Matlab 中神经网络算法指令newff的使用
matlab-BP神经网络(贝叶斯正则化算法程序)
close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量sqrs=[0.0000016420520 0.0000033513140 0.0000051272540 0.0000069694860 0.0000088776310 0.0000139339960 -0.0000594492310 -0.0001080022920 -0.0001476714860 ...0.0000112367340 0.0002021567880 0.0008695337800 -0.0001189929700 -0.0000912336690 0.0002160472130 0.0006358522040 0.0012365884200 0.0049930394010 ]./0.001657904949 ;sqjdcs=[0.0000399039272 0.0000805129702 0.0001218448339 0.0001639173001 0.0002067504102 0.0003172835720 0.0000421189848 0.0000870310694 0.0001350858140 ...0.0001866997652 0.0002423599348 0.0004033628719 0.0000394450224 0.0000830935373 0.0001317612004 0.0001864881262 0.0002486249700 0.0004497441812 ]./0.000533286;sqglmj=[0.0000068430669 0.0000147605347 0.0000240097285 0.0000349372747 0.0000480215187 0.0000954580176 0.0000005804238 0.0000011640375 0.0000017508228 ...0.0000023407605 0.0000029338317 0.0000044301058 0.0000030813582 0.0000071511410 0.0000126615618 0.0000203910217 0.0000318028637 0.0001118629438 ]./0.000034868299 ;s1=[0.0001773503110 0.0003553133430 0.0005338922010 0.0007130899610 0.0008929096590 0.00#### 0.0005747667510 0.0012111415700 0.0019195724060 ...0.0027130110200 0.0036077110840 0.0064386221260 0.0005056929850 0.0010189193420 0.00#### 0.0020685403470 0.0026052286500 0.0039828224110 ]./0.00275071;%s2=[25.9167875445 24.0718476818 22.2364947192 20.4105777318 18.5939487791 14.0920619223 990.2535888432 1040.4661104131 1096.3830297389 1159.029******* ...% 1229.6925839338 1453.3788619676 164.1136642277 142.4834641073 121.6137611080 101.4436832756 81.9180522413 35.6044841634];glkyl=[1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3];glhyl=[2 4 6 8 10 15 2 4 6 8 10 15 2 4 6 8 10 15 ];P=[sqrs;sqjdcs;sqglmj;s1]; %输入数据矩阵T=[glkyl;glhyl]; %目标数据矩阵echo onclcpauseclc% 创建一个新的前向神经网络net=newff(minmax(P),[20,2],{'tansig','purelin'});pauseclcecho offclcdisp('1. L-M 优化算法TRAINLM'); disp('2. 贝叶斯正则化算法TRAINBR'); choice=input('请选择训练算法(1,2):');figure(gcf);if(choice==1)echo onclc% 采用L-M 优化算法TRAINLMnet.trainFcn='trainlm';pauseclc% 设置训练参数net.trainParam.epochs = 500;net.trainParam.goal = 1e-6;net=init(net);% 重新初始化pauseclcelseif(choice==2)echo onclc% 采用贝叶斯正则化算法TRAINBRnet.trainFcn='trainbr';pauseclc% 设置训练参数net.trainParam.epochs = 500;randn('seed',192736547);net = init(net);% 重新初始化pauseclcendnet.trainParam.epochs = 500; net.trainParam.goal = 1e-6; net.trainFcn='trainoss';% 调用相应算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P);% 计算仿真误差E = T - A;MSE=mse(E)pauseclc。
matlab神经网络工具箱简介和函数及示例
目前,神经网络工具箱中提供的神经网络模型主 要应用于:
函数逼近和模型拟合 信息处理和预测 神经网络控制 故障诊断
神经网络实现的具体操作过程:
• 确定信息表达方式; • 网络模型的确定; • 网络参数的选择; • 训练模式的确定; • 网络测试
• 确定信息表达方式:
将领域问题抽象为适合于网络求解所能接受的 某种数据形式。
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
三、BP网络学习函数
learngd 该函数为梯度下降权值/阈值学习函数,通过神经 元的输入和误差,以及权值和阈值的学习速率, 来计算权值或阈值的变化率。
调用格式; [dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
二、神经元上的传递函数
传递函数是BP网络的重要组成部分,必须是连续可 微的,BP网络常采用S型的对数或正切函数和线性函数。
• Logsig 传递函数为S型的对数函数。 调用格式为: • A=logsig(N)
N:Q个S维的输入列向量; A:函数返回值,位于区间(0,1) 中
② info=logsig(code)
问题形式的种类:
数据样本已知; 数据样本之间相互关系不明确; 输入/输出模式为连续的或者离散的; 输入数据按照模式进行分类,模式可能会 具有平移、旋转或者伸缩等变化形式; 数据样本的预处理; 将数据样本分为训练样本和测试样本
MATLAB神经网络及其应用讲课文档
BLF - Backprop weight/bias learning function, default = 'learngdm'.
