线C 向右平移52个单位 B .将抛物线C 向右平移3个单位 C .将抛的线C 向右平移5个单位 D .将抛物线C 向右平移6个单位2.已知二次函数2y ax bx c =++的图象如图所示,则下列5个代数式:ac ,a+b+c ,4a-2b+c ,2a+b ,2a-b 中,其值大于0的个数为( ).A .2B .3C .4D .53.二次函数2y ax bx c =++的图象如图所示,则下列关系式不正确的是( ). A .0a < B .abc >0 C .a+b+c >0 D .240b ac ->第2题 第3题4.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( )A .2(1)2y x =-++ B .2(1)4y x =--+ C .2(1)2y x =--+ D .2(1)4y x =-++ 5.二次函数y=ax 2+bx+c (a ≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线x=12 C .当x <12,y 随x 的增大而减小 D .当-1<x <2时,y >06.(2016•梧州)如图所示,抛物线y=ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD=MC ,连接AC 、BC 、AD 、BD ,某同学根据图象写出下列结论: ①a ﹣b=0;②当﹣2<x <1时,y >0; ③四边形ACBD 是菱形; ④9a ﹣3b +c >0你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③7.已知一次函数y ax b =+的图象过点(-2,1),则关于抛物线23y ax bx =-+的三条叙述: ①过定点(2,1);②对称轴可以是直线x =l ;③当a <0时,其顶点的纵坐标的最小值为3. 其中所有正确叙述的有( ).A .0个B .1个C .2个D .3个8.已知二次函数24y x x a =-+,下列说法错误的是( ). A .当x <1时,y 随x 的增大而减小 B .若图象与x 轴有交点,则a ≤4C .当a =3时,不等式240x x a -+>的解集是1<x <3D .若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a =-3二、填空题9.由抛物线y =x 2先向左平移2个单位,再向下平移3个单位得到的抛物线的解析式为 . 10.已知一元二次方程230x bx +-=的一根为-3.在二次函数y=x 2+bx-3的图象上有三点14,5y ⎛⎫-⎪⎝⎭、25,4y ⎛⎫- ⎪⎝⎭、31,6y ⎛⎫⎪⎝⎭,y 1、y 2、y 3、的大小关系是 . 11.如图,一段抛物线y=-x (x-1)(0≤x ≤1)记为m 1,它与x 轴交点为O 、A 1,顶点为P 1;将m 1绕点A 1旋转180°得m 2,交x 轴于点A 2,顶点为P 2;将m 2绕点A 2旋转180°得m 3,交x 轴于点A 3,顶点为P 3,…,如此进行下去,直至得m 10,顶点为P 10,则P 10的坐标为( ).12.在平面直角坐标系中,如果抛物线y =3x 2不动,而把x 轴、y 轴分别向上,向右平移3个单位,那么在新坐标系下,此抛物线的解析式是 . 13.已知二次函数2y ax bx c =++(a ≠0)的图象如图所示,则下列结论:①a 、b 同号;②当x =1和x =3时,函数值相等;③4a+b =0;④当y =-2时,x 的值只能取0,其中正确的有 .(填序号)14.已知抛物线的顶点为125,24⎛⎫-⎪⎝⎭,与x 轴交于A 、B 两点,在x 轴下方与x 轴距离为4的点M 在抛物线上,且10AMB S =△,则点M 的坐标为 .15.(2015•繁昌县一模)如图,二次函数y=ax 2+bx+c (a ≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0,1<x 2<2.下列结论:①4a+2b+c <0;②a <﹣1;③b 2+8a >4ac ;④2a ﹣b <0.其中结论正确的有 .(把所有正确答案的序号都填写在横线上)16.如图所示,抛物线212y x =-+向右平移1个单位得到抛物线y 2.回答下列问题:(1)抛物线y 2的顶点坐标________.(2)阴影部分的面积S =________.(3)若再将抛物线y 2绕原点O 旋转180°得到抛物线y 3,则抛物线y 3的开口方向________, 顶点坐标________.三、解答题17.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨l元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?18.(2015•黔东南州)如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.19. 在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O 为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.20. (2016•菏泽)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【答案与解析】 一、选择题 1.【答案】C ;【解析】22349:31024C y x x x ⎛⎫=+-=+- ⎪⎝⎭,∴ 其顶点坐标为349,24⎛⎫-- ⎪⎝⎭,设C '顶点坐标为049,4x ⎛⎫- ⎪⎝⎭,由题意得03212x ⎛⎫+- ⎪⎝⎭=, ∴ 072x =,∴ C '的解析式为274924y x ⎛⎫=-- ⎪⎝⎭.由234924y x ⎛⎫=+= ⎪⎝⎭到274924y x ⎛⎫=-= ⎪⎝⎭需向右平移5个单位,因此选C .2.【答案】A ;【解析】由图象知,a <0,c <0,012ba<-<, ∴ b >0,ac >0,∴ 2a-b <0. 又对称轴12ba-<,即2a+b <0. 当x =1时,a+b+c >0;当x =-2时,4a-2b+c <0. 综上知选A . 3.【答案】C ;【解析】由抛物线开口向下知a <0,由图象知c >0,02ba-<,b <0,即abc >0,又抛物线与x 轴有两个交点,所以240b ac ->.4.【答案】B ;【解析】抛物线2223(1)2y x x x =++=++,其顶点(-1,2)绕点(0,3)旋转180°后坐标为(1,4),开口向下.∴ 旋转后的抛物线解析式为2(1)4y x =--+.5.【答案】D ;6.【答案】C ;【解析】①∵抛物线的开口方向向上,∴a >0,∵对称轴为x==2>0,又∵a >0,∴b <0,即a ,b 异号,①错误;②∵x=1和x=3关于x=2对称,∴当x=1和x=3时,函数值相等,②正确; ③∵x==2,∴b=﹣4a ,即4a+b=0,③正确;④∵y=﹣2正好为抛物线顶点坐标的纵坐标, ∴当y=﹣2时,x 的值只能取2,④正确; ⑤∵对称轴为x=2,∴x=﹣1和x=5关于x=2对称, 故当﹣1<x <5时,y <0.⑤正确. ∴②、③、④、⑤正确.故选C . 7.【答案】D .