线性规划PPT课件

合集下载

线性规划PPT课件

线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义

线 性 规 划ppt课件

线 性 规 划ppt课件
第3页
生产计划问题
某工厂用三种原料生产三种产品,已知的条件如表 2.1.1所示,试制订总利润最大的生产计划
单位产品所需原 产品 料数量(公斤) Q1
产品 Q2
产品 原料可用量 Q3 (公斤/日)
原料P1
2
3
0 1500
原料P2
0
2
4
800
原料P3
3 2 5 2000
单位产品的利润 3
5
4
(千元)
第4页
剩余变量
第18页
不等式变不等式
a i1 x 1 a i 2 x 2 a in x n b i
a i1 x 1 a i 2 x 2 a in x n b i

a i1 x 1 a i 2 x 2 a in x n b i
a i1 x 1 a i 2 x 2 a in x n b i
最 优 解 ( 1, 4)
2x1 x2 2 x1 2x2 2
x1 x2 5
第24页
注释
可能出现的情况:
可行域是空集 可行域无界无最优解 最优解存在且唯一,则一定在顶点上达到 最优解存在且不唯一,一定存在顶点是最优解
第25页
可行域的几何结构
基本假设 凸集 可行域的凸性
第26页
中运 筹 帷 幄 之
运筹学课件
线性规划
Linear Programming
外决 胜 千 里 之
第1页
线性规划
线性规划问题 可行区域与基本可行解 单纯形算法 初始可行解 对偶理论 灵敏度分析 计算软件 案例分析
第2页
线性规划问题
线性规划实例
生产计划问题 运输问题
线性规划模型
一般形式 规范形式 标准形式 形式转换 概念

线性规划PPT

线性规划PPT
所有可行解的集合称为可行域。
最优解 使目标函数达到最大的可行解 称为最优解。
基本解 对于有n个变量、m个约束方程的标准 型线性规划问题,取其m个变量。若这些变量在约 束方程中的系数列向量线性无关,则它们组成一组 基变量。确定了一组基变量后,其它n-m个变量称 为非基变量。
令非基变量都为 0 ,解约束方程,可唯一得到 基变量的值,从而得到一个满足约束方程的解,称 为基本解。由此可见,一个基本解的非零分量个数 不超过m个。
量,记为xN。对线性规划(**) 取定一个基矩阵B, 令其非
基变量xN=0, 可以唯一的解出xB, xB=B-1b。 这样得到的点 x=(B-1 b,0)称为(**)的一个基本解。为了叙述方便,这里
我们将xB放在了前面, 其实它的位置可以是任意的, 这并
不影响问题的实质。显然基本解不一定是可行解,当一个 基本解同时还是可行解时(即B-1 b≥0),称之为线性规划 问题(**)的一个基本可行解,进而若B-1 b>0,则称 x=(B-1 b,0)为(**)的一个非退化的基本可行解,并称B为 一组非退化的可行基。由于基矩阵最多只有Cnm 种不同的取 法,即使A的任意m列均线性无关,且对应的基本解均可行, (**)最多也只有C nm个不同的基本可行解。
污水的含量应不大于0.2%。而工 Min z=1000x1+800x2
厂1和工厂2处理污水的成本分别为 (2-x1)/500 ≤0.002
1000元/万m3和800元/万m3。问两 工厂各应处理多少污水才能使处理 污水的总费用最低?
[0.8(2-x1)+1.4-x2]/700 ≤0.002
x1≤2, x2≤1.4
已知生产单位产品所需的设备台时和原料A、B的消
耗量如下表。 该工厂每生产一件

