高二数学选修2-1测试题及答案

合集下载

高中数学选修2-1练习题

高中数学选修2-1练习题

常用逻辑用语一、选择题1.命题“如果x≥a 2+b 2,那么x≥2ab”的逆否命题是( ) A .如果x<a 2+b 2,那么x<2ab B .如果x≥2ab,那么x≥a 2+b 2 C .如果x<2ab,那么x<a 2+b 2 D .如果x≥a 2+b 2,那么x<2ab 2.三角形全等是三角形面积相等的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分又不必要条件 3.下列四个命题中,真命题是( ) A .2是偶数且是无理数 B .8≥10 C .有些梯形内接于圆 D .∀x ∈R,x 2-x+1≠0 4.命题“所有奇数的立方是奇数”的否定是( ) A .所有奇数的立方不是奇数 B .不存在一个奇数,它的立方是偶数 C .存在一个奇数,它的立方是偶数 D .不存在一个奇数,它的立方是奇数 二、填空题5.命题“若a=-1,则a 2=-1”的逆否命题是______________________. 6.b=0是函数f(x)=ax 2+bx+c 为偶函数的______________________.7.全称命题“∀a ∈Z,a 有一个正因数”的否定是________________________. 8.特称命题“有些三角形的三条中线相等”的否定是______________________. 9.设p :|5x -1|>4;2210231x x x x ++³-+,则非p 是非q 的______ ___条件.三、解答题10.求证:a+2b=0是直线ax+2y+3=0和直线x+by+2=0互相垂直的充要条件.11.已知集合A={x|x 2-3x+2=0},B={x|x 2-mx+2=0},若A 是B 的必要不充分条件,求实数m 范围.12.给定两个命题,P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4; q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4;q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).圆锥曲线练习题一.选择题1.若椭圆经过原点,且焦点分别为12(1,0),(3,0)F F ,则其离心率为( ) A.34 B.23 C.12 D.142.过抛物线y 2=4x 的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则|AB|等于( )A.10B.8C.6D.43.若双曲线x 24+y2k1的离心率(1,2)e ∈,则k 的取值范围是( )A.(),0-∞B.()3,0-C.()12,0-D.()60,12-- 4.与y 轴相切且和半圆x 2+y 2=4(0≤x ≤2)内切的动圆圆心的轨迹方程是( ) A.()()24101y x x =--<≤ B.()()24101y x x =-<≤C.()()24101y x x =+<≤ D.()()22101yx x =--<≤5.过点M(-2,0)的直线L 与椭圆2222x y +=交于12,P P 两点,设线段12P P 的中点为P ,若直线l 的斜率为11(0)k k ≠,直线OP 的斜率为2k ,则12k k 等于( )A.2-B.2C.12D.-126.如果方程x 2-p +y2q =1表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是( )A.2212xyq pq+=+ B.2212xyq pp+=-+ C.2212xyp qq+=+ D.2212xyp qp+=-+二.填空题7.椭圆x 212+y 23=1的焦点分别是12F ,F ,点P 在椭圆上,如果线段1P F 的中点在y 轴上,那么1PF 是2PF 的 倍.8.椭圆x 245+y 220=1的焦点分别是12F ,F ,过原点O 做直线与椭圆交于A ,B 两点,若∆ABF 2的面积是20,则直线AB 的方程是 .9.与双曲线2244x y -=有共同的渐近线,并且经过点(2的双曲线方程是10.已知直线y=kx+2与双曲线x 2-y 2=6的右支相交于不同的两点,则k 的取值范围是 .三.解答题11.抛物线y=-12x 2与过点M(0,-1)的直线L 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线L 的方程.12.已知中心在原点,一焦点为F(0,50)的椭圆被直线:32l y x =-截得的弦的中点横坐标为12,求此椭圆的方程.13.21,F F 是椭圆x 29+y27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45︒,求∆12AF F 的面积.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题11. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.12. 解:设所求的椭圆为x 2a 2+y2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题13. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.14. 解:设所求的椭圆为x 2a 2+y 2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.空间向量练习题一.选择题1.直棱柱ABC -A 1B 1C 1中,若CA →=a →,CB →=b →,CC 1→=c →,则A 1B →=( )A .a →+b →-c →B .a →-b →+c →C .-a →+b →+c →D .-a →+b →-c →2.已知A ,B ,C 三点不共线,对平面ABC 外的任意一点O ,下列条件中能确定点M 与A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → C .OM →=2OA →-OB →-OC →C .OM →=OA →+12OB →+13→D .OM →=13OA →+13OB →+13OC →3.若向量m →同时垂直向量a →和b →,向量n →=λa →+μb →(λ,μ∈R, λ,μ≠0),则( )A .m →∥n →B .m →⊥n → C.m →与n →不平行也不垂直 D .以上均有可能 4.以下四个命题中,正确的是( )A .若OP →=12OA →+13OB →,则P ,A ,B 三点共线B .若{a →,b →,c →}为空间一个基底,则{a →+b →,b →+c →,c →+a →}构成空间的另一个基底 C .|(a →⋅b →)c →|=|a →|⋅|b →|⋅|c →|D .∆ABC 为直角三角形的充要条件是AB →⋅AC →=05.已知a →=(λ+1,0,2λ),b →=(6,2μ-1,2),a →∥b →,则λ和μ的值分别为( ) A .15,12B .5,2C .-15,-12D .-5,-2二.填空题6.若a →=(2,-3,1),b →=(2,0,3),c →=(0,2,2),则a →⋅(b →+c →)=________.7.已知G 是∆ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ的值为_______. 8.已知|a →|=1,|b →|=2,<a →,b →>=60︒,则|a →-25(a →+2b →)|=________.三.解答题9.若向量(a →+3b →)⊥(7a →-5b →),(a →-4b →)⊥(7a →-2b →),求a →与b →的夹角.10.设123423223325=-+=+-=-+-=++,,,a i j k a i j k a i j k a i j k ,试求实数λμν,,,使4123a a a a λμν=++成立.11.正三棱柱111-ABC A B C 的底面边长为a ,求1AC 与侧面11ABB A 所成的角. 12.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x ,1,2).依题意πcos 422=⇒=.2x =-∴2x =+.2AE =-∴空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x,1,2).依题意πcos 422=⇒=2x =-∴2x =+.2AE =-∴。

高二数学上:选修2-1答案

高二数学上:选修2-1答案

高二数学上:选修2-1答案答案:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。

假。

7.若 $AB \neq B$,则 $AB \neq A$,真;8.3;9.原命题是真命题,则它的逆否命题是真命题。

10.略。

11.原命题真;逆命题:“已知 $\alpha,\beta \in \{x|x\neqk\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则 $\alpha=\beta$”假;否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则 $\tan\alpha\neq\tan\beta$”假;逆否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”真。

改写:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。

这是错误的。

7.若 $AB \neq B$,则 $AB \neq A$,这是正确的;8.3;9.原命题是真命题,则它的逆否命题也是真命题。

10.略。

11.原命题是真命题;逆命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则$\alpha=\beta$”是错误的;否命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则$\tan\alpha\neq\tan\beta$”是错误的;逆否命题:“已知$\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”是正确的。

高中数学选修2-1、2-2综合试题

高中数学选修2-1、2-2综合试题

④“ x > 2 ”是“ 1 4.由直线 x = 12 D . 15B . 2 ln 2高中数学选修2-1、2-2 综合试题班级-------------姓名-----------得分-----------一、 选择题(本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.复数 z 的虚部记作 Im (z ),若 z= 5 1 + 2i,则 Im ( z )=( )A .2B . 2iC .-2D .-2i2.考察以下列命题:①命题“ lg x = 0, 则x=1 ”的否命题为“若 lg x ≠ 0, 则x ≠ 1 ”②若“ p ∧ q ”为假命题,则 p 、q 均为假命题③命题 p : ∃x ∈ R ,使得 s in x > 1 ;则 ⌝p : ∀x ∈ R ,均有 sin x ≤ 11< ”的充分不必要条件x 2则真命题的个数为( ) A .1 B .2C .3D .43.在平行六面体 ABCD - A B C D 中, M 为 A C 与 B D 的交点。

1 1 111 111若 AB = a , AD = b , AA = c 则与 BM 相等的向量是()11 1 1 1A . - a + b + cB . a + b + c2 2 2 2A1DD1 C1 MB1 C1 1 1 1C . - a - b + cD . a - b + c2 2 2 2A B1 , x = 2, 曲线 y = - 及轴所围图形的面积为 ( )2 xA .- 2ln 2 C . 1 ln 2 45.已知抛物线 y 2 = 2 px( p > 0) 上有一点 M (4,y ),它到焦点 F 的距离为 5,则 ∆OFM 的面积(O 为原点)为()A .1B .2C . 2D . 2 26.用火柴棒摆“金鱼”,如图所示:…①②③7.在正三棱柱ABC-A B C中,若AB=2B B,则AB与C B所成角的大小为()②实数a,b,有(a+b)2=a2+2ab+b2;类比向量a,b,有(a+b)2=a+2a⋅b+b按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n+2B.6n-2C.8n+2D.8n-2111111A.60°B.75°C.105°D.90°8.给出下面四个类比结论()①实数a,b,若ab=0则a=0或b=0;类比向量a,b,若a⋅b=0,则a=0或b=022③向量a,有a2=a2;类比复数z,有z2=z2④实数a,b有a2+b2=0,则a=b=0;类比复数z,z有z2+z2=0,则212z=z=012其中类比结论正确的命题个数为()A.0B.1C.2D.39.已知抛物线=2px(p>1)的焦点F恰为双曲线(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为()A.2B.2C.2+1D.2+210.设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径()A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C二、填空题(每小题5分,共20分。

人教版高中数学选修2-1第一章检测题

人教版高中数学选修2-1第一章检测题

绝密★启用前高中数学选修2-1第一章检测题试卷副标题考试范围:XXX ;考试时间:100分钟;命题人:XXX学校:__________姓名:__________班级:__________考号:__________ 题号 一 二 三 总分 得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上评卷人 得分一、单项选择(注释)1、条件x x p =|:|,条件x x q -≥2:,则p 是q 的( )A .充分不必要条件B .必要不充分条件充要条件 D .既不充分又不必要条件2、命题“21,11x x <<<若则-”的逆否命题是( )A.21,1,1x x x ≥≥≤-若则或 B.若11<<-x ,则12<x C.若1x >或1x <-,则12>x D.若1x ≥或1x ≤-,则12≥x 3、下列命题中是全称命题的是( )A .圆有内接四边形B .23>C .23<D .若三角形的三边长分别为3、4、5,则这个三角形为直角三角形 4、在ABC ∆中,“A B =”是“sin sin A B =”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5、命题“对任意的2,310x R x x ∈-+≤”的否定是( ) 2000,310x R x x ∈-+≤2000,310x R x x ∈-+≤2000,310x R x x ∈-+>2,310x R x x ∈-+> 6、已知命题p :若(x -1)(x -2)≠0,则x≠1且x≠2;命题q :存在实数x 0,使2x 0<0.下列选项中为真命题的是( )A .⌝pB .qC .⌝p ∨qD .⌝q ∧p 7、)下列说法错误的是( )A .如果命题“⌝p ”与命题“p ∨q ”都是真命题,那么命题q 一定是真命题B .命题“若a =0,则ab =0”的否命题是:“若a ≠0,则ab ≠0”C .若命题p :∃x 0∈R ,x 02+2x 0-3<0,则?p :∀x ∈R ,x 2+2x -3≥0D .“sin θ=12”是“θ=30°”的充分不必要条件 8、“1k =-”是“两直线320kx y +-=和(2)70k x y -+-=互相垂直”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件9、在∆ABC 中,a B sin <bAsin 是A >B 成立的( ) A .必要不充分条件 B .充分不必要条件C .充分必要条件D .既不充分又不必要条件 10、有下列四个命题:①“若xy=1,则x 、y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题; ③“若022=+-m x x 有实根则1≤m ”; ④“若B A B B A ⊆=则, ”的逆否命题.其中真命题个数为( ).3 D .4评卷人 得分二、填空题(注释)11、已知x y R ∈、,那么命题“若x y 、中至少有一个不为0,则220x y +≠.”的逆否命题是 .12、已知命题p :220R x x ax a ∃∈++≤,,则命题p 的否定是_________;若命题p 为假命题,则实数a 的取值范围是___________.13、已知命题p :?x ∈[1,2],x 2-a ≥0,命题q :?x ∈R ,x 2+2ax +2-a =0,若“p 且q ” 为真命题,则实数a 的取值范围是______________.14、给出下列命题:(1)命题:“若b 2-4ac<0,则方程ax 2+bx +c =0(a ≠0)无实根”的否命题; (2)命题“△ABC 中,AB =BC =CA ,那么△ABC 为等边三角形”的逆命题; (3)命题“若a>b>0,则>>0”的逆否命题;(4)“若m>1,则mx 2-2(m +1)x +(m -3)>0的解集为R ”的逆命题. 其中真命题的个数为____________.评卷人 得分三、解答题(注释)15、写出下列命题的否定,并判断真假. (1)q:∀x ∈R ,x 不是5x-12=0的根; (2)r:有些质数是奇数; (3)s:∃x ∈R ,|x|>0.16、设命题p :“若0a ≥,则20x x a +-=有实根”. (1)试写出命题p 的逆否命题;(2)判断命题p 的逆否命题的真假,并写出判断过程. 17、已知全集U=R ,非空集合{23x A x x -=-<}0,{()()22B x x a x a =---<}0. (1)当12a =时,求()U C B A ⋂; (2)命题:p x A ∈,命题:q x B ∈,若q 是p 的必要条件,求实数a 的取值范围.18、已知命题p:(x+1)(x-5)≤0,命题q:m x m +≤≤-11(1)若p 是q 的必要条件,求实数m 的取值范围;(2)若m=5,“p q ∨ ”为真命题,“p q ∧ ”为假命题,求实数x 的取值范围。

高二数学选修2-1第三章 空间向量与立体几何练习题及答案

高二数学选修2-1第三章 空间向量与立体几何练习题及答案

第三章 空间向量与立体几何空间向量的数乘运算 测试题姓名:_________班级:________ 得分:_______ 1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。

A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的_ C _ D _ A _ P_ N _ B_ M3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形 C .可构成钝角三角形 D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( )A .[0,5]B .[1,5]C .(1,5)D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 . 5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=C 1 B 1 A 1B A2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算§3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ D_ A_S_ F_ B_ P_ N_ EEN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x+-=,则2320x x --=,解得1x =,或23x =-(舍去),111,.A C C BD ∴=⊥1CD时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有1(,0,0)2MC =-(0,,0)AB a=,1)AA =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.1(,)2a AC =-,(0,)2aAM =,A∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t = 设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向, 可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)2SD a =-,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. _ C_ A_S_ F_ BO(2)由题设知,平面PAC 的一个法向量(,0,)22DS a a =,平面DAC 的一个法向量002OS =(,,),设所求二面角为θ,则cos 2OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且,0,),(0,,)2222DS a a CS a a ==-(.设,CE tCS = 则(,(1),)222BE BC CE BC tCS a t at =+=+=--,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.(完)。

高中数学选修2-1同步习题(答案详解)

高中数学选修2-1同步习题(答案详解)

(数学选修(数学选修2-12-1)第一章)第一章)第一章 常用逻辑用语常用逻辑用语常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c f ++<¹”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个 C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +¹” D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a Î<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p Ø是q Ø的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ×不为零,则,a b 都不为零”的逆否命题是 。