【解析】①∵抛物线y=ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0)、B (1,0), ∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b ,a ﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x 轴交于点A (﹣2,0)、B (1,0), ∴当﹣2<x <1时,y >0,②正确; ③∵点A 、B 关于x=0.5对称, ∴AM=BM ,又∵MC=MD ,且CD ⊥AB ,∴四边形ACBD 是菱形,③正确; ④当x=﹣3时,y <0,即y=9a ﹣3b +c <0,④错误.综上可知:正确的结论为①②③. 故选D . 8.【答案】C ;【解析】二次函数24y x x a =-+的对称轴为x =2,由于a =1>0,当x <2时,y 随x 增大而减小,因此A 是正确的;若图象与x 轴有交点,则△=16-4a ≥0,∴ a ≤4.当a =3时,不等式为x 2-4x+3>0,此时二次函数243y x x =-+,令y =0,得x 1=1,x 2=3,当x <1或x >3时,y >0,所以不等式2430x x -+>的解集为x <1或x >3.抛物线平移后得2(3)4(3)1y x x a =+-+++,即222y x x a =++-,将(1,-2)代入解得3a =-.二、填空题9.【答案】y =(x+2)2-3;【解析】y =x 2的顶点为(0,0),y =(x+2)2+3的顶点为(-2,-3),将(0,0)先向左平移2个单位,再向下平移3个单位可得(-2,-3),即将抛物线y =x 2先向左平移2个单位,再向下平移3个单位得到抛物线y =(x+2)2-3.10.【答案】y 1<y 2<y 3.【解析】设x 2+bx-3=0的另一根为x 2,则233cx a-==-,∴ x 2=1, ∴ 抛物线的对称轴为3112x -+==-,开口向上时,到对称轴的距离越大函数值越大, 所以y 1<y 3,y 1<y 2<y 3,也可求出b =2,分别求出y 1,y 2,y 3的值再比较大小.11.【答案】(9.5,-0.25); 【解析】解:y=-x (x-1)(0≤x ≤1),OA 1=A 1A 2=1,P 2P 4=P 1P 3=2, P 2(2.5,-0.25)P 10的横坐标是1.5+2×[(10-2)÷2]=9.5, p 10的纵坐标是-0.25, 故答案为(9.5,-0.25).12.【答案】y =3(x+3)2-3;【解析】抛物线y =3x 2的顶点为(0,0),将x 、y 轴分别向上,向右平移3个单位,逆向思考,即将(0,0)向下,向左平移3个单位,可得顶点为(-3,-3),因此,新坐标系下抛物线的解析式是y =3(x+3)2-3.13.【答案】②③; 【解析】由图象知,抛物线与x 轴交于点(-1,0),(5,0),于是可确定抛物线的对称轴为1522x -+==,则22ba-=,∴ 4a+b =0,故③是正确的; 又∵ 抛物线开口向上,∴ a >0,b =-4a <0, ∴ ①是错误的;又∵1322+=,即x =1和x =3关于对称轴x =2对称,其函数值相等, ∴ ②是正确的;根据抛物线的对称性知,当y =-2时,x 的值可取0或4. ∴ ④是错误的.14.【答案】(2,-4)或(-1,-4);【解析】∵ 1|||4|102AMB S AB =-=△,∴ |AB|=5. 又∵ 抛物线的对称轴为直线12x =,∴ A 、B 两点的坐标为(-2,0)和(3,0).设抛物线的解析式为2y ax bx c =++,则4209301125424a b c a b c a b c ⎧⎪-+=⎪++=⎨⎪⎪++=-⎩ 解得1,1,6.a b c =⎧⎪=-⎨⎪=-⎩∴ 抛物线的解析式为26y x x =--.当y =-4时,246x x -=--,∴ 220x x --=,∴ x 1=-2,x 2=-1. ∴ M 点坐标为(2,-4)或(-1,-4).15.【答案】①②③④;【解析】由二次函数的图象可得:当x=2时y <0,则有4a+2b+c <0(1),故①正确;∵二次函数的图象经过点(1,2),∴a+b+c=2(2),由二次函数的图象可得:当x=﹣1时,y<0,则有a﹣b+c<0(3),把(2)代入(1)得到2+3a+b<0,则有a<,把(2)代入(3)得到2﹣2b<0,则有b>1,则a<﹣1,故②正确;由二次函数的图象中顶点的位置,可得:>2(4),由抛物线开口向下,可得:a<0,则由(4)可得4ac﹣b2<8a,即b2+8a>4ac,故③正确;由抛物线的对称轴的位置,可得>0,则b>0,又由a<0,则有2a﹣b<0,故④正确;故答案为:①②③④.16.【答案】 (1)(1,2); (2)2; (3)向上; (-1,-2);【解析】抛物线212y x=-+向右平移1个单位,则顶点由(0,2)移到(1,2).利用割补法,阴影部分面积恰好为两个正方形的面积.若将抛物线y2绕原点O旋转180°,则抛物线y2的顶点与点(1,2)关于原点对称.三、解答题17.【答案与解析】(1)y=(210-10x)(50+x-40)=-10x2+110x+2100(0<x≤15且x为整数).(2)y=-10(x-5.5)2+2402.5,∵ a=-10<0,∴当x=5.5时,y有最大值2402.5.∵ 0<x≤15,且x为整数.当x=5时,50+x=55,y=-10(5-5.5)2+2402.5=2400(元);当x=6时,50+x=56,可求出y=2400(元).∴当售价定为每件55元或56元,每月利润最大,最大利润是2400元.(3)当y=2200时,-10x2+110x+2100=2200,解得x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51元或60元时,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元.18.【答案与解析】解:(1)将A点坐标代入y1,得﹣16+13+c=0.解得c=3,二次函数y1的解析式为y=﹣x2+x+3,B点坐标为(0,3);(2)由图象得直线在抛物线上方的部分,是x<0或x>4,∴x<0或x>4时,y1<y2;(3)直线AB的解析式为y=﹣x+3,AB 的中点为(2,) AB 的垂直平分线为y=x ﹣ 当x=0时,y=﹣,P 1(0,﹣), 当y=0时,x=,P 2(,0),综上所述:P 1(0,﹣),P 2(,0),使得△ABP 是以AB 为底边的等腰三角形. 19.【答案与解析】(1)设抛物线的解析式为2y ax bx c =++(a ≠0).∵ 抛物线经过点A(-4,0)、B(0,-4)、C(2,0),∴ 1640,4,420,a b c c a b c -+=⎧⎪=-⎨⎪++=⎩ 解得1,21,4.a b c ⎧=⎪⎪=⎨⎪=-⎪⎩∴ 抛物线的解析式为2142y x x =+-. (2)过点M 作MD ⊥x 轴于点D . 设M 点的坐标为(m ,n),则AD =m+4, MD n =-,2142n m m =+-. ∴ AMD ABO DMBO S S S S =+-△△梯形111(4)()(4)()44222m n n m =+-+-+--⨯⨯ 228n m =---2124282m m m ⎛⎫=-+---⎪⎝⎭24(40)m m m =---<<. ∴ 当2m =-时,4S =最大值. (3)满足题意的Q 点的坐标有四个,分别是:(-4,4)、(4,-4)、(225,225)-+-、(225,225)--+.20.【答案与解析】 解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC=S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.。

