现代控制理论 7-2 变分法求泛函极值问题(六页版)

合集下载

变分法原理

变分法原理

变分法原理变分法是一种用于求解泛函和微分方程问题的数学方法。

它通过对一个函数进行微小的变化,并计算出在这个微小变化下泛函的变化量,从而得到泛函的极值。

变分法在物理学和工程学等领域有广泛的应用,如优化问题、经典力学中的作用量原理以及量子力学中的路径积分等。

要理解变分法的原理,首先需要了解泛函的概念。

泛函是一种将函数映射到实数集上的函数,例如能量泛函、作用泛函等。

对于一个给定的泛函,我们希望找到使其取得最大或最小值的函数。

而变分法就是一种通过对函数进行微小变化,从而使得泛函的变化量趋于零的方法。

以最简单的泛函问题为例,考虑一个函数y(某)在区间[a,b]上的泛函J,即J[y(某)],例如J[y]=∫(a到b)F(某,y,y')d某,其中F是已知的函数,y'表示导数。

我们的目标是找到函数y(某),使得泛函J[y(某)]取得极值。

为了寻找这样的函数,我们引入一个变分函数δy(某),它表示函数y(某)关于自变量某的微小变化量。

于是,我们可以将函数y(某)写成y(某)+εδy(某),其中ε是一个小的实数。

然后,将变分函数代入泛函中得到J[y(某)+εδy(某)]。

将J[y(某)+εδy(某)]展开成泛函J[y(某)]关于ε的幂级数,取一阶项,得到J[y(某)+εδy(某)]≈J[y(某)]+ε∫(a到b)(∂F/∂y)δyd某+ε∫(a到b)(∂F/∂y')δy'd某。

由于δy(某)是任意的,我们要使得泛函J[y(某)+εδy(某)]的变化量趋于零,只需使得∂F/∂y- d/d某(∂F/∂y')=0,即Euler-Lagrange方程。

根据Euler-Lagrange方程解出δy(某),再令δy(某)的边界条件为零,即δy(a)=δy(b)=0。

这样,我们就可以得到函数y(某)的特解。

总结起来,变分法的原理是将函数表示为原函数与微小变化的函数之和,将其代入泛函中展开,并取一阶项,最后通过求解Euler-Lagrange 方程得到特解。

变分法求泛函极值-概述说明以及解释

变分法求泛函极值-概述说明以及解释

变分法求泛函极值-概述说明以及解释1.引言1.1 概述概述部分的内容可以介绍本篇文章的主题和背景,以及变分法在数学和实际应用中的重要性。

概述:变分法是一种用于求解泛函极值的重要数学方法。

泛函是一个对函数进行操作的函数,如积分、微分等运算。

在数学领域,变分法广泛应用于各个领域,包括微分方程、优化问题、控制理论等。

在实际应用中,变分法被广泛用于物理学、工程学、经济学等学科中的模型建立和问题求解。

本篇文章旨在介绍变分法及其在求解泛函极值问题中的应用。

文章将从变分法的基本概念开始,进一步探讨其在求解泛函极值中的具体应用,以及相关的数学原理。

通过对变分法的深入分析和讨论,我们将探索变分法在求解泛函极值中的意义和局限性,并对未来研究方向进行展望。

通过阅读本篇文章,读者将能够了解变分法的基本概念和数学原理,并掌握如何应用变分法求解泛函极值的方法和技巧。

同时,本篇文章还将对变分法在实际应用中的意义和局限性进行讨论,以及未来研究方向的展望,为读者提供更深入的思考和研究的方向。

下一节将介绍本文的结构和各个部分的内容。

1.2 文章结构本文共分为三个主要部分:引言、正文和结论。

每个部分都有特定的目标和内容。

引言部分主要介绍本文的背景、研究意义和目的。

首先,我们将对变分法的基本概念和相关术语进行简要的介绍,以便读者对后续内容有初步的了解。

其次,我们将说明本文的结构和章节安排,帮助读者快速了解文章的整体框架和逻辑。

正文部分是本文的核心内容,主要包括三个小节。

首先,我们将详细介绍变分法的基本概念,包括泛函、变分和变分问题的定义。

然后,我们将探讨变分法在求泛函极值中的应用,介绍一些典型的例子和实际问题。

最后,我们将解释变分法的数学原理,包括欧拉-拉格朗日方程和变分问题的极值条件。

结论部分对本文的主要内容进行总结,并进行进一步的讨论和展望。

首先,我们将对整个文章进行简要回顾,概括出变分法求泛函极值的关键点。

然后,我们将探讨变分法在求泛函极值中的意义和局限性,以及对未来研究方向的展望。

泛函极值及变分法

泛函极值及变分法

第二章 泛函极值及变分法(补充内容)2.1 变分的基本概念2.1.1 泛函和变分泛函是一种广义的函数,是指对于某一类函数{y (x )}中的每一个函数y (x ),变量J 有一值与之对应,或者说数J 对应于函数y (x )的关系成立,则我们称变量J 是函数y (x )的泛函,记为J [y (x )]。