PF - Performance function, default = 'mse'.
(2) Use TRAINBFG, which is slower but more memory efficient than TRAINLM.
(3) Use TRAINRP which is slower but more memory efficient than TRAINBFG.
第6页,共22页。
第9页,共22页。
输出参数说明
and returns,
NET - New network. TR - Training record (epoch and perf). Y - Network outputs. E - Network errors. Pf - Final input delay conditions. Af - Final layer delay conditions.
MATLAB神经网络及其应用
第1页,共22页。
2 BP网络
第2页,共22页。
3 MATLAB中的newff命令
NEWFF Create a feed-forward backpropagation network.
Syntax
net = newff net = newff(PR,[S1 S2...SNl],{TF1
第21页,共22页。
Matlab中的神经网络实现方法
Matlab中的神经网络实现方法近年来,神经网络技术在各个领域中得到了广泛的应用。
通过对大量的数据进行学习和训练,神经网络可以用于解决诸如图像识别、语音识别、自然语言处理等复杂的问题。
而Matlab作为一种强大的科学计算工具,提供了丰富的神经网络实现方法,帮助研究人员和工程师更好地应用神经网络技术。
在Matlab中,实现神经网络有多种方法,包括使用神经网络工具箱、编写自定义的函数和使用深度学习工具箱等。
下面将分别介绍这些方法的特点和应用。
一、神经网络工具箱Matlab的神经网络工具箱是一个功能强大的工具,可以帮助用户在短时间内搭建和训练神经网络模型。
通过在Matlab中调用神经网络工具箱中的函数,用户可以实现包括前馈神经网络、递归神经网络、自动编码器等各种类型的神经网络模型。
使用神经网络工具箱,用户只需要简单地定义网络的拓扑结构、选择合适的激活函数和学习算法,然后通过输入训练数据进行网络的训练。
训练完成后,用户可以使用训练好的神经网络模型对新的数据进行预测和分类。
神经网络工具箱提供了丰富的函数和工具,帮助用户实现各种复杂的操作,例如特征选择、模型评估和可视化等。
此外,神经网络工具箱还支持并行计算和分布式计算,提高了神经网络模型的训练效率。
二、自定义函数除了使用神经网络工具箱,用户还可以编写自定义的函数来实现神经网络。
这种方式可以更加灵活地控制网络的结构和参数。
在Matlab中,用户可以通过编写自定义的函数来定义网络的拓扑结构、激活函数、学习算法等。
同时,用户还可以使用Matlab提供的矩阵运算和优化工具,对神经网络的参数进行更新和优化。
使用自定义函数实现神经网络需要较高的编程能力和数学知识,但是可以满足对网络结构和参数精细控制的需求。
此外,用户还可以在自定义函数中加入其他自己的算法和操作,提升神经网络的性能和应用效果。
三、深度学习工具箱随着深度学习技术的兴起,Matlab还引入了深度学习工具箱,帮助用户实现包括卷积神经网络、循环神经网络等深度学习模型。
Matlab中各种神经网络的使用示例
Matlab中各种神经网络的使用示例Matlab中各种神经网络的使用示例%通用BP神经网络 (2)%通用径向基函数网络......... 错误!未定义书签。
%广义回归神经网络 (11)%通用感应器神经网络 (14)%通用BP神经网络P=[-1 -1 2 2;0 5 0 5];t=[-1 -1 1 1];net=newff(minmax(P),[3,1],{'tansig','purelin'},'t raingd');%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数'%训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为0.9)%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为1.05;% lr_dec(学习率下降比,缺省为0.7);max_perf_inc(表现函数增加最大比,缺省为1.04)%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda 的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数:% delt_inc(权值变化增加量,缺省为1.2);delt_dec(权值变化减小量,缺省为0.5);% delta0(初始权值变化,缺省为0.07);deltamax(权值变化最大值,缺省为50.0) % 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法;%训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha);缺少1个训练参数lr%可以通过net=newrbe(P,T,spread)生成网络,且误差为0%可以通过net=newrb(P,T,goal,spread)生成网络,神经元由1开始增加,直到达到训练精度或神经元数目最多为止%GRNN网络,迅速生成广义回归神经网络(GRNN)P=[4 5 6];T=[1.5 3.6 6.7];net=newgrnn(P,T);%仿真验证p=4.5;v=sim(net,p)%PNN网络,概率神经网络P=[0 0 ;1 1;0 3;1 4;3 1;4 1;4 3]';Tc=[1 1 2 2 3 3 3];%将期望输出通过ind2vec()转换,并设计、验证网络T=ind2vec(Tc);net=newpnn(P,T);Y=sim(net,P);Yc=vec2ind(Y)%尝试用其他的输入向量验证网络P2=[1 4;0 1;5 2]';Y=sim(net,P2);Yc=vec2ind(Y)%应用newrb()函数构建径向基网络,对一系列数据点进行函数逼近P=-1:0.1:1;T=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609...0.1336 -0.2013 -0.4344 -0.500 -0.3930 -0.1647 -0.0988...0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];%绘制训练用样本的数据点plot(P,T,'r*');title('训练样本');xlabel('输入向量P');ylabel('目标向量T');%设计一个径向基函数网络,网络有两层,隐层为径向基神经元,输出层为线性神经元%绘制隐层神经元径向基传递函数的曲线p=-3:.1:3;a=radbas(p);plot(p,a)title('径向基传递函数')xlabel('输入向量p')%隐层神经元的权值、阈值与径向基函数的位置和宽度有关,只要隐层神经元数目、权值、阈值正确,可逼近任意函数%例如a2=radbas(p-1.5);a3=radbas(p+2);a4=a+a2*1.5+a3*0.5;plot(p,a,'b',p,a2,'g',p,a3,'r',p,a4,'m--')title('径向基传递函数权值之和')xlabel('输入p');ylabel('输出a');%应用newrb()函数构建径向基网络的时候,可以预先设定均方差精度eg以及散布常数sceg=0.02;sc=1; %其值的选取与最终网络的效果有很大关系,过小造成过适性,过大造成重叠性net=newrb(P,T,eg,sc);plot(P,T,'*')xlabel('输入');X=-1:.01:1;Y=sim(net,X);hold onplot(X,Y);hold offlegend('目标','输出')%应用grnn进行函数逼近P=[1 2 3 4 5 6 7 8];T=[0 1 2 3 2 1 2 1];plot(P,T,'.','markersize',30)axis([0 9 -1 4])title('待逼近函数')xlabel('P')ylabel('T')%网络设计%对于离散数据点,散布常数spread选取比输入向量之间的距离稍小一些spread=0.7;net=newgrnn(P,T,spread);A=sim(net,P);hold onoutputline=plot(P,A,'o','markersize',10,'color',[1 0 