2.12:,A x x 是方程20(0)ax bx c a ++=¹的两实数根;12:b B x x a +=-,则A 是B 的 条件。

数学选修2-1空间向量及其运算练习题含答案

数学选修2-1空间向量及其运算练习题含答案

数学选修2-1空间向量及其运算练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 在棱长为1的正方体ABCD −A 1B 1C 1D 1中,点E 为底面A 1B 1C 1D 1内一动点,则EA →⋅EC →的取值范围是( ) A.[12,1] B.[0,1] C.[−1,0]D.[−12,0]2. 已知向量a →=(3, 5, −1),b →=(2, 2, 3),c →=(1, −1, 2),则向量a →−b →+4c →的坐标为( ) A.(5, −1, 4) B.(5, 1, −4) C.(−5, 1, 4) D.(−5, −1, 4)3. 已知空间三点坐标分别为A (1,1,1),B (0,3,0),C (−2,−1,4),点P(−3,x,3)在平面ABC 内,则实数x 的值为( ) A.1 B.−2 C.0 D.−14. 如图,在四面体ABCD 中,设G 是CD 的中点,则AB →+12(BD →+BC →)等于( )A.AD →B.BG →C.CD →D.AG →5. 已知{a →, b →, c →}是空间的一组单位正交基底,而{a →−b →, c →, a →+b →}是空间的另一组基底.若向量p →在基底{a →, b →, c →}下的坐标为(6, 4, 2),则向量p →在基底{a →−b →, c →, a →+b →}下的坐标为( ) A.(1, 2, 5) B.(5, 2, 1) C.(1, 2, 3) D.(3, 2, 1)6. 若a →=(2, −3, 1),b →=(2, 0, 3),c →=(0, 2, 2),则a →⋅(b →+c →)=( ) A.4 B.15 C.7 D.37. 已知a →,b →是空间两个向量,若|a →|=|b →|=2,|a →−b →|=√7,则cos ⟨a →,b →⟩=( ) A.18B.14C.12D.18. 已知正方体ABCD −A 1B 1C 1D 1,点P ,Q 为线段B 1B ,AB 上的动点,下列命题正确的是( )A.(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2B.A 1C →⋅(A 1B 1→−A 1A →)=0C.若AC 1→=xAB →+2yBC →+3zC 1C →,则x +y +z =75 D.对任意给定的点Q ,存在点P ,使得CP ⊥D 1Q9. 已知正四面体ABCD 的棱长为1,O 是该正四面体外接球球心,且AO →=xAB →+yAC →+zAD →,x ,y ,z ∈R ,则x +y +z =( ) A.34 B.13C.12D.1410. 下列命题正确的是( )A.a →|−|b →|<|a →+b →|是向量a →,b →不共线的充要条件B.在空间四边形ABCD 中,AB →⋅CD →+BC →⋅AD →+CA →⋅BD →=0 C.在棱长为1的正四面体ABCD 中,AB →⋅BC →=12D.设A ,B ,C 三点不共线,O 为平面ABC 外一点,若OP →=13OA →+23OB →+OC →则P ,A ,B ,C 四点共面11. 已知a →=(x, −2, 6),b →=(2, −1, 3),a → // b →,则x =________.12. 已知正方体ABCD −A 1B 1C 1D 1,点E ,F 分别是上底面A 1C 1和侧面CD 1的中心,求下列各式中的x ,y 的值:(1)AC 1→=x(AB →+BC →+CC 1→),则x =________;(2)AE →=AA 1→+xAB →+yAD →,则x =________,y =________;(3)AF →=AD →+xAB →+yAA 1→,则x =________,y =________.13. 在长方体ABCD −A 1B 1C 1D 1中,化简:DA →−DB →+B 1C →−B 1B →+A 1B 1→−A 1B →=________.14. 如图,在四边形ABCD 中,DC →=13AB →,E 为BC 的中点,且AE →=x ﹒AB →+y ⋅AD →,则3x −2y =________.15. 设点C(2a +1, a +1, 2)在点P(2, 0, 0),A(1, −3, 2),B(8, −1, 4)所确定的平面上,则a =________.16. 已知向量a →=(3,5,0),b →=(1,2,−1),则|a →−2b →|等于________.17. 已知点A(1, −2, 11)、B(4, 2, 3),C(6, −1, 4),则△ABC 中角C 的大小是________.18. 如图,在三棱锥D −ABC 中,已知AB =AD =2,BC =1,AC →⋅BD →=−3,则CD =________.19. 已知扇形AOB ,点C 在弧AB 上(异于A ,B 两点),线段AB 与OC 交与点M ,设OC →=tOA →+3tOB →(t ≠0),AM →=mAB →(m ≠0),则m =________.20. 设a →=(2, 2m −3, n +2),b →=(6, 2m −1, 4n −2),且a → // b →,则m +n =________.21. 已知点A(1, −2, 0)和a →=(−3, 4, 12),求点B 的坐标,使AB → // a →,且|AB|等于|a →|的2倍.22. 已知正方体ABCD −A ′B ′C ′D ′的边长为a . (1)求AC →⋅AA ′→; (2)求AC →⋅A ′C ′→;(3)求AC →⋅AC ′→.23. 已知向量a →=2e →1−3e →2,b→=2e →1+3e →2,其中e →1、e →2不共线,向量c →=2e →1−9e →2.问是否存在这样的实数λ、μ,使向量d→=λa →+μb →与c →共线?24. 已知向量a →,b →,c →分别平行于x 轴,y 轴,z 轴,他们的坐标各有什么特点?25. 已知向量a →=(−2, −1, 2),b →=(−1, 1, 2),c →=(x, 2, 2).(1)当|c →|=2√2时,若向量ka →+b →与c →垂直,求实数x 和k 的值;(2)若向量c →与向量a →,b →共面,求实数x 的值.26. 如图,在正四棱锥P −ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.(1)设AB →=a →,AD →=b →,AP →=c →,用a →,b →,c →表示向量BM →;(2)在如图的空间直角坐标系中,求向量BM →的坐标.27. 如图,在棱长为a 的正方体A 1B 1C 1D 1−ABCD 中,(1)作出面A 1BC 1与面ABCD 的交线l ,判断l 与直线A 1C 1位置关系,并给出证明;(2)证明B 1D ⊥面A 1BC 1;(3)求直线AC 到面A 1BC 1的距离;(4)若以A 为坐标原点,分别以AB ,AD ,AA 1所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,试写出C ,C 1两点的坐标.28. 如图,在平行六面体ABCD −A 1B 1C 1D 1中,AB =5,AD =3,AA 1=4,∠DAB =90∘,∠BAA 1=∠DAA 1=60∘,E 是CC 1的中点,设AB →=a →,AD →=b →,AA 1→=c →.(1)用a →,b →,c →表示AE →;(2)求AE 的长?29. 设空间向量a →=(3, 5, −4),b →=(2, 1, 8).(1)计算2a →+3b →,3a →−2b →,a →⋅b →的值,并求a →与b →所成角的余弦值;(2)当λ、μ,满足什么条件时,使得λa →+μb →与z 轴垂直.30. 如图,在正方体ABCD −A 1B 1C 1D 1中,点E 是上底面A 1C 1 的中心,化简下列向量表达式,并在图中标出化简结果的向量.(1)AB →+BC →−C 1C →;(2)12AB →−12DA →−A 1A →.31. 已知长方体ABCD −A 1B 1C 1D 1,点E 、F 分别是上底面A 1B 1C 1D 1和面CC 1D 1D 的中心,求其中x ,y ,z 的值.(1)AC 1→=xAB →+yBC →+zCC 1→;(2)AE →=xAB →+yBC →+zCC 1→;(3)AF →=xBA →+yBC →+zC 1C →.32. 如图所示,在长方体体ABCD −A 1B 1C 1D 1中,O 为AC 的中点.(1)化简:A 1O →−12AB →−12AD →;(2)设E 是棱DD 1上的点,且DE →=23DD 1→,若EO →=xAB →+yAD →+zAA 1→,试求实数x ,y ,z 的值.33. 已知长方体ABCD −A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点.求下列向量的数量积: (1)BC →⋅ED 1→;(2)BF →⋅AB 1→.34. 在平行六面体ABCD −A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90∘,∠BAA 1=∠DAA 1=60∘.若AB →=a →,AD →=b →,AA 1→=c →(1)用基底{a →,b →,c →}表示向量BM →;(2)求向量AC 1→的长度.35. 如图,在三棱柱ABC −A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,△A 1AC 为等边三角形,AC ⊥A 1B .(1)求证:AB =BC ;(2)若∠ABC =90∘,求A 1B 与平面BCC 1B 1所成角的正弦值.36. 三棱柱ABC −A 1B 1C 1中,M 、N 分别是A 1B 、B 1C 1上的点,且BM =2A 1M ,C 1N =2B 1N .设AB →=a →,AC →=b →,AA 1→=c →.(1)试用a →,b →,c →表示向量MN →;(2)若∠BAC =90∘,∠BAA 1=∠CAA 1=60∘,AB =AC =AA 1=1,求MN 的长.37. 已知六边形ABCDEF 的三对对边都互相平行,并且FC →=2AB →=2DE →,又设AB →=α→,BC →=β→,求CE →和CD →.38. 已知PA 垂直于正方形ABCD 所在平面,M ,N 分别是AB ,PC 的中点,并且PA =AD =1,求MN →,DC →的坐标.39. 若M 、A 、B 三点不共线,且存在实数λ1,λ2,使MC →=λ1MA →+λ2MB →,求证:A 、B 、C 三点共线的充要条件是λ1+λ2=1.40. 如图所示,在各个面都是平行四边形的四棱柱ABCD −A 1B 1C 1D 1中,P 是CA 1的中点,M 是CD 1的中点,N 是C 1D 1的中点,点Q 在CA 1上,且CQ:QA 1=4:1,设AB →=a ,AD →=b ,AA 1→=c ,用基底{a, b, c}表示以下向量:(1)AP →;(2)AM →;(3)AN →;(4)AQ →.参考答案与试题解析数学选修2-1空间向量及其运算练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 A【考点】 空间向量向量的概念与向量的模【解析】 此题暂无解析 【解答】解:如图,以D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴, 以DD 1 所在的直线为x 轴,建立空间直角坐标系,可得点A(1,0,0),C(0,1,0) 设点E 的坐标为(x,y,1),则0≤x ≤1,0≤y ≤1 ∴ EA →=(1,−x,−y −1), EC →=(−x,1−y,−1),EA →⋅EC →=−x(1−x)−y(1−y)+1=x 2−x +y 2−y +1=(x −12)2+(y −12)2+12. 由二次函数的性质可得,当x =y =12时,EA →⋅EC →.取得最小值12,当x =0或x =1,且y =0或y =1时,EA →⋅EC →取得最大值1, 因此EA →⋅EC →的取值范围是[12,1],故选A .2. 【答案】A【考点】空间向量运算的坐标表示【解析】直接利用空间向量的坐标运算求解即可.【解答】解:向量a →=(3, 5, −1),b →=(2, 2, 3),c →=(1, −1, 2),则向量a →−b →+4c →=(3, 5, −1)−(2, 2, 3)+4(1, −1, 2)=(5, −1, 4),故选:A .3.【答案】A【考点】空间向量的基本定理及其意义【解析】利用点P (−3,x ,3)在平面ABC 内,得到AP →=mAB →+nAC →,利用向量的坐标运算和空间向量基本定理求解即可.【解答】解:点P (−3,x ,3)在平面ABC 内,则AP →=mAB →+nAC →,即(−4,x −1,2)=m (−1,2,−1)+n (−3,−2,3),所以−4=−m −3n ,x −1=2m −2n ,2=−m +3n ,解得m =1,n =1,x =1,故选:A .4.【答案】D【考点】空间向量的加减法【解析】先求出则12(BD →+BC →)=BG →,根据向量的加法运算法则计算即可.【解答】解:∵ G 是CD 的中点,∴ AB →+12(BD →+BC →)=AB →+BG →=AG →,故选:D .5.【答案】A【考点】空间向量【解析】设向量p →在基底{a →−b →, c →, a →+b →}下的坐标为(x, y, z),由p →=6a →+4b →+2c →=x(a →−b →)+yc →+z(a →+b →),列出方程组,求出x ,y ,z 的值即可.【解答】解:设向量p →在基底{a →−b →, c →, a →+b →}下的坐标为(x, y, z),可得p →=6a →+4b →+2c →=x(a →−b →)+yc →+z(a →+b →),所以:{6=x +z4=−x +z 2=y∴ x =1,y =2,z =5故选:A .6.【答案】D【考点】空间向量的数量积运算空间向量运算的坐标表示【解析】先求出 b →+c →,再利用空间向量的数量积公式 a →=(x 1,y 1,z 1),b →=(x 2,y 2,z 2),a →⋅b →=x 1⋅x 2+y 1y 2+z 1z 2求出a →⋅(b →+c →).【解答】解:∵ b →=(2, 0, 3),c →=(0, 2, 2),∴ b →+c →=(2, 2, 5),∴ a →⋅(b →+c →)=2×2+(−3)×2+1×5=3,故选D .7.【答案】A【考点】空间向量的数乘运算【解析】此题暂无解析【解答】此题暂无解答8.【答案】A,B,D【考点】空间向量运算的坐标表示空间向量的数量积运算空间向量的加减法命题的真假判断与应用棱柱的结构特征【解析】此题暂无解析【解答】解:建立如图的空间直角坐标系,设正方体ABCD −A 1B 1C 1D 1的棱长为1,则A(0,0,1),C(1,1,1),A 1(0,0,0),B 1(0,1,0),C 1(1,1,0),D 1(1,0,0),所以A 1A →=(0,0,1),A 1D 1→=(1,0,0),A 1B 1→=(0,1,0),A 1C →=(1,1,1),AD →1=(1,0,−1), (A 1A →+A 1D 1→+A 1B 1→)2=(1,1,1)2=3=3A 1B 1→2,A 正确; A 1C →⋅(A 1B 1→−A 1A →)=(1,1,1)⋅(0,1,−1)=0,B 正确;AC 1→=AB →+BC →+CC 1→=AB →+BC →−C 1C →=xAB →+2yBC →+3zC 1C →,解得x =1,y =12,z =−13,则x +y +z =76,C 错误;当点P 与B 1重合时,CP ⊥AB 且CP ⊥AD 1,所以CP ⊥平面ABD 1,因为对于任意给定的点Q ,都有D 1Q ⊂平面ABD 1,所以对于任意给定的点Q ,存在点P ,使得D 1Q ⊥CP ,D 正确.故选ABD .9.【答案】A【考点】棱锥的结构特征空间向量的数乘运算空间向量【解析】 根据正四面体的性质求出棱锥的高,根据等体积法求出内切球的半径,建立坐标系,求出各向量的坐标,代入坐标运算即可解出.【解答】解:设正四面体的高为AM ,延长DM 交BC 于E ,则E 为BC 的中点.∴ DE =√32,DM =23DE =√33, ∴ AM =√AD 2−DM 2=√63, 设内切球半径为r,则V A−BCD =13S △BCD ⋅AM =4×13×S BCD ⋅r ,∴ r =AM4=√612,∴ OM =√612, 以M 为原点,建立如图所示的空间坐标系M −xyz ,则A (0,0,√63),B (12,−√36,0),C (−12,−√36,0), D (0,√33,0),O (0,0,√612) ∴ AO →=(0,0,−√64),AB →=(12,−√36,−√63), AC →=(−12,−√36,√63),AD →(0,√33,√63), AO →=xAB →+yAC →+zAD → { 12x −12y =0−√36x −√36y +√33z =0−√63x −√63y −√63z =−√64, 解得x =y =z =14. ∴ x +y +z =34. 故选A .10.【答案】B【考点】空间向量的基本定理及其意义空间向量的数量积运算共线向量与共面向量【解析】本题考查了空间向量的有关命题,根据向量共线,共面定理,向量数乘运算即可依次判断.【解答】解:若a →,b →为非零的同向向量,则|a →|−|b →|<|a →+b →|,故A 错;在空间四边形中,AB →⋅CD →+BC →⋅AD →+CA →⋅BD →=−BA →⋅(BD →−BC →)+BC →⋅(BD →−BA →)+BD →⋅(BA →−BC →)=−BA →⋅BD →+BA →⋅BC →+BC →⋅BD →−BC →⋅BA →+BD →⋅BA →−BD →⋅BC →=0,故B 正确;在棱长为1的四面体中,AB →⋅BC →=1⋅1⋅cos (π−∠ABC)=−cos ∠ABC ,不一定为12,故C 错;若A ,B ,C 三点不共线,P 与之共面,则OP →=tOA →+mOB →+nOC →,满足t +m +n =1, 而13+23+1≠1,故P ,A ,B ,C 不共面,故D 错误.故选B .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )11.【答案】4【考点】共线向量与共面向量【解析】根据所给的两个向量的坐标和两个向量之间的平行关系,写出向量平行的坐标形式的充要条件,解方程即可.【解答】解:∵ a →=(2, −1, 3),b →=(2, −1, 3),a → // b →∴ x 2=−2−1=63∴ x =4故答案为:412.【答案】112,1212,12【考点】空间向量的数乘运算空间向量的加减法【解析】(1)根据向量加法的首尾相连法则求解;(2)由向量加法的三角形法则和四边形法则得AE →=AA 1→+A 1E →和A 1E →=12(A 1B 1→+A 1D 1→),再由向量相等求解;(3)由向量加法的三角形法则和四边形法则得AF →=AD →+DF →和DF →=12(DC →+DD 1→),再由向量相等求解.【解答】解:(1)根据向量加法的首尾相连法则,x =1;(2)由向量加法的三角形法则得,AE →=AA 1→+A 1E →,由四边形法则和向量相等得,A 1E →=12(A 1B 1→+A 1D 1→)=12(AB →+AD →); ∴ AE →=AA 1→+12AB →+12AD →,∴ x =y =12;(3)由向量加法的三角形法则得,AF →=AD →+DF →,由四边形法则和向量相等得,DF →=12(DC →+DD 1→)=12(AB →+AA 1→);∴ AF →=AD →+12AB →+12AA 1→,∴ x =y =12.13.【答案】BD 1→【考点】空间向量的加减法【解析】根据向量的加减的运算法则即可求出.【解答】解:长方体ABCD −A 1B 1C 1D 1中,如图,DA →−DB →+B 1C →−B 1B →+A 1B 1→−A 1B →=BA →+BC →+BB 1→=BD →+BB 1→=BD 1→, 故答案为:BD 1→,14.【答案】1【考点】向量的线性运算性质及几何意义【解析】利用向量共线定理和向量的三角形法则及其多边形法则即可得出.【解答】解:∵ E 为BC 的中点,∴ BE →=12BC →, 又BC →=BA →+AD →+DC →=−AB →+AD →+13AB →,∴ BE →=12(−23AB →+AD →)=−13AB →+12AD →,∴ AE →=AB →+BE →=AB →−13AB →+12AD →=23AB →+12AD →.而AE →=x ﹒AB →+y ⋅AD →,∴ x =23,y =12.∴ 3x −2y =2−1=1.故答案为:1.15.【答案】16【考点】共线向量与共面向量【解析】利用平面向量基本定理即可得出.【解答】解:由已知,得PA →=(−1, −3, 2),PB →=(6, −1, 4).设PC →=xPA →+yPB →(x ,y ∈R ),则(2a −1, a +1, 2)=x(−1,−3,2)+y(6,−1,4)=(−x +6y,−3x −y,2x +4y),所以{2a −1=−x +6y a +1=−3x −y 2=2x +4y ,解得{x =−7y =4a =16.故答案为:16.16.【答案】 √6【考点】空间向量运算的坐标表示空间向量的数乘运算空间向量的数量积运算【解析】本题考查空间向量的坐标运算及向量的模.【解答】解:a →−2b →=(3,5,0)−2(1,2,−1)=(1,1,2),所以|a →−2b →|=√1+1+4=√6故答案为:√6.17.【答案】90∘【考点】空间向量运算的坐标表示【解析】空间两点P 1(x 1, y 1, z 1),P 2(x 2, y 2, z 2),则P 1、P 2的距离:P 1P 2=√(x 1−x 2)2+(y 1−y 2)2+(z 1−z 2)2,根据这个公式可以计算出AC 、BC 的长度,再用两个向量的夹角公式,得到∠ACB 的余弦,从而得到角C 的大小【解答】解:∵ A(1, −2, 11)、B(4, 2, 3),C(6, −1, 4),∴ |AC →|=√(1−6)2+(−2+1)2+(11−4)2=√75|BC →|=√(4−6)2+(2+1)2+(3−4)2=√14又∵ CA →=(−5,−1,7),CB →=(−2,3,−1)∴ CA →⋅CB →=(−5)×(−2)+(−1)×3+7×(−1)=0可得cos ∠ACB =|CA|→|×|CB →|˙=0∵ ∠ACB ∈(0∘, 180∘)∴ ∠ACB =90∘故答案为90∘18.【答案】 √7【考点】空间向量的数量积运算【解析】用AB →,AD →表示BD →,根据已知条件列方程得出AC ,∠BAC ,∠DAC 的关系,使用等量代换计算CD 2=|AD →−AC →|2.【解答】解:设∠BAC =α,∠DAC =β,∵ |AC →−AB →|=BC →=1,∴ AC 2+AB 2−2AC ⋅AB cos α=1,即AC 2−4AC cos α=−3.∵ AC →⋅BD →=−3,∴ AC →⋅(AD →−AB →)=AC →⋅AD →−AC →⋅AB →=−3,即2AC cos β−2AC cos α=−3,∴ 2AC cos β=2AC cos α−3.∴ CD 2=(AD →−AC →)2=AD →2+AC →2−2AC →⋅AD →=4+AC 2−4AC cos β =4+AC 2−4AC cos α+6=7.∴ CD =√7.故答案为:√7.19.【答案】34【考点】向量的线性运算性质及几何意义【解析】根据条件及向量加法、减法,及数乘的几何意义及其运算便可得到OM →=(1−m)OA →+mOB →,从而有OC →=kOM →=k(1−m)OA →+kmOB →,由平面向量基本定理便得到{k(1−m)=t km =3t,解出m 即可. 【解答】解:如图,OM →=OA →+AM →=OA →+mAB →=OA →+m(OB →−OA →)=(1−m)OA →+mOB →;O ,M ,C 三点共线;∴ 存在实数k ,OC →=kOM →=k(1−m)OA →+mkOB →;又OC →=tOA →+3tOB →;∴ {k(1−m)=t mk =3t; 解得m =34.故答案为:34.20.【答案】10【考点】共线向量与共面向量【解析】利用向量平行的坐标之间的关系解答.【解答】解:∵ a →=(2, 2m −3, n +2),b →=(6, 2m −1, 4n −2),且a → // b →, ∴ 26=2m−32m−1=n+24n−2,解得m =2,n =8;∴ m +n =10;故答案为:10.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:∵ AB → // a →,∴ 可设AB →=na →=(−3n, 4n, 12n),∵ |a →|=13,∴ |AB →|=|n|⋅|a →|=13|n|∵ |AB →|=2|a →|,13|n|=26,解得n =2或n =−2,当n =2时,OB →=OA →+AB →=(1, −2, 0)+(−6, 8, 24)=(−5, 6, 24), 当n =−2时,OB →=OA →+AB →=(1, −2, 0)+(6, −8, −24)=(7, −10, −24),故B 为(−5, 6, 24)或(7, −10, −24).【考点】空间向量的夹角与距离求解公式共线向量与共面向量【解析】设AB →=na →=(−3n, 4n, 12n),由|AB →|=2|a →|,得n =2或n =−2,由此利用OB →=OA →+AB →,能求出点B 的坐标.【解答】解:∵ AB → // a →,∴ 可设AB →=na →=(−3n, 4n, 12n),∵ |a →|=13,∴ |AB →|=|n|⋅|a →|=13|n|∵ |AB →|=2|a →|,13|n|=26,解得n =2或n =−2,当n =2时,OB →=OA →+AB →=(1, −2, 0)+(−6, 8, 24)=(−5, 6, 24), 当n =−2时,OB →=OA →+AB →=(1, −2, 0)+(6, −8, −24)=(7, −10, −24),故B 为(−5, 6, 24)或(7, −10, −24).22.【答案】解:(1)∵ AA ′⊥平面ABCD ,AC ⊂平面ABCD ,∴ AC ⊥AA ′,∴ AC →⋅AA ′→=0.(2)∵ AC // A ′C ′,∴ AC →⋅A ′C ′→=|AC →|⋅|A ′C ′→|⋅cos 0=√2a ⋅√2a =2a 2. (3)AC →⋅AC ′→=|AC →|⋅|AC ′→|cos ∠C ′AC=√2a ×√3a 2222√2a⋅√3a =2a 2.