例1:如果表示两固定端点A (x A ,y A ),B (x B ,y B )间的曲线长度J (图2.1.1),则由微积分相关知识容易得到:dx dx dy J BAx x ⎰+=2)/(1 (2.1.1)显然,对于不同的曲线y (x ),对应于不同的长度J ,即J 是函数y (x )的函数,J =J [y (x )]。

图2.1.1 两点间任一曲线的长度例2:历史上著名的变分问题之一——最速降线问题,如果2.1.2所示。

设在不同铅垂线上的两点P 1与P 2连接成某一曲线,质点P 在重力作用下沿曲线由点P 1自由滑落到点P 2,这里不考虑摩擦作用影响,希望得到质点沿什么样的曲线滑落所需时间最短。

图2.1.2 最速降线问题选取一个表示曲线的函数y (x ),设质点从P 1到P 2沿曲线y =y (x )运动,则其运动速度为:dsv dt ==其中,S 表示曲线的弧长,t 表示时间,于是:dt =设重力加速度为g ,则gy v 2=。

因为P 1和P 2点的横坐标分别为x 1到x 2,那么质点从P 1到P 2所用时间便为:1[()]x x J y x =⎰211/2211[()]2[()()]x x y x dx g y x y x ⎧⎫'+=⎨⎬-⎩⎭⎰(2.1.2)则最速降线问题对应于泛函J [y (x )]取最小值。

回顾函数的微分:对于函数的微分有两种定义: 一种是通常的定义,即函数的增量:),()()()(x x x x A x y x x y y ∆+∆=-∆+=∆ρ (2.1.3) 其中A (x )与∆x 无关,且有∆x →0时ρ(x ,∆x )→0,于是就称函数y (x )是可微的,其线性部分称为函数的微分()()dy A x x y x x '=∆=∆,函数的微分就是函数增量的主部。

泛函极值问题的求解

泛函极值问题的求解

泛函极值问题的求解泛函极值问题的求解使用变分法。

泛函极值问题是指在给定约束条件下,求一个泛函的极值。

泛函是一个函数的函数,即输入是函数,输出是一个实数。

假设有一个泛函J[f],其中f是一个函数,我们要求使得J[f]取得极小值或极大值。

解决这个问题的方法是通过变分法,变分法的基本思想是将函数f沿着任意变化,并计算J[f]的变化。

如果变化很小,那么我们可以认为J[f]的变化主要来自于f的变化。

为了使用变分法求解泛函极值问题,需要定义一个变分算子δ,表示函数f的变分。

变分算子的定义如下:δ[f(x)] = εh(x)其中,ε是一个很小的实数,h(x)是一个任意函数。

使用变分算子之后,泛函的变化可以表示为:δJ[f] = J[f + εh(x)] - J[f]对δJ[f]进行展开,再取ε趋近于0的极限,得到以下关系:δJ[f] = 0这个关系成为欧拉方程,它是求解泛函极值问题的基本方程。

根据具体的泛函形式和约束条件,可以使用欧拉方程得到具体的解。

需要注意的是,在变分法中,要求函数f满足一定的边界条件。

边界条件是泛函极值问题中的附加条件,通过这些条件可以得到具有特定特征的解。

总结起来,求解泛函极值问题的步骤如下:1. 定义泛函J[f]以及函数f满足的边界条件;2. 引入变分算子δ并计算δJ[f];3. 使用欧拉方程δJ[f] = 0 求解得到f的表达式;4. 检验解是否满足边界条件,如果不满足,则舍去;5. 找到所有满足边界条件的解,分别计算J[f],选择其中极小值或极大值作为泛函的极值。

需要注意的是,求解泛函极值问题需要具备一定的数学知识和技巧,对欧拉方程的求解以及边界条件的选择都有一定的要求。

因此,在具体求解时可能需要借助一些数学工具和方法。

泛函的极值

泛函的极值

若 y y ( x) 是泛函 J [ y ] 在 Y 上的极值,限定
Yo { y C[a, b], y (a) y0 , y (b) y (b) y1} Y
Y 则 y y ( x) 必是泛函 J [ y ] 在 o 上的极值,根据(2.2.2)有
F d F ( ) 0, x (a, b) y dx y '
a x0
b
x0
显然与引理条件矛盾, 所以对于任意的 x [ a, b] 都有
f ( x) 0
以上结果容易推广到二维或更高维的情形。 如果泛函 J [ y ] 在
y y 0 ( x) 的一阶 邻域内都不大 ( 小 ) 于 J [ y 0 ] , 那么我们称泛函
J [ y ] 在 y y 0 ( x) 有极大(小)值。 也就是说 J [ y ] J [ y0 ] (极小) , J [ y ] J [ y0 ] (极大)
J [ y ] F ( x, y* , y* ' ')dx J ( )
a
b
因为 J [ y ] 在 y y ( x) 处取极值,
*
0 应该是 J ( ) 的极值点。根据函数极值的必要条件
dJ ( ) | 0 0 d
这就意味着

如果令
b
a
[
F d F ( )] ( x)dx 0 y dx y '
a
b
那么在 x ( a, b) 必有
f ( x) 0
证明: 用反证法。 假设有
x0 (a, b) 使得 f ( x0 ) 0 , 不失一般性设 f ( x0 ) 0 。由
f ( x) C 0 [a, b] , 一定存在 0 , 使 f ( x) 0, x [ x0 , x0 ] (a, b)