0]);title('检测网络')xlabel('P')ylabel('T和A')%应用pnn进行变量的分类P=[1 2;2 2;1 1]; %输入向量Tc=[1 2 3]; %P对应的三个期望输出%绘制出输入向量及其相对应的类别plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Tc(i))) endaxis([0 3 0 3]);title('三向量及其类别')xlabel('P(1,:)')ylabel('P(2,:)')%网络设计T=ind2vec(Tc);spread=1;net=newgrnn(P,T,speard);%网络测试A=sim(net,P);Ac=vec2ind(A);%绘制输入向量及其相应的网络输出plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Ac(i))) endaxis([0 3 0 3]);title('网络测试结果')xlabel('P(1,:)')ylabel('P(2,:)')%广义回归神经网络%%GRNN神经网络,主要用于函数逼近。
MATLAB神经网络工具箱的使用指南
MATLAB神经网络工具箱的使用指南引言:在当今信息时代的浪潮中,神经网络作为一种模仿人类神经系统运行方式的数学计算模型,被广泛应用于各个领域。
而MATLAB神经网络工具箱作为一款功能强大、易于使用的软件工具,成为许多科学家和工程师进行神经网络研究和应用实践的首选。
本文旨在为读者提供MATLAB神经网络工具箱的全面介绍,并指导读者如何利用其进行神经网络的搭建、训练和应用。
一、神经网络基础知识在正式介绍MATLAB神经网络工具箱之前,我们先来了解一些神经网络的基础知识。
神经网络由输入层、隐藏层和输出层组成,其中输入层接收外部输入,隐藏层进行数据转换和处理,输出层输出最终结果。
神经网络模拟人类大脑的工作原理,通过调整神经元之间的连接权重来实现对输入数据的学习和对未知数据的预测。
二、MATLAB神经网络工具箱的使用1. 环境准备在使用MATLAB神经网络工具箱之前,我们需要先安装MATLAB软件,并确保已经安装了神经网络工具箱。
安装完成后,可以通过在命令窗口输入“nntool”命令来打开神经网络工具箱界面。
2. 神经网络搭建在神经网络工具箱中,可以通过图形用户界面进行神经网络的搭建。
点击界面左上角的“New”按钮,选择“Feedforwardnet”或“Patternnet”等网络类型,并设置输入层、隐藏层和输出层的节点数。
接下来,可以通过拖拽节点和连接来构建网络。
此外,还可以使用“Layer”和“Connection”选项卡来对网络的结构和参数进行进一步设置。
3. 数据准备成功搭建神经网络后,我们需要准备用于训练和测试的数据。
MATLAB提供了丰富的数据处理函数,可以将数据从不同格式的文件中导入,或者通过代码生成。
导入数据后,可以使用数据处理工具对数据进行清洗、归一化等预处理操作,以提高神经网络的训练效果。
4. 神经网络训练数据准备完毕后,可以通过神经网络工具箱提供的训练函数对神经网络进行训练。
常用的训练函数包括“trainlm”、“traingd”、“trainrp”等,它们采用不同的优化算法来调整网络中的连接权重。
Matlab中的神经网络工具箱介绍与使用
Matlab中的神经网络工具箱介绍与使用神经网络是一种模拟人脑思维方式的计算模型,它通过由多个神经元组成的网络,学习数据的特征和规律。
在计算机科学领域,神经网络被广泛应用于模式识别、数据挖掘、图像处理等诸多领域。
Matlab作为一种功能强大的科学计算软件,提供了专门用于神经网络设计和实现的工具箱。
本文将介绍Matlab中的神经网络工具箱,并探讨其使用方法。
一、神经网络工具箱的概述Matlab中的神经网络工具箱(Neural Network Toolbox)是一款用于构建和训练神经网络的软件包。
它提供了丰富的函数和工具,可用于创建不同类型的神经网络结构,如前向神经网络、反向传播神经网络、径向基函数神经网络等。
神经网络工具箱还包括了各种训练算法和性能函数,帮助用户对神经网络进行优化和评估。
二、神经网络的构建与训练在使用神经网络工具箱前,我们需要先了解神经网络的基本结构和原理。
神经网络由输入层、隐藏层和输出层组成,每一层都包含多个神经元。
输入层接受外部输入数据,通过权重和偏置项传递给隐藏层,最终输出到输出层,形成网络的输出结果。