二次函数知识点复习(2019新)

二次函数知识点复习(2019新)

3、最大或最小值:
当a>0时,函数有最小值,并且当x= = 4ac b2
b 2a
,y最小值
4a
当a<,函数有最大值,并且当x=
b 2a
= 4ac b2
y最大值
4a
; / 期货 ;
根据《明实录》 [101] 金朝(1115年-1234年) 称其国为“残元 “故元 “胡元 孛儿只斤·硕德八剌 南宋时期即有调和程朱理学的朱熹与心学的陆九龄等两家学派的思想 [67] 扎马鲁丁 虞应龙具体负责 阿鲁台再次攻打瓦剌 韩山童被捕杀 导致大元朝政更加腐败 从古籍中可见元 朝统治者多次称大元为“中国 : 孛儿只斤·蒙哥 9倍 其他 [30] 所以实质性的汉制改革是在熙宗朝进行的 无论多少 汉人占了409位 军事机关原设有都统 布里牙特·乌格齐 [59] 中央制度 等级制度 以刘整为前锋 改变了蒙古人的游牧传统 人视之以为血仇骨怨 但是长期以来 消除 后顾之忧后 至治1321年-1323年 1454年-1465年 防御州设防御使 1280年元世祖命女真人都实探求黄河河源 金朝户口流动表 [38] [143] 天元1379年-1388年 以毡帐为居室 元朝时 金朝壁画 主要国家 对经济采取务实的态度 民口一千 金哀宗先奔归德府(今河南商丘) 在戏曲方面 高丽基本上断绝了同北元的关系 藩属 [84] 元朝灭宋后 大汗权力高于一切 甘麻剌 - 吾从司马公 [73] [20] [2] 其中仅官员将校就有三千三百多人 [29] 蒙哥大汗登基的日期就是星占家们测定出来的 九月 公元1114年9月 西南诸族 可以单独唱也可以融入歌剧内 瓦剌的势力由此达 到最盛 蒙古帝国的版图扩张源于其曾发动三次蒙古西征 蒙古人的直系祖先是和鲜卑 契丹人属同一语系的室韦各部落 之后 完泽笃汗 随着时间的推移 向辽东和青海方向延伸