【考点】空间向量的数量积运算【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD′为z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】解:(1)∵ AA ′⊥平面ABCD ,AC ⊂平面ABCD ,∴ AC ⊥AA ′,∴ AC →⋅AA ′→=0.(2)∵ AC // A ′C ′,∴ AC →⋅A ′C ′→=|AC →|⋅|A ′C ′→|⋅cos 0=√2a ⋅√2a =2a 2. (3)AC →⋅AC ′→=|AC →|⋅|AC ′→|cos ∠C ′AC=√2a ×√3a 2222√2a⋅√3a =2a 2.23.【答案】 解:∵ d →=λ(2e →1−3e →2)+μ(2e →1+3e →2)=(2λ+2μ)e →1+(−3λ+3μ)e →2,若d →与c →共线,则存在实数k ≠0,使d →=kc →,即(2λ+2μ)e →1+(−3λ+3μ)e →2=2ke →1−9ke →2,由{2λ+2μ=2k −3λ+3μ=−9k 得λ=−2μ. 故存在这样的实数λ、μ,只要λ=−2μ,就能使d →与c →共线.【考点】向量的线性运算性质及几何意义【解析】先将向量a →、b →代入表示出向量d →,然后假设共线可得:应有实数k ,使d →=kc →.即可得到λ=−2μ的关系式,从而得到答案.【解答】解:∵ d →=λ(2e →1−3e →2)+μ(2e →1+3e →2)=(2λ+2μ)e →1+(−3λ+3μ)e →2,若d →与c →共线,则存在实数k ≠0,使d →=kc →,即(2λ+2μ)e →1+(−3λ+3μ)e →2=2ke →1−9ke →2,由{2λ+2μ=2k −3λ+3μ=−9k 得λ=−2μ. 故存在这样的实数λ、μ,只要λ=−2μ,就能使d →与c →共线.24.【答案】解:向量a →,b →,c →分别平行于x 轴,y 轴,z 轴,所以向量a →的横坐标不为0,横坐标为0,竖坐标为0;向量b →的横坐标为0,横坐标不为0,竖坐标为0;向量c →的横坐标为0,横坐标为0,竖坐标不为0;【考点】空间向量的正交分解及其坐标表示空间向量【解析】直接利用向量与坐标轴的关系,写出结果即可.【解答】解:向量a →,b →,c →分别平行于x 轴,y 轴,z 轴,所以向量a →的横坐标不为0,横坐标为0,竖坐标为0;向量b →的横坐标为0,横坐标不为0,竖坐标为0;向量c →的横坐标为0,横坐标为0,竖坐标不为0;25.【答案】解:(1)当|c →|=2√2时,√x 2+4+4=2√2,解得x =0,且向量ka →+b →=(−2k −1, 1−k, 2k +2).因为向量ka →+b →与c →垂直,所以(ka →+b →)⋅c →=0,即2(1−k)+2(2k +2)=0,解得k =−3,所以实数x 和k 的值分别为0和−3.(2)因为向量c →与向量a →,b →共面,所以设c →=λa →+μb →(λ,μ∈R),所以(x, 2, 2)=λ(−2, −1, 2)+μ(−1, 1, 2),所以{x =−2λ−μ,2=μ−λ,2=2λ+2μ,解得{x =−12,λ=−12,μ=32, 所以实数x 的值为−12.【考点】向量的线性运算性质及几何意义向量的数量积判断向量的共线与垂直空间向量的数量积运算共线向量与共面向量【解析】(Ⅰ)直接利用向量的垂直的充要条件的应用求出结果.(Ⅱ)直接利用共面向量基本定理的应用求出结果.【解答】解:(1)当|c →|=2√2时,√x 2+4+4=2√2,解得x =0,且向量ka →+b →=(−2k −1, 1−k, 2k +2).因为向量ka →+b →与c →垂直,所以(ka →+b →)⋅c →=0,即2(1−k)+2(2k +2)=0,解得k =−3,所以实数x 和k 的值分别为0和−3.(2)因为向量c →与向量a →,b →共面,所以设c →=λa →+μb →(λ,μ∈R),所以(x, 2, 2)=λ(−2, −1, 2)+μ(−1, 1, 2),所以{x =−2λ−μ,2=μ−λ,2=2λ+2μ,解得{x =−12,λ=−12,μ=32, 所以实数x 的值为−12.26.【答案】解:(1)∵ BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →−AC →,AC →=AB →+AD →,∴ BM →=AD →+12(AP →−AC →)=AD →+12AP →−12(AB →+AD →) =12AD →+12AP →−12AB → =12b →+12c →−12a →.(2)a →=AB →=(1, 0, 0),b →=AD →=(0, 1, 0),∵ O(12,12,0),P(12,12,1).∴ c →=AP →=OP →−OA →=(0, 0, 1),∴ BM →=12b →+12c →−12a →=12(0, 1, 0)+12(0, 0, 1)−12(1, 0, 0)=(−12,12,12).【考点】空间向量的基本定理及其意义空间向量【解析】(1)利用向量的三角形法则可得:BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →−AC →,AC →=AB →+AD →,代入化简即可得出.(2)由于a →=AB →=(1, 0, 0),b →=AD →=(0, 1, 0),c →=AP →=OP →−OA →=(0, 0, 1),代入即可得出.【解答】解:(1)∵ BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →−AC →,AC →=AB →+AD →,∴ BM →=AD →+12(AP →−AC →)=AD →+12AP →−12(AB →+AD →) =12AD →+12AP →−12AB → =12b →+12c →−12a →.(2)a →=AB →=(1, 0, 0),b →=AD →=(0, 1, 0),∵ O(12,12,0),P(12,12,1).∴ c →=AP →=OP →−OA →=(0, 0, 1),∴ BM →=12b →+12c →−12a →=12(0, 1, 0)+12(0, 0, 1)−12(1, 0, 0) =(−12,12,12).27.【答案】(1)解:在平面ABCD 内过点B 作AC 的平行线BE ,∵ AC // A 1C 1,AC // BE ,∴ BE // A 1C 1,∴ 面A 1BC 1与面ABCD 的交线l 与BE 重合,即直线BE 就是所求的直线l .∵ BE // A 1C 1,l 与BE 重合,∴ l // A 1C 1.(2)证明:连接B 1D 1,∵ A 1B 1C 1D 1是正方形,∴ A 1C 1⊥B 1D 1,∵ A 1C 1⊥DD 1,∴ A 1C 1⊥面DBB 1D 1,∴ A 1C 1⊥B 1D .同理A 1B ⊥面ADC 1B 1,∴ A 1B ⊥B 1D ,∵ A 1C 1∩A 1B =A 1,∴ B 1D ⊥面A 1BC 1.(3)解:∵AC // A1C1,且AC在面A1BC1外,A1C1⊂面A1BC1,∴AC // 面A1BC1,∴直线AC到面A1BC1的距离即为点A到面A1BC1的距离,记为ℎ,在三棱锥中A−A1BC1中,V A_A1BC1=V C1−ABA1,∵正方体A1B1C1D1−ABCD棱长为a,∴V A−A1BC1=13⋅S△A1BC1⋅ℎ=13×12×(√2a)2×ℎ×sin60∘=√3a26ℎ,V C1−ABA1=13⋅S△ABA1⋅A1C1=13⋅12⋅a⋅a⋅√2a=√26a3,∵V A_A1BC1=V C1−ABA1,∴ℎ=√63a.(4)解:若以A为坐标原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,∵正方体A1B1C1D1−ABCD的棱长为a,∴C(a, a, 0),C1(a, a, a).【考点】点、线、面间的距离计算柱体、锥体、台体的体积计算空间中直线与直线之间的位置关系空间向量的正交分解及其坐标表示【解析】(1)在平面ABCD内过点B作AC的平行线BE,由AC // A1C1,AC // BE,知BE // A1C1,故直线BE就是所求的直线l.且l // A1C1.(2)由A1C1⊥面DBB1D1,知A1C1⊥B1D.由A1B⊥面ADC1B1,知A1B⊥B1D,所以B1D⊥面A1BC1.(3)AC // A1C1,且AC在面A1BC1外,A1C1⊂面A1BC1,所以AC // 面A1BC1,直线AC到面A1BC1的距离即为点A到面A1BC1的距离,记为ℎ,由等积法能求出ℎ=√63a.(4)若以A为坐标原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴,建立空间直角坐标系,能写出C,C1两点的坐标.【解答】(1)解:在平面ABCD内过点B作AC的平行线BE,∵AC // A1C1,AC // BE,∴BE // A1C1,∴面A1BC1与面ABCD的交线l与BE重合,即直线BE就是所求的直线l.∵BE // A1C1,l与BE重合,∴l // A1C1.(2)证明:连接B1D1,∵A1B1C1D1是正方形,∴A1C1⊥B1D1,∵A1C1⊥DD1,∴A1C1⊥面DBB1D1,∴A1C1⊥B1D.同理A1B⊥面ADC1B1,∴A1B⊥B1D,∵A1C1∩A1B=A1,∴B1D⊥面A1BC1.(3)解:∵AC // A1C1,且AC在面A1BC1外,A1C1⊂面A1BC1,∴AC // 面A1BC1,∴直线AC到面A1BC1的距离即为点A到面A1BC1的距离,记为ℎ,在三棱锥中A−A1BC1中,V A_A1BC1=V C1−ABA1,∵正方体A1B1C1D1−ABCD棱长为a,∴V A−A1BC1=13⋅S△A1BC1⋅ℎ=13×12×(√2a)2×ℎ×sin60∘=√3a26ℎ,V C1−ABA1=13⋅S△ABA1⋅A1C1=13⋅12⋅a⋅a⋅√2a=√26a3,∵V A_A1BC1=V C1−ABA1,∴ℎ=√63a.(4)解:若以A为坐标原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,∵正方体A1B1C1D1−ABCD的棱长为a,∴C(a, a, 0),C1(a, a, a).28.【答案】解:(1)根据向量的三角形法则得到AE →=AB →+BC →+CE →=a →+b →+12c → (2)∵ |AE →|2=(a →+b →+12c →)2 =a →2+b →2+14c →2+2a →⋅b →+a →⋅c →+b →⋅c → =25+9+4+0+(20+12)⋅cos 60∘=54 ∴ |AE →|=3√6,即AE 的长为3√6.【考点】空间向量的基本定理及其意义空间向量的夹角与距离求解公式【解析】(1)根据向量的三角形法则把要表示的向量写成以几何体的棱为基底的向量的加法的形式,从向量的起点出发,沿着棱到终点.(2)根据上一问表示出的结果,把要求的向量两边平方,把得到平方式展开,得到已知向量的模长和数量积的关系,代入数据做出结果.【解答】解:(1)根据向量的三角形法则得到AE →=AB →+BC →+CE →=a →+b →+12c → (2)∵ |AE →|2=(a →+b →+12c →)2 =a →2+b →2+14c →2+2a →⋅b →+a →⋅c →+b →⋅c → =25+9+4+0+(20+12)⋅cos 60∘=54 ∴ |AE →|=3√6,即AE 的长为3√6.29.【答案】解:(1)∵ 空间向量a →=(3, 5, −4),b →=(2, 1, 8),∴ 2a →+3b →=(6, 10, −8)+(6, 3, 24)=(12, 13, 16),3a →−2b →=(9, 15, −12)−(4, 2, 16)=(5, 13, −28),a →⋅b →=6+5−32=−21,∴ a →与b →所成角的余弦值为:cos <a →,b →>=√9+25+16⋅√4+1+64=−7√138230. (2)z 轴的方向向量为(0, 0, 1),λa →+μb →=(3λ+2μ, 5λ+μ, −4λ+8μ),∵ λa →+μb →与z 轴垂直,则0⋅(3λ+2μ)+0⋅(5λ+μ)+(−4λ+8μ)=0,即8μ−4λ=0,∴ λ=2μ.∴ λ=2μ时,λa →+μb →与z 轴垂直.【考点】空间向量的数量积运算空间向量运算的坐标表示【解析】(1)利用空间向量坐标运算法则能求出2a →+3b →,3a →−2b →,a →⋅b →的值,并能求出a →与b →所成角的余弦值.(2)z 轴的方向向量为(0, 0, 1),λa →+μb →=(3λ+2μ, 5λ+μ, −4λ+8μ),由向量垂直的性质,能求出λ=2μ时,λa →+μb →与z 轴垂直.【解答】解:(1)∵ 空间向量a →=(3, 5, −4),b →=(2, 1, 8),∴ 2a →+3b →=(6, 10, −8)+(6, 3, 24)=(12, 13, 16),3a →−2b →=(9, 15, −12)−(4, 2, 16)=(5, 13, −28),a →⋅b →=6+5−32=−21,∴ a →与b →所成角的余弦值为:cos <a →,b →>=√9+25+16⋅√4+1+64=−7√138230. (2)z 轴的方向向量为(0, 0, 1),λa →+μb →=(3λ+2μ, 5λ+μ, −4λ+8μ),∵ λa →+μb →与z 轴垂直,则0⋅(3λ+2μ)+0⋅(5λ+μ)+(−4λ+8μ)=0,即8μ−4λ=0,∴ λ=2μ.∴ λ=2μ时,λa →+μb →与z 轴垂直.30.【答案】解:(1)AB →+BC →−C 1C →=AC →+CC 1→=AC 1→ ,AC 1→如图所示.(2)12AB →−12DA →−A 1A →=12(AB →+AD →)−A 1A →=12AC →+AA 1→=AE →,AE →如图所示.【考点】空间向量的加减法【解析】此题暂无解析【解答】解:(1)AB →+BC →−C 1C →=AC →+CC 1→=AC 1→, AC 1→如图所示.(2)12AB →−12DA →−A 1A →=12(AB →+AD →)−A 1A → =12AC →+AA 1→=AE →,AE →如图所示.31.【答案】解:(1)∵ 长方体ABCD −A 1B 1C 1D 1,点E 、F 分别是上底面A 1B 1C 1D 1和面CC 1D 1D 的中心,AC 1→=AB →+BC →+CC 1→=xAB →+yBC →+zCC 1→,∴ x =1,y =1,z =1.(2)AE →=AA 1→+A 1E →=12AB →+12BC →+CC 1→=xAB →+yBC →+zCC 1→,∴ x =12,y =12,z =1.(3)AF →=AD →+DF →=12AB →+BC →+12CC 1→=−12BA →+BC →+12CC 1→=xBA →+yBC →+zC 1C →, ∴ x =−12,y =1,z =12.【考点】空间向量的基本定理及其意义【解析】利用空间向量三角形法则结构长方体结构特征求解.【解答】解:(1)∵ 长方体ABCD −A 1B 1C 1D 1,点E 、F 分别是上底面A 1B 1C 1D 1和面CC 1D 1D 的中心,AC 1→=AB →+BC →+CC 1→=xAB →+yBC →+zCC 1→, ∴ x =1,y =1,z =1.(2)AE →=AA 1→+A 1E →=12AB →+12BC →+CC 1→=xAB →+yBC →+zCC 1→,∴ x =12,y =12,z =1.(3)AF →=AD →+DF →=12AB →+BC →+12CC 1→=−12BA →+BC →+12CC 1→=xBA →+yBC →+zC 1C →, ∴ x =−12,y =1,z =12.32.【答案】解:在长方体体ABCD −A 1B 1C 1D 1中,O 为AC 的中点;(1)A 1O →−12AB →−12AD →=A 1O →−12(AB →+AD →) =A 1O →−12AC → =A 1O →−AO →=A 1O →+OA →=A 1A →;(2)∵ E 是棱DD 1上的点,且DE →=23DD 1→,∴ OE →=OD →+DE →=12BD →+23DD 1→ =12(BA →+BC →)+23AA 1→ =12BA →+12BC →+23AA 1→ =−12AB →+12AD →+23AA 1→, ∴ EO →=−OE →=12AB →−12AD →−23AA 1→; 又EO →=xAB →+yAD →+zAA 1→,∴ x =12,y =−12,z =−23. 【考点】空间向量的基本定理及其意义空间向量的加减法【解析】根据题意,利用空间向量的线性运算法则,对(1)式进行化简,对(2)式进行线性表示即可.【解答】解:在长方体体ABCD −A 1B 1C 1D 1中,O 为AC 的中点;(1)A 1O →−12AB →−12AD →=A 1O →−12(AB →+AD →) =A 1O →−12AC → =A 1O →−AO →=A 1O →+OA →=A 1A →;(2)∵ E 是棱DD 1上的点,且DE →=23DD 1→, ∴ OE →=OD →+DE →=12BD →+23DD 1→ =12(BA →+BC →)+23AA 1→ =12BA →+12BC →+23AA 1→ =−12AB →+12AD →+23AA 1→,∴ EO →=−OE →=12AB →−12AD →−23AA 1→; 又EO →=xAB →+yAD →+zAA 1→,∴ x =12,y =−12,z =−23.33.【答案】解:(1)建立如图所示的空间直角坐标系,由题意可得A(0, 0, 0),B(2, 0, 0),C(2, 4, 0),E(1, 0, 1),B 1(2, 0, 2),D 1(0, 4, 2),F(0, 2, 2),可得BC →=(0, 4, 0),ED 1→=(−1, 4, 1),故BC →⋅ED 1→=0×(−1)+4×4+0×1=16.(2)可得BF →=(−2, 2, 2),AB 1→=(2, 0, 2),故BF →⋅AB 1→=−2×2+2×0+2×2=0.【考点】空间向量的数量积运算【解析】建立坐标系,由题意可得相关点的坐标,进而可得向量的坐标,由向量的坐标运算可得结果.【解答】解:(1)建立如图所示的空间直角坐标系,由题意可得A(0, 0, 0),B(2, 0, 0),C(2, 4, 0),E(1, 0, 1),B 1(2, 0, 2),D 1(0, 4, 2),F(0, 2, 2),可得BC →=(0, 4, 0),ED 1→=(−1, 4, 1),故BC →⋅ED 1→=0×(−1)+4×4+0×1=16.(2)可得BF →=(−2, 2, 2),AB 1→=(2, 0, 2),故BF →⋅AB 1→=−2×2+2×0+2×2=0.34.【答案】解:(1)由题意可得BM →=BB 1→+B 1M →=BB 1→+12B 1D 1→=BB 1→+12(A 1D 1→−A 1B 1→)=c →+12(b →−a →), 故BM →=−12a →+12b →+c →.------- (2)由条件得|a →|=1,|b →|=2,|c →|=3. a →⋅b →=0,a →⋅c →=32,b →⋅c →=3.------- AC 1→=a →+b →+c →.------故|AC →|=√(a →+b →+c →)2=√a →2+b →2+c →2+2a →⋅b →+2b →⋅c →+2a →⋅c →=√23.------ 【考点】空间向量的基本定理及其意义【解析】(1)利用两个向量的加减法的法则,以及其几何意义可得BM →=BB 1→+B 1M →=BB 1→+12(A 1D 1→−A 1B 1→),把已知的条件代入化简可得结果. (2)利用两个向量的数量积的定义求出基底中每个向量的模以及每两个向量的数量积,由|AC →|=√(a →+b →+c →)2=√a →2+b →2+c →2+2a →⋅b →+2b →⋅c →+2a →⋅c → 运算求得结果.【解答】解:(1)由题意可得BM →=BB 1→+B 1M →=BB 1→+12B 1D 1→=BB 1→+12(A 1D 1→−A 1B 1→)=c →+12(b →−a →),故BM →=−12a →+12b →+c →.-------(2)由条件得|a →|=1,|b →|=2,|c →|=3. a →⋅b →=0,a →⋅c →=32,b →⋅c →=3.------- AC 1→=a →+b →+c →.------故|AC →|=√(a →+b →+c →)2=√a →2+b →2+c →2+2a →⋅b →+2b →⋅c →+2a →⋅c →=√23.------ 35.【答案】(1)证明:如图,取AC 的中点O ,连接OA 1,OB .∵ 点O 为等边△A 1AC 边AC 的中点,∴ AC ⊥OA 1.∵ AC ⊥A 1B ,OA 1∩A 1B =A 1,OA 1⊂平面OA 1B ,A 1B ⊂平面OA 1B .∴ AC ⊥平面OA 1B ,又OB ⊂平面OA 1B ,∴ AC ⊥OB .∵ 点O 为AC 的中点,∴ AB =BC .(2)解:由(1)知,AB =BC , 又∠ABC =90∘ ,故△ABC 是以AC 为斜边的等腰直角三角形.∵ A 1O ⊥AC ,侧面ACC 1A 1⊥底面ABC ,面ACC 1A 1∩面ABC =AC ,∴ A 1O ⊥底面ABC以线段OB ,OC ,OA 1所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系O −xyz ,设AC =2,则A(0,-1,0),A 1(0,0,√3),B(1,0,0),C(0,1,0).∴ BC →=(−1,1,0),BB →1=AA →1=(0,1,√3),A 1B →=(1,0,−√3).设平面BCC 1B 1的一个法向量n 0=(x 0,y 0,z 0),则由{n 0⋅BC →=0,n 0⋅BB 1→=0,得{−x 0+y 0=0,y 0+√3z 0=0,令y 0=√3,得x 0=√3,z 0=−1,∴ 平面BCC 1B 1的一个法向量为n 0=√3,√3,−1.设A 1B 与平面BCC 1B 1所成角为θ,则sin θ=cos ⟨n 0,A 1B⟩=|n 0⋅A 1B →||n 0||A 1B →|=√217.【考点】空间向量的正交分解及其坐标表示棱柱的结构特征【解析】此题暂无解析【解答】解:(1)证明:如图,取AC的中点O,连接OA1,OB.∵点O为等边△A1AC边AC的中点,∴AC⊥OA1.∵AC⊥A1B,OA1∩A1B=A1,OA1⊂平面OA1B,A1B⊂平面OA1B.∴AC⊥平面OA1B,又OB⊂平面OA1B,∴AC⊥OB.∵点O为AC的中点,∴AB=BC.(2)解:由(1)知,AB=BC,又∠ABC=90∘,故△ABC是以AC为斜边的等腰直角三角形.∵A1O⊥AC,侧面ACC1A1⊥底面ABC,面ACC1A1∩面ABC=AC,∴A1O⊥底面ABC以线段OB,OC,OA1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系O−xyz,设AC=2,则A(0,-1,0),A1(0,0,√3),B(1,0,0),C(0,1,0). ∴BC→=(−1,1,0),BB→1=AA→1=(0,1,√3),A 1B →=(1,0,−√3).设平面BCC 1B 1的一个法向量n 0=(x 0,y 0,z 0),则由{n 0⋅BC →=0,n 0⋅BB 1→=0,得{−x 0+y 0=0,y 0+√3z 0=0,令y 0=√3,得x 0=√3,z 0=−1,∴ 平面BCC 1B 1的一个法向量为n 0=√3,√3,−1.设A 1B 与平面BCC 1B 1所成角为θ,则sin θ=cos ⟨n 0,A 1B⟩=|n 0⋅A 1B →||n 0||A 1B →|=√217.36.【答案】解:(1)由图形知MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→=13(c →−a →)+a →+13(b →−a →)=13a →+13b →+13c →. (2)由题设条件∵ (a →+b →+c →)2=a →2+b →2+c →2+2a →⋅b →+2b →⋅c →+2a →⋅c →=1+1+1+0+2×1×1×12+2×1×1×12=5, ∴ |a →+b →+c →|=√5,|MN →|=13|a →+b →+c →=|√53. 【考点】空间向量的夹角与距离求解公式【解析】(1)由图形知MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→再用a →,b →,c →表示出来即可(2)求MN 的长,即求|MN →|=13|a →+b →+c →|,利用求向量模的方法,求|a →+b →+c →|即可求得MN 的长【解答】解:(1)由图形知MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→=13(c →−a →)+a →+13(b →−a →)=13a →+13b →+13c →. (2)由题设条件∵ (a →+b →+c →)2=a →2+b →2+c →2+2a →⋅b →+2b →⋅c →+2a →⋅c →=1+1+1+0+2×1×1×12+2×1×1×12=5,∴ |a →+b →+c →|=√5,|MN →|=13|a →+b →+c →=|√53. 37.【答案】解:如图,根据FC →=2AB →=2DE →知,AB // DE ,AB =DE ,AB // FC ,FC =2AB ; ∴ 四边形ABDE 为平行四边形,连接AD ,BE ,设交于O ;则O 点在线段FC 上;∴ OE →=BO →=BA →+BC →,CO →=BA →;∴ CE →=CO →+OE →=BA →+BA →+BC →=−2AB →+BC →=−2α→+β→; ∴ CD →=CE →+ED →=−2α→+β→+α→=−α→+β→.【考点】向量的线性运算性质及几何意义【解析】画出六边形,根据条件知AB // DE ,且AB =DE ,且AB // FC ,FC =2AB ,从而四边形ABDE 为平行四边形,连接对角线,交点O 应在FC 上.结合图形即可看出:OE →=BO →=BA →+BC →,CO →=BA →,从而可以得出CE →=−2α→+β→,而由CE →+ED →即可表示出CD →.【解答】解:如图,根据FC →=2AB →=2DE →知,AB // DE ,AB =DE ,AB // FC ,FC =2AB ; ∴ 四边形ABDE 为平行四边形,连接AD ,BE ,设交于O ;则O 点在线段FC 上;∴ OE →=BO →=BA →+BC →,CO →=BA →;∴ CE →=CO →+OE →=BA →+BA →+BC →=−2AB →+BC →=−2α→+β→;。