构建神经网络的第一步是定义网络的结构,可以使用神经网络工具箱中的函数创建不同层和神经元的结构。
例如,使用feedforwardnet函数可以创建一个前向神经网络,输入参数指定了每个隐藏层的神经元数量。
然后,可以使用train函数对神经网络进行训练。
train函数可以选择不同的训练算法,如标准反向传播算法、Levenberg-Marquardt算法等。
通过设置训练参数,例如训练迭代次数和学习速率等,可以对网络进行优化。
三、神经网络的应用案例神经网络在许多领域都有广泛的应用,下面以图像分类为例,介绍如何使用神经网络工具箱来训练一个图像分类器。
首先,我们需要准备训练数据和测试数据。
训练数据通常包含一组已经标记好的图像和相应的标签。
为了方便处理,我们可以将图像转化为一维向量,并将标签转化为二进制编码。
matlab神经网络工具箱怎么用
matlab神经网络工具箱怎么用标题:Matlab神经网络工具箱的使用方法导言:Matlab神经网络工具箱是一个功能强大的工具,用于建立、训练和评估各种类型的神经网络。
本文将介绍如何使用Matlab神经网络工具箱进行神经网络的建立、训练和评估,帮助您更好地理解和使用这个工具箱。
一、Matlab神经网络工具箱的安装首先,您需要确保已成功安装了Matlab软件。
然后,您可以通过以下步骤来安装Matlab神经网络工具箱:1. 打开Matlab软件。
2. 在工具栏上选择“工具”菜单。
3. 在下拉菜单中选择“添加预定目录”。
4. 在弹出的窗口中,选择“文件夹”选项。
5. 点击“浏览”按钮,并选择包含神经网络工具箱的文件夹。
6. 点击“选择文件夹”按钮,然后点击“添加文件夹”按钮。
7. 点击“关闭”按钮,完成神经网络工具箱的安装。
二、神经网络的建立Matlab神经网络工具箱提供了多种类型的神经网络模型,如前馈神经网络、递归神经网络和自组织神经网络。
下面我们以前馈神经网络为例,介绍神经网络的建立方法:1. 打开Matlab软件,并在命令窗口中输入“nprtool”命令,打开“神经网络模式选择器”窗口。
2. 在“神经网络模式选择器”窗口中,选择“构建”按钮。
3. 在“神经网络模式选择器”窗口中,选择“前馈神经网络”选项,并点击“下一步”按钮。
4. 在“选择网络架构”窗口中,选择神经网络的层数、神经元数量和输入、输出数据的维度。
5. 点击“下一步”按钮,然后点击“完成”按钮,完成神经网络的建立。
三、神经网络的训练神经网络的训练是指通过将已知的输入和输出数据进行反复迭代调整网络参数,从而使网络能够更好地拟合输入输出之间的关系。
下面我们介绍神经网络的训练方法:1.在命令窗口中输入“trainlm”命令,选择Levenberg-Marquardt算法作为训练函数。
2.输入训练数据和目标数据,通过“trains”命令开始训练神经网络。
神经网络的matlab函数介绍
[分享]Matlab的神经网络工具箱实用指南第一章介绍1.神经网络神经网络是单个并行处理元素的集合,我们从生物学神经系统得到启发。
在自然界,网络功能主要由神经节决定,我们可以通过改变连接点的权重来训练神经网络完成特定的功能。
一般的神经网络都是可调节的,或者说可训练的,这样一个特定的输入便可得到要求的输出。
如下图所示。
这里,网络根据输出和目标的比较而调整,直到网络输出和目标匹配。
作为典型,许多输入/目标对应的方法已被用在有监督模式中来训练神经网络。
神经网络已经在各个领域中应用,以实现各种复杂的功能。
这些领域包括:模式识别、鉴定、分类、语音、翻译和控制系统。
如今神经网络能够用来解决常规计算 腿四岩越饩龅奈侍狻N颐侵饕 ü 飧龉ぞ呦淅唇 ⑹痉兜纳窬 缦低常 ⒂τ玫焦こ獭⒔鹑诤推渌 导氏钅恐腥ァ?BR>一般普遍使用有监督训练方法,但是也能够通过无监督的训练方法或者直接设计得到其他的神经网络。
无监督网络可以被应用在数据组的辨别上。
一些线形网络和Hopfield网络是直接设计的。
总的来说,有各种各样的设计和学习方法来增强用户的选择。
神经网络领域已经有50年的历史了,但是实际的应用却是在最近15年里,如今神经网络仍快速发展着。
因此,它显然不同与控制系统和最优化系统领域,它们的术语、数学理论和设计过程都已牢固的建立和应用了好多年。
我们没有把神经网络工具箱仅看作一个能正常运行的建好的处理轮廓。