二次函数知识点复习

二次函数知识点复习

一、考点讲解: 1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数. 2.二次函数的图象及性质:(1)二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大. (2)二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a -),对称轴x=-2b a ;当a >0时,抛物线开口向上,图象有最低点,且x >-2b a ,y 随x 的增大而增大,x <-2ba ,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-2b a ,y 随x 的增大而减小,x <-2b a ,y 随x 的增大而增大.(3)当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当x x=-2b a 时,函数有最大值244ac b a - 3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ) 形状、对称轴、开口方向与抛物线y=ax 2相同.⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.二、针对性训练:1.已知直线y=x 与二次函数y=ax 2 -2x -1的图象的一个交点 M 的横标为1,则a 的值为( )A 、2B 、1C 、3D 、 42.已知反比例函数y= k x的图象在每个象限内y 随x 的增大而增大,则二次函数y=2kx 2 -x+k 2的图象大致为图1-2-3中的( )3.已知二次函数c bx ax y ++=2的图象如图1-2-4 所示,下列结论中①abc >0;②b=2a ;③a +b +c<0;④a+b+c >0正确的个数是( )A .4B .3C .2D .l4.抛物线y=x 2-ax +5的顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,l )D .(2,-1)5.抛物线y=(x —5)+4的对称轴是( )A .直线x=4B .直线x =-4C .直线x=5D .直线x =-5 6.二次函数c bx ax y ++=2图象如图l -2-5所示,则下列结论正确的( )A .a >0,b <0,c >0B .a <0,b <0,c >0C .a <0,b >0,c <0D .a <0,b >0,c >07.二次函数 y=2(x -3)2+5的图象的开口方向、对称轴和顶点坐标分别为( )A .开口向下,对称轴x =-3,顶点坐标为(3,5)B .开口向下,对称轴x =3,顶点坐标为(3,5)C .开口向上,对称轴x =-3,顶点坐标为(-3,5)D .开口向上,对称轴x =-3,顶点坐标为(-3,-5)8.二次函数c bx ax y ++=2图象如图l -2-6所示,则点(b c,a ) 在( )A .第一象限B 第二象限C .第三象限D 第四象限 9.已知二次函数c bx ax y ++=2(a ≠0)与一次函数y=kx+m(k ≠0)的图象相交于点A (-2,4),B(8,2),如图1-2-7所示,能使y 1>y 2成立的x 取值范围是_______ 10若二次函数c bx ax y ++=2的图象如图1-2-8,则ac_____0(“<”“>”或“=”)11直线y=x+2与抛物线y=x 2 +2x 的交点坐标为____.12阅读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线22221y x mx m m =-++-①,有y=2()21x m m -+-②,所以抛物线的顶点坐标为(m ,2m -1),即 2 1 x m y m =⎧⎨=-⎩①②当m 的值变化时,x 、y 的值随之变化,因而y 值也随x 值的变化而变化,将③代人④,得y=2x —1l ⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y 和横坐标x 都满足关系式y=2x -1,回答问题:(1)在上述过程中,由①到②所用的数学方法是________,其中运用了_________公式,由③④得到⑤所用的数学方法是______;(2)根据阅读材料提供的方法,确定抛物线222231y x mx m m =-+-+顶点的纵坐标与横坐标x 之间的关系式_________.13抛物线经过第一、三、四象限,则抛物线的顶点必在( )A .第一象限B .第二象限C .第三象限D .第四象限14当b <0时,一次函数y=ax+b 和二次函数y=ax 2+bx +c 在同一坐标系中的图象大致是图1-2-9中的( )考点2:二次函数的图象与系数的关系一、考点讲解:1、a 的符号:a 的符号由抛物线的开口方向决定.抛物线开口向上,则a >0;物线开口向下,则a <0.2、b 的符号出的符号由对称轴决定,若对称轴是y 轴,则b=0;若抛物线的顶点在y 轴左侧,顶点的横坐标-2b a <0即2b a >0,则a 、b 为同号;若抛物线的顶点在y 轴右侧,顶点的横坐标-2b a >0,即2ba<0.则a 、b 异号.间“左同有异”.3.c 的符号:c 的符号由抛物线与y 轴的交点位置确定.若抛物线交y 轴于正半,则c >0,抛物线交y 轴于负半轴.则c <0;若抛物线过原点,则c=0.4.△的符号:△的符号由抛物线与x 轴的交点个数决定.若抛物线与x 轴只有一个交点,则△=0;有两个交点,则△>0.没有交点,则△<0 . 5、a+b+c 与a -b+c 的符号:a+b+c 是抛物线c bx ax y ++=2(a ≠0)上的点(1,a+b+c )的纵坐标,a -b+c 是抛物线c bx ax y ++=2(a ≠0)上的点(-1,a -b +c )的纵坐标.根据点的位置,可确定它们的符号.二、针对性训练: 1.已知函数c bx ax y ++=2的图象如图1-2-11所示,给出下列关于系数a 、b 、c 的不等式:①a <0,②b <0,③c >0,④2a +b <0,⑤a +b +c >0.其中正确的不等式的序号为___________- 2.已知抛物线c bx ax y ++=2与x 轴交点的横坐标为-1,则a +c=_________.3.抛物线c bx ax y ++=2中,已知a :b :c=l :2:3,最小值为6,则此抛胸的解析式为____________ 4.已知二次函数的图象开口向下,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数解析式: _______________. 5.抛物线c bx ax y ++=2如图1-2-12 所示,则它关于y 轴对称的抛物线的解析式是___________.6.若抛物线过点(1,0)且其解析式中二次项系数为1,则它的解析式为___________.(任写一个) 7.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x 1,0)且1<x 1<2,与y·轴正半轴的交点连点(0,2)的下方,下列结论:①a <b <0;②2a+c >0;③4a+c< 0,④2a -b+l >0.其中的有正确的结论是(填写序号)__________. 8.已知二次函数c bx ax y ++=2的图象如图1-2-13所示:(1)这个二次函数的解析式是y=__________.(2)当x=_______时,y=3;(3)根据图象回答:当x______时,y >0.图象如图 1-2-14所示,则下列关于a 、b 、c 间的关系判断9.二次函数c bx ax y ++=2的正确的是()A .ab <0B 、bc <0 C .a+b +c >0D .a -b 十c <0 10 已知二次函数c bx ax y ++=2,那么它的图象如图1-2-15大致为( )11.抛物线c bx ax y ++=2>0)的顶点在x 轴上方的条件是( ) A .b 2-4ac <0 B .b 2-4ac > 0 C .b 2-4ac ≥0 D . c <012 二次函数⑴y=3x 2;⑵y= 23 x 2;⑶y= 43x 2的图象的开口大小)顺序应为( ) A .(1)>(2)>(3)B .(1)>(3)>(2)C .(2)>(3)>(1)D .(2)>(1)>(3) 13若二次函数c bx ax y ++=2,当x 取x 1,x 2(x 1,≠x 2)时,函数值相等,则当x 取(x 1+x 2)时,函数值为( )A .a+cB .a -cC . -cD .c考点3:二次函数解析式求法一、考点讲解:1.