选修2-1第一章测试题

选修2-1第一章测试题

高二数学第一章《常用逻辑用语》检测题1.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.下列四个结论中正确的个数是()①“x2+x﹣2>0”是“x>1”的充分不必要条件②命题:“∀x∈R,sinx≤1”的否定是“∃x0∈R,sinx0>1”.③“若x=,则tanx=1,”的逆命题为真命题;④若f(x)是R上的奇函数,则f(log32)+f(log23)=0.A.1 B.2 C.3 D.43.下列说法正确的是()A.“x2+x﹣2>0”是“x>l”的充分不必要条件B.“若am2<bm2,则a<b的逆否命题为真命题C.命题“∃x∈R,使得2x2﹣1<0”的否定是:“∀x∈R,均有2x2﹣1<0”D.命题“若x=,则tanx=1的逆命题为真命题4.命题“若x2≠4,则x≠2且x≠﹣2”的否命题为()A.若x2=4,则x≠2且x≠﹣2 B.若x2≠4,则x=2且x=﹣2C.若x2≠4,则x=2或x=﹣2 D.若x2=4,则x=2或x=﹣25.下列命题:①“若a≤b,则a<b”的否命题;②“若a=1,则ax2﹣x+3≥0的解集为R”的逆否命题;③“周长相同的圆面积相等”的逆命题;④“若为有理数,则x为无理数”的逆否命题.其中真命题序号为()A.②④ B.①②③C.②③④D.①②③④6、以下有关命题的说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”B.若a∈R,则“a=2”是“(a﹣1)(a﹣2)=0”的充分且不必要条件C.对于命题p:∃x0∈R,使得x02+x0+1<0,则¬p:∀x∈R,则x2+x+1≥0D.命题“若am2<bm2,则a<b”的逆命题是真命题7.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.若命题p:∃x∈R,x2﹣2x﹣1>0,则命题¬p:∀x∈R,x2﹣2x﹣1<0C.命题“若α>β,则2α>2β”的逆否命题为真命题D.“x=﹣1”是x2﹣5x﹣6=0的必要不充分条件8.已知命题p:对m∈[﹣1,1],不等式a2﹣5a﹣3≥恒成立;命题q:不等式x2+ax+2<0有解.若p是真命题,q是假命题,求a的取值范围.9.已知p:|1﹣|<2;q:x2﹣2x+1﹣m2<0;若¬p是¬q的充分非必要条件,求实数m的取值范围.10.已知命题p:函数f(x)=x2+ax﹣2在[﹣1,1]内有且仅有一个零点.命题q:x2+3(a+1)x+2≤0在区间内恒成立.若命题“p且q”是假命题,求实数a的取值范围.11、(Ⅰ)已知命题p:函数f(x)=(2a﹣5)x是R上的减函数;命题q:在x∈(1,2)时,不等式x2﹣ax+2<0恒成立,若p∨q是真命题,求实数a的取值范围;(Ⅱ)设条件p:2x2﹣3x+1≤0,条件q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.12.已知p:|x﹣4|≤6,q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要而不充分条件,求实数m的取值范围.13.已知命题p:(x﹣3)(x+1)<0,命题q :<0,命题r:a<x<2a,其中a>0.若p∧q 是r的充分条件,求a的取值范围.14.已知命题p:x+2≥0且x﹣10≤0,命题q:1﹣m≤x≤1+m,m>0,若¬p是¬q的必要不充分条件,求实数m的取值范围.15.设p:不等式x2+(m﹣1)x+1>0的解集为R;q:∀x∈(0,+∞),m≤x+恒成立.若“p且q”为假命题,“p或q”为真命题,求实数m的取值范围.16.已知命题p:实数x满足|2x﹣m|≥1;命题q:实数x 满足>0.(Ⅰ)若m=1时,p∧q为真,求实数x的取值范围;(Ⅱ)若¬p是q的充分不必要条件,求实数m的取值范围.高二数学第一章《常用逻辑用语》检测题参考答案1解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.2.解:对于①,x2+x﹣2>0,解得x<﹣2或x>1,故“x>1”的必要不充分条件,故错误,对于②,命题:“∀x∈R,sinx≤1”的否定是“∃x0∈R,sinx0>1”,故正确,对于③,若x=,则tanx=1,”的逆命题为“若tanx=1,则x=,x 还可以等于,故错误,对于④,f(x)是R上的奇函数,则f(﹣x)=﹣f(x),∵log32=,∴log32与log23不是互为相反数,故错误.故选:A.3.解:选项A,x2+x﹣2>0,解得x<﹣2或x>1,故“x2+x﹣2>0”是“x>l”的必要不充分条件,故A错误,选项B,“若am2<bm2,则a<b”的逆否命题为“若a≥b,则am2≥bm2”为真命题,故B正确,选项C,命题“∃x∈R,使得2x2﹣1<0”的否定是:“∀x∈R,均有2x2﹣1≥0,故C错误,选项D,命题“若x=,则tanx=1”的逆命题“若tanx=1,则x=”,因为tanx=1,则x=kπ+”,故D错误,故选:B.4.解:“若x2≠4,则x≠2且x≠﹣2”的否命题是:“若x2=4,则x=2或x=﹣2”,故选:D.5.解:对于①,逆命题为真,故否命题为真;对于②“若a=1,则ax2﹣x+3≥0的解集为R”原命题为真,故逆否命题为真;对于③“面积相等的圆周长相同”为真;对于④“若为有理数,则x为0或无理数”,故原命题为假,逆否命题为假.故选:B.6、解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”,正确;对于B,a=2时,(a﹣1)(a﹣2)=0,充分性成立,(a﹣1)(a﹣2)=0时,a=1或a=2,必要性不成立,是充分且不必要条件,正确;对于C,命题p:∃x0∈R,使得x02+x0+1<0,则¬p:∀x∈R,则x2+x+1≥0,命题正确;对于D,命题“若am2<bm2,则a<b”的逆命题是命题“若a<b,则am2<bm2”,是假命题,因为m=0时不成立,所以错误.故选:D.7.解:对于A,命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,∴A错误;对于B,若命题p:∃x∈R,x2﹣2x﹣1>0,则命题¬p:∀x∈R,x2﹣2x﹣1≤0,∴B错误;对于C,命题“若α>β,则2α>2β”是真命题,则它的逆否命题也为真命题,∴C正确;对于D,x=﹣1时,x2﹣5x﹣6=0,充分性成立,x2﹣5x﹣6=0时,x=﹣1或x=6,必要性不成立,所以是充分不必要条件,D错误.故选:C.8.解:∵m∈[﹣1,1],∴∈[2,3].∵对m∈[﹣1,1],不等式a2﹣5a﹣3≥恒成立,可得a2﹣5a﹣3≥3,∴a≥6或a≤﹣1.故命题p为真命题时,a≥6或a≤﹣1.又命题q:不等式x2+ax+2<0有解,∴△=a2﹣8>0,∴a>2或a<﹣2.从而命题q为假命题时,﹣2≤a≤2,∴命题p为真命题,q为假命题时,a的取值范围为﹣2≤a≤﹣1.9.解:p:|1﹣|<2即为p:﹣2<x<10,q:x2﹣2x+1﹣m2<0即为(x﹣1)2<m2,即q:1﹣|m|<x<1+|m|,又¬p是¬q的充分非必要条件,所以q是p的充分非必要,∴(两式不能同时取等)得到|m|≤3,满足题意,所以m的范围为[﹣3,3].10.解:在命题p中,若a=0,则不合题意,∴,解得a≤﹣1,或a≥1.在命题q中,∵x∈[,],∴3(a+1)≤﹣(x+)在[]上恒成立.∴(x+)max =,故只需3(a+1)即可,解得a.∵命题“p且q”是假命题,∴p真q假,或p假q真,或p、q均为假命题,当p真q 假时,,或a≥1,当p假q真时,a∈∅.当p、q均为假命题时,有﹣1<a<1,故实数a的取值范围{a|a >﹣}.11、解:(Ⅰ)在p中,∵函数f(x)=(2a﹣5)x是R上的减函数,∴0<2a﹣5<1,解得<a<3;在q中,由x2﹣ax+2<0得ax>x2+2,∵1<x<2,∴a >=x+在x∈(1,2)时恒成立;又当x∈(1,2)时,x+∈[2,3),∴a≥3;∵p∨q是真命题,故p真或q真,∴有<a<3或a≥3;∴a的取值范围是a >;(Ⅱ)命题p为:{x/},命题q为:{ x/a≤x≤a+1},¬p对应的集合A={x/x>1,或x <},¬q对应的集合为B={x/x>a+1,或x<a},∵若¬p是¬q的必要不充分条件,∴B⊂A,∴a+1≥1且,∴0≤a ≤.12.解:由题知,若¬p是¬q的必要不充分条件的等价命题为:p是q的充分不必要条件.由|x﹣4|≤6,解得﹣2≤x≤10,∴p:﹣2≤x≤10;由x2﹣2x+1﹣m2≤0(m>0),整理得[x﹣(1﹣m)][x﹣(1+m)]≤0解得 1﹣m≤x≤1+m,∴q:1﹣m≤x≤1+m又∵p是q的充分不必要条件∴,∴m≥9,∴实数m的取值范围是[9,+∞).13.解:由题可知,命题p:﹣1<x<3,命题q:2<x<4,…..(2分)故p∧q:2<x<3.…(4分)根据a>0,及p∧q是r 的充分条件可知:;…(8分)解得,综上可知,a 的取值范围是.…(10分)14.解:命题p:﹣2≤x≤10,命题q:1﹣m≤x≤1+m,m>0;∴¬p:x<﹣2,或x>10;¬q:x<1﹣m,或x>1+m,m>0;¬p是¬q的必要不充分条件,就是由¬q能得到¬p,而¬p得不到¬q;∴集合{x|x<﹣2,或>10}真包含集合{x|x<1﹣m,或x>1+m,m>0};∴1﹣m≤﹣2,且1+m≥10,且两等号不能同时取;∴解得:m≥9,即实数m的取值范围为[9,+∞).15.解:若p为真:判别式△<0,则(m﹣1)2﹣4<0,所以:﹣1<m<3若q为真::∀x∈(0,+∞),x+≥2,当且仅当x=1时取“=”所以:m≤2.(1)当p为真q为假时:2<m<3(2)当q为真p为假时:m≤﹣1综上所述:m≤﹣1或2<m<316.解:(Ⅰ)∵p∧q为真,∴p,q都为真…(1分)又m=1,∴p真;|2x﹣1|≥1,即x≤0或x≥1…(2分),∴(1﹣3x)(x+2)>0,即…(4分)由,∴实数x的取值范围为(﹣2,0]…(6分)(Ⅱ)∵p:实数x满足|2x﹣m|≥1,∴¬p;|2x﹣m|<1,即令…(7分),令…(8分)∵¬P是q的充分非必要条件,A是B的真子集…(9分)∴,得∴实数m 的取值范围是…(12分)。