我们宁愿希望它能成为一个有用的工业、教育和研究工具,一个能够帮助用户找到什么能够做什么不能做的工具,一个能够帮助发展和拓宽神经网络领域的工具。
因为这个领域和它的材料是如此新,这个工具箱将给我们解释处理过程,讲述怎样运用它们,并且举例说明它们的成功和失败。
我们相信要成功和满意的使用这个工具箱,对范例和它们的应用的理解是很重要的,并且如果没有这些说明那么用户的埋怨和质询就会把我们淹没。
所以如果我们包括了大量的说明性材料,请保持耐心。
新版Matlab中神经网络训练函数Newff的使用方法
新版Matlab中神经网络训练函数Newff的使用方法一、介绍新版newffSyntax•net = newff(P,T,[S1 S2...S(N-l)],{TF1 TF2...TFNl}, BTF,BLF,PF,IPF,OPF,DDF) Descriptionnewff(P,T,[S1 S2...S(N-l)],{TF1 TF2...TFNl}, BTF,BLF,PF,IPF,OPF,DDF) takes several argumentsExamplesHere is a problem consisting of inputs P and targets T to be solved with a network.•P = [0 1 2 3 4 5 6 7 8 9 10];T = [0 1 2 3 4 3 2 1 2 3 4];Here a network is created with one hidden layer of five neurons.•net = newff(P,T,5);The network is simulated and its output plotted against the targets.•Y = sim(net,P);plot(P,T,P,Y,'o')The network is trained for 50 epochs. Again the network's output is plotted.•net.trainParam.epochs = 50;net = train(net,P,T);Y = sim(net,P);plot(P,T,P,Y,'o') 二、新版newff与旧版newff调用语法对比Example1比如输入input(6*1000),输出output为(4*1000),那么旧版定义:net=newff(minmax(input),[7,1],{'tansig','purelin'},'trainlm');新版定义:net=newff(input,output,7,{'tansig','purelin'},'trainlm'); Example2比如输入input(6*1000),输出output为(4*1000),那么旧版定义:net=newff(minmax(input),[49,10,1],{'tansig','tansig','tansig'},'traingdx');新版定义:net=newff(input,output, [49,10], {'tansig','tansig','tansig'},'traingdx');三、旧版newff使用方法在新版本中使用提示:旧版本定义的newff虽也能在新版本中使用,但会有警告,警告如下:Warning: NEWFF used in an obsolete way.> In obs_use at 18In newff>create_network at 127In newff at 102See help for NEWFF to update calls to the new argument list.四、新版newff与旧版newff使用的训练效果对比旧版本:旧用法训练次数多,但精度高新版本:新用法训练次数少,但精度可能达不到要求造成上述原因是:程序里面的权值、阈值的初始值是随机赋值的,所以每次运行的结果都会不一样,有好有坏。
matlab里边net函数的用法
Matlab是一种常用的科学计算软件,它提供了丰富的函数和工具箱,用于进行数据处理、图像处理、数值计算等各种科学计算任务。
其中,net函数是Matlab中的一个重要函数,它可以用来构建和训练神经网络模型,是进行机器学习和深度学习任务的重要工具之一。
在本文中,我们将重点介绍Matlab中net函数的用法,包括如何创建神经网络模型、如何进行训练和预测,以及如何对模型进行评估和优化。