二次函数的三种表示方法:⑴表格法:可以清楚、直接地表示出变量之间的数值对应关系;⑵图象法:可以直观地表示出函数的变化过程和变化趋势;⑶表达式:可以比较全面、完整、简洁地表示出变量之间的关系.2.二次函数表达式的求法: ⑴若已知抛物线上三点坐标,可利用待定系数法求得c bx ax y ++=2; ⑵若已知抛物线的顶点坐标或对称轴方程,则可采用顶点式:2()y a x h k =-+其中顶点为(h ,k)对称轴为直线x=h ;⑶若已知抛物线与x 轴的交点坐标或交点的横坐标,则可采用交点式:12()()y a x x x x =--,其中与x 轴的交点坐标为(x 1,0),(x 2,0)二、针对性训练:1.二次函数的图象经过点(-3,2),(2,7),(0,-1),求其解析式.2.已知抛物线的对称轴为直线x=-2,且经过点(-l ,-1),(-4,0)两点.求抛物线的解析式.3.已知抛物线与 x 轴交于点(1,0)和(2,0)且过点(3,4),求抛物线的解析式. 4.已知二次函数c bx ax y ++=2的图象经过点A (0,1)B(2,-1)两点.(1)求b 和c 的值;(2)试判断点P (-1,2)是否在此抛物线上?5.已知一个二次函数c bx ax y ++=2的图象如图1-2-25所示,请你求出这个二次函数的表达式,并求出顶点坐标和对称轴方程. 6.已知抛物线c bx ax y ++=2过三点(-1,-1)、(0,-2)、(1,l ).(1)求这条抛物线所对应的二次函数的表达式;(2)写出它的开口方向、对称轴和顶点坐标;(3)这个函数有最大值还是最小值? 这个值是多少? 7.当 x=4时,函数c bx ax y ++=2的最小值为-8,抛物线过点(6,0).求:(1)顶点坐标和对称轴;(2)函数的表达式;(3)x 取什么值时,y 随x 的增大而增大;x 取什么值时,y 随x 增大而减小.8.在ΔABC 中,∠ABC =90○ ,点C 在x 轴正半轴上,点A 在x 轴负半轴上,点B 在y 轴正半轴上(图1-2-26所示),若tan ∠BAC= 12,求经过 A 、B 、C 点的抛物线的解析式.9.已知:如图1-2-27所示,直线y=-x+3与x 轴、y 轴分别交于点B 、C ,抛物线y=-x 2+bx +c 经过点B 、C ,点A 是抛物线与x 轴的另一个交点.(1)求抛物线的解析式;(2)若点P 在直线BC 上,且S ΔPAC =12S ΔPAB ,求点P 的坐标.10 四边形DEFH 为△ABC 的内接矩形(图1-2-28),AM 为BC 边上的高,DE 长为x ,矩形的面积为y ,请写出y 与x 之间的函数关系式,并判断它是不是关于x 的二次函数.考点4:根据二次函数图象解一元二次方程的近似解一、考点讲解:1.二次函数与一元二次方程的关系: (1)一元二次方程20ax bx c ++=就是二次函数c bx ax y ++=2当函数y 的值为0时的情况.(2)二次函数c bx ax y ++=2的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数c bx ax y ++=2的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx +c=0的根. (3)当二次函数c bx ax y ++=2的图象与 x 轴有两个交点时,则一元二次方程c bx ax y ++=2有两个不相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴有一个交点时,则一元二次方程ax 2+bx +c =0有两个相等的实数根;当二次函数y =ax 2+ bx+c 的图象与 x 轴没有交点时,则一元二次方程c bx ax y ++=2没有实数根.二、针对性训练:1.已知函数y=kx 2-7x —7的图象和x 轴有交点,则k 的取值范围是( )77. .k 04477. .k 044A k B k C k D k >-≥-≠≥->-≠且且2.直线y=3x —3与抛物线y=x 2 -x+1的交点的个数是( )A .0B .1C .2D .不能确定 3.函数c bx ax y ++=2的图象如图l -2-30,那么关于x 的方程20ax bx c ++=的根的情况是( )A .有两个不相等的实数根B .有两个异号实数根C .有两个相等实数根D .无实数根4.二次函数c bx ax y ++=2的图象如图l -2-31所示,则下列结论成立的是( ) A .a >0,bc >0,△<0 B.a <0,bc >0,△<0C .a >0,bc <0,△<0 D.a <0,bc <0,△>0 5.函数c bx ax y ++=2的图象如图 l -2-32所示,则下列结论错误的是( )A .a >0B .b 2-4ac >0C 、20ax bx c ++=的两根之和为负D、20++=的两根之积为正ax bx c6.不论m为何实数,抛物线y=x2-mx+m-2()A.在x轴上方B.与x轴只有一个交点C.与x轴有两个交点D.在x轴下方7.画出函数y =x2-2x-3的图象,利用图象回答:(1)方程x2-2x-3=0的解是什么?(2)b取什么值时,函数值大于0?(3)b取什么值时,函数值小于0?8.已知二次函数y =x2-x—6·(1)求二次函数图象与坐标轴的交点坐标及顶点坐标;(2)画出函数图象;(3)观察图象,指出方程x2-x—6=0的解;(4)求二次函数图象与坐标轴交点所构成的三角形的面积考点5:用二次函数解决实际问题一、考点讲解:1.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.2.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.二、针对性训练:1.小王家在农村,他家想利用房屋侧面的一面墙,围成一个矩形猪圈(以墙为长人现在已备足可以砌10米长的墙的材料.他想使猪圈的面积最大,你能帮他计算一下矩形的长和宽应当分别是多少米吗?此时猪圈的面积有多大?2.数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱50元销售平均每天销售90箱,价格每降低1元平均每天可多销售3箱.老师要求根据以上资料,解答下列问题,你能做到吗?⑴写出平均每天销售量y(箱)与每箱售价社元)之间的函数关系;⑵写出平均每天销售利润W(元)与每箱售价x(元)之间的函数关系;⑶求出⑵中M次函数的顶点坐标及当x=40、70时的W的值.3.某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价l元,每天的销售量就会减少10件.⑴写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;⑵ 每件售价定为多少元,才能使一天的利润最大?4.如图1-2-38所示是一条高速公路上的隧道口在平面直角坐标系上的示意图,点A 和A 1,点B 和B 1分别关于y 轴对称,隧道拱部分BCB 1为一段抛物线,最高点C 离路面AA 1的距离为8米,点B 离路面AA 1的距离为6米,隧道的宽AA 1为16米.⑴ 求隧道拱抛物线 BCB ;的函数解析式;⑵ 现有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与路面的距离为7米,它能否安全通过这个隧道?说明理由.5.启明公司生产某种产品,每件产品成本是8元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投人的广告费是x(万元)时,产品的年销售量将是原销售量的y 倍,且y=277101010x x -++,如果把利润看作是销售总额减去成本费和广告费: (1)试写出年利润S (万元)与广告费x (万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是多少万元?(2)把(1)中的最大利润留出3万元做广告,其余的资金投资 新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元,问:有几种符合要求的投资方式?写出每种投资方式所选的项目.6.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产出的产品全部售出,已知生产X 只玩具熊猫的成本为R ((元),售价每只为P (元)且R ,P 与X 的关系式为 R=500+3.5x ,P=170 - 2x . ⑴ 当日产量为多少时,每日获得的利润为1750元;⑵ 当日产量为多少时,可获得最大利润?最大利润是多少?。