有限元基础(泛函、变分与变分法)

有限元基础(泛函、变分与变分法)

因此
aT K a = aT K a
= aT( Ka - P ) = 0 由 a 的任意性,就得到(1.3.6)式:
Ka — P = 0
1.3.2 变分原理的建立
1.线性、自伴随微分算子
线性算子
具有以下性质的算子 L 称为线性算子
其中和是两个常数
内积
算子L(u)与任意函数v的 内积 定义为
则被积函数 (x) 在区间 a ≤x≤b 上必处处为零,即
1.3 变分原理和里兹方法
1.3.1 变分原理
变分原理定义
部分物理问题存在一个泛函: 而问题的解 u 使泛函取驻值,即 利用此式求解的方法称为变分法或变分原理
里兹(Ritz)法
选择试探函数:
其中N为已知函数,a为待定参数
代入泛函积分式,泛函变为普通实函数 令泛函变分为零
5. 变分法
求泛函极值的数学方法称为变分法。 泛函极值的必要条件: J = 0
充分条件:J = 0 且:2J >0 极小值 2J < 0 极大值
变分法基本预备定理:
设 (x) 是闭区间 a ≤x≤b 上的连续函数,y 是该区间上自变函数 y(x) 的变分,如果 y 在满足 约束条件的前提下任意变化时,下式始终成立
与以上微分提法相等效的伽辽金提法为
(1.3.21)
若算子L是线性、自伴随的,则有如下关系:
将其代入(1.3.21)式得
若令 则上式可表示为变分原理:
(1.3.23) 此处Π就是原问题的泛函,因为此泛函中u的最高 次为二次,所以是二次泛函。

3. 泛函的极值性
条件:
1.算子L是偶数(2m)阶的;
由于 y 与 y, y, , y(n) 无关,所以

第7章现代控制理论上课讲义

第7章现代控制理论上课讲义
分别为 A( x1, y1) 和 B( x2, y2 ) ,设两点间曲线长度为 J l ,取单元弧长为 dl ,则有
dl (dx)2(dy)2
单元弧长变化率
dl 1 y&2 dx 因而 A 、 B 两点间曲线长度
J y(x) l x2 1 y&2dx x1
其值取决于函数 y(x) 的选取。
1
tdt
0
1 2
t2
1 0
1 2
J (x)
1
sin tdt
( cos t) 1
1 cos1
0
0
在这里需要注意的是,不定积分 J (x) x(t)dt 并不是一个泛函,因为无论函数 x(t)
如何选取, J (x(t)) 没有一个确定的值。
2020年6月28日
第7章第11页
又如平面上给定两点之间的曲线长度是一个泛函。设 ( x, y) 平面上有 A 、B 两点,其坐标
J (C1x1(t) C2 x2 (t)) C1J ( x1(t)) C2J ( x2 (t)) ,且其增量可以表示为
m ( t ) 飞船登月舱质量 h ( t ) 高度 v ( t ) 垂直速度
u ( t ) 发动机推力 g 月球重力加速度为常数
M 飞船登月舱不含燃料时的质量 F 登月舱所载燃料质量 h 0 登月舱登月时的初始高度 v 0 初始垂直速度
2020年6月28日
第7章第3页
登月舱的运动方程
h&( t ) v ( t )
本节在简要地介绍泛函及变分学的概念和原理的基础上,着重阐 述无约束条件的最优控制变分求解和有等式约束条件的最优控制 变分求解方法。
2020年6月28日
第7章第9页
7.2.1 泛函与变分法的基本概念

现代控制理论 7-2 变分法求泛函极值问题

现代控制理论 7-2 变分法求泛函极值问题

应用变分法求解最优控制问题()t x x =()[]t J J x =泛函的变分dt xdt 定理10-1返回例2:求泛函的变分tfδJ =∂ J [x + εδx] |ε =0 ∂ε& J = ∫ L[x (t ), x (t ), t ]dtt0解:δJ = ∂ ∂ε=∫tf t0& & ∫ L[x + εδx, x(t ) + εδx, t ]dt |εtf t0=0前页∂ & & L[x + εδx, x(t ) + εδx, t ]dt |ε =0 ∂ε返回t f ⎡ ∂L ∂L ⎤ & = ∫ ⎢ δx + δx ⎥ dt t0 & ∂x ⎦ ⎣ ∂x泛函的极值设 J [x(t)]:Rn→R 是线性赋范空间 Rn 上的连 续泛函,对于与x0(t) 接近的宗量x(t) ,泛函J [x(t)] 的增量:ΔJ = J [x(t )] − J [x 0 (t )] ≥ 0或者ΔJ = J [x(t )] − J [x 0 (t )] ≤ 0则称泛函 J [x(t)]在x0(t)处达到极小值(或极大值)11泛函极值的必要条件定理10-2 定理10-2设 J [x(t)]:Rn→R 是线性赋范空间 Rn 上的 连续可微泛函,且在x0(t)处达到极值,则泛函J [x(t)]在x0(t)处的变分为零:返回δJ [x 0 , δx] = 0返回变分预备定理设g(t) 是[t0, tf]上连续的n 维向量函数,h(t)是 任意的n 维连续向量函数,且 h(t0) = h(tf) = 0。