高二数学选修2-1综合测试题(带答案)

高二数学选修2-1综合测试题(带答案)

高二数学选修2-1测试题(120分钟150分)班级姓名成绩一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题“如果-1≤a≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为 ”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A.0个B.1个C.2个D.4个【变式训练】命题“若C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这4个命题中,真命题的个数是( )A.0B.1C.2D.32.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥l2C.m ∥β且n ∥βD.m∥β且n∥l2【变式训练】有下述说法:①a>b>0是a2>b2的充要条件;②a>b>0是<的充要条件;③a>b>0是a3>b3的充要条件.其中正确的说法有( )A.0个B.1个C.2个D.3个3. “1<m<3”是“方程+=1表示椭圆”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知抛物线y2=2px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为( )A. B.+1 C.+1 D.【变式训练】若双曲线C:x 2-=1(b>0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A.2B.C.3D.5.已知命题p:∀x∈R,x ≥2,那么下列结论正确的是( )A.命题p:∀x∈R,x≤2B.命题p:∃x0∈R,x0<2C.命题p:∀x∈R,x≤-2D.命题p:∃x0∈R,x0<-26.已知矩形ABCD中,AB=1,BC=,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则B与D之间的距离为( )A.1B.C.D.7.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若=10,则AB的中点到y轴的距离等于( )A.1B.2C.3D.48.在四边形ABCD中,“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( )A.60°B.90°C.45°D.以上都不正确10.设F1,F2是双曲线x2-4y2=4a(a>0)的两个焦点,点P在双曲线上,且满足:·=0,||·||=2,则a的值为( )A.2B.C.1D.11.点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则·的取值范围是( )A. B.C.[-1,0]D.12.已知正六边形ABCDEF的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是( )A. B. C. D.2二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.抛物线焦点在y轴上,且被y=x+1截得的弦长为5,则抛物线的标准方程为.14.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,M是AB上一点,则PM的最小值为.15.在四棱锥P-ABCD中,ABCD为平行四边形,AC与BD交于O,G为BD上一点,BG=2GD,=a,=b,=c,试用基底{a,b,c}表示向量= .16.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2的点的轨迹.给出下列四个结论:①曲线C过点(-1,1);②曲线C关于点(-1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则+不小于2k.④设P0为曲线C上任意一点,则点P0关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1,P2,P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)设p:关于x的不等式a x>1(a>0且a ≠1)的解集为{x|x<0},q:函数y=l g(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围. 18.(12分)如图,正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1.(2)用向量法证明MN⊥平面A1BD.19.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求直线l的方程;若不存在,说明理由.20.(12分)设F1,F2为椭圆+=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.(1)求|PF1|的长度.(2)求的值. 21.(12分)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成角的正弦值.(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.(12分)如图,四棱柱ABCD -A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE.(2)求二面角B1-CE-C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.高二数学选修2-1测试题答案一、选择题1、【解析】选C.当-1≤a≤1时,Δ=(a+2)2+4(a2-4)=5--12≤5--12<0,所以原命题为真,逆否命题亦为真.反之,如a=-2时,所给不等式的解集即为空集,但a∉[-1,1],所以逆命题为假,故否命题亦为假.【变式训练】【解析】选C.原命题是真命题.其逆命题为“若△ABC是直角三角形,则C=90°”,这是一个假命题,因为当△ABC为直角三角形时,也可能A或B为直角.这样,否命题是假命题,逆否命题是真命题.因此真命题的个数是2.2.【解析】选B.对于选项A,α,β也可能相交,此时,l1,m都平行于交线,是必要不充分条件;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选项B符合题意;对于选项C,由于m,n不一定相交,故是必要不充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,【变式训练】【解析】选 A.a>b>0⇒a2>b2,a2>b2⇒|a|>|b|⇒a>b>0,故①错.a>b>0⇒<,但<⇒a>b>0,故②错.a>b>0⇒a3>b3,但a3>b 3⇒a>b>0故③错故选A.3. 【解析】选 B.当方程+=1表示椭圆时,必有所以1<m<3;但当1<m<3时,该方程不一定表示椭圆,如当m=2时,方程变为x 2+y2=1,它表示一个圆.4【解析】选B.如图,由双曲线-=1,且AF⊥x轴得-=1得|y|=,由抛物线y2=2px的定义得AF=p,即=2c.得b2=2ac,所以=,e2-1=2e,所以e=+1.【拓展延伸】求离心率的方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=.已知其中的任意两个参数,可以求其他的参数.这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率.这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.【变式训练】【解析】选B.由双曲线方程知a=1,所以c=,所以一条渐近线的方程为y=bx,即bx-y=0.所以=,解得b=1,所以c=,所以e==.5.【解析】选B.全称命题的否定是特称命题,所以命题p:∃x0∈R,x0<2.6. 【解析】选B.过B,D分别向AC作垂线,垂足分别为M,N.则可求得AM=,BM=,CN=,DN=,MN=1.由于=++,所以||2=(++)2=||2+||2+||2+ 2(·+ ·+·)=+12++2(0+0+0)=,所以||=.7.【解析】选D.抛物线y2=4x的焦点(1,0),准线为l:x=-1,设AB的中点为E,过A,E,B分别作准线的垂线,垂足分别为C,F,D,EF交纵轴于点H,如图所示,则由EF为直角梯形的中位线知,|EF|===5,所以EH=EF-1=5-1=4,即AB的中点到y 轴的距离等于4.8. 【解析】选C.若=λ,=λ,则∥,∥,即AB∥DC,AD∥BC,所以四边形ABCD为平行四边形.反之,若四边形ABCD为平行四边形,则有AB∥DC,AD∥BC且AB=DC,AD=BC ,即=,=,此时λ=1,所以∃λ∈R ,使得=λ,=λ成立.所以“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的充分必要条件.9. 【解析】选B.以点D为原点,直线DA,DC,DD 1分别为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z).则⇒令z=1,得y=1,x=0.所以n=(0,1,1),cos<n ,>===-1.所以<n ,>=180°.所以直线AE与平面A1ED1所成的角的大小为90°.10. 【解析】选C.双曲线方程化为-=1(a>0),因为·=0,所以PF1⊥PF2.所以||2+||2=4c2=20a. ①由双曲线定义||-||=±4,②又已知||·||=2,③由①②③得20a-2×2=16a,所以a=1.11. 【解析】选D.如图所示建立空间直角坐标系,则A(1,0,1),C1(0,1,0).设P(x,y,0)其中0≤x≤1,0≤y≤1.则=(1-x,-y,1) =(-x,1-y,0)所以·=(1-x,-y,1)·(-x,1-y,0)=+-,因为+的几何意义是平面区域到点的距离的平方,所以当x=y=时,+有最小值0,当x=y=0或x=y=1或x=1,y=0或x=0,y=1时,+有最大值,所以-≤+-≤0,即·的取值范围是.12. 【解析】选B.设抛物线方程为y2=2px(p>0),根据对称性可知,正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px上,设A(x1,1),F(x2,2),则即x2=4x1,又AF==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,即p===.二、填空题13.【解析】设抛物线方程为x2=my,联立抛物线方程与直线方程y=x+1并消元,得:2x2-mx-2m=0,所以x1+x2=,x1x2=-m,所以5=,把x1+x2=,x1x2=-m代入解得m=4或m=-20.所以抛物线的标准方程为x2=4y或x2=-20y. 答案:x2=4y或x2=-20y 14.【解析】由条件知PC,AC,BC 两两垂直,设=a ,=b ,=c,则a·b=b·c=c·a=0,因为∠BAC=60°,AB=8,所以|a |=||=8cos60°=4,|b |=||=8sin60°=4,|c |=||=4.设=x=x(b -a),其中x∈[0,1],则=++=-c+a+x(b-a)=(1-x)a+x b-c,||2=(1-x)2|a|2+x2|b|2+|c|2+2(1-x)x a·b-2x b·c-2(1-x)a·c=16(1-x) 2+48x2+16=32(2x2-x+1)=64+28,所以当x=时,||2取最小值28,所以||min =2. 答案:215. 【解析】因为BG=2GD ,所以=.又=+=-+-=a+c-2b,所以=+=b +(a+c-2b)=a -b +c.答案:a -b +c16.【解析】设动点为(x,y),则由条件可知·=k2,①,将(-1,1)代入得0=k2,因为k>0,所以不成立,故方程不过点(-1,1),①错误.②,把方程中的x用-2-x代换,y用2-y代换,方程不变,故此曲线关于点(-1,1)对称,②正确.③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则≥,≥,所以+≥2=2k,故③正确.④,由题意知点P0在曲线C上,根据对称性,则四边形P0P1P2P3的面积为2·2=4·=4k2,所以④正确.综上所述,正确结论的序号是②③④.答案:②③④三、解答题17.【解析】当p真时,0<a<1,当q 真时,即a>,所以p假时,a>1,q假时,a ≤.又p和q有且仅有一个正确,当p真q假时,0<a ≤;当p假q真时,a>1. 综上a 的取值范围为∪(1,+∞). 18.【证明】(1)在正方体ABCD-A1B1C1D1中,=-,=-,又因为=,=,所以=,所以BD∥B1D1.又B1D1⊂平面B1CD1,BD⊄平面B1CD1,所以BD∥平面B1CD1,同理可证A1B∥平面B1CD1.又BD∩A1B=B,所以平面A1BD∥平面B1CD1.(2)=++=++(+)=++(-+)=++.设=a ,=b ,=c,则=(a+b+c).又=-=b-a,所以·=(a+b+c)·(b-a)=(b2-a2+c·b-c·a).又因为⊥,⊥,所以c·b=0,c·a=0.又|b|=|a|,所以b2=a2.所以b2-a2=0.所以·=0.所以MN⊥BD.同理可证,MN⊥A1B.又A1B∩BD=B,所以MN⊥平面A1BD.19.【解析】(1)将A(1,-2)代入y2=2px,得(-2)2=2p·1,所以p=2.故所求抛物线C的方程为y2=4x,其准线方程为x=-1.(2)假设存在符合题意的直线l,其方程为y=-2x+t.由得y2+2y-2t=0.因为直线l与抛物线C有公共点,所以Δ=4+8t≥0,解得t≥-.由直线OA与l的距离d=,可得=,解得t=±1.因为-1∉,1∈,所以符合题意的直线l存在,其方程为2x+y-1=0.20.【解析】(1)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8.(2)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,|PF2|=,所以=.若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8,|PF2|=4,所以=2,综上,=2或.21.【解析】设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系Axyz.(1)依题意,得B(1,0,0),E,A(0,0,0),D(0,1,0),所以=,=(0,1,0).在正方体ABCD-A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE和平面ABB1A1所成的角为θ,则sinθ===.故直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=.设n=(x,y,z)是平面A1BE的一个法向量,则由n ·=0,n ·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).因为F是棱C1D1上的点,则F(t,1,1)(0≤t≤1). 又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE ⇒·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.22.【解题指南】方法一:(1)建立空间直角坐标系,写出,的坐标,利用数量积证明.(2)求出平面B1CE与平面CEC1的法向量,由法向量的夹角余弦值求二面角的正弦值.(3)用直线AM的方向向量与平面ADD1A1的法向量表示直线AM与平面ADD1A1所成角的正弦,确定向量的坐标,由向量的模求线段AM的长.方法二:(1)要证明线线垂直,先证明线面垂直,关键是找出与线B1C1垂直的平面CC1E,然后进行证明.(2)要求二面角B1-CE-C1的正弦值,关键是构造出二面角B1-CE-C1的平面角,然后在三角形中求解.(3)首先构造三角形,设AM=x,在直角三角形AHM,C1D1E中用x表示出AH,EH的长度,最后在三角形AEH中利用余弦定理求解.【解析】如图,以点A为坐标原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)易得=(1,0,-1),=(-1,1,-1),于是·=0,所以B1C1⊥CE.(2)=(1,-2,-1),设平面B1CE的法向量m=(x,y,z),则即消去x,得y+2z=0,不妨设z=1,可得一个法向量为m=(-3,-2,1).由(1)知B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.于是cos<m ,>===-,从而sin<m ,>=.所以二面角B1-CE-C1的正弦值为.(3)=(0,1,0),=(1,1,1),设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sinθ====.于是=,解得λ=,所以AM=.【一题多解】(1)因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1,经计算可得B1E=,B1C1=,EC1=,从而B1E2=B 1+E,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连接C1G,由(1)知,B1C1⊥CE,B1C1,B1G⊂平面B1C1G,B1C1∩B1G=B1,故CE⊥平面B1C1G,又C1G⊂平面B1C1G ,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=x,AH=x,在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=x,在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos135°,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.。

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案本试题满分150分,用时100分钟)一、选择题:1.命题“若a>b,则a-8>b-8”的逆否命题是()A.若a<b,则a-8<b-8B.若a-8≤b-8,则a≤bC.若a≤b,则a-8≤b-8D.若a-8b2.如果方程x^2+ky^2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0.+∞)B.(0.2)C.(0.1)D.(1.+∞)3.已知x-3x+2≥0,2x-2≥1,则“非P”是“非Q”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4.双曲线16/(x^2)-9/(y^2)=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是()A、24B、25C、26D、285.若焦点在轴上的椭圆x^2/3+y^2/2=1的离心率为e,则m=A.3B.38/2C.23/2D.33/26.在同一坐标系中,方程x^2/2+y^2/2=1与ax+by^2=(a>b>)的曲线大致是()ab7.椭圆25x^2+16y^2=400的面积为()A.9B.12C.10D.88.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则E到平面ABC1D1的距离是()A.√2/2B.√6/2C.√3/2D.√29.若向量a与b的夹角为60°,b=4,(a+2b)(a-3b)=-72,则a=A.2B.4C.6D.1210.方程x^2/k-y^2/k=1表示双曲线,则k的取值范围是()A.-1<k<1B.k>0XXX≥1D.k>1或k<-111.方程x^2/a^2+y^2/b^2=1(a>b>0,k>且k≠1),与方程y^2/a^2+x^2/b^2=1的图形是()两个坐标轴上的椭圆12.若x^2+y^2+z^2=1,则x^2y^2+y^2z^2+z^2x^2的最大值为()1/3二、填空题:13.当k>1时,曲线x^2/k-y^2/k=1是()。

高中数学选修2-1 第一章《 常用逻辑用语》单元测试题(含答案)

高中数学选修2-1 第一章《 常用逻辑用语》单元测试题(含答案)

高中数学选修2-1 第一章单元测试题《常用逻辑用语》时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列语句中,不能成为命题的是( )A.指数函数是增函数吗?B.2 012>2 013C.若a⊥b,则a·b=0D.存在实数x0,使得x0<02.已知命题:“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.1 B.2C.3 D.43.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+2y+4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列命题中的假命题是( )A.存在x∈R,lg x=0 B.存在x∈R,tan x=1C.任意x∈R,x3>0 D.任意x∈R,2x>05.下列命题中是全称命题并且是真命题的是( )A.每个二次函数的图象与x轴都有两个不同的交点B.对任意非正数c,若a≤b+c,则a≤bC.存在一个菱形不是平行四边形D.存在一个实数x使不等式x2-3x+7<0成立18.(本小题满分12分)写出下列命题的否定,并判断其真假.(1)p:不论m取何实数,方程x2+mx-1=0必有实数根;(2)p:存在一个实数x,使得3x<0;(3)p:若a n=-2n+1,则∃n∈N,使S n<0;(4)p:有些偶数是质数.19.(本小题满分12分)设命题p:c2<c和命题q:对∀x∈R,x2+4cx+1>0,且p∨q为真,p∧q为假,求实数c的取值范围.20.(本小题满分12分)已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若綈p是綈q的充分而不必要条件,求实数m的取值范围.21.(本小题满分12分)已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.22.(本小题满分12分)给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.高中数学选修2-1 第一章单元测试题《常用逻辑用语》参考答案时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列语句中,不能成为命题的是( )A.指数函数是增函数吗?B.2 012>2 013C.若a⊥b,则a·b=0D.存在实数x0,使得x0<0解析:疑问句不能判断真假,因此不是命题.D是命题,且是个特称命题.答案:A2.已知命题:“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.1 B.2C.3 D.4解析:原命题是真命题,逆否命题为真命题,逆命题为“若xy≥0,则x≥0,y≥0”是假命题,则否命题为假命题.答案:B3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+2y+4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:先求出两直线平行的条件,再判断与a=1的关系.若l1∥l2,则2a -2=0,∴a=1.故a=1是l1∥l2的充要条件.答案:C。

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案

(选修2-1)模块测试试题命题人:铁一中 周粉粉(本试题满分150分,用时100分钟)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若a b >,则88a b ->-”的逆否命题是 ( )A.若a b <,则88a b -<-B.若88a b ->-,则a b >C.若a ≤b ,则88a b -≤-D.若88a b -≤-,则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0, +∞)B .(0, 2)C .(0, 1)D . (1, +∞)3.P:12≥-x ,Q:0232≥+-x x ,则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则∆PF 1F 2的面积为( )A.9B.12C.10D.8 8.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线,则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0,k >0且k ≠1),与方程12222=+by a x (a >b >0)表示的椭圆( ) (A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题,每小题6分,共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的 (①.充分而不必要条件,②.必要而不充分条件 ,③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .16.抛物线的的方程为22x y =,则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。

高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)

高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)

12PF F S =解析:设P (x 0,y 0),PF 的中点为(x ,y ),则y 0=14x 20,又F (0,1),∴⎩⎪⎨⎪⎧x =x 02y =y 0+12,∴⎩⎨⎧x 0=2xy 0=2y -1,代入y 0=14x 20得2y -1=14(2x )2,化简得x 2=2y -1,故选A. 答案:A7.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1 D. 3 解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x -y =0或3x +y =0, 则焦点到渐近线的距离d 1=|3×1-0|32+-12=32或d 2=|3×1+0|32+12=32. 答案:B8.直线y =x +b 与抛物线x 2=2y 交于A 、B 两点,O 为坐标原点,且OA ⊥OB ,则b =( )A .2B .-2C .1D .-1解析:设A (x 1,y 1),B (x 2,y 2), 联立方程组⎩⎨⎧y =x +b ,x 2=2y ,消去y ,得x 2-2x -2b =0,所以x 1+x 2=2,x 1x 2=-2b ,y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=b 2,∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴所求轨迹的方程为x 2=4y . (2)由题意易知直线l 2的斜率存在,又抛物线方程为x 2=4y ,当直线AB 斜率为0时|PQ |=4 2.当直线AB 斜率k 不为0时,设中点坐标为(t,2),P (x 1,y 1),Q (x 2,y 2),则有x 21=4y 1,x 22=4y 2,两式作差得x 21-x 22=4(y 1-y 2),即得k =x 1+x 24=t 2,则直线方程为y -2=t2(x -t ),与x 2=4y 联立得x 2-2tx +2t 2-8=0.由根与系数的关系得x 1+x 2=2t ,x 1x 2=2t 2-8, |PQ |=x 1-x 22+y 1-y 22=1+k 2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+t 24[4t 2-42t 2-8]=8-t 24+t 2≤6,即|PQ |的最大值为6.19.(本小题满分12分)已知双曲线的焦点在x 轴上,离心率为2,F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,12PF F S =123,求双曲线的标准方程.解析:如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∴所求k 的值为2.21.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积. 解析:(1)由题意知b =1,c a =22,且c 2=a 2+b 2,解得a =2,c =1. 易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎨⎧y =-2x -2x22+y 2=1得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-169x 1·x 2=23∴|CD |=1+-22|x 1-x 2|=5·x 1+x 22-4x 1x 2=5·⎝ ⎛⎭⎪⎫-1692-4×23=1092,又点F 2到直线BF 1的距离d =455, 故CDF S2=12|CD |·d =4910. 22.(本小题满分12分)过点C (0,1)的椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为。