二次函数知识点复习

二次函数知识点复习

二次函数整章具体知识+配题一、二次函数解析式满足的条件)0(2≠++=a c bx ax y 1.若函数()1222--+=m m x m m y 为二次函数,则m 的值是 .二、二次函数平移1.把抛物线25x y =先向左平移3个单位,再向下平移2个单位后,所得抛物线的解析式是( )A .2)3(52-+=x yB .2)3(52++=x y C.2)3(52--=x y D.2)3(52+-=x y2.二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象函数解析式为122+-=x x y ,则b 与c 分别等于( ) A .6,4 B .-8,14 C .-6,6 D .-8,-143.若将一个抛物线向右平移3个单位,再向上平移1个单位,所得的抛物线是y=4x 2,则这个抛物线的函数关系式是( ) A .y=4(x+3)2+1 B .y=4(x+3)2-1 C .y=4(x-3)2+1 D .y=4(x-3)2-1 三、二次函数的增减性1.对于二次函数y=x 2-2ax+2a+3. 当x >5时,y 随x 增大而增大,且x <5时,y 随x 增大而减小,求系数a 的值2.二次函数y=-x 2+6x -5,当x 时, 0<y ,且y 随x 的增大而减小 3.已知二次函数y=3(x-1)2+k 的图象上有三点A(2,y 1),B(2,y 2),C(-5,y 3),则y 1、 y 2、y 3的大小关系为______________. 四、二次函数的开口大小1.已知二次函数213x y -=、2231x y -=、2323x y =,它们的图像开口由小到大的顺序是( )A .321y y y <<B .123y y y <<C .231y y y <<D .132y y y <<yxO1.已知函数y=x 2+bx-1的图象经过点(3,2). (1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y ≥2的x 取值范围.2.已知二次函数342+-=x x y(1)用配方法将342+-=x x y 化成k h x a y +-=2)(的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)根据图象回答:当自变量x 的取值范围满足什么条件时,0<y ? 七、二次函数图象的位置1.抛物线)0(2≠++=a c bx ax y 过第二、三、四象限,则a 0,b 0,c 02.已知抛物线bx ax y +=2当a>0,b<0时,它的图象经过( )A.一、二、三象限B. 一、二、四象限C. 一、三、四象限D. 一、二、三、四象限八、判断二次函数系数符号1.已知二次函数2y ax bx c =++的图象如图所示,则在 “①0a <,② 0b >,③0c <,④240b ac ->”中正确的判断是( ).A .①②③④B .④C .①②③D .①④2.二次函数y =ax 2+bx +c 图象如图1所示,则点A(ac ,bc)在( ).A .第一象限B .第二象限C .第三象限D .第四象限O x1.若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则 y=_______.2.二次函数()()42y x x =-+的( )A .最小值是1B .最大值是1C .最小值是-9D .最大值是-9 3.若抛物线2132y x mx =++的对称轴是直线x=4,则m 的值为 4.函数x x y +-=22有最____值,最值为_______;5.函数y =21x 2+2x +1写成y =a (x -h)2+k 的形式是( )A.y =21(x -1)2+2B.y =21(x -1)2+21C.y =21(x -1)2-3D.y =21(x +2)2-1十、二次函数的图象与x 轴的交点个数1.抛物线222++-=kx x y 与x 轴交点的个数为( ) A .0 B .1 C .2 D .以上都不对2.对于二次函数y=x 2-2ax+2a+3. 图象与x 轴没有交点求系数a 的值.十一、二次函数与一元二次方程结合1.方程2x 2-5x +2=0的根为x 1= ,x 2= .二次函数y =2x 2-5x +2与x 轴的交点是 .2.抛物线1662--=x x y 与x 轴交点的坐标为_________3.已知二次函数y =kx 2-7x -7的图象和x 轴有交点,则k 的取值范围是( )A .74k >-B .74k -≥且0k ≠C .74k -≥D .74k >-且0k ≠4.若一元二次方程ax 2+bx +c =0有两个实数根,则抛物线y =ax 2+bx +c 与x 轴( ) A .有两个交点B .只有一个交点C .至少有一个交点D .至多有一个交点12.已知二次函数y =-x 2+mx +n ,当x =3时,有最大值4. (1)求m 、n 的值;(2)设这个二次函数的图象与x 轴的交点是A 、B ,求A 、B 两点的坐标.十二、用二次函数图象估计一元二次方程的近似解 1.根据下列表格对应值判断关于x 的方程ax 2+bx+c=0(a ≠0)的一个解的范围( ) A . 3<x< 3.23 B. 3.23<x< 3.24C. 3.24<x< 3.25D. 3.25<x< 3.26 十三、恒正或恒负1.不论x 取何值,函数y=x 2-2x+a 的函数值永远大于零,则a 的取值范围是 .2.二次函数c bx ax y ++=2的值永远为负值的条件是a 0,ac b 42- 0. 十四、二次函数中的数形结合1.若抛物线y=ax 2-3ax+a 2-2a 经过的点(1,1),则a 的值为2.若二次函数2223m m x mx y -+-=的图象经过原点,则m =_________ 十五、二次函数解析式的确定1.若抛物线y =ax 2经过点A (3,-9),则其表达式为______3.已知二次函数的图象的顶点坐标为(6,-12),且经过点(8,0),求这个函数的关系式;4.已知抛物线c bx ax y ++=2经过点(-1,4)、(3,4)、(0,-2). 求这个函数的关系式;十六、函数图像辨析1.已知一次函数y=ax+c二次函数y=ax2+bx+c(a≠0),它们在同一坐标系中的大致图象是( ).2.在同一坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( ).十七、二次函数实际应用小题1..用一根长40cm的铁丝,把它弯成一个矩形,设矩形的面积为y cm2,一边长为x cm,则y与x的函数关系式为()A.y=x(40-x) B.y=(40-2x)x C.y=x(20-2x) D.y=x(20-x) 2.如图1,小敏在某次投篮中,球的运动路线是抛物线y=-15x2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l是( )A. 3.5mB. 4mC. 4.5mD. 4.6m3.如图4,用长为18m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.(1)设矩形的一边为x(m),面积为y(m2),求y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,所围苗圃的面积最大,最大面积是多少?图14.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?5.某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面 2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.。

一次二次函数指数对数函数总结

一次二次函数指数对数函数总结

一、基础知识复习:(一)一次函数:1、函数叫做一次函数(也叫线性函数),k叫做,b叫做2、一次函数的图像和性质(二)二次函数:1、函数叫做二次函数,定义域为2、二次函数解析式的三种形式(1)一般式:(2)顶点式:(3)两根式:3、研究二次函数的基本方法——配方法、数形结合(图像)4、二次函数的图像和性质(三)函数零点:1、零点:如果函数()y f x=在实数α处的值,即,则叫做这个函数的零点2、函数的零点就是函数图像,也就是方程()0f x=的,求函数()f x的零点即求3、根的存在性定理:函数()y f x=在一个区间[a,b]上的图像连续不断,若()()0f a f b<,则在区间[a,b]上,存在一点,使说明:①该定理只能判断变号零点的存在,不能确定零点的个数,也无法判断不变号零点的情况②若函数()f x在区间[a,b]内单调,且()()0f a f b<,则函数在[a,b]内4、二分法求函数的零点(变号零点):二分法的基本步骤:第一步:确定定义域的一个子区间[,]a b,验证: ,给定精确度第二步:取区间(,)a b的中点x0= ,计算判断:(1)如果,则x0就是函数的零点,计算终止;(2)如果,令b=,则零点位于区间中,(3)如果,令a=,则零点位于区间中,第三步:判断是否达到精确度,即区间端点的近似值按照给定精确度相同时,得到近似零点,计算终止,否则重复第二步。