若满足:∫tft0g T (t )h(t )dt = 0∀t ∈ t0 , t f则必有: g (t ) ≡ 0[]12二、欧拉方程、横截条件 二、欧拉方程、横截条件返回1,无等式约束泛函极值的必要条件2,有等式约束泛函极值的必要条件返回最速降线问题确立一条连结定点A和B的 曲线,使质点m 在重力作用下 从A 滑动到B 所需的时间最短 (忽略摩擦和阻力)。

变分法基本原理

变分法基本原理

变分法基本原理【1】变分法(Variational method)是一种数学方法,用于解决泛函的极值问题。

泛函是把函数映射到实数的映射,而泛函的极值问题是要找到使得泛函取得极值的函数。

变分法广泛应用于物理学、工程学、应用数学等领域中的最优化问题。

【2】变分法的基本原理可以概括为以下几个步骤:步骤一:定义泛函首先,要明确定义所研究的泛函。

泛函可以是一个函数的积分、一个函数的级数或者其他数学表达式。

要根据具体问题的特点来选择合适的泛函。

步骤二:提出变分函数接下来,通过引入一个假设的函数(称为变分函数)作为泛函的自变量,使泛函成为这个变分函数的函数。

变分函数通常具有一定的约束条件,如满足特定边界条件或其他限制条件。

步骤三:计算变分利用变分函数的小扰动,即在该函数上加上一个小的修正项,计算泛函的变分。

变分是泛函在变分函数上的一阶近似变化率。

步骤四:应用欧拉-拉格朗日方程将变分代入到泛函中,得到泛函的表达式。

然后,通过应用欧拉-拉格朗日方程,将泛函转化为一个微分方程。

这个微分方程是通过对变分函数求导,然后令导数为零得到的。

步骤五:求解微分方程解决微分方程,得到最优解的表达式。

这个最优解是使得泛函取得极值的函数。

【3】变分法的基本原理是通过引入一个变分函数,将泛函的极值问题转化为求解一个微分方程的问题。

这种方法的优势在于可以将复杂的极值问题转化为求解微分方程的问题,简化了求解的过程。

【4】变分法在物理学中的应用非常广泛。

例如,它可以用于求解经典力学中的最小作用量原理,即通过将作用量泛函取极值来得到物体的运动方程。

此外,变分法还可以应用于量子力学中的路径积分方法、场论中的泛函积分等问题的求解。

【5】总之,变分法是一种数学方法,用于求解泛函的极值问题。

它的基本原理是通过引入一个变分函数,将泛函的极值问题转化为求解一个微分方程的问题。

变分法广泛应用于物理学、工程学、应用数学等领域,并具有很好的应用前景。

华中科技大学现代控制理论-7.2 变分法共66页文档

华中科技大学现代控制理论-7.2 变分法共66页文档

有不等式约束条件的多元函数极值(2/7)
有不等式约束条件的函数极值问题的求解比等式约束条件的 函数极值问题复杂。 ➢ 受前面讨论的引入拉格朗日乘子的启发,求解不等式约束 的函数极值问题也引入了乘子的概念,其求解基本方法可 由如下库恩-塔哈克(Kuhn-Tucker)定理给出。
有不等式约束条件的多元函数极值(3/7)—定理7-1
5
0
解 先定义库恩-塔哈克函数如下
L ( x ,y ,1 ,2 ) x 2 2 y 2 1 ( y 2 ) 2 ( y 2 x 5 )
有不等式约束条件的多元函数极值(5/7)
➢ 根据库恩-塔哈克定理,极小值的必要条件如下:
L x
df(x) 0
dx xx*
d2f(x)
dxdx
0
xx*
是x*为该多元函数极值问题的解的一个充分条件。
有等式约束条件的多元函数极值(1/5)
2. 有等式约束条件的多元函数极值
有等式约束条件的多元函数极值问题可描述为
m in f ( x) x
s.t. g ( x ) 0
式中,g(x)为p维的向量变量x的向量函数,并假定其连续可微; ➢ g(x)=0即为等式约束条件。
有不等式约束条件的多元函数极值(1/7)
3. 有不等式约束条件的多元函数极值
有不等式约束条件的多元函数极值问题可描述为
m in f ( x) x
s.t. g ( x ) 0
式中,g(x)为p维的向量变量x的向量函数,并假定其连续可微; ➢ 式g(x)=0即为不等式约束,
✓ 符号“”的意思为函数向量g(x)中每个元素“小于 等于0”。
x
➢ 当(A+A)可逆时
x A A 1b H λ

最优控制理论

最优控制理论
L x 0,
x(t)
tf
0
t0
x(t)
tf
t
x t f xt f
t0
L x
tf
tf
t
t0
0
Page: 20
Modern Control Theory
§7-3 无约束条件的泛函极值问题
现 代 控 制 理 论 (4)自由始端和自由终端 横截条件为:
L x
t0