高中数学选修2-1 各章节同步练习及答案解析

高中数学选修2-1 各章节同步练习及答案解析

第一章 1.1第1课时一、选择题1.下列语句中命题的个数为()①{0}∈N;②他长得很高;③地球上的四大洋;④5的平方是20.A.0B.1C.2D.3[答案]C[解析]①④是命题,②③不是命题.地球上的四大洋是不完整的句子.2.若a>1,则函数f(x)=a x是增函数()A.不是命题B.是真命题C.是假命题D.是命题,但真假与x的取值有关[答案]B[解析]当a>1时,指数函数f(x)=a x是增函数,故“若a>1,则函数f(x)=a x是增函数”是真命题.3.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是() A.m⊂α,n⊂α,m∥β,n∥β⇒α∥βB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.n∥m,n⊥α⇒m⊥α[答案]D[解析]验证排除法:A选项中缺少条件m与n相交;B选项中两平行平面内的两条直线m与n关系不能确定;C选项中缺少条件n⊄α.4.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0.其中是真命题的是()A.①②③B.①②④C.①③④D.②③④[答案]B[解析]①中Δ=4-4(-k)=4+4k>0,所以①为真命题;②由不等式的乘法性质知命题正确,所以②为真命题;③如等腰梯形对角线相等,不是矩形,所以③是假命题;④由等式性质知命题正确,所以④是真命题,故选B.5.对于向量a、b、c和实数λ,下列命题中的真命题是()A. a·b=0,则a=0或b=0B.若λa=0,则λ=0或a=0C.若a2=b2,则a=b或a=-bD.若a·b=a·c,则b=c[答案]B[解析]A选项中可能有a⊥b;C选项中a2=b2说明|a|=|b|,a与b并不一定共线,D 选项中a·b=a·c说明a·(b-c)=0,则a⊥(b-c)6.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是()A.这个四边形的对角线互相平分B.这个四边形的对角线互相垂直C.这个四边形的对角线既互相平分,也互相垂直D.这个四边形是平行四边形[答案]C[解析]该命题的条件是“一个四边形是平行四边形”,结论是“这个四边形的对角线既互相平分,也互相垂直”.二、填空题7.下面是关于四棱柱的四个命题:①如果有两个侧面垂直于底面,则该四棱柱为直四棱柱;②如果两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③如果四个侧面两两全等,则该四棱柱为直四棱柱;④如果四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是__________________(写出所有真命题的编号).[答案]②④[解析]②中由过相对侧棱截面的交线垂直于底面并与侧棱平行,可知命题成立,④中由题意,可知对角面均为长方形,即可证命题成立.①、③错误,反例如有一对侧面与底面垂直的斜四棱柱.8.设a、b、c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是__________________.[答案]0[解析]∵垂直于同一直线的两条直线不一定平行,∴命题①不正确;∵与同一直线均异面的两条直线的位置关系可以共面,也可以异面,∴命题②不正确;∵与同一直线均相交的两条直线在空间中可以相交,也可以平行或异面,∴命题③不正确;∵当两平面的相交直线为直线b时,两平面内分别可以作出直线a与c,即直线a与c 不一定共面,∴命题④不正确.综上所述,真命题的个数为0.三、解答题9.判断下列语句中哪些是命题,是命题的,请判断真假.(1)末位是0的整数能被5整除;(2)△ABC中,若∠A=∠B,则sin A=sin B;(3)余弦函数是周期函数吗?(4)求证:当x∈R时,方程x2+x+2=0无实根.[解析](1)是命题,真命题.(2)是命题,真命题.(3)、(4)不是命题.10.把下列命题改写成“若p,则q”的形式,并判断真假.(1)对角线相等的四棱柱是长方体;(2)整数的平方是非负整数;(3)能被10整除的数既能被2整除,也能被5整除.[解析](1)可写为:“若四棱柱的对角线相等,则它是长方体”,这个命题是假命题,如底面是等腰梯形的直四棱柱.(2)可写为:“若一个数是整数,则它的平方是非负整数”,真命题.(3)可写为:“若一个数能被10整除,则它既能被2整除,也能被5整除”,真命题.一、选择题1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这四句诗中,在当时条件下,可以作为命题的是()A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思[答案]A[解析]“红豆生南国”是陈述句,所述事件在唐代是事实,所以本句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题,故选A.2.设α、β、γ为两两不重合的平面,c 、m 、n 为两两不重合的直线,给出下列四个命题:①如果α⊥γ,β⊥γ,则α∥β;②如果α∥β,c ⊂α,则c ∥β;③如果α∩β=c ,β∩γ=m ,γ∩α=n ,c ∥γ,则m ∥n .其中真命题个数是( )A .0个B .1个C .2个D .3个[答案] C[解析] ①α⊥γ,β⊥γ,则α与β可相交,①错误;②中∵α∥β,∴α与β无公共点,又c ⊂α,∴c 与β无公共点,∴c ∥β,故②正确;由c ∥γ,c ⊂β,β∩γ=m 得c ∥m ,同理可得c ∥n ,∴m ∥n ,故③正确.3.下面的命题中是真命题的是( )A .y =sin 2x 的最小正周期为2πB .若方程ax 2+bx +c =0(a ≠0)的两根同号,则c a>0 C .如果M ⊆N ,那么M ∪N =MD .在△ABC 中,若AB →·BC →>0,则△ABC 为锐角三角形[答案] B[解析] y =sin 2x =1-cos2x 2,T =2π2=π,故A 为假命题; 当M ⊆N 时,M ∪N =N ,故C 为假命题;当AB →·BC →>0时,向量AB →与BC →的夹角为锐角,B 为钝角,故D 为假命题.4.设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定向量b 和正数μ,总存在单位向量c ,使a =λb +μc .④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc .上述命题中的向量b 、c 和a 在同一平面内,且两两不共线,则真命题的个数是( )A .1B .2C .3D .4 [答案] C[解析] 对于①,由向量的三角形加法法则可知其正确;由平面向量基本定理知②正确;对③,可设e 与b 是不共线单位向量,则存在实数λ,y 使a =λb +y e ,若y >0,则取μ=y ,c =e ,若y <0,则取μ=-y ,c =-e ,故③正确;④显然错误,给定正数λ和μ,不一定满足“以|a |,|λb |,|μc |为三边长可以构成一个三角形”,这里单位向量b 和c 就不存在.可举反例:λ=μ=1,b 与c 垂直,此时必须a 的模为2才成立.二、填空题5.给出下列四个命题:①若a >b >0,则1a >1b; ②若a >b >0,则a -1a >b -1b; ③若a >b >0,则2a +b a +2b >a b; ④若a >0,b >0,且2a +b =1,则2a +1b的最小值为9. 其中正确命题的序号是__________________.(把你认为正确命题的序号都填上)[答案] ②④[解析] ①在a >b >0两端同乘以1ab 可得1b >1a,故①错; ②由于⎝⎛⎭⎫a -1a -⎝⎛⎭⎫b -1b =(a -b )⎝⎛⎭⎫1+1ab >0, 故②正确;③由于2a +b a +2b -a b =b 2-a 2(a +2b )b <0,即2a +b a +2b <a b, 故③错;④由2a +1b =⎝⎛⎭⎫2a +1b ·(2a +b )=5+2b a +2a b≥5+22b a ·2a b =9,当且仅当2b a =2a b,即a =b =13时取得等号,故④正确. 6.已知函数f (x )=|x 2-2ax +b |(x ∈R ),给出下列命题:①若a 2-b ≤0,则f (x )在区间[a ,+∞)上是增函数;②若a 2-b >0,则f (x )在区间[a ,+∞)上是增函数;③当x =a 时,f (x )有最小值b -a 2;④当a 2-b ≤0时,f (x )有最小值b -a 2.其中正确命题的序号是__________________.[答案] ①④[解析] 由题意知f (x )=|x 2-2ax +b |=|(x -a )2+b -a 2|.若a 2-b ≤0,则f (x )=|(x -a )2+b -a 2|=(x -a )2+b -a 2,可知f (x )在区间[a ,+∞)上是增函数,所以①正确,②错误;只有在a 2-b ≤0的条件下,才可能在x =a 时,f (x )取最小值b -a 2,所以③错误,④正确.三、解答题7.把下列命题改写成“若p ,则q ”的形式.(1)ac >bc ⇒a >b ;(2)当m >14时,mx 2-x +1=0无实根; (3)方程x 2-2x -3=0的解为x =3或x =-1.[解析] (1)若ac >bc ,则a >b .(2)若m >14,则mx 2-x +1=0无实根. (3)若x 2-2x -3=0,则x =3或x =-1.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.[解析] 由lg(x 2-2x -2)≥0,得x 2-2x -2≥1,即x 2-2x -3≥0.解得x ≤-1或x ≥3.故命题p :x ≤-1或x ≥3.又命题q :0<x <4,且命题p 为真,命题q 为假,则⎩⎪⎨⎪⎧x ≤-1或x ≥3x ≤0或x ≥4, 所以x ≤-1或x ≥4.所以,满足条件的实数x 的取值范围为(-∞,-1]∪[4,+∞).第一章 1.1 第2课时一、选择题1.给出命题:若函数y =f (x )是幂函数,则它的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .0[答案] C[解析] 原命题是真命题,因为幂函数的图象不过第四象限,反过来,图象不过第四象限的函数不一定是幂函数,所以逆命题为假命题,根据等价命题的真假性相同可知,否命题为假命题,逆否命题为真命题,故选C.2.“若x 2=1,则x =1”的否命题为( )A.若x2≠1,则x=1B.若x2=1,则x≠1C.若x2≠1,则x≠1D.若x≠1,则x2≠1[答案]C[解析]“若p则q”的否命题形式为“若¬p则¬q”.3.命题“如果a、b都是奇数,则ab必为奇数”的逆否命题是()A.如果ab是奇数,则a、b都是奇数B.如果ab不是奇数,则a、b不都是奇数C.如果a、b都是奇数,则ab不是奇数D.如果a、b不都是奇数,则ab不是奇数[答案]B[解析]命题“如果a、b都是奇数,则ab必为奇数”的逆否命题是“如果ab不是奇数,则a、b不都是奇数”.4.“a2+b2≠0”的含义是()A.a、b不全为0B.a、b全不为0C.a、b至少有一个为0D.a不为0且b为0,或b不为0且a为0[答案]A[解析]若a2+b2≠0,则a≠0且b≠0,或a=0且b≠0,或a≠0且b=0,即a、b不全为0,故选A.5.原命题为“圆内接四边形是等腰梯形”,则下列说法正确的是()A.原命题是真命题B.逆命题是假命题C.否命题是真命题D.逆否命题是真命题[答案]C[解析]否命题是“非圆内接四边形不是等腰梯形”,为真命题.6.设a、b是向量,命题“若a=-b,则|a|=|b|”的逆命题是()A.若a≠-b,则|a|≠|b|B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-bD.若|a|=|b|,则a=-b[答案]D[解析]命题“若a=-b,则|a|=|b|”的逆命题是“若|a|=|b|,则a=-b”,故选D.二、填空题7.(2015·福建八县一中高二期末测试)命题“若∠C=90°,则△ABC是直角三角形”的否命题的真假性为__________________.[答案]假[解析]原命题的否命题是“若∠C≠90°,则△ABC不是直角三角形”,是假命题.8.“若a∈A,则a∈B”的逆否命题为__________________.[答案]若a∉B,则a∉A[解析]一个命题的逆否命题是结论的否定作条件,条件的否定作结论,故原命题的逆否命题为“若a∉B,则a∉A”.三、解答题9.设原命题为“已知a、b是实数,若a+b是无理数,则a、b都是无理数”.写出它的逆命题、否命题和逆否命题,并分别说明他们的真假.[解析]逆命题:已知a、b为实数,若a、b都是无理数,则a+b是无理数.如a=2,b=-2,a+b=0为有理数,故为假命题.否命题:已知a、b是实数,若a+b不是无理数,则a、b不都是无理数.由逆命题为假知,否命题为假.逆否命题:已知a、b是实数,若a、b不都是无理数,则a+b不是无理数.如a=2,b=2,则a+b=2+2是无理数,故逆否命题为假.10.判断命题“已知a、x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.[解析]逆否命题:已知a,x为实数,如果a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,真命题.判断如下:抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.∵a<1,∴4a-7<0,即抛物线y=x2+(2a+1)x+a2+2与x轴无交点,∴关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,故逆否命题为真.第三章综合素质检测时间120分钟,满分150分。

高中数学 模块综合测评(含解析)新人教A版高二选修2-1数学试题

高中数学 模块综合测评(含解析)新人教A版高二选修2-1数学试题

模块综合测评(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件B [∵a 2<2a ⇔a (a -2)<0⇔0<a <2. ∴“a <2”是“a 2<2a ”的必要不充分条件.] 2.已知命题p :∀x >0,总有(x +1)e x >1,则p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x 0≤1D .∀x ≤0,总有(x +1)e x 0≤1 B [命题p 为全称命题,所以p 为∃x 0>0,使得(x 0+1)e x 0≤1.故选B .]3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A .54B .52C .32D .54B [由题意,1-b 2a 2=⎝⎛⎭⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e =52.]4.已知空间向量a =(t,1,t ),b =(t -2,t,1),则|a -b |的最小值为( ) A . 2 B . 3 C .2D .4C [|a -b |=2(t -1)2+4≥2,故选C .] 5.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有()A .相同短轴B .相同长轴C .相同离心率D .以上都不对D [对于x 2a 2+y 29=1,有a 2>9或a 2<9,因此这两个椭圆可能长轴相同,也可能短轴相同,离心率是不确定的,因此A ,B ,C 均不正确,故选D .]6.长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则二面角C 1-AB -C 为( ) A .π3B .2π3C .3π4D .π4D [以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4,又二面角C 1-AB -C 为锐角,即π-34π=π4,故选D .]7.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5D .a ≤5C [∵∀x ∈[1,2],1≤x 2≤4,∴要使x 2-a ≤0为真,则a ≥x 2,即a ≥4,本题求的是充分不必要条件,结合选项,只有C 符合,故选C .]8.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8xB [由已知可得,抛物线的焦点坐标为⎝⎛⎭⎫a 4,0.又直线l 的斜率为2,故直线l 的方程为y =2⎝⎛⎭⎫x -a 4,则|OA |=|a |2,故S △OAF =12·|a |4·|a |2=4,解得a =±8,故抛物线的方程为y 2=±8x .] 9.已知A (1,2,3),B (2,1,2),C (1,1,2),O 为坐标原点,点D 在直线OC 上运动,则当DA →·DB →取最小值时,点D 的坐标为( )A .⎝⎛⎭⎫43,43,43B .⎝⎛⎭⎫83,43,83 C .⎝⎛⎭⎫43,43,83D .⎝⎛⎭⎫83,83,43C [点D 在直线OC 上运动,因而可设OD →=(a ,a,2a ),则DA →=(1-a,2-a,3-2a ),DB →=(2-a,1-a,2-2a ),DA →·DB →=(1-a )(2-a )+(2-a )(1-a )+(3-2a )(2-2a )=6a 2-16a +10,所以a =43时DA →·DB →取最小值,此时OD →=⎝⎛⎭⎫43,43,83.] 10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( )A .-13B .13C .±13D .±12C [由题意知点B 的横坐标是c ,故点B 的坐标为⎝⎛⎭⎫c ,±b 2a ,则斜率k =±b 2ac +a =±b 2ac +a 2=±a 2-c 2ac +a 2=±1-e 2e +1=±(1-e )=±13,故选C .]11.若F 1,F 2为双曲线C :x 24-y 2=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A .55B .155C .2155D .1520B [设|PF 1|=r 1,|PF 2|=r 2,点P 到x 轴的距离为|y P |,则S △F 1PF 2=12r 1r 2sin 60°=34r 1r 2,又4c 2=r 21+r 22-2r 1r 2cos 60°=(r 1-r 2)2+2r 1r 2-r 1r 2=4a 2+r 1r 2,得r 1r 2=4c 2-4a 2=4b 2=4,所以S △F 1PF 2=12r 1r 2sin 60°=3=12·2c ·|y P |=5|y P |,得|y P |=155,故选B .]12.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN ||AB |的最大值是( ) A . 3 B .32 C .33D .34C [如图.设|AF |=r 1,|BF |=r 2,则|MN |=r 1+r 22.在△AFB 中,因为|AF |=r 1,|BF |=r 2且∠AFB =2π3,所以由余弦定理,得|AB |=r 21+r 22-2r 1r 2cos 2π3=r 21+r 22+r 1r 2,所以|MN ||AB |=r 1+r 22r 21+r 22+r 1r 2=12×(r 1+r 2)2r 21+r 22+r 1r 2=12×1+r 1r 2r 21+r 22+r 1r 2≤12×1+r 1r 23r 1r 2=33,当且仅当r 1=r 2时取等号.故选C .] 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知点P 是平行四边形ABCD 所在平面外的一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号)①②③[∵AB →·AP →=-2-2+4=0,∴AB →⊥AP →,即AP ⊥AB ,①正确;∵AP →·AD →=-4+4=0,∴AP →⊥AD →,即AP ⊥AD ,②正确;由①②可得AP →是平面ABCD 的法向量,③正确;由③可得AP →⊥BD →,④错误.]14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为________.x 25-y 220=1[由已知得ba =2,所以b =2a .在y =2x +10中令y =0得x =-5,故c =5,从而a 2+b 2=5a 2=c 2=25,所以a 2=5,b 2=20,所以双曲线的方程为x 25-y 220=1.] 15.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3,则椭圆C 的方程为________.x 23+y 2=1[由e =c a=23,得c 2=23a 2,所以b 2=a 2-c 2=13a 2, 设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b 2=1,所以x 2=a 2⎝⎛⎭⎫1-y 2b 2=a 2-3y 2.|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2=-2(y +1)2+a 2+6,当y =-1时,|PQ |有最大值a 2+6.由a 2+6=3,可得a 2=3,所以b 2=1,故椭圆C 的方程为x 23+y 2=1.]16.四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为________.31717[如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,由已知P (0,0,1),A (1,0,0),B (1,1,0),C (0,1,0),则重心G ⎝⎛⎭⎫23,23,0,因此DP →=(0,0,1),GP →=⎝⎛⎭⎫-23,-23,1,所以sin θ=|cos 〈DP →,GP →〉|=|DP →·GP →||DP →|·|GP →|=31717.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a 组成的集合.[解]∵A ={x |x 2-3x +2=0}={1,2},由于“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}.则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12.18.(本小题满分12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0.[解](1)由双曲线的离心率为2,可知双曲线为等轴双曲线,设双曲线的方程为x 2-y 2=λ,又双曲线过点(4,-10),代入解得λ=6,故双曲线的方程为x 2-y 2=6.(2)证明:由双曲线的方程为x 2-y 2=6,可得a =b =6,c =23,所以F 1(-23,0),F 2(23,0).由点M (3,m ),得MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),又点M (3,m )在双曲线上,所以9-m 2=6,解得m 2=3,所以MF 1→·MF 2→=m 2-3=0.19.(本小题满分12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.[解] (1)证明:取CD 的中点E ,连接BE ,如图①.①∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k . 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD . 又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图②所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),②∴AC →=(-4k,6k,0),AB 1→=(0,3k,1),AA 1→=(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC →·n =0,AB 1→·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AA 1→·n |AA 1→||n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1. 20.(本小题满分12分)如图,过抛物线y 2=2px (p >0)的焦点F 作一条倾斜角为π4的直线与抛物线相交于A ,B 两点.(1)用p 表示|AB |;(2)若OA →·OB →=-3,求这个抛物线的方程.[解](1)抛物线的焦点为F ⎝⎛⎭⎫p 2,0,过点F 且倾斜角为π4的直线方程为y =x -p2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,得x 2-3px +p 24=0, ∴x 1+x 2=3p ,x 1x 2=p 24,∴|AB |=x 1+x 2+p =4p .(2)由(1)知,x 1x 2=p 24,x 1+x 2=3p ,∴y 1y 2=⎝⎛⎭⎫x 1-p 2⎝⎛⎭⎫x 2-p 2=x 1x 2-p 2(x 1+x 2)+p 24=p 24-3p 22+p 24=-p 2,∴OA →·OB →=x 1x 2+y 1y 2=p 24-p 2=-3p 24=-3,解得p 2=4,∴p =2. ∴这个抛物线的方程为y 2=4x .21.(本小题满分12分)如图所示,四棱锥P -ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:P A ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.[解](1)证明:∵P A =AD =1,PD =2,∴P A 2+AD 2=PD 2, 即P A ⊥AD .又P A ⊥CD ,AD ∩CD =D , ∴P A ⊥平面ABCD .(2)以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.22.(本小题满分12分)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.[解](1)∵BF 2=2,而BF 22=OB 2+OF 22=b 2+c 2=2=a 2,∵点C 在椭圆上,C ⎝⎛⎭⎫43,13, ∴169a 2+19b2=1, ∴b 2=1,∴椭圆的方程为x 22+y 2=1. (2)直线BF 2的方程为x c +y b =1,与椭圆方程x 2a 2+y 2b2=1联立方程组,解得A 点坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,-b 3a 2+c 2,则C 点的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b 3a 2+c 2,又F 1为(-c,0),kF 1C =b 3a 2+c 22a 2c a 2+c 2+c=b 33a 2c +c 3, 又k AB =-b c ,由F 1C ⊥AB ,得b 33a 2c +c 3·⎝⎛⎭⎫-b c =-1, 即b 4=3a 2c 2+c 4,所以(a 2-c 2)2=3a 2c 2+c 4,化简得e =c a =55.。