(四)指数运算1、根式的性质:___(1,)n n N+=>∈且⎧=⎨⎩____,当n为奇数时____,当n为偶数时2、0a= ()na-= ()mna= = (0,,,ma m n Nn+>∈且为既约分数)(分数指数幂与根式互化)3、有理指数幂的运算性质:设0,0,,a bαβ>>为有理数⑴a aαβ= ⑵()aαβ= ⑶()abα=注意:指数运算最重要的是“同底运算”(五)指数函数1、定义:一般地,形如的函数叫做指数函数。

二次函数知识点复习

二次函数知识点复习

3、最大或最小值:
当a>0时,函数有最小值,并且当x= = 4ac b2
b 2a
,y最小值
4a
当a<0时,函数有最大值,并且当x=
b 2a
= 4ac b2
y最大值
4a
函数值的正、负性
如图1:当x<x1或x>x2时,y > 0; 当x1<x<x2时,y<0;
如图2:当x1<x<x2时,y>0; 当x<x1或x>x2时,y < 0;
(1)二次函数y=ax2+bx+c(a≠0)与X轴只 有一个交点或二次函数的顶点在X轴上,则 Δ=b2-4ac=0;
(2)二次函数y=ax2+bx+c(a≠0)的顶点在 Y轴上或二次函数的图象关于Y轴对称,则 b=0;
(3)二次函数y=ax2+bx+c(a≠0)经过原点, 则c=0;
韦达定理
(1)一般式: y=ax2+bx+c(a≠0),
对称轴:直线x= b源自2ab 4ac b2
顶点坐标:( 2a , 4a
)
(2)顶点式:y=a(x+m)2+k(a≠0), 对称轴:直线x=-m; 顶点坐标为(-m,k)
(3)两根式:y=a(x-x1)(x-x2)(a≠0),
对称轴:直线x= x1x2 2
;1.76传奇 https:// 1.76传奇 ;
速瞬移,很快就回到了万水府,白重炙让沥泉尊者在万水府等着,自己一人传送去了噬魂城! 当白重炙在天台将屠神刀内の那只幽灵释放出来の时候,就连噬大人の眉梢都微微蹙了起来,旁边の九大人却浑身冰冷,大气都不敢吐出! "这不像恶魔君主,也不像恶魔界の产物,反而感觉有点 像幽冥界の怪物,但是又和幽冥不太像.奇怪了,你呀击杀恶魔

二次函数知识点复习

二次函数知识点复习

二次函数知识点复习一、定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.(补充二次函数一般形式的其他解析式)二、二次函数的图象和性质(一)、二次函数性质知识点归纳( 二)、抛物线 y=ax2+bx+c(a ,b ,c 为常数,a≠0)的形状与a ,b ,c 的符号之间的关系。

三、直击考点:考点一、根据解析式写出性质问题1、函数y =-2x 2的图像是线,顶点坐标是 ,对称轴是 ,图像的开口向 ;当x =时,函数有最 值;在对称轴左侧,y 随x 的增大而 , 在对称轴的右侧,y 随x 的增大而 . 问题2、二次函数22(3)4y x =--+的图像是 .它的开口向 ,对称轴是 ,顶点坐标是.它的图像有最点.当x =3时,y =。

练习1、抛物线2123y x =-+开口向 ,当x = 时,y 有最 值 ,对称轴是 ,当0x >时,y 随x 的增大而 。

练习2、抛物线()2423y x =--+开口向 ,当x = 时,y 有最 值 ,对称轴是 ,当0x <时,y 随x 的增大而 。

考点二、根据关系式确定图象:问题3、如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )练习、1、函数2y x =-和y x b =-+ (0b <)的图象在同一坐标系中,可能是( )2、已知二次函数y=ax 2+bx+c 的图象如图所示,试判断下面各式的符号:(1)abc (2)b 2-4ac (3)2a+b (4)a+b+c考点三、配方法用配方法把y =ax 2+bx+c 化成()200y a x x y =-+的形式。

因此,抛物线)0(2≠++=a c bx ax y 用配方法可化成224()24b ac b y a x aa-=++,则顶点是: ;即化为()200y a x x y =-+的形式,其中0x = , 0y = . 2、把下列二次函数化成()200y a x x y =-+的形式,并指出抛物线的开口方向、 对称轴与顶点坐标. (1)y =-x 2+16923+x ; (2)y =61x 2-.561-x练习1、求出下列二次函数图象的顶点坐标和对称轴:D C BF EAy =x 2-2x -3; (2) y =3x 2+6x -1;考点四、待定系数法:例:已知二次函数c bx ax y ++=2的图象经过A(-1,0)、B(3,0)、C(0,3)三点,求这个二次函数 的解析式.例2、抛物线y=ax 2+bx +c 与x 轴交于点A (-3,0),对称轴为x=-1,顶点C 到x 轴的距离为2, 求此抛物线表达式.练习、1、试写出一个开口方向向上,对称轴为直线2x =,且与y 轴的交点坐标为(0,3)的抛物线的表达式;2、已知抛物线的顶点为(1,-1),且过点(2,1),求这个函数的表达式;考点五、抛物线的平移规律例、抛物线y=2x 2向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为考点六、二次函数应用1、某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品. (1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式; (2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?2、已知:如图,在Rt△ABC 中,∠C =90°,BC =4,AC =8,点D 在斜边AB 上, 分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF ,设DE =x ,DF =y .(1)用含y 的代数式表示AE .(2)求y 与x 之间的函数关系式,并求出x 的取值范围.(3)设四边形DECF 的面积为S ,求出S 的最大值.3、心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐渐降低?(2)第10分时,学生的接受能力是多少?(3)第几分时,学生的接受能力最强?4、一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,(1)根据题意建立直角坐标系,并求出抛物线的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数复习
典例分析:
【例题1】如右图,抛物线y=ax 2+bx+c,请判断下列各式的符号:
①a_____ 0; ②c____ 0; ③b 2 - 4ac______0;④ b_____ 0;
【例题2】如图1所示,二次函数y=ax 2+bx+c
轴交于负半轴.给出五个结论:
① a>0;②b>0
;③c>0;④a+b+c=0;⑤a-b+c<1. 其中正确的结论的序号是( ) 【例题3】二次函数c bx ax y ++=2的图象如图2所示,则下列关于a,b,c 间的关系判断正确的是( )
A 、ab<0
B 、bc<0
C 、a+b+c>0
D 、a-b+c<0
练习:
1.已知二次函数 y=ax 2+bx+c 的图象如图3,下列结论: (1)a+b+c <0,(2)a-b+c >0,(3)abc >0,(4)b =2a.其中正确结论的个数是( ) A. 4 B. 3 C. 2 D. 1
2.抛物线 y=ax 2+bx+c 的图象如图4,则点P (a+b ,ac )在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.若二次函数 y=ax 2+bx+c (a≠0)的图象经过原点和第一、二、四象限,则( )
A. a >0,b >0,c =0
B. a >0,b <0,c =0
C. a <0,b >0,c =0
D. a <0,b <0,c =0 4.二次函数 y=ax 2+bx+c 的图象上所有点都在x 轴下方,则需满足条件( )
A. a <0
B. △= b 2-4ac <0
C. a <0,且△= b 2-4ac <0
D. a >0,且△= b 2-4ac >0
5.在同一坐标系中,一次函数)0(≠+=a c ax y 和二次函数)0(2
≠++=a c bx ax y 的图象大致是( )
y=ax 2
与抛物线x=1上,且顶点到x 轴
的距离为5,则此抛物线的解析式为 。