1
0
x 2 (t )dt
[2 x x]dx
0
Page: 15
1
§7-2 最优控制中的变分法
现 代 控 制 理 论
二、泛函的极值
* J x t 在 x t 上达到极小值的必要条件:
J x(t ) 0
Modern Control Theory
Page: 16
t
四.主要数学方法
<1> 解析法
<2> 数值法
控制无约束 采用变分法 控制有约束 采用极小值原理,动态 规划
<3> 梯度型法
Modern Control Theory
Page: 9
§7-2 最优控制中的变分法
现 代 一.泛函与变分的基本概念 控 制 1.泛函与变分的基本概念 理 论 (1)泛函 如果对于自变量t , 存在一类函数 x t , 对于每个函数x t , 有一J 值 与之对应,则变量J 称为依赖于函数x t 的泛函数,简称泛函, 记作J x t (2)函数的变分
[例]已知:
1 J u 2 t dt 20
2
x1 (0) 1
x1 ( 2) 0

泛函极值问题

泛函极值问题

最大收益:手把手教你解决泛函极值问题泛函极值问题是数学领域的一个热门话题,近年来受到越来越多的关注。

其实,泛函极值问题也是一道数学问题,主要是针对对应一些映射关系的函数中,找到最大(最小)值点的问题。

本文将介绍泛函极值问题的相关知识点和解决方法。

首先,我们需要了解的是泛函的概念。

泛函是一类将元素集合映射成某个数域上的元素的映射函数,其中元素集合可以是一个函数空间或若干个函数空间的笛卡尔积。

泛函可以看作是一种从函数空间到数域上的函数映射,常用于函数空间中的极值问题。

接下来,我们来讲解一下泛函求最值的方法。

通常情况下,我们使用变分法进行求解。

变分法,又叫变分原理,是一种数学、力学、物理用于求解函数极值问题的方法,是一种求变分的极值,即求泛函的最小值的方法,是泛函分析的基本工具。

使用变分法求解泛函极值问题,通常需要先写出泛函和变分定义式,再对变分定义式进行接下来的运算,求解出泛函极值。

具体步骤为:
1.将泛函用变分定义式进行表达
2.对变分定义式进行展开和简化
3.利用变分定义式求一阶变分
4.把一阶变分代入变分定义式
5.消去高阶无穷小
6.得到泛函极值条件
通过以上步骤,我们可以使用变分法轻松解决泛函极值问题。

总的来说,泛函极值问题是一道比较困难的数学问题,需要我们结合数学知识和实际应用场景进行解决。

通过本文的介绍,相信读者们能够深入了解泛函极值问题的相关概念和解决方法,进而提升自己的求解能力。

泛函求极值

泛函求极值

§ 7.2 泛函极值与变分法变分法是解决泛函极值的基本方法。

1. 泛函例 指标 0[(),(),]d [()]Tt J F x t u t t t S x T =+⎰的值依()x t 、0(),[,]u t t t T ∈是函数的函数 泛函 ()x t 和()u t 作为泛函的“自变量”,称为泛函的宗量例7.1 最短弧长问题:设()y y x =过11(,())A x y x 和22(,())B x y x若()y x 连续可微,则 2121d x x J yx =+⎰,(7.5) 是()y x 的泛函. 2. 泛函极值 设 (())J J y x =,(){}y x Y ∈=函数集若有y Y *∈,使()min ()y YJ y J y ∈*=或()max ()y YJ y J y ∈*=,则称泛函J 有极小值或极大值。

xo y))(,(22x y x B ))(,(11x y x A ∙∙)(x y 7.1图3. 变分 ≈函数的微分 宗量变分:在()y x 处的增量()()()y x yx y x δ=- Ox()y x ()y x ()yx ()()()y x yx y x δ =-O x泛函增量:[()][()]J J yx J y x ∆=- [()()][()]J y x y x J y x δ=+-泛函变分: 若[(),()][(),()],J L y x y x r y x y x ∆δδ=+式中:[(),()]L y x y x δ是()y x δ的线性连续泛函,即[(),()][(),()]L y x k y x k L y x y x δδ⋅=⋅ [(),()]r y x y x δ是()y x δ的高阶无穷小项,则称泛函J 是可微的,而称[(),()]L y x y x δ为泛函的变分,记为[(),()]J L y x y x δδ=。

引理7.1 若泛函可微,则变分[]()()a J J y x a y x aδδ=∂=+∂.证[]0()()a J y x a y x aδ=∂+∂0lima Ja∆→=00[(),()][(),()]lim lim a a L y x a y x r y x a y x a aδδ→→=+00[(),()][(),()]lim lim ()()[(),()]a a aL y x y x r y x a y x y x a a y x L y x y x J δδδδδδ。

现代控制理论7-2变分法求泛函极值问题(六页版).

现代控制理论7-2变分法求泛函极值问题(六页版).