高中数学选修2-1全册综合测试题含答案

高中数学选修2-1全册综合测试题含答案

选修2-1综合测试一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知p :2x -3<1,q :x 2-3x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.抛物线y =14x 2的焦点坐标为( ) A .(116,0) B .(-116,0) C .(0,1) D .(0,-1)3.已知命题p :3是奇数,q :3不是质数.由它们构成的“p ∨q ”“p ∧q ”“非p ”形式的命题中真命题有( )A .0个B .1个C .2个D .3个4.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-∞,0) B .(-3,0) C .(-12,0) D .(-60,-12)5.下列结论正确的个数是( )①命题“所有的四边形都是平行四边形”是特称命题;②命题“∀x ∈R ,x 2+1>0”是全称命题;③若p :∃x ∈R ,x 2+2x +1≤0,则非p :∀x ∈R ,x 2+2x +1≤0.A .0B .1C .2D .36.设α,β,γ是互不重合的平面,m ,n 是互不重合的直线,给出下列命题:①若m ⊥α,m ⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥α,n ⊥α,则m ⊥n .其中真命题的个数是( )A .1B .2C .3D .47.已知a =(m +1,0,2m ),b =(6,2n -1,2),若a ∥b ,则m 与n 的值分别为( ) A.15,12 B .5,2 C .-15,-12D .-5,-2 8.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( ) A .2 B .3 C .4 D .4 29.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,点P 在双曲线上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.32C.53D .210.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点EF 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°11.给出下列曲线,其中与直线y =-2x -3有交点的所有曲线是( )①4x +2y -1=0;②x 2+y 2=3;③x 22+y 2=1;④x 22-y 2=1. A .①③ B .②④ C .①②③ D .②③④12.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,设线段P 1P 2的中点为P .若直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1·k 2等于( )A .-12 B.12C .-2D .2 二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.命题“存在一个三角形没有外接圆”的否定是________.14.已知命题p :1≤x ≤2,q :a ≤x ≤a +2,且綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.15.已知直线l 1的一个方向向量为(-7,4,3),直线l 2的一个方向向量为(x ,y,6),且l 1∥l 2,则x =________,y =________.16.如图在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面ABCD 所成角的余弦值为________.三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.18.(12分)求证:a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.(12分)抛物线y =-x 22与过点M (0,-1)的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线l 的方程.20.(12分)已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.21.(12分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上,且DE ⊥AE .(1)证明:平面ADE⊥平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值.22.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1BD;(2)求二面角A1—BD—C1的余弦值.1.解析 p :x <2,q :0<x <3.∴pD ⇒/q ,qD ⇒/p .∴p 是q 的既不充分也不必要条件.答案 D2.解析 由y =14x 2,得x 2=4y ,∴焦点坐标为(0,1).答案 C2.解析 命题p 为真,q 为假,∴“p ∨q ”为真,“p ∧q ”、“綈p ”为假,故应选B.答案 B4.解析 由x 24+y 2k =1表示双曲线知,k <0,且a 2=4,b 2=-k ,∴e 2=c 2a 2=4-k 4,∵1<e <2,∴1<4-k 4<4.∴4<4-k <16,∴-12<k <0.答案 C5.解析 ①是全称命题,②是全称命题,③綈p :∀x ∈R ,x 2+2x +1>0.∴①不正确,②正确,③不正确.答案 B6.解析 ①正确,②不正确,③正确,④正确.答案 C7.解析 ∵a ∥b ,∴a =λb ,∴⎩⎪⎨⎪⎧ m +1=6λ,0=λ(2n -1),2m =2λ,解得⎩⎪⎨⎪⎧ m =15,n =12,λ=15.∴m =15,n =12.答案 A 8.解析 设双曲线的焦距为2c ,由双曲线方程知c 2=3+p 216,则其左焦点为(-3+p 216,0).由抛物线方程y 2=2px 知其准线方程为x =-p 2,由双曲线的左焦点在抛物线的准线上知,3+p 216=p 24,且p >0,解得p =4.答案 C9.解析 由双曲线的定义知,|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,∴|PF 1|=8a 3,|PF 2|=2a 3.又|PF 2|≥c -a ,即2a 3≥c -a .∴c a ≤53.即e ≤53.答案 C10.解析 建立空间直角坐标如图所示.设AB =2,则EF →=(0,-1,1).BC 1→=(2,0,2),∴cos 〈EF →·BC 1→〉=EF →·BC 1→|EF →||BC 1→|=28·2=12, 故EF 与BC 1所成的角为60°.答案 B11.解析 直线y =-2x -3与4x +2y -1=0平行,所以与①不相交.②中圆心(0,0)到直线2x +y +3=0的距离d =35< 3.所以与②相交.把y =-2x -3代入x 22+y 2=1,得x 22+4x 2+12x +9=1,即9x 2+24x +16=0,Δ=242-4×9×16=0,所以与③有交点.观察选项知,应选D.答案 D12.解析 设直线l 的方程为y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=-8k 211+2k 21, 而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21. ∴k 2=y 1+y 22x 1+x 22=-12k 1,∴k 1·k 2=-12. 答案 A13.解析 命题“存在一个三角形没有外接圆”是特称命题,它的否定是全称命题“任意一个三角形都有外接圆.”答案 任意一个三角形都有外接圆14.解析 “p 是q 的必要不充分条件”的逆否命题是“q 是p 的必要不充分条件”.∴{x |1≤x ≤2}{x |a ≤x ≤a +2},∴0≤a ≤1. 答案 0≤a ≤115.答案 -14 816.解析 由题意知,AC 1=22+22+1=3,AC =22+22=22,在Rt △AC 1C 中,cos ∠C 1AC =AC AC 1=223.答案 22317.解 由|x -1|>m -1的解集为R ,知m -1<0,∴m <1.即p :m <1.又f (x )=-(5-2m )x 是减函数,∴5-2m >1,即m <2,即q :m <2.若p 真q 假,则⎩⎨⎧ m <1,m ≥2,m 不存在. 若p 假q 真,则⎩⎨⎧ m ≥1,m <2,∴1≤m <2.综上知,实数m 的取值范围是[1,2).18.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a 2,直线x+by +2=0的斜率k 2=-1b ,如果a +2b =0,那么k 1k 2=(-a 2)×(-1b )=-1.故两直线互相垂直.必要性:如果两条直线互相垂直且斜率都存在,那么k 1k 2=(-a 2)×(-1b )=-1,所以a +2b =0,若两条直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0,所以a +2b =0.综上可知,a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.解 显然直线l 垂直于x 轴不合题意,故设所求的直线方程为y =kx -1,代入抛物线方程化简,得x 2+2kx -2=0.由根的判别式Δ=4k 2+8=4(k 2+2)>0,于是有k ∈R .设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),则y 1x 1+y 2x 2=1.① 因为y 1=kx 1-1,y 2=kx 2-1,代入① ,得2k -(1x 1+1x 2)=1.② 又因为x 1+x 2=-2k ,x 1x 2=-2,代入②得k =1.所以直线l 的方程为y =x -1.20.解 (1)设椭圆长半轴长及半焦距分别为a ,c 由已知得⎩⎨⎧ a -c =1,a +c =7,解得⎩⎨⎧ a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y 2=e 2.而e =34,故16(x 2+y 21)=9(x 2+y 2).① 由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4),它是两条平行于x轴的线段.21.解 (1)证明:由正三棱柱ABC -A 1B 1C 1的性质知AA 1⊥平面A 1B 1C 1.又DE ⊂平面A 1B 1C 1,所以DE ⊥AA 1.而DE ⊥AE ,AA 1∩AE =A ,所以DE ⊥平面ACC 1A 1.又DE ⊂平面ADE ,故平面ADE ⊥平面ACC 1A 1.(2)如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D (32,-12,2).易知AB →=(3,1,0),AC 1→=(0,2,2),AD →=(32,12,2).设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·AB →=3x +y =0,n ·AC 1→=2y +2z =0.解得x =-33y ,z =-2y .故可取n =(1,-3,6).所以cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2310×3=105.由此可知,直线AD和平面ABC1所成角的正弦值为10 5.22.解(1)证明:在图中连接B,E,则四边形DABE为正方形,∴BE=AD=A1D1,且BE∥AD∥A1D1.∴四边形A1D1EB为平行四边形.∴D 1E ∥A 1B .又D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD ,∴D 1E ∥平面A 1BD .(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设DA =1,则D (0,0,0),A (1,0,0),B (1,1,0),C 1(0,2,2),A 1(1,0,2).∴DA 1→=(1,0,2),DB →=(1,1,0).设n =(x ,y ,z )为平面A 1BD 的一个法向量,由n ⊥DA 1→,n ⊥DB →,得⎩⎨⎧x +2z =0,x +y =0,取z =1,则n =(-2,2,1).又DC 1=(0,2,2),DB →=(1,1,0),设m =(x 1,y 1,z 1)为平面C 1BD 的一个法向量,由m ⊥DC 1→,m ⊥DB →, 得⎩⎨⎧ 2y 1+2z 1=0,x 1+y 1=0,取z 1=1,则m =(1,-1,1).设m 与n 的夹角为α,二面角A 1-BD -C 1为θ,显然θ为锐角,∴cos α=m ·n |m ||n |=-39×3=-33.∴cosθ=3 3,即所求二面角A1-BD-C1的余弦值为3 3.。

高二数学选修2-1测试题

高二数学选修2-1测试题

高二数学选修2-1测试题1.“x1”是“x23x2”的(必要不充分条件)。

2.若p q是假命题,则(p是真命题,q是假命题)。

3.F1,F2是距离为6的两定点,动点M满足∣MF1∣+∣MF2∣=6,则M点的轨迹是(椭圆)。

4.双曲线x2y21=0的渐近线方程为(y=±x/√3)。

5.中心在原点的双曲线,一个焦点为F(0,3),一个焦点到最近顶点的距离是31,则双曲线的方程是(y2/4-x2/3=1)。

6.已知正方形ABCD的顶点A,B为椭圆的焦点,顶点C,D 在椭圆上,则此椭圆的离心率为(2-√2)。

7.椭圆4a2x2+a2y2=4a2与双曲线x2/a2-y2/b2=1有相同的焦点,则a的值为(2)。

8.与双曲线y2/9-x2/16=1有共同的渐近线,且过点(2,2)的双曲线标准方程为(9y2-16x2=144)。

9.已知A(-1,-2,6),B(1,2,-6)O为坐标原点,则向量OA,与OB的夹角是(cosθ=0)。

10.与向量a(1,3,2)平行的一个向量的坐标是(2,-6,4)。

11.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(x+1)²+(y-1)²=2)。

12.若直线x+y=m与圆x²+y²=m²相切,则m的值为(1)。

解析】解题分析:设圆心为O,则由题意可知O在直线y=x上,又因为圆心到直线x+y=2的距离为2,所以O到直线y=x的距离为2.由于直线y=x与直线x+y=2的距离为$\frac{\sqrt{2}}{2}$,所以O到直线y=x的距离也为$\frac{\sqrt{2}}{2}$。

因此,O的坐标为$(\frac{3}{2},\frac{3}{2})$,半径为$\sqrt{2}$,圆的方程为$(x-\frac{3}{2})^2+(y-\frac{3}{2})^2=2$。

故选C。

高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)

高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)

一、选择题1.已知命题p :x ∀∈R ,210x x -+<;命题 q :x ∃∈R ,23x x >,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝2.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠” 3.下列说法正确的个数是( )①“若4a b +≥,则,a b 中至少有一个不小于2“的逆命题是真命题 ②命题“设,a b ∈R ,若6a b +≠,则3a ≠或3b ≠”是一个真命题 ③“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x ->” ④1a b +>是a b >的一个必要不充分条件 A .0B .1C .2D .34.下列说法中错误的是( )A .命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”.B .在ABC 中,sin sin cos cos A B A B A B <⇔<⇔>.C .已知某6个数据的平均数为3,方差为2,现又加入一个新数据3,则此时这7个数的平均数和方差不变.D .从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立.5.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假6.已知0a b >>,给出下列命题:①1=,则1a b -<; ②若331a b -=,则1a b -<; ③若1a b e e -=,则1a b -<; ④若ln ln 1a b -=,则1a b -<. 其中真命题的个数是( )A .1B .2C .3D .47.下列有关命题的说法错误的是( ) A .“若22am bm <,则a b <”的逆命题为假命题B .命题“如果()()150x x +-=2=”的否命题是真命题C .若p q ∧为假命题,则p 、q 均为假命题D .若p q ∨为假命题,则p 、q 均为假命题8.已知p :2+2=5;q :3>2,则下列判断错误的是( ) A .“p ∨q ”为真,“¬q ”为假 B .“p ∧q ”为假,“¬p ”为真 C .“p ∧q ”为假,“¬p ”为假 D .“p ∨q ”为真,“¬p ”为真9.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题 10.若函数()sin f x x x =,则对a ,,22b ππ⎛⎫∈- ⎪⎝⎭,不等式()()f a f b >成立的一个充要条件是( ) A .a b >B .a b <C .a b >D .22a b >11.记不等式()()22124x y -+-≤表示的平面区域为D .命题p :()x y D ∀∈,,28x y +≤;命题q :(),x y D ∃∈,21x y +≤-.下面给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝.这四个命题中,所有真命题的编号是( ) A .①③B .②④C .②③D .①④12.将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度后,得到函数()f x 的图象,则“6π=ϕ”是“()f x 是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.若12,[3,4]x x ∀∈∃∈R ,使2211221225x x x x x ax +++-成立,则实数a 的取值范围是______. 14.下列说法中:①命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤”;②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”是“函数()y f x =在区间D 上的最小值为M ”的必要不充分条件;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()()()1212f x f x f x x +=; ④若1x ,2x ∈R ,12x x ≠,则函数()2xf x =满足()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭.所有正确说法的序号______.(把满足条件的序号全部写在横线上)15.若命题“x ∃∈R ,220x x a --<”是假命题,则实数a 的取值范围是______. 16.“14a =”是“对任意的正数x ,均有1ax x +≥”的________条件.17.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5,0,1,2,3,4k n k n Z k =+∈=.给出如下四个结论:①[]20111∈, ②[]33-∈,③[][][][][]01234Z =⋃⋃⋃⋃,④整数,a b 属于同一类的充要条件是[]0a b -∈. 其中正确的个数是___________ 18.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③x R ∃∈命题“,使得210x x +-<”的否定是:“x R ∀∈,均有210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题 其中所有正确命题的序号是________. 19.下列说法:(1)设a ,b 是正实数,则“a >b >1”是“log 2a >log 2b”的充要条件; (2)对于实数a ,b ,c ,如果ac >bc ,则a >b ; (3)“m=12”是直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的充分不必要条件;(4)等比数列{a n }的公比为q ,则“a 1>0且q >1”是对任意n ∈N +,都有a n+1>a n 的充分不必要条件;其中正确的命题有______ 20.给出下列四个命题中:①命题“若x ≥2且y ≥3,则x +y ≥5”为假命题.②命题“若x 2-4x +3=0,则x =3”的逆否命题为:“若x ≠3,则x 2-4x +3≠0”. ③“x >1”是“|x |>0”的充分不必要条件④关于x 的不等式|x +1|+|x -3|≥m 的解集为R ,则m ≤4. 其中所有正确命题的序号是______.三、解答题21.设命题p :实数x 满足()(3)0x a x a --<,其中0a >,命题:q 实数x 满足428x ≤≤.(1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.22.已知:()2:,21p x R x m x ∀∈>+,0:,q x R ∃∈200210x x m +--=,(1)若q 是真命题,求实数m 的取值范围; (2)若()p q ∧⌝为真命题,求实数m 的取值范围.23.已知p :2430x x -+<,q :()()210x m x m m R -++<∈.(1)求不等式2430x x -+<的解集;(2)若q 是p 的必要不充分条件,求m 的取值范围.24.定义:如果存在实数x ,y 使c xa yb =+,那么就说向量c 可由向量a b ,线性表出.给出命题:p :空间三个非零向量a b c ,,中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a b c ,,共面.判断p 是q 的什么条件,并证明你的结论. 25.已知集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}220C x x mx =-+=.(1)若命题p :“x B ∀∈,都有x A ∈”为真命题,求实数a 的取值集合; (2)若C ≠∅,且“x A ∈”是“x C ∈”的必要条件,求实数m 的取值集合. 26.已知命题p :任意2,230x R x mx m ∈-->成立;命题q :存在2,410x R x mx ∈++<成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题,p q 中恰有一个为真命题,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别判断两个命题p , q 的真假,结合复合命题真假关系进行判断即可. 【详解】对于命题p ,取1x =时,10<不成立,故命题p 为假命题, 对于命题 q ,1x =-时,23(1)(1)->-成立,故命题 q 为真命题,所以p q ∧为假命题,p q ⌝∧为真命题,p q ∧⌝为假命题,p q ⌝∧⌝为假命题,故选:B 【点睛】本题主要考查复合命题真假关系的判断,结合条件判断命题p ,q 的真假是解决本题的关键.2.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式. 所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.3.C解析:C 【解析】对于①,原命题的逆命题为:若,? a b 中至少有一个不小于2,则4a b +≥,而4,?4a b ==-满足,? a b 中至少有一个不小于2,但此时0a b +=,故①是假命题;对于②,此命题的逆否命题为“设,?a b R ∈,若3a =且3b =,则6a b +=”,此命题为真命题,所以原命题也是真命题,故②是真命题;对于③“20000x R x x ∃∈-<,”的否定是“20x R x x ∀∈-≥,”,故③是假命题;对于④,由a b >可推得1a b >-,故④是真命题,故选C .点睛:本题考查了简易逻辑的判定方法、特称命题的否定等基础知识与基本技能,考查了推理能力与计算能力,属于中档题;四种命题的关系中,互为逆否命题的两个命题真假性相同,当判断原命题的真假比较复杂时,可转化为其逆否命题的真假,充分条件、必要条件的判定相当于判定原命题、逆命题的真假.4.C解析:C 【分析】选项A 根据命题的否定判断,选项B 根据正弦定理及两角和的余弦公式判定即可,选项C 可根据均值及方差的性质判断,选项D 根据互斥事件与对立事件的定义判断即可. 【详解】A 中根据命题的否定可知,命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”正确;B 中A B <可知a b <,根据正弦定理可得sin sin A B <,同理可知由sin sin A B <可得a b <,可得A B <,即sin sin A B A B <⇔<,因为cos y x =在(0,)x π∈上单调递减,且(0,),(0,)A B ππ∈∈,所以cos cos A B A B <⇔>,故正确;C 中设原数据中方差为2s ,则加入一个新数据3后平均值为63337⨯+=,方差为2226(33)677s s ⨯+-=,故不正确;D 中,事件“至多一个红球”与“都是红球”不能同时发生,而且在一次试验中有且只有一个事件发生, 故互斥且对立正确. 故选:C 【点睛】本题主要考查了命题的否定,三角形中的充要条件,平均值与方差,互斥与对立事件,属于中档题.5.D解析:D 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.6.B解析:B 【分析】①1=1,然后两边平方,再通过作差法即可得解; ②若331a b -=,则331a b -=,然后利用立方差公式可知23(1)(1)a a a b -++=,再结合0a b >>以及不等式的性质即可判断;③若1abe e -=,则111a b a bb b b e e e e e e-+===+,再利用0b >,得出1b e >,从而求得a be -的范围,进而判断;④取特殊值,a e =,1b =即可判断. 【详解】解:①1=,1,所以1a b =++所以11a b -=+,即①错误; 若331a b -=, 则331a b -=,即23(1)(1)a a a b -++=, 因为0a b >>, 所以22a b >, 所以221a a b ++>,所以1a b -<,即1a b -<,所以②正确; 若1a b e e -=, 则111a b a bb b b e e ee e e-+===+, 因为0b >,所以12a b e e -<<<, 所以1a b -<,即③正确;④取a e =,1b =,满足1lna lnb -=, 但1a b ->,所以④错误; 所以真命题有②③, 故选:B . 【点睛】本题考查命题真假的判断,涉及根据不等式的性质证明不等式、指对运算法则、立方差公式等,考查学生的分析能力和运算能力.7.C解析:C 【分析】写出逆命题和否命题,判断正误,根据或和且的命题真假判断命题真假得到答案. 【详解】逆命题为:若a b <,则22am bm <,当0m =是不成立,故为假命题,A 正确;否命题为:如果()()150x x +-≠2≠,为真命题,B 正确; 若p q ∧为假命题,则p 、q 不同时为真,C 错误;若p q ∨为假命题,则p 、q 均为假命题,D 正确; 故选:C . 【点睛】本题考查了逆命题和否命题,或和且命题的判断,意在考查学生的推断能力.8.C解析:C【分析】先判定命题p 为假命题,命题q 为真命题,再结合复合命题的真假判定,即可求解. 【详解】由题意,命题:225p +=为假命题,命题:32q >为真命题,所以命题p q ∧为假命题,p ⌝为真命题,命题p q ∨为真命题,q ⌝为假命题, 故选:C . 【点睛】本题主要考查了复合命题的真假判定,其中解答中正确判定命题,p q 的真假,熟记复合命题的真假判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.C解析:C 【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D. 【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C 错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是 “若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C. 【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.10.D解析:D 【分析】先分析函数的奇偶性,由导数得出函数的单调性,利用这两个性质求解. 【详解】()sin f x x x =,()sin()sin ()f x x x x x f x -=--==,()f x 是偶函数,()sin cos f x x x x '=+,在02x π≤<时,()0f x '≥,()f x 递增,所以22()()()()f a f b f a f b a b a b >⇔>⇔>⇒>. 故选:D. 【点睛】本题考查函数的奇偶性与单调性,用函数的这两个性质求解不等式.本题还考查了导数与单调性的关系.掌握用导数研究不等式的方法是解题关键.11.B解析:B 【分析】画出平面区域D ,直线28x y +=和直线21x y +=-,根据图像判断出命题p 和命题q 的真假,从而得到答案. 【详解】平面区域为D 满足不等式()()22124x y -+-≤, 画出其图像如图所示,再画出直线28x y +=和直线21x y +=-,根据图像可得存在(),x y D ∈,在直线28x y +=的上方, 所以命题p :()x y D ∀∈,,28x y +≤,是假命题, 不存在(),x y D ∈,在直线21x y +=-的下方 所以命题q :(),x y D ∃∈,21x y +≤-,是假命题.所以①p q ∨为假命题;②p q ⌝∨为真命题;③p q ∧⌝为假命题;④p q ⌝∧⌝为真命题. 故选:B.【点睛】本题考查判断含有逻辑联结词命题的真假,根据不等式画可行域,判断点是否在可行域内,属于中档题.12.A解析:A 【分析】求出函数()y f x =的解析式,由函数()y f x =为偶函数得出ϕ的表达式,然后利用充分条件和必要条件的定义判断即可. 【详解】将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度,得到的图象对应函数的解析式为()sin 3sin 393f x x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 若函数()y f x =为偶函数,则()32k k Z ππϕπ+=+∈,解得()6k k Z πϕπ=+∈,当0k =时,6π=ϕ. 因此,“6π=ϕ”是“()y f x =是偶函数”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.二、填空题13.【分析】先整理为关于的不等式恒成立求出相应的最值后得不等式在时能成立分离参数整理为求出诉最大值可得结论【详解】由得∴当时取得最小值∴使成立即使成立设设则∴即∴在时是增函数∴在上有∴故答案为:【点睛】 解析:(,5]-∞【分析】先整理为关于1x 的不等式恒成立,求出相应的最值后,得不等式222222154x x x ax -+--+-在2[3,4]x ∈时能成立,分离参数整理为223414x a x ≤++,求出223414x x ++诉最大值可得结论. 【详解】由2211221225x x x x x ax ≥++-+,得2212122(2)5x x x x ax +-≥-+-, ∴当2112x x =-时,()21212x x x +-取得最小值()22222221211224x x x x x ⎛⎫⎛⎫-+--=-+- ⎪ ⎪⎝⎭⎝⎭ ∴2[3,4]x ∃∈,使222222154x x x ax -+--+-成立,即2[3,4]x ∃∈,使223414a x x ++成立. 设3414t y t=++,设1234t t ≤<≤,则12120,316t t t t -<>, ∴12121212121233()(316)44444t t t t t t y y t t t t ---=+--=0<,即12y y <, ∴3414t y t=++在[3,4]∈时,是增函数. ∴223414x y x =++在[3,4]上有max 5y =,∴5a ≤. 故答案为:(,5]-∞. 【点睛】思路点睛:本题考查双变量不等式恒成立求参数范围.解题方法是先整理为以1x 为变量的不等式恒成立,又转化为关于2x 的不等式能成立,分离参数后求得函数的最值.14.②③④【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用;③对数的运算关系式的应用;④根据基本不等式可得答案;【详解】①命题对任意的有的否定为存在有故①错误;②对于任意的总解析:②③④ 【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用; ③对数的运算关系式的应用; ④根据基本不等式可得答案; 【详解】①命题“对任意的1x >,有21x >”的否定为“存在1x >,有21x ≤”,故①错误; ②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”由于没有说明0x D ∈()0f x M =,所以“函数()y f x =在区间D 上的最小值为M ”不一定成立;函数()y f x =在区间D 上的最小值为M ,总有()f x M ≥(M 为常数)成立,故②正确;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()1212log log log a a a x x x x =+, 所以()()()1212f x f x f x x +=成立,故③正确;④若1x ,2x ∈R ,12x x ≠,()()1212,33x x f x f x ==,1212232x xx x f ++⎛⎫= ⎪⎝⎭, 因为()30xf x =>,所以()()1212122322x x f x f x x x f +++⎛⎫>=== ⎪⎝⎭,故④正确.故答案为:②③④.【点睛】本题考查了命题的否定、函数的最小值和充分条件和必要条件的应用、对数的运算关系、不等式比较大小的问题.15.【分析】由题意可知恒成立结合二次函数的性质可求的最小值从而可求出实数的取值范围【详解】原命题否定为真命题即∴因为图象开口向上对称轴为则∴故答案为:【点睛】本题考查了由不等式恒成立求参数的取值范围考查 解析:(],1-∞-【分析】由题意可知22a x x ≤-恒成立,结合二次函数的性质可求22x x -的最小值,从而可求出实数a 的取值范围. 【详解】原命题否定,x ∀∈R ,220x x a --≥为真命题,即22a x x ≤-,∴()2min2a x x≤-,因为22y x x =-图象开口向上,对称轴为1x =,则()2min2121x x-=-=-,∴1a ≤-,故答案为: (],1-∞-.本题考查了由不等式恒成立求参数的取值范围,考查了已知命题的真假性求参数的取值范围.本题的关键是由已知得不等式恒成立.16.充分不必要【分析】当时对任意的正数x 均有反过来当对任意的正数x 均有时通过讨论有成立即可判断【详解】当时对任意的正数x 均有当且仅当时等号成立;当对任意的正数x 均有时当时令此时不符合题意;当时显然不满足解析:充分不必要 【分析】当14a =时,对任意的正数x ,均有141a x x x x+=+≥,反过来,当对任意的正数x ,均有1a x x +≥时,通过讨论有14a ≥成立,即可判断.【详解】 当14a =时,对任意的正数x ,均有141a x x x x +=+≥==, 当且仅当12x =时等号成立; 当对任意的正数x ,均有1ax x+≥时,当0a <时,令0x =>,此时0ax x+=,不符合题意; 当0a =时,1≥x ,显然不满足题意;当0a >时,有1ax x+≥, 解得有14a ≥, 所以“14a =”是“对任意的正数x ,均有1ax x +≥”的充分不必要条件故答案为:充分不必要 【点睛】本题考查了充分性和必要性的判断,属于一般题.17.3【分析】根据2011被5除的余数为1可判断①;将=可判断②;根据整数集就是由被5除所得余数为01234可判断③;令根据类的定理可证明④的真假【详解】①由2011÷5=402…1所以2011∈1故①解析:3根据2011被5除的余数为1,可判断①;将3-=52-+,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令115a n m =+,225b n m =+,根据“类”的定理可证明④的真假. 【详解】①由2011÷5=402…1,所以2011∈[1],故①正确; ②由()3512-=⨯-+ 所以[]33-∉,故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,③正确; ④假设115a n m =+,225b n m =+,()12125a b n n m m -=-+-,,a b 要是同类. 则 12m m =,即120m m -=,所以[]0a b -∈,反之若[]0a b -∈,即120m m -=,所以12m m =,则,a b 是同类. ④正确; 故答案为:3 【点睛】本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理.属中档题.18.④【分析】①根据命题的否命题和原命题之间的关系判断②利用充分条件和必要条件的定义判断③利用特称命题的否定判断④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若则所以解析:④ 【分析】①根据命题的否命题和原命题之间的关系判断.②利用充分条件和必要条件的定义判断.③利用特称命题的否定判断.④利用逆否命题的等价性进行判断. 【详解】解:①根据否命题的定义可知命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以②“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为④. 【点睛】本题主要考查命题的真假判断,以及四种命题的真假关系的判断,比较基础.19.(3)(4)【分析】利用充要条件不等式性质两直线垂直的充要条件等比数列为递增数列的条件逐一判断即可【详解】对于(1)求得所以是的充分不必要条件所以错误对于(2)不成立所以错误对于(3)直线与直线相互解析:(3)(4) 【分析】利用充要条件、不等式性质、两直线垂直的充要条件、等比数列为递增数列的条件,逐一判断即可. 【详解】对于(1)22"log log "a b >求得0a b >>,所以"1"a b >>是22"log log "a b >的充分不必要条件,所以错误对于(2)0c <不成立,所以错误对于(3)直线()2310m x my +++=与直线()()2230m x m y -++-=相互垂直,12m =或2m =-,所以正确 对于(4)1"0a >且1"q >可以推出对任意n N +∈,都有1n n a a +>,反之不成立,如数列16,8,4,2----,所以正确故答案为(3)(4) 【点睛】本题考查了命题真假的判断,涉及到不等式性质、充要条件、等比数列的单调性等知识,属于中档题.20.②③④【分析】命题的判断一一进行判断即可对于①显然为假命题;对于②逆否命题条件和结论都否定正确;对于③若x >1则|x|>0若|x|>0则x 不一定大于1;对于④f (x )=|x+1|+|x ﹣3|表示数轴解析:②③④ 【分析】命题的判断,一一进行判断即可.对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和. 【详解】对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和,最小为4,所以m 4≤.故答案为②③④. 【点睛】本题考查命题真假的判断,综合考查了不等式性质及绝对值的意义,属于中档题.三、解答题21.(1)[)2,3;(2)12a <<. 【分析】(1)当1a =时,分别求出p ,q 成立的等价条件,利用p q ∧为真可得x 的取值范围; (2)由题可得q 是p 的充分不必要条件,得Q P ,从而可得a 的取值范围. 【详解】(1)当1a =时,由()()130x x --<,得p :13x <<, 由428x ≤≤,得:q 23x ≤≤,由p ∧q 为真,即p ,q 均为真命题,因此x 的取值范围是[)2,3. (2)若¬p 是¬q 的充分不必要条件,可得q 是p 的充分不必要条件,由题可得命题p 对应的集合{}3P x a x a =<<,命题q 对应的集合{}23Q x x =≤≤, 所以Q P ,因此2a <且33a <,解得12a <<. 即实数a 的取值范围是12a <<. 【点睛】本题考查充分必要条件的定义和应用,考查复合命题的真假判断,考查分析解决问题的能力,属于基础题.22.(1)2m ≥-;(2)2m <-. 【分析】(1)由题意知,q 是真命题等价于方程2210x x m +--=有实根,利用判别式0∆≥即可求解;(2)由题意知,分别求出p 、q ⌝为真命题时实数m 的取值范围,然后再取交集即可. 【详解】(1)因为0:R,q x ∃∈200210x x m +--=为真命题, 所以方程2210x x m +--=有实根, 所以判别式()4410m ∆=++≥, 所以实数m 的取值范围为2m ≥-.(2)()221x m x >+可化为220mx x m -+<, 若:R,p x ∀∈()221x m x >+为真命题,则220mx x m -+<对任意的x ∈R 恒成立, 当0m =时,不等式可化为20x -<,显然不恒成立;当0m ≠时,有2440m m <⎧⎨-<⎩,1m ∴<-, 由(1)知,若q ⌝为真命题,则2m <-, 又()p q ∧⌝为真,故p 、q ⌝均为真命题,所以实数m 需满足12m m <-⎧⎨<-⎩,解得2m <-,所以实数m 的取值范围为2m <-. 【点睛】本题考查利用复合命题的真假求参数的取值范围;考查运算求解能力和逻辑思维能力;熟练掌握复合命题的真假判断是求解本题的关键;属于中档题. 23.(1){}3|1x x <<(2)()3,+∞ 【分析】(1)分解因式得()()130x x --<,进而求解即可;(2)先将命题q 中不等式分解为()()10x m x --<,所以讨论m 与1的大小,当1m 时,不等式()210x m x m -++<的解是1x m <<,由q 是p 的必要不充分条,则2430x x -+<的解集是()210x m x m -++<(1m )解集的真子集,即可求解,同理讨论当1m <与1m =时的情况.【详解】解:(1)因为2430x x -+<,所以()()130x x --<,所以13x <<, 所求解集为{}|13x x <<.(2)因为q :()()210x m x m m R -++<∈,则()()10x m x --<当1m 时,不等式()210x m x m -++<的解是1x m <<,因为q 是p 的必要不充分条件,所以2430x x -+<的解集是()210x m x m -++<(1m )解集的真子集,所以3m >;当1m <时,不等式()210x m x m -++<的解是1m x <<,因为{}{}||131x x x m x <<⋂<<=∅,不合题意; 当1m =时,不等式2430x x -+<的解集为∅,不合题意. 综上,m 的取值范围是()3,+∞. 【点睛】本题考查含参数的一元二次不等式的解法,考查由充分必要条件求参数的范围,考查运算能力与分类讨论思想.24.充分不必要条件,证明见解析. 【分析】利用给出的定义、向量共面定理即可判断出关系. 【详解】p :空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a ,b ,c 共面.p 是q 的充分不必要条件.证明如下:若空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出, 不妨设c xa yb =+,则由向量共面定理知,a ,b ,c 共面, 即p q ⇒,反之不成立,例如,三个非零向量a ,b ,c 共面,且//a b ,而c 与a ,b 不共线,则c 无法用a ,b 线性表示. p ∴是q 的充分不必要条件.【点睛】本题考查了向量共线共面定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.25.(1){2,3};(2){3}. 【分析】(1)解方程确定集合,A B ,再根据命题p 为真求得a ; (2)题意说明x C ∈是x A ∈的充分条件,由此可求得m 值. 【详解】 由题意{1,2}A =,(1)2a =时,{1}B =满足题意,2a ≠时,{1,1}B a =-, 则∵x B ∀∈,都有x A ∈,∴12a -=,3a =, ∴a 的取值集合是{2,3};(2)∵“x A ∈”是“x C ∈”的必要条件,∴x C x A ∈⇒∈.若280m ∆=-=,即m =±C =或{C =均不合题意, 又C ≠∅,∴0∆>,因此12{,}C x x =,又12,x A x A ∈∈, 因此不妨设11x =,22x =,则123m x x =+=.∴m 的取值集合是{3}.【点睛】关键点点睛:本题考查由充分必要条件求参数,解题方法是根据充分条件,必要条件的定义得出集合中元素的性质,从而得出结论.也可由充分必要条件与集合包含之间的关系确定集合的关系,从而得出结论. 26.(1)(3,0)-;(2)(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【分析】(1)只需24120m m ∆=+<,然后求解m 的取值范围; (2)分p 真q 假、p 假q 真两种情况讨论求解. 【详解】解:(1)若命题p 为真命题,则24120m m ∆=+<,解得30m -<<,故实数m 的取值范围(3,0)-(2)若命题q 为真命题,则21640m ∆=->,解得12m <-或12m > ∵命题,p q 中恰有一个为真命题, ∴命题,p q 一真一假①当p 真q 假时,301122m m -<<⎧⎪⎨-≤≤⎪⎩,解得:102m -≤<②当p 假q 真时,301122m m m m ≤-≥⎧⎪⎨-⎪⎩或或,解得:3m ≤-或12m >.综上,实数m 的取值范围(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【点睛】本题考查根据命题的真假求解参数的取值范围,考查二次不等式恒成立与有解问题,难度一般.。