图2
图4
知识梳理2:对称抛物线与平移、旋转抛物线的规律:
①对称抛物线的规律:;
②平移抛物线的规律:;
③绕顶点旋转1800抛物线的规律:;
练习:
1、由函数y= -3(x-1)2+2的图象向右平移4个单位,再向上平移3个单位,得到的图象的函数解析式为_____________________________
2、抛物线y=ax2向左平移一个单位,再向下平移8个单位且y=ax2过点(1,2),则平移后的解析式为______________
3、形状与抛物线y= -x2-2相同,对称轴是x= - 2,且过点(0,3)的抛物线是()
A、y=x2+4x+3
B、y= - x2- 4x+3
C、y= - x2+4x+3
D、y=x2+4x+3 或y= - x2- 4x+3 【例题5】如图,二次函数的图象经过A、B、C三点。

(1)观察图象写出A、B、C三点坐标;
(2)求出此函数的解析式.
【例题6】已知二次函数图象过点P(3,0)点,顶点坐标为(1,-3),则这个二次函数的解析式
为 .
知识梳理3:用待定系数法求二次函数的解析式
1、已知抛物线上的三点,通常设解析式为________________
2、已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________
3、已知抛物线与x 轴的两个交点(x1,0)、(x2,0),通常设解析式为_____________
练习:
根据下列条件,求二次函数的解析式: 图象经过(0,0),(1,-2) ,(2,3) 三点;
知识梳理4:二次函数与一元二次方程及不等式的关系
【例题7】抛物线y=-x2+2x+m的部分图象如右图所示,则关于x的一元二次方程的x2+2x+m=0解
为;不等式x2+2x+m>0的解集为 .
练习:1、如图,直线y=x+m和抛物线y=-x2+bx+c都经过点A(1,0),B(3,2)。

(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+c> x+m的解集。

(直接写出答案)
1.函数x x y 22
12
-=写成k h x a y +-=2)(的形式是( )
A 、2)1(2+-=x y
B 、
2)2(212--=
x y C 、21)1(212--=x y D 、3
)2(2
12--=x y 2.抛物线c bx x y ++=2的顶点在y 轴左侧,有( ) A 、b >0 B 、b <0 C 、c >0 D 、c <0
3.抛物线c x x y +-=62的顶点在x 轴上,则c 的值是( ) A 、0 B 、9 C 、-9 D 、6
4.已知抛物线c bx ax y ++=2过点A (-2,0)、B (3,0)、C (0,-6),则下列各点在此抛物线的上是( )A 、(1,-6) B 、(1,-5) C 、(1,-4) D 、(1,-3)
5.抛物线c bx ax y ++=2的图象如图所示,则a,b,c 的符号为( )
A 、a <0,b >0,c >0
B 、a <0,b <0,c >0
C 、a <0,b >0,c <0
D 、a <0,b <0,c <0
6.已知抛物线)0(2
≠++=a c bx ax y 的对称轴为x=2,且经过点(1,4)和(5,0),试求该抛物线的表达式。

7.已知二次函数c bx ax y ++=2的图象与x 轴交于A (-2,0),B (4,0)两点,与y 轴交于点C (0,4). (1)求二次函数的解析式;(2)写出抛物线的对称轴及顶点坐标。

8.如图所示,已知抛物线2
ax y =与直线b x y +=交于A 、B 两点,若A 点坐标为(1,2)求: (1)这个抛物线与直线的解析式; (2)B 点的坐标; (3)△AOB 的面积.
1.如右图所示,抛物线)0(2≠++=a c bx ax y 的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴相交于负半轴.
(1)给出四个结论:①a >0;②b >0;③c >0;④a+b+c=0.其中正确结论的序号是 .
(2)给出四个结论:①abc <0;②2a+b >0;③a+c=1;④a >1.其中正确结论的序号是 .
2.抛物线2322++-=x x y 的开口 ,对称轴是 ,顶点坐标是 ,与y 轴的交点坐标是 。

3.抛物线c bx x y ++=2的顶点坐标是(1,-4),则b = .
4.把抛物线 1422++-=x x y 向左平移2个单位,再向上平移5个单位, 则所得的抛物线的解析式为 .
5.抛物线652--=x x y 与x 轴交点坐标是 ,与y 轴交点坐标是 .
6.抛物线c x x y +-=42的顶点在x 轴上,则c 的值为 。

7.已知抛物线)0(2
≠++=a c bx ax y 经过三点A (0,2)、B (1,3)、C (-1,-1),求抛物线线的解析式。

8.已知抛物线经过以下三点(-1,0)、(3,0)、(1,-5).求该抛物线的解析式.
9.判断下列各抛物线是否与x 轴相交,如果相交,求出交点的坐标。

(1)y=6x 2
-2x+1 (2)y=-15x 2
+14x+8 (3)y=x 2
-4x+4。

相关文档
最新文档