(t x x= ([]tJJ x=ty泛函的变分e ecaccatc([]([]00≥−=Δt J t J J x x ([]([]0 0≤−=Δt J t J J x xcay HOT ⎤+⎥⎥⎦0fTt t L dt δ∂⎛⎞=⎜⎟∂⎝⎠∫x x ∫⎟⎠⎞⎜⎝⎛∂∂−f t t T dt L dt d 0x xδ&(例3:设有泛函J [x] = ∫0 极值的极值轨线 x*(t 已知边界条件 x(0=0,x(π/2=2。

求使J [x]达到 & & 解:L(x, x = x (t − x (t 2 2 欧拉方程c ∂L d ∂L − =0 & ∂x dt ∂x e a 。

π 2 & [x (t − x (t ]dt 2 2 返回x * (t = 2 sin t J* = ∫ =∫ π 2 2 0 & [x (t − x (t ]dt 2 2 ∂L =−2 x ∂x π 2 0 x + && = 0 x d ∂L ∂L = && 2x =x ⇒ 2& & & dt ∂x ∂x 特征方程: r 2 + 1 = 0 x* (t = C1 cos t + C2 sin t 提醒:r1, 2 = α ± iβ x(t = eαt (C1 cos βt +C2 sin βt 横截条件 x(0=0,x(π/2=2 x(0=0,x(π/2=2 x * (t = 2 sin t t ds y c J* = ? dx = 4∫ [cos t − sin t ]dt = 4 ∫ [2 cos t − 1]dt π 2 2 2 0 c π 2 0 [(2 cos t − (2 sin t ]dt 2 2 e a π 2 0 ∫ π 2 0 cos 2 tdt 1 + cos 2t dt 2 前页=∫ π 2 0 π 2 1 π2 = ⎛ ∫ dt + ∫ cos 2tdt ⎞⎜⎟ 0 ⎠ 2⎝ 0 换元积分= = = 8∫ π 2 0 cos tdt − 4 ∫ 2 dt = 2π − 4 =0 π 2 1 π2 1 π dt + ∫ cos 2td ( 2t 2 ∫0 4 0 1 π2 1 = t |0 + sin 2t |π 2 0 2 4 = π 4 +0 t t0 y c tf 1 π cos udu 2 ∫0 例4:求平面上两固定点连线最短的曲线。

用变分法求解最优控制问题

用变分法求解最优控制问题

与以前不同的是,在动态问题中拉格朗日乘子 向量(t) 是时间函数。
在最优控制中经常将 (t )称为伴随变量,协态(协状 态向量)或共轭状态。引入 (t) 后可作出下面的增 广泛函
Ja X (t f ),t f

tf t0
FX ,U,t T (t) f (X ,U,t) X
对上式第二项作分部积分,按公式
可得
t f t0
udv uv
tf t0

t f vdu
t0
J
tf t0
F x

d dt
(
F x
)xdt

F x
x
tf t0
(5-2)
J取极值的必要条件是 J 等于零。因 x是 任意的,要使(5-2)中第一项(积分项)为 零,必有
x* (t) sht sh1
例5-2 求使指标
J 1 (x 2 x3 )dt 0
取极值的轨迹 x* (t) ,并要求 x* (0) 0 ,但对 x* (1) 没有限制。
解 这是终端自由的情况。欧拉—拉格朗日方程为
d (2x 3x 2 ) 0 dt即2x Fra bibliotek 3x 2 常数

d dt
(
F X
)
dt

X
T
F X
tf t0
向量欧拉——拉格朗日方程为
F X

d dt
(
F X
)

0
式中
F

x1

F
F X


x
2



F

泛函和泛函的极值

泛函和泛函的极值

泛函和泛函的极值泛函是指某一个量,它的值依赖于其它一个或者几个函数。

变分法的基本问题是求解泛函的极值。

作为变分法的简单例题。

考察x,y 平面上连接两个定点的所有曲线中,求满足边界条件的任意曲线y(x)中最短曲线。

设P 1(x 1,y 1)和P 2(x 2,y 2)为平面上给定的两点,y (x )为连接两点的任意曲线。

于是,这一曲线的长度为连接P 1,P 2两点的曲线有无数条,每一条曲线都有一个L 值与其对应。

满足边界条件的y (x )称为容许函数,问题是要从这些曲线,容许函数中找出使得曲线长度L 最小的一条。

根据上式,L [y ]依赖于y (x ),而y (x )是x 的函数,因此称y (x )为自变函数;L [y ]是倚赖于自变函数的函数,称为泛函。

求解最短程线问题,即在满足边界条件在x =x 1时, y (x )=y 1 y'(x 1)= y'1 在x =x 2时, y (x )=y 2 y'(x 1)= y'1的函数y (x )中,求使得泛函L [y ]为极值的特定函数。

因此 y (x )称为容许函数。

上述问题应用变分法可以概括为求解泛函在边界条件 y (x 1)=y 1, y (x 2)=y 2的极小值问题。

假设函数y(x)是使得泛函L[y]为最小的特定函数(真实的)。

变分法有兴趣研究的是邻近于y(x)的任意容许函数引起泛函L []的改变。

设其中ε 为小参数,而η (x)为边界值为零的任意函数。

当x固定时,容许函数与y(x)的差 δ y称为泛函自变函数的变分,即类似地,容许函数的斜率与y(x)斜率的差δ y', 称为泛函自变函数斜率的变分,即应该注意δ y与函数y(x)的微分d y之间的差别,d y是自变量x的改变量d x 引起的y(x)的无穷小增量。