第1讲线性规划基本概念.ppt

第1讲线性规划基本概念.ppt

凸集:设集合 X Rn ,如果 X 中任意两点的凸组合 仍然属于X ,则称 X 为凸集.
定义 1 集合 D Rn称为凸的,如果对于任意 x, y D ,有
x (1 ) y D 0 1
则称 D 是Rn中的凸集(convex set).
结论: (1) 空集和全空间Rn是凸集. (2) 设a Rn,a 0, R,则超平面(hyper plane)
X


x
Rn
g(i x) h(j x)
0 0
i 1,, p j 1,,q

若X是凸集, f 是D上的凸函数,称(MP)为非线性 凸规划,简称凸规划.
凸规划性质:
定理
线性函数
对于非线性规划(MP),
min f(x)
s.t. g(i x) 0

h(j x) 0
第1讲 基本概念 Basic conceptions
一.最优化问题简介
二.凸集和凸函数
三.非线性规划方法概述
一.最优化问题简介.
定义:在一切可能的方案中选择一个最好的方案,以 达到最优目标.
(凡是准求最优目标的数学问题都属于最优化问题, Optimization Problems,OP).
三要素: (1)目标; (2)方案; (3)限制条件.
指标集.
解:
c1(x)
2 2
2 ( 2 )2 0, 2
c2 (x) 1 (
2 )2 ( 2
2 )2 0, 2
c3(x)
2 0. 2
A {1,2}. x
x2
c2 (x) 0
c3(x) 0
x
O
c1(x) 0

管理运筹学 线性规划的图解法课件

管理运筹学  线性规划的图解法课件

线性规划的应用领域
生产计划
线性规划可以用于制定生产计划,优 化资源配置,提高生产效率。
物流优化
线性规划可以用于优化物流配送路线 、车辆调度等问题,降低运输成本。
金融投资
线性规划可以用于金融投资组合优化 ,实现风险和收益的平衡。
资源分配
线性规划可以用于资源分配问题,如 人员、资金、设备等资源的合理分配 ,提高资源利用效率。
束条件。
线性规划的目标是在满足一系列 限制条件下,使某一目标函数达
到最优值。
线性规划问题通常表示为求解一 组变量的最优值,使得这些变量 满足一系列线性等式或不等式约
束。
线性规划的数学模型
线性规划的数学模型由决策变量、目标函数和约束条 件三部分组成。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
04
目标函数是问题要优化的函数,通常表示为$f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
03
绿色发展与线性规 划的结合
将可持续发展理念融入线性规划 ,实现资源节约、环境友好的发 展目标。
THANKS
[ 感谢观看 ]
约束条件
生产计划问题通常受到资源限制、市场需求和生 产能力等约束条件的限制。
详细描述
生产计划问题通常涉及到如何分配有限的资源, 以最大化某种目标函数(如利润)。通过图解法 ,我们可以将约束条件和目标函数在二维平面上 表示出来,从而找到最优解。

第一 线性规划(共188张PPT)

第一 线性规划(共188张PPT)
个要求表述为
x1 ≥0, x2 ≥0
• 综上所述,该问题的数学模型表示为
maxZ= 3x1 +5 x2
x1
≤8
2x2 ≤12
3x1 +4 x2 ≤36
x1 ≥0, x2 ≥0
5
第一节 线性规划一般模型
• 例2. 运输问题 某名牌饮料在国内有三个生产厂,分布在城市A1、 A2、A3,其一级承销商有4个,分布在城市B1、B2、B3、 B4,已知各厂的产量、各承销商的销售量及从Ai到Bj 的每吨饮料运费为Cij,为发挥集团优势,公司要统 一筹划运销问题,求运费最小的调运方案。
(3)约束条件。产量之和等于销量之和,故要满足:
▪ 供应平衡条件
x11+x12+x13+x14=5 x21+x22+x23+x24=2 x31+x32+x33+x34 =3
§ 销售平衡条件
x11+x21+x31=2 x12+x22+x32=3 x13+x23+x33=1 x14+x24+x34=4
§ 非负性约束
29
第三节 线性规划的标准型
§ 标准化2
minZ= x1 +2 (x2′-x 2〃) +3 x3′
函数。可能是最大化,也可能是最小化。 • 线性规划一般模型的代数式 为:
max(min)Z=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn ≤(≥,=)b1 a21x1+a22x2+…+a2nxn ≤(≥,=)b2 …………… am1x1+am2x2+…+amnxn≤(≥,=)bm x1,x2,…,xn ≥(≤)0