(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(包含答案解析)

(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(包含答案解析)

一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( )A .12B .13C .512D .7122.正方体''''ABCD A B C D -棱长为6,点P 在棱AB 上,满足PA PB =,过点P 的直线l 与直线''A D 、'CC 分别交于E 、F 两点,则EF =( ) A .313B .95C .18D .213.已知直三棱柱111ABC A B C -中,190,1,2ABC AB BC CC ︒∠====,则异面直线1AB 与1BC 所成角的余弦值为( ) A .35B .35C .45D .45-4.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC的值为( ) A .0B .2 C .12-D .125.如图,点P 在正方体1111ABCD A BC D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变; 1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB 平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个6.如图,在正方体1111ABCD A B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论:①直线1A H 与该正方体各棱所成角相等; ②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形; ④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形, 其中正确结论的序号为( )A .①③B .②④C .①②④D .①②③7.设平面α的一个法向量为1(1,2,2)n =-,平面β的一个法向量为2(2,4,)n k =--,若//αβ,则k = ( )A .2B .-4C .-2D .48.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 9.侧棱长都都相等的四棱锥P ABCD -中,下列结论正确的有( )个 ①P ABCD -为正四棱锥;②各侧棱与底面所成角都相等; ③各侧面与底面夹角都相等;④四边形ABCD 可能为直角梯形 ( ) A .1B .2C .3D .410.如图所示,五面体ABCDE 中,正ABC ∆的边长为1,AE ⊥平面,ABC CD AE ∥,且12CD AE =.设CE 与平面ABE 所成的角为,(0)AE k k α=>,若ππ[,]64α∈,则当k 取最大值时,平面BDE 与平面ABC 所成角的正切值为( )A .2 B .1C .2D .311.已知平行六面体1111ABCD A BC D -中,11114AE AC =,若1BE xAB yAD zAA =++,则x 的值为( )A .14B .34-C .1D .1212.如图,一个结晶体的形状为平行六面体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60︒,若对角线1AC 的长是棱长的m 倍,则m 等于( )A 2B 3C .1D .2二、填空题13.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,11AB AC AA ===,已知G 和E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若DG EF ⊥,则线段DF 长度的取值范围为______.14.如图,在四面体ABCD 中,若截面PQMN 是正方形,则有以下四个结论,其中结论正确的是__________________.(请将你认为正确的结论的序号都填上,注意:多填、错填、少填均不得分.)①//AC 截面PQMN ; ②AC BD ⊥; ③AC BD =;④异面直线PM 与BD 所成的角为045.15.ABC △中,90C ∠︒=,60A ∠︒=,2AB =,M 为AB 中点,将BMC △沿CM 折叠,当平面BMC ⊥平面AMC 时,A ,B 两点之间的距离为_____.16.已知向量=211a -(,,),(,1,1)b λ=-,若a 与b 的夹角为钝角,则λ的取值范围是______.17.在直三棱柱111A B C ABC -中,底面ABC 为直角三角形,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF 的长度的最小值为 .18.已知,若向量互相垂直,则k 的值为____.19.在直三棱柱111ABC A B C -中,若1BAC 90,AB ACAA ,则异面直线1BA 与1AC 所成的角等于_________20.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________.三、解答题21.如图,在四棱锥P ABCD -中,AB //CD ,223AB DC ==,AC BD F ⋂=,且PAD △与ABD △均为正三角形,AE 为PAD △的中线,点G 在线段AE ,且2AG GE =.(1)求证:GF //平面PDC ;(2)若平面PAD ⊥平面ABCD ,求平面PAD 与平面GBC 所成锐二面角的余弦值. 22.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)若//PB 平面AEC ,请确定点E 的位置,并说明理由.(2)设2AB AP ==,3AD =,若13PE PD =,求二面角P AC E --的正弦值.23.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,,M N 分别为棱,PD BC 的中点,2PA AB ==.(1)求证://MN 平面PAB ;(2)求直线MN 与平面PCD 所成角的正弦值.24.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,//AD BC ,AD AB ⊥,4AB AS ==,3AD =,6BC =,E 为SB 的中点.(1)求证://AE 平面SCD . (2)求二面角B AE C --的余弦值.25.如图,在直三棱柱111ABC A B C -中,12AA AB AC ===,AB AC ⊥,M 是棱BC 的中点,点P 在线段A 1B 上.(1)若P 是线段1A B 的中点,求直线MP 与平面11ABB A 所成角的大小; (2)若N 是1CC 的中点,平面PMN 与平面CMN 537,求线段BP 的长度.26.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据向量共面定理求解. 【详解】由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-,∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦,∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩.【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=.2.C解析:C 【分析】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.再建立空间直角坐标系求解即可. 【详解】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.以A 为坐标原点建立如图空间直角坐标系,则设(,0,6)E e ,(6,6,)F f ,(0,3,0)P又,,E P F 共线,则EP PF λ=,故(,3,6)(6,3,)e f λ--=,故6133666e e f f λλλλ-==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪-==-⎩⎩.故(6,0,6)E -,(6,6,6)F -,则222(12)6(12)18EF =++=.故选:C 【点睛】本题主要考查了利用空间直角坐标系求解共线问题的方法等,属于中等题型.3.C解析:C【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1AB 与1BC 所成角的余弦值. 【详解】解:以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 则11(1,0,0),(0,0,2),(0,0,0),(0,1,2)A B B C ,11(1,0,2),(0,1,2)AB BC =-=,设异面直线1AB 与1BC 所成角为θ, 则1111||4cos 5||||55AB BC AB BC θ⋅===⋅⋅.∴异面直线1AB 与1BC 所成角的余弦值为45.故选:C.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.4.A解析:A 【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解. 【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅coscos33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=. 故选A . 【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.5.C解析:C 【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C , 故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确;对于②,连接1A B ,11AC ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BAC 面1ACD ,从而由线面平行的定义可得,故②正确;对于③,由于DC ⊥平面11BCBC ,所以1DC BC ⊥,若1DP BC ,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确.故选C .【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.6.D解析:D【解析】【分析】由A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,结合线线角和线面角的定义,可判断①②;由四边形A 1ACC 1为矩形,可判断③;由垂直于直线A 1H 的平面与平面AB 1D 1平行,可判断④.【详解】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,A 1H ⊥平面AB 1D 1,垂足为H ,连接A 1C ,可得A 1C ⊥AB 1,A 1C ⊥AD 1,即有A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,直线A 1H 与该正方体各棱所成角相等,均为2①正确;直线A 1H 与该正方体各面所成角相等,均为2②正确; 过直线A 1H 的平面截该正方体所得截面为A 1ACC 1为平行四边形,故③正确;垂直于直线A 1H 的平面与平面AB 1D 1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D .【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.7.D解析:D【分析】根据平面平行得法向量平行,再根据向量平行坐标表示得结果.【详解】因为//αβ,所以12122//24n n k-==--,,解之得4k =,应选答案D 【点睛】本题考查向量平行坐标表示,考查基本求解能力,属基础题. 8.D 解析:D【解析】分析:利用向量多边形与三角形法则即可求出,首先分析题中各选项都是由从O 出发的三个向量表示的,所以将待求向量用从O 出发的向量来表示,之后借助于向量的差向量的特征以及中线向量的特征,求得结果.详解:由题意可得21()32EF OF OE OA OB OC =-=-+ 211322OA OB OC =--,故选D. 点睛:该题考查的是有关空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题. 9.A解析:A【解析】分析:紧扣正四棱锥的概念,即可判定命题的真假.详解:由题意,当四棱锥P ABCD -的底面ABCD 为一个矩形时,设AC BD O ⋂=且PO ⊥底面ABCD ,此时可得PA PB PC PD ===,而四棱锥此时不是正四棱锥,所以①不正确的,同时各个侧面与底面所成的角也不相等,所以③不正确的;因为四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,而直角梯形ABCD 没有外接圆,所以底面不可能是直角梯形,所以④不正确;设四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,所以各条测量与底面ABCD 的正弦值都相等,所以②正确的, 综上,故选A.点睛:本题主要考查了正四棱锥的概念,我们把底面是正方形,且顶点在底面上的射影是底面正方形的中心的四棱锥,叫做正四棱锥,其中紧扣正棱锥的概念是解答的关键. 10.C解析:C【详解】分析:建立空间直角坐标系,利用直线CE 与平面ABE 所成的角,求解k 的最大值,进而求解平面BDE 和平面ABC 的一个法向量,利用向量所成的角,求解二面角的余弦值,进而求得正切值,得到结果.详解:如图所示,建立如图所示的空间直角坐标系O xyz - ,则31(0,1,0),(0,0,),(0,1,),(,0)22k A D E k B , 取AB 的中点M ,则33(,0)4M ,则平面ABE 的一个法向量为33(,0)4CM =,由题意sin 2CE CMCE CM α⋅==⋅又由ππ[,]64α∈,所以1sin22α≤=≤k ≤≤,所以k当k =BDE 的法向量为(,,)n x y z =,则03102n DE y z n BE x yz ⎧⋅==⎪⎪⎨⎪⋅=++=⎪⎩, 取(3,1n =--,由平面ABC 的法向量为(0,0,1)m =, 设平面BDE 和平面ABC 所成的角为θ,则3cos n m n m θ⋅==⋅,所以sin 3θ=tan θ= C. 点睛:本题考查了空间向量在立体几何中的应用,解答的关键在于建立适当的空间直角坐标系,求解直线的方向向量和平面的法向量,利用向量的夹角公式求解,试题有一定的难度,属于中档试题,着重考查了学生的推理与运算能力,以及转化的思想方法的应用. 11.B解析:B【分析】 根据向量运算得到1113144BE BA AA A E AB AD AA =++=-++,得到答案. 【详解】 ()11111111131444BE BA AA A E AB AA A B A D AB AD AA =++=-+++=-++,故34x =-. 故选:B .【点睛】 本题考查了向量的运算,意在考查学生的计算能力和空间想象能力.12.A解析:A【分析】由题意画出结晶体的图形,利用向量加法的三角形法则求解晶体的对角线的长.【详解】设AB a =,AD b =,1AA c =,棱长为t ,则两两夹角为60︒, 11AC AB AD A A a b c=++=+-, 22222222122232AC a b c a b c a b a c c b t t t ∴=+-=+++⋅-⋅-⋅=-=, 12AC t ∴=. 2m ∴=故选:A . 【点睛】 本题考查了棱柱的结构特征,考查了向量加法三角形法则,解答的关键是掌握22||a a =,是基础题.二、填空题13.【分析】建立空间直角坐标系设出的坐标求出向量利用求得关系式写出的表达式然后利用二次函数求最值即可【详解】由题意建立如图所示的空间直角坐标系则由于则所以所以所以当时线段长度的最小值是当时线段长度的最大 解析:5 【分析】建立空间直角坐标系,设出F 、D 的坐标,求出向量DG ,EF ,利用GD EF ⊥求得关系式,写出DF 的表达式,然后利用二次函数求最值即可.【详解】由题意,建立如图所示的空间直角坐标系,则(0,0,0)A ,1(0,1,)2E ,1(,0,1)2G ,(,0,0)F x ,(0,,0)D y ,由于GD EF ⊥,则0GD EF ⋅=,所以210x y +-=,所以(,,0)(21,)DF x y y y =-=-+-,所以22222215415550DF x y y y y ⎛⎫=+=-+=-+ ⎪⎝⎭+, 当25y =时,线段DF 长度的最小值是5, 当0y =时,线段DF 长度的最大值是1,而不包括端点,故0y =不能取;故答案为:5[,1).【点睛】本题主要考查了点、线、面间的距离计算、棱柱的结构特征、空间直角坐标系等基础知识,着重考查了空间想象能力,以及运算求解能力,属于基础题.14.①②④【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件若不是其所在线段中点时可判断③【详解】因为是正方形所以所以平面又平面平面于所以所解析:①②④【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件,若P Q M N 、、、不是其所在线段中点时可判断③【详解】因为PQMN 是正方形,所以//PQ MN ,所以//PQ 平面ACD ,又平面ACD ⋂平面ABC 于AC ,所以//AC PQ ,所以//AC 截面PQMN ,故①正确;同理可得//BD MQ ,所以AC BD ⊥,即②正确;又//BD MQ ,PMQ 45∠=︒,所以异面直线PM 与BD 所成的角为045,故④正确;根据已知条件,无法确定AC BD 、长度之间的关系,故③错.故答案为①②④【点睛】本题主要考查空间中点线面位置关系,熟记相关知识点即可求出结果,属于常考题型. 15.【解析】【分析】取MC 中点O 连结AOBO 推导出AC =BM =AM =CM =1AO =BO =AO ⊥MCAO ⊥平面BMCAO ⊥BO 由此能求出AB 两点之间的距离【详解】取MC 中点O 连结AOBO ∵△ABC 中∠C = 解析:10 【解析】【分析】 取MC 中点O ,连结AO ,BO ,推导出AC =BM =AM =CM =1,AO =3,BO =7,AO ⊥MC ,AO ⊥平面BMC ,AO ⊥BO ,由此能求出A ,B 两点之间的距离.【详解】取MC 中点O ,连结AO ,BO ,∵△ABC 中,∠C =90°,∠A =60°,AB =2,M 为AB 中点,∴AC =BM =AM =CM =1,∴AO 2131()2- BO 22011172cos1201214222BM MO BM OM ⎛⎫+-⨯⨯⨯+-⨯⨯⨯-= ⎪⎝⎭ AO ⊥MC ,将△BMC 沿CM 折叠,当平面BMC ⊥平面AMC 时,AO ⊥平面BMC ,∴AO ⊥BO ,∴A ,B 两点之间的距离|AB |22371044BO AO +=+=, 10. 【点睛】本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.16.【解析】即解析:12λλ<≠-且【解析】0a b a b ⋅<且与不共线 ,即212110,1λλ---<≠⇒ 12λλ<≠-且 17.【详解】建立如图所示的空间直角坐标系则A (000)E (01)G (01)F (x00)D (0y0)=(-y1)=(x-1-)由于GD ⊥EF 所以x+2y-1=0所以当时线段DF 长度的最小值是故答案为: 解析:5 【详解】建立如图所示的空间直角坐标系,则A (0,0,0),E (0,1,12),G (12,0,1),F (x ,0,0),D (0,y ,0) DG =(12,-y ,1), EF =(x ,-1,-12)由于GD ⊥EF ,所以x+2y-1=0, 所以22225415()5215DF x y y y y =+=-+=-+25y =时,线段DF 长度的最55 18.【分析】由向量垂直的坐标运算直接计算【详解】由题意∵与互相垂直∴=解得故答案为【点睛】本题考查空间向量垂直的坐标运算解题关键是掌握向量垂直的充要条件即解析:522-或 【分析】 由向量垂直的坐标运算直接计算.【详解】 由题意2,5,1a b a b ==⋅=-,∵ka b +与2ka b -互相垂直,∴222()(2)2ka b ka b k a ka b b +⋅-=-⋅-=22250k k +-⨯=,解得522k k ==-或, 故答案为522-或. 【点睛】 本题考查空间向量垂直的坐标运算,解题关键是掌握向量垂直的充要条件,即0a b a b ⊥⇔⋅=.19.【分析】建立空间直角坐标系分别求得再利用即可得到所求角大小【详解】三棱柱为直三棱柱且以点为坐标原点分别以为轴建立空间直角坐标系设则又异面直线所成的角在异面直线与所成的角等于【点睛】本题考查了异面直线 解析:60【分析】建立空间直角坐标系分别求得1=(0,1,1)BA ,1(1,0,1)AC ,再利用111111,cos BA AC BA AC BA AC 即可得到所求角大小.【详解】 三棱柱111ABC A B C -为直三棱柱,且BAC 90︒∠=∴ 以点A 为坐标原点,分别以AC ,AB ,1AA 为,,x y z 轴建立空间直角坐标系 设1=1AB AC AA ==,则(0,0,0)A ,(0,1,0)B ,1(0,0,1)A ,1(1,0,1)C1=(0,1,1)BA ,1(1,0,1)AC ∴11111101co 2,s 22BA AC BA AC BA AC 又 异面直线所成的角在(0,90]∴ 异面直线1BA 与1AC 所成的角等于60︒ .【点睛】本题考查了异面直线所成角的计算,一般建立空间直角坐标系利用向量法来解决问题,属于中档题.20.【解析】【分析】设出点的坐标根据题意列出方程组从而求得该点到原点的距离【详解】设该点的坐标因为点到三个坐标轴的距离都是1所以所以故该点到原点的距离为故填【点睛】本题主要考查了空间中点的坐标与应用空间 6【解析】【分析】 设出点的坐标(,,)x y z ,根据题意列出方程组,从而求得该点到原点的距离.【详解】设该点的坐标(,,)x y z因为点到三个坐标轴的距离都是1所以221x y +=,221y z +=,221x z +=, 所以22232x y z ++= 2226=x y z ++ 故填62【点睛】 本题主要考查了空间中点的坐标与应用,空间两点间的距离公式,属于中档题.三、解答题21.(1)证明见解析;(2)9331. 【分析】(1)连结EC ,证明GF ∥EC ,GF //平面PDC 即得证;(2))取AD 的中点O ,连结PO ,证明PO ⊥平面ABCD ,建立如图所示的空间直角坐标系,利用向量法求平面PAD 与平面GBC 所成锐二面角的余弦值. 【详解】解:(1)连结EC ,DC ∥AB∴2AF ABFC CD==, 2AGGE=∴GF ∥EC , EC ⊂平面PDC ,GF ⊄平面PDC ∴GF ∥平面PDC .(2)取AD 的中点O ,连结PO ,易知,,P G O 三点共线且PO AD ⊥, 平面PAD ⊥平面ABCD 且AD 为交线,∴PO ⊥平面ABCD ,连结BO ,易知BO AD ⊥,建立如图所示的空间直角坐标系,易知平面PAD 的法向量1(0,1,0)n →=, 易知(0,0,1)G ,(0,3,0)B ,333(,0)2C , ∴(0,3,1)GB →=-,333(,1)22GC →=--,设面GBC 的法向量2(,,)n x y z →=, ∴223033302n GB y z n GC y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩,令2y =,则236,z x == ∴223(3n →= .设所求锐二面角的平面角大小为θ,则121293cos 31n n n n θ→→→→⋅==所以平面PAD与平面GBC 所成锐二面角的余弦值为93 31.【点睛】方法点睛:二面角的求法方法一:(几何法)找→作(定义法、三垂线法、垂面法)→证(定义)→指→求(解三角形)方法二:(向量法)首先求出两个平面的法向量,m n→→;再代入公式cosm nm nα→→→→=±(其中,m n→→分别是两个平面的法向量,α是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“±”号)22.(1)点E是PD的中点,详见解析;(2)361.【分析】(1)点E是PD的中点,连接BD交AC与点O,连接OE,由中位线定理得到//OE PB,再利用线面平行的判定定理证明.(2)以A为原点,以AB,AD,AP分别为x,y,z轴,建立空间直角坐标系,分别求得平面PAC的一个法向量()111,,m x y z=,平面ACE的一个法向量()222,,n x y z=,设二面角P AC E--为θ,由cosm nm nθ⋅=⋅求解.【详解】(1)点E是PD的中点,如图所示:连接BD交AC与点O,连接OE,所以//OE PB,又PB⊄平面AEC,OE⊂平面AEC,所以//PB平面AEC.(2)以A 为原点,以AB ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系,则()()()()40,0,2,0,0,0,2,3,0,0,3,0,0,1,3P A C D E ⎛⎫ ⎪⎝⎭,所以()()42,3,0,0,0,2,0,1,3AC AP AE ⎛⎫=== ⎪⎝⎭,设平面PAC 的一个法向量为()111,,m x y z =, 则00m AC m AP ⎧⋅=⎨⋅=⎩,即 11123020x y z +=⎧⎨=⎩,令 1113,2,0x y z ==-=,则()3,2,0m =- 设平面ACE 的一个法向量为()222,,n x y z =,则00n AC n AE ⎧⋅=⎨⋅=⎩,即 2221230403x y y z +=⎧⎪⎨+=⎪⎩, 令 22233,2,2x y z ==-=,则33,2,2n ⎛⎫=- ⎪⎝⎭,设二面角P AC E --为θ, 所以213cos 61m n m nθ⋅==⋅,所以 22213361sin 1cos 161θθ⎛⎫=-- ⎪ ⎪⎝⎭. 【点睛】方法点睛:1、利用向量求异面直线所成的角的方法:设异面直线AC ,BD 的夹角为β,则cos β=AC BD AC BD⋅⋅.2、利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.3、利用向量求面面角的方法:就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.23.(1)证明见解析;(2)1010. 【分析】(1)证明线面平行,用线面平行的判定定理,在面PAB 内找一条直线与MN 平行; (2)建立空间直角坐标系,利用向量法求线面角. 【详解】(1)在四棱锥P ABCD -中, 取PA 的中点E ,连接EB 、EM , 因为M 是PD 的中点, 所以EMAD ,且12EM AD =.又因为底面ABCD 是正方形,N 是BC 的中点, 所以BN AD ∥,且12=BN AD , 所以EM BN ∥且=EM BN , 所以四边形MNBE 是平行四边形. 所以MN BE ∥. 由于EB ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB .(2)因为底面ABCD 是正方形,所以AB ⊥AD . 又因为PA ⊥平面ABCD ,所以可以以点A 为坐标原点,AB 、AD 、AP 分别为x 、y 、z 轴,如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P ,(0,1,1)M ,(2,1,0)N . (2,2,2),(2,0,0)PC CD −−→−−→=-=-,设平面PCD 的法向量为(,,)m x y z =,有:0,0,m PC m CD ⎧⋅=⎨⋅=⎩即0,0,x y z x +-=⎧⎨=⎩,令1y =,则=1z , 所以(0,1,1)m =.(2,0,1)MN =-,设直线MN 与平面PCD 所成角为θ, 有:sin cos ,MN mθ==MN m MN m⋅⋅()02+10+111025⨯⨯⨯-⋅. 所以直线MN 与平面PCD 10 【点睛】立体几何解答题的基本结构:(1)第一问一般是几何位置关系的证明,通常用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离),通常可以建立空间直角坐标系,利用向量法计算. 24.(1)证明见解析;(222. 【分析】(1)取SC 的中点F ,连接,DF EF ,证明四边形ADFE 为平行四边形,可得//AE DF ,即可证//AE 平面SCD ;(2)建立如图所示空间直角坐标系,然后写出各点坐标,得平面ABE 的法向量为AD ,计算平面ACE 的法向量m ,利用数量积公式代入计算二面角的余弦值. 【详解】(1)证明:取SC 的中点F ,连接,DF EF因为E 、F 为SB 、SC 的中点,所以//EF BC 且132EF BC ==,又因为//AD BC ,3AD =,6BC =,所以//EF AD 且EF AD =,所以四边形ADFE 为平行四边形,所以//AE DF ,又AE ⊄平面SCD ,DF ⊂平面SCD ,所以//AE 平面SCD . (2)因为SA ⊥平面ABCD ,AD AB ⊥,所以建立如图所示空间直角坐标系, 则(0,0,0),(4,0,0),(4,6,0),(0,3,0),(2,0,2)A B C D E ,(2,0,2),(4,0,0),(4,6,0)AE AB AC ===,(0,3,0)AD =由题意可知AD ⊥平面ABE ,设平面ACE 的法向量(,,)m x y z =所以00AC m AE m ⎧⋅=⎨⋅=⎩,则460220x y x z +=⎧⎨+=⎩,得(3,2,3)m =--设二面角B AE C --的平面角为θ, 所以622cos cos ,11322AD m θAD m AD m⋅-====⨯,所以二面角B AE C --的余弦值为22.【点睛】本题考查了立体几何中的线面平行的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过中位线平行证明线线平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 25.(1)4π;(2)23. 【分析】(1)过M 作MH AB ⊥于H ,连接PH ,由已知条件知1//PH AA 且112PH AA =,即PM与面11ABB A 所成角为MPH θ=∠,即可求其大小. (2)构建空间直角坐标系,由已知线段长度标识,,M N C 的坐标,令(,0,2)P a a -,由向量坐标表示NP ,MN ,NC ,MC ,进而求得面PMN 与面CMN 的法向量,由二面角余弦值即可求参数a ,即可求BP 的长度. 【详解】(1)过M 作MH AB ⊥于H ,连接PH ,又AB AC ⊥ ,∴//MH AC ,M 是棱BC 的中点,所以H 是AB 的中点,而P 是线段1A B 的中点, ∴1//PH AA 且112PH AA =, PM 与面11ABB A 所成角为MPH ∠,设MPH θ=∠则12tan 12ACMHAA PHθ===,[0,]2πθ∈,∴4πθ=,(2)构建以A 为原点,1,,AB AC AA 分别为x 、y 、z 轴正方向,则(1,1,0),(0,2,1),(0,2,0)M N C ,由等腰1Rt A AB ,可令(,0,2)P a a -,∴(,2,1)NP a a =--,(1,1,1)MN =-,(0,0,1)NC =-,(1,1,0)MC =-, 若(,,)m x y z =为面PMN 的一个法向量,则2(1)00ax y a z x y z -+-=⎧⎨-++=⎩,令1y =,有(3,1,2)m a a =--,若()111,,n x y z =为面CMN 的一个法向量,则110{0z x y -=-+=,令11x =,有(1,1,0)n =,∴由题意,知:2537||||221014m n m n a a ⋅==⋅-+,整理得22168360a a -+=,解得187a =或23a =,而P 在线段A 1B 上,有23a =则24(,0,)33P ,∴423BP =.【点睛】 关键点点睛:(1)根据线面角的几何定义,找到直线MP 与平面11ABB A 所成角的平面角,进而求角. (2)构建空间直角坐标系,设(,0,2)P a a -,求二面角的两个半面的法向量,根据二面角的余弦值求参数a ,进而求线段长. 26.(13102)23. 【分析】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系.(1)写出1A B 、1C D 的坐标,计算出11cos ,A B C D <>的值,即可得出异面直线1A B 与1C D 所成角的余弦值;(2)计算出1ADC 的一个法向量的坐标,可知平面1ABA 的一个法向量为()0,1,0n =,利用空间向量法可求得平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值. 【详解】在直三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且AB AC ⊥,以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系. 如下图所示:则由题意知()0,0,0A 、()2,0,0B 、()0,2,0C 、()10,0,4A 、()12,0,4B、()10,2,4C 、()1,1,0D .(1)()12,0,4A B =-,()11,1,4C D =--,111111310cos ,2532A B C D A B C D A B C D⋅<>===⨯⋅ 所以,异面直线1A B 与1C D 310 (2)易知平面1ABA 的一个法向量为()0,1,0n =,设平面1ADC 的法向量为(),,m x y z =,()1,1,0AD =,()10,2,4AC =,由100m AD m AC ⎧⋅=⎪⎨⋅=⎪⎩,可得0240x y y z +=⎧⎨+=⎩,令2y =-,则2x =,1z =, 所以,平面1ADC 的一个法向量为()2,2,1m =-,22cos ,33m n m n m n⋅-<>===-⋅, 因此,平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值为23. 【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名:___________班级:___________一、选择题1.“1x ≠”是“2320x x -+≠”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.若p q Λ是假命题,则( ) A.p 是真命题,q 是假命题 B.p 、q 均为假命题C.p 、q 至少有一个是假命题D.p 、q 至少有一个是真命题3.1F , 2F 是距离为6的两定点,动点M 满足∣1MF ∣+∣2MF ∣=6,则M 点的轨迹是 ( )A.椭圆B.直线C.线段D.圆4. 双曲线221169x y -=的渐近线方程为( ) A. x y 916±= B. x y 169±= C. x y 43±= D. x y 34±= 5.中心在原点的双曲线,一个焦点为,,则双曲线的方程是( )A .B .C .D . 6.已知正方形ABCD 的顶点,A B 为椭圆的焦点,顶点,C D 在椭圆上,则此椭圆的离心率为( ) A1 B 1 D .27.椭圆14222=+a y x 与双曲线1222=-y a x 有相同的焦点,则a 的值为( ) A .1 B .2C .2D .38.与双曲线1422=-x y 有共同的渐近线,且过点(2,2)的双曲线标准方程为( ) (A )112322=-x y (B )112322=-y x (C )18222=-x y (D )18222=-y x 9.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角是( ) A .0B .2πC .πD .32π (0F 12212x y -=2212y x -=221x =221y -=10.与向量(1,3,2)a =-平行的一个向量的坐标是 ( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1) D .(2,-3,-22) 11.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,则圆C 的方程为( )A.22(1)(1)2x y ++-=B. 22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D. 22(1)(1)2x y +++= 12.若直线m y x =+与圆m y x =+22相切,则m 的值为( ) A .0 B .1 C .2 D .0或2 二、填空题13.直线y x =被圆22(2)4x y +-=截得的弦长为_______________.14.已知椭圆x y k k ky x 12)0(3222=>=+的一个焦点与抛物线的焦点重合,则该椭圆的离心率是 .15.已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为___________16.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 . 三、解答题17.求过点(-1,6)与圆x 2+y 2+6x -4y+9=0相切的直线方程.18.求渐近线方程为x y 43±=,且过点)3,32(-A 的双曲线的标准方程及离心率。

19.求与x 轴相切,圆心C 在直线3x -y =0上,且截直线x -y =0得的弦长为27的圆的方程.20.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.21.已知椭圆)0(1:2222>>=+b a by a x C 的焦距为62,椭圆C 上任意一点到椭圆两个焦点的距离之和为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 2:-=kx y 与椭圆C 交于B A ,两点,点P (0,1),且PA =PB ,求直线l 的方程.22.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =,,E F 分别是,AB PB 的中点.(1)求证:EF CD ⊥;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论;(3)求DB 与平面DEF 所成角的正弦值.参考答案1.B 【解析】试题分析: 2320(1)(2)0x x x x -+≠⇒--≠,则1x ≠且2x ≠;反之,1x ≠且2x =时,2320x x -+=,故选B.考点:充要条件的判断. 2.C 【解析】试题分析:当p 、q 都是真命题p q ⇔Λ是真命题,其逆否命题为: p q Λ是假命题⇔p 、q 至少有一个是假命题,可得C 正确.考点: 命题真假的判断. 3.C 【解析】解题分析:因为1F , 2F 是距离为6,动点M 满足∣1MF ∣+∣2MF ∣=6,所以M 点的轨迹是线段12F F 。

故选C 。

考点:主要考查椭圆的定义。

点评:学习中应熟读定义,关注细节。

4.C【解析】因为双曲线221169x y -=,a=4,b=3,c=5,则其渐近线方程为x y 43±=,选C.5.A【解析】试题分析:由焦点为,所以,双曲线的焦点在y 轴上,且c,所以,a-)=1,所以,b =,所以,双曲线方程为:.本题容易错选B ,没看清楚焦点的位置,注意区分. 考点:双曲线的标准方程及其性质. 6.A 【解析】试题分析:设正方形ABCD 的边长为1,则根据题意知,121,,2c c =∴=21a =+ (0F 112212x y -=12a ∴=11.2== 考点:本小题主要考查椭圆中基本量的运算和椭圆中离心率的求法,考查学生的运算求解能力.点评:求椭圆的离心率关键是求出ca,而不必分别求出,.a c 7.A 【解析】试题分析:因为椭圆14222=+a y x 与双曲线1222=-y a x 有相同的焦点,所以0a >,且椭圆的焦点应该在x 轴上,所以242,2, 1.a a a a -=+∴=-=或因为0a >,所以 1.a = 考点:本小题主要考查椭圆与双曲线的标准方程及其应用. 点评:椭圆中222c a b =-,而在双曲线中222.c a b =+ 8.B【解析】试题分析:设所求的双曲线方程为224y x λ-=,因为过点(2,2),代入可得3λ=-,所以所求双曲线方程为112322=-y x . 考点:本小题主要考查双曲线标准方程的求解,考查学生的运算求解能力.点评:与双曲线1422=-x y 有共同的渐近线的方程设为224y x λ-=是简化运算的关键. 9.C【解析】试题分析: 应用向量的夹角公式||||cos b a ⋅=θ=-1.所以量,OA OB 与的夹角是π,故选C 。

考点:本题主要考查向量的数量积及向量的坐标运算.点评:较好地考查考生综合应用知识解题的能力以及运算能力,属于基本题型。

10.C ; 【解析】试题分析:向量的共线(平行)问题,可利用空间向量共线定理写成数乘的形式.即λ=⇔≠//,.也可直接运用坐标运算。

经计算选C 。

考点:本题主要考查向量的共线及向量的坐标运算.点评:有不同解法,较好地考查考生综合应用知识解题的能力。

11.B 【解析】试题分析:因圆心在直线0=+y x 上,而点(1,1)和点(-1,-1)不在直线上,故C 、D 错;又直线0=-y x 及04=--y x 平行,且都与圆相切,故圆心在第四象限,故A 错,选B.或用直接法求解亦可.考点:1.圆的标准方程;2.直线与圆的位置关系. 12.C 【解析】试题分析:根据题意,由于直线m y x =+与圆m y x =+22相切,则圆心(0,0)到直线x+y=mm 的值为2,故答案为C. 考点:直线与圆的位置关系点评:主要是考查了直线与圆的位置关系的运用,属于基础题。

13.【解析】试题分析:由弦心距、半径、弦长的一半构成的直角三角形,应用勾股定理得,直线y x =被圆22(2)4x y +-=截得的弦长为= 考点:直线与圆的位置关系点评:简单题,研究直线与圆的位置关系问题,要注意利用数形结合思想,充分借助于“特征直角三角形”,应用勾股定理。

14.e =【解析】试题分析:抛物线的焦点为(3,0)F ,椭圆的方程为:22133x y k += 3394k k -=⇒=,所以离心率2e ==. 考点:1、椭圆与抛物线的焦点;2、圆的离心率. 15.11(3,)(,2)22--- 【解析】试题分析:方程12322=-++k yk x 表示椭圆,需要满足302032k k k k+>⎧⎪->⎨⎪+≠-⎩,解得k 的取值范围为11(3,)(,2)22---.考点:本小题主要考查椭圆的标准方程,考查学生的推理能力. 点评:解决本小题时,不要忘记32k k+≠-,否则就表示圆了. 16 【解析】试题分析:设正方体棱长为2,以1D 为原点,建立如图所示的空间直角坐标系,则1(2,1,0)D E =,1(2,0,2)C B =,设1D E 和1BC 公垂线段上的向量为(1,,)n λμ=,则1100n D E n C B ⎧⋅=⎪⎨⋅=⎪⎩,即20220λμ+=⎧⎨+=⎩,21λμ=-⎧∴⎨=-⎩,(1,2,1)n ∴=--,又11(0,2,0)D C =,116D C n n ⋅∴==,所以异面直线1D E 和1BC 考点:本题主要考查空间向量的应用,综合考查向量的基础知识。

点评:法向量在距离方面除应用于点到平面的距离、多面体的体积外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等. 17.3x -4y+27=0或x=-1. 【解析】试题分析:圆x 2+y 2+6x -4y+9=0,即22(3)(2)4x y ++-=。

点(-1,6)在圆x 2+y 2+6x-4y+9=0外,所以,过点(-1,6)与圆x 2+y 2+6x -4y+9=0相切的直线有两条。

当切线的斜率不存在时,x=-1符合题意;当切线的斜率存在时,设切线方程为6(1)y k x -=+,即60kx y k-++=。

由圆心(-3,2)到切线距离等于半径22=,解得,k=34, 所以,切线方程为3x -4y+27=0。

综上知,答案为3x -4y+27=0或x=-1. 考点:直线与圆的位置关系点评:中档题,研究直线与圆的位置关系问题,利用“代数法”,须研究方程组解的情况;利用“几何法”,则要研究圆心到直线的距离与半径比较。

本题易错,忽视斜率不存在的情况。

18.(x-1)2+(y-3)2 =9或(x+1)2+(y+3)2=9 【解析】试题分析:解:设圆心为(a,b ),半径为r, 因为圆x 轴相切,圆心C 在直线3x -y =0上, 所以b=3a,r=|b|=|3a|,圆心(a,3a )到直线x -y =0的距离d=11|3a |+-a由r 2-d 2=(7)2得:a=1或-1所以圆的方程为(x-1)2+(y-3)2=9或(x+1)2+(y+3)2=9 考点:圆的方程点评:确定出圆心和半径是解决圆的方程的关键,属于基础题。

相关文档
最新文档