而变分δ y是y(x)的任意一个微小的改变量。

设泛函增量按泰勒级数展开,则设泛函的增量由泛函的变分表示,有分别定义为泛函的一阶,二阶或k阶变分,分别为ε 的一次,二次或者k次齐次式。

变分法泛函极值问题PPT课件

变分法泛函极值问题PPT课件

F x
d dt
(
F x
)
0
(3-3)
上式称为欧拉——拉格朗日方程。
(3-2)式中第二项为零的条件要分两种情况来讨论:
.
15
1、 固定端点的情况
这时 x(t0 ) x0 , x(t f ) x f,它们不发生变化,所 以 x(t0 ) x(t f ) 0 。而(3-2)中第二项可写成
F x
x
JX ,X X
这里,JX ,X 是X 的线性泛函,若 X 0时, 有 0,则称JX ,X 是泛函 JX 的变分。J 是 J
的线性主部。
.
9
6、泛函的极值:若存在 0 ,对满足的
X X一* 切 X,
J (X ) 具J (有X *同) 一符号,则
称 J ( X ) 在 X X *处有极值。
(3-21)与(3-22)一起称为哈密顿正则程。
.
39
(3-23)是控制方程,它表示 H 在最优控制处取 极值。
注意,这是在U为任意时得出的方程,当 U (t)有界且 在边界上取得最优值时,就不能用这方程,这时要用 极小值原理求解。
(3-24)是在 固定、t f
自X (t由f ) 时得出的横截条件。
容易验证 x(t) 0时, J 0 对应局部极小;x(t) 2t 3
时, J 4 27 ,对应局部极大。
.
28
3.3 有约束条件的泛函极值 ——动态系统的最优控制问题
前面讨论泛函极值问题时,对极值轨迹 X *(t) 没有附 加任何约束条件。但在动态系统最优控制问题中, 极值轨迹必须满足系统的状态方程,也就是要受到 状态方程的约束。考虑下列系统
是指同属于函数类X (t)中两个函数X1(t) 、X 2 (t) 之差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c=
∫1
0
[x(t
)
+
δx]2
dt

∫1
0
x
2
(t
)dt
=
∫1 0
2x(t
)δxdt
+
∫1 0
(δx)2
dt
tcy 泛函的变分
δJ
=
1
∫0
2
x(t
)δxdt
前页 返回
泛函变分的求法
e 定定理理1100--11
a设 J [x(t)]:Rn→R 是线性赋范空间 Rn 上的 c连续泛函,若在 x = x0 处J [x(t)]可微,其中x、x0
Δt 的线性 连续函数
关于Δt的 高阶无穷小
tcy 函数的微分 dx = AΔt
函数增量的 线性主部
前页 返回
2
泛函的变分
泛函 J = J[x(t)] x(t)+ δx ⇒ J[x + δx]
ae 泛函的增量 ΔJ[x]=J[x +δx-] J[x]
cδx → 0 ⇒ r[x,δx]→ 0 =L[x,δx]+ r[x,δx]
Δt 的线性 连续函数
关于Δt的 高阶无穷小
tcy 函数 x 在点 t 相应于△t 的微分 dx = 2tΔt
泛函的变分
回忆……
函数 x = x(t) t + Δt ⇒ x(t + Δt)
ae 函数的增量 Δx(t)=x(t + Δt)-x(t)
cΔt → 0 ⇒ r(Δt) → 0 =AΔt + r(Δt)
δ
b
∫a
L [x,
x& ,
t
]dt
=
b
∫a
δL[x,
x& ,
t
]dt
tcy δ dx = d δx dt dt
返回
例2:求泛函的变分
δJ
=
∂ ∂ε
J [x + εδx]|ε =0
e J = L[x(t)]
a 解:
δJ
=
∂ ∂ε
L[x
+ εδx]|ε =0
= dL δx dx
返回
cJ = L[x(t), x&(t),t]
( ) ( ) x t f = x* t f = x f 末端
y ∫ ( ) ∫ ( ) = tf L x* + δx, x&* + δx&,t dt − tf L x*, x& *,t dt 泰勒展开 下页
t0
t0
tc ∫ ( ) ∫ ( ) =
tf
⎡ ⎢L
x*, x& *,t
t0 ⎢⎣
+
⎜⎛ ⎝
t0
x(t ) 不受约束
δx 任意
y 泛函极值
必要 必要条件
tc δJ =0
∂L ∂x

d dt
∂L ∂x&
=
0
欧拉方程
⎜⎛ ⎝
y 则称 ||·|| 为 Rn上的向量范数;定义了范数的线性 tc 空间称为线性赋范空间。
前页 返回
泛函的连续性
范数
定义1
由于泛函 J [x(t)] 是定义在线性赋范空间上
e 的,对于线性泛函 J [x(t)],若
axn − x → 0 (n → ∞), ∀xn, x ∈ Rn
c必有
lim
n→∞
J
[xn
e 对于某一类函数x(·)中的每一个函数x(t),变量
J 都有一个值与之相对应,那么变量J 称为依赖于
a 函数x(t)的泛函,x(t)称为泛函的宗量。记为:
cJ[x(t)]:Rn → R J = J[x(t)]
标称函数
y 宗量的变分: δx = x(t)− x0(t) ∀x(t), x0(t)∈ Rn tc 泛函的变分: δJ
tcy 返回
δJ [x0,δx] = 0
返回
变分预备定理
e 设g(t) 是[t0, tf]上连续的n 维向量函数,h(t)是 a 任意的n 维连续向量函数,且 h(t0) = h(tf) = 0。若
满足:
c ∫tf gT (t)h(t)dt = 0 t0
tcy 则必有: g(t)≡ 0 [ ] ∀t∈ t0,tf
ae ∫ ∫ δJ =
tf t0
⎛ ∂L ⎞T ⎜⎝ ∂x ⎟⎠
δ xdt
+
⎜⎛ ⎝
∂L ∂x&
⎟⎞T ⎠
δx
|t f
t0