数据、模型与决策--线性规划(PPT 110页)

数据、模型与决策--线性规划(PPT 110页)

线性规划
Linear Programming
2021/4/10
Page 11
【例1.3】合理用料问题。某汽车需要用甲、乙、丙三种规格的轴各一根,这 些轴的规格分别是1.5,1,0.7(m),这些轴需要用同一种圆钢来做,圆钢长 度为4 m。现在要制造1000辆汽车,最少要用多少圆钢来生产这些轴?
【解】这是一个条材下料问题 ,设切口宽度为零。 设一根圆钢切割成甲、 乙、丙三种轴的根数分别为y1,y2,y3,则切割方式可用不等式 1.5y1+y2+0.7y3≤4表示,求这个不等式关于y1,y2,y3的非负整数解。象这样 的非负整数解共有10组,也就是有10种下料方式,如表1.3所示。
,5
矿石
锡% 锌% 铅% 镍% 杂质 费用(元/t )
1
25 10 10 25 30
340
注意,矿石2 在实际40冶炼时0 金属0 含量3会0 发生30 变化,建26模0 时应将这种
变化考虑进3 去,有0可能1是5 非线5 性关2系0 。配60 料问题也18称0 配方问题、
营养问题或4 混合问2题0 ,在20 许多0行业4生0 产中20都能遇到2。30
表1.3 下料方案
方案 1 2 3 4
规格
5 6 7 8 9 10 需求量
y1(根)
2
21
11
0 00
0 0 1000
y2
1 0 2 1 0 4 3 2 1 0 1000
y3
0
余料(m) 0
1 0 2 3 0 1 2 4 5 1000 0.3 0.5 0.1 o.4 0 0.3 0.6 0.2 0.5
线性规划通常研究资源的最优利用、设备最佳运行等问
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:设生产甲,乙两种产品分别为x( t), y (t ),利润总额为z元,则
解:设生产甲,乙两种产品分别为x( t), y (t ),利润总额为z元,则 y
z=600x+1000y
O
x
解:设生产甲,乙两种产品分别为x( t), y (t ),利润总额为z元,则 y
z=600x+1000y
O
x
例2.要将两种大小不同的钢板截成A 、B、 C三种规格,每张钢板可以同时截得三种规 格的小钢板的块数如下表所示:
A规格 第一种钢板 第二种钢板 B规格 C规格
2 1
1 2
1 3
今需要A 、B、C三种规格的成品分别为 15、18、27块,问各截这两种钢板多少 张可得所需三种规格成品,且使得所用 钢板张数最少?
例2.题见课本P63 析与解答:
1.建立目标函数 设需第一种钢板x张,第二种钢板y张,那么: z=x+y
2.确定线形约束条件
3.求出可行域上的最优解
y
4.求出满足条件的整数解 1.作出可行域 2.作直线l:x+y=0 3.平移直线l至可行域上的点A( ).
· A · ·
o
2x+y=15
x+3y=27 X+2y=18
x
P64 练习: 1 ,2
解决线性规划问题的图解法的一般步骤:
1.根据题意列表; 2.找出x,y满足的不等式组; 3.由线性约束条件画出可行域; 4.令z=0,再利用平移法找到最优解所对应的点;
例1:某工厂生产甲、乙两种产品.已知生产甲种 产品1t需耗A种矿石10t、B种矿石5t、煤4t;生产 乙种产品1t需耗A种矿石4t、B种矿石4t、煤9t.每 1t甲种产品利润是600元,每1t乙种产品的利润 是1000元.工厂在生产这两种产品的计划中要求 消耗A种矿石不超过300t、B种矿石不超过200t、 煤不超过360t.甲、乙两种产品应各生产多少(精 确 到0.1t),能使利润总额达到最大?
5.求出最优解所对应点的坐标,代入z中,即得 目标函数的最大值和最小值.
P65 作业: 2,3
相关文档
最新文档