tf t0
⎜⎛ ⎝
d dt
∂L ∂x&
⎟⎞T δxdt ⎠
c∫=
tf t0
⎜⎛ ⎝
∂L ∂x

d dt
∂L ∂x&
⎟⎞T δxdt ⎠
+
⎜⎛ ⎝
∂L ∂x&
⎟⎞T ⎠
δx
|t f
ε →0
ε
定定理理1100--11 证明:
δJ [x0,δx] =
∂ ∂ε
J [x0
+ εδx]|ε =0
0≤ε ≤1
ae 泛函的变分 δJ[x0,δx]= L[x0,δx]
关于εδx的 高阶无穷小

c∂ε
J [x0
+ εδx]|ε =0
=
lim εL[x0,δx]+ r[x0,εδx]
ε →0
ε
前页
∊ Rn,则泛函 J [x(t)]的变分为:
tcy δJ[x0,δx]=
∂ ∂ε
J [x0
+ εδx]|ε =0
0≤ε ≤1
定定理理1100--11 证明:
δJ [x0,δx] =
∂ ∂ε
J [x0
+ εδx]|ε =0
0≤ε ≤1
e 泛函的增量 ΔJ[x0]=J[x0 + δx-] J[x0 ]
a εδx的线性
连续函数
=L[x0,δx]+ r[x0,δx]
c泛函的变分 δJ[x0,δx]= L[x0,δx]
关于εδx的 高阶无穷小
变分 定义
返回

y ∂ε
J [x0
+ εδx]|ε =0
= lim J [x0 + εδx-] J [x0 ]
ε →0
ε
tc = lim L[x0,εδx]+ r[x0,εδx]
第七章 动态系统的最优控制方法
e §1 最优控制的一般概念 ca§2 最优控制中的变分法
§3 极小值原理及其应用
tcy §4 线性二次型问题的最优控制
本节主要内容:
e 泛函与变分 a 欧拉方程、横截条件 c tcy 应用变分法求解最优控制问题
一、泛函与变分
函数:
自自变变量量是是变变数数!!
t0
c0 t0
tf t
极值轨线 x*(t)
y 给定两端时刻 t0 、 tf 和状态 x(t0) = x0、x(tf) = xf , tc 求 x(t) ,使 J [x(t)] = min / max。
返回
解:容许轨线x(t)是由极值轨线x*(t)微小变化而成: 返回
x(t )
e x(t0 ) x(t) = x*(t)+δx(t) a x(tf )
δx的线性 连续函数
关于δx的 高阶无穷小
tcy 泛函J [x(t)]的变分
δJ = L[x,δx]
泛函增量的 线性主部
前页 返回
例如:泛函
J[x(t)] =
∫1 x2 (t)dt 0
eJ
[x(t
)
+
δx]
=
∫1 0
[x(t
)
+
δx]2
dt
a泛函的增量 ΔJ[x(t)]= J[x(t)+δx]− J[x(t)]
(t
)]
=
J
[x(t
)]
tcy 则线性泛函 J [x(t)] 是连续的,称为线性连续泛函。
前页 返回
泛函的变分
回忆…… Δt tΔt Δt 2
e 函数 x = t2
t + Δt
t x = t 2 tΔt
a 函数的增量 Δx(t)= (t + Δt)2-t2
t Δt
c = 2tΔt + Δt2 Δt → 0 ⇒ Δt2 → 0
y 若J [x(t)]在子集 D 上的每一点都连续,则称 tc 泛函 J [x(t)] 在 D 中连续。
补充……
线性赋范空间
||·||
Rn → R+ = [0, + ∞)
设 ||·|| 是定义在 Rn上的非负实函数,如果满足:
e (1) ||x||≥0 ,且 ||x||=0 ↔ x=0 ,其中x ∈ Rn ; 非负性 a (2) ||k·x|| = ||k||·||x||,其中k ∈ R ; 齐次性 c(3) ||x+y||≤||x||+||y|| ,其中x、y ∈ Rn ; 三角不等式
tf t0
x + εδx 2 dt |ε =0
y ∫ [ ] =
∂ t f t0 ∂ε
x + εδx 2 dt |ε =0
ቤተ መጻሕፍቲ ባይዱ
tc ∫ [ ] ∫ =
tf t0
2
x
+ εδx
δxdt
|ε =0
= t f 2xδxdt t0
3
泛函变分的规则
e 设 L1、L2是函数 x、x&、t 的函数,则 aδ (L1 + L2 ) = δL1 +δL2 c δ (L1L2 ) = L1δL2 + L2δL1
相关文档
最新文档