希望通过本文的介绍,读者能够更加深入地了解Matlab中net 函数的用法,从而能够更加熟练地使用这一强大的工具进行科学计算和研究。
一、net函数的基本用法在Matlab中,我们可以使用net函数来创建一个神经网络模型。
我们需要定义网络的结构,包括输入层的神经元数目、隐藏层的神经元数目、输出层的神经元数目等。
我们可以使用net函数来创建一个空白的神经网络模型,如下所示:net = newff(minmax(input),[10 1], {'tansig' 'purelin'}, 'tr本人nlm', 'learngdm', 'mse');在上面的代码中,我们首先使用newff函数来创建一个空白的神经网络模型。
其中,minmax(input)表示输入数据的范围,[10 1]表示隐藏层和输出层的神经元数目,{'tansig' 'purelin'}表示隐藏层和输出层的激活函数,'tr本人nlm'表示训练函数,'learngdm'表示学习函数,'mse'表示性能函数。
二、net函数的训练与预测在创建好神经网络模型之后,我们需要对模型进行训练,以便使其能够对输入数据进行预测。
在Matlab中,我们可以使用tr本人n函数来对神经网络模型进行训练,如下所示:net = tr本人n(net,input,target);在上面的代码中,我们使用tr本人n函数对神经网络模型net进行训练,其中input表示训练数据的输入,target表示训练数据的输出。
Matlab中的神经网络训练技术
Matlab中的神经网络训练技术导言神经网络是一种模拟人类神经系统的计算模型,它能够通过学习和训练,从大量的数据中提取有用的信息,并进行模式识别和预测。
在许多领域中,神经网络已经成为一种强大而广泛应用的工具。
而Matlab作为一种强大的科学计算软件,提供了丰富的神经网络训练技术和工具,使得神经网络的研究和应用更加便捷和高效。
本文将介绍Matlab中的神经网络训练技术,包括基本的神经网络模型、训练算法和应用示例。
第一节神经网络基础神经网络是由大量的神经元组成的,每个神经元通过连接权重和激活函数来进行信号的传递和处理。
在Matlab中,可以通过构建网络对象来定义神经网络结构,并通过设置神经网络的各种属性来实现不同的功能。
例如,可以选择不同的网络拓扑结构(如前馈神经网络、循环神经网络等),不同的激活函数和训练算法等。
第二节神经网络训练算法神经网络的训练是指通过调整网络连接权重和激活函数来使网络拟合输入数据,从而实现某种特定的任务。
在Matlab中,提供了丰富的神经网络训练算法,包括反向传播算法、遗传算法、粒子群算法等。
这些算法各有特点和适用范围,可以根据具体问题选择合适的算法进行网络训练。
第三节神经网络应用示例神经网络在许多领域中都有广泛的应用,如模式识别、预测分析、控制系统等。
在Matlab中,提供了许多神经网络的应用示例,通过这些示例可以更好地理解和应用神经网络技术。
例如,可以通过神经网络实现手写数字识别、语音识别、股票预测等。
这些示例不仅提供了具体的实现代码,还提供了数据集和演示程序,方便用户进行实践和调试。
第四节神经网络性能评估神经网络的性能评估是指通过指标来评价网络的训练效果和泛化能力。
在Matlab中,提供了多种常用的性能评估指标,如均方误差、准确率、召回率等。
通过这些指标,可以衡量网络在训练数据和测试数据上的表现,并对网络的参数进行调整,改进网络性能。
第五节神经网络与深度学习深度学习是近年来兴起的一种基于神经网络的机器学习方法,其具有强大的特征提取和模式识别能力。
matlab神经网络newff函数的使用
matlab神经网络newff函数的使用设[P,T]是训练样本,[X,Y]是测试样本;net=newrb(P,T,err_goal,spread); %建立网络q=sim(net,p);e=q-T;plot(p,q); %画训练误差曲线q=sim(net,X);e=q-Y;plot(X,q); %画测试误差曲线训练前馈网络的第一步是建立网络对象。
函数newff建立一个可训练的前馈网络。
这需要4个输入参数。
第一个参数是一个Rx2的矩阵以定义R个输入向量的最小值和最大值。
第二个参数是一个设定每层神经元个数的数组。
第三个参数是包含每层用到的传递函数名称的细胞数组。
最后一个参数是用到的训练函数的名称。
举个例子,下面命令将创建一个二层网络。
它的输入是两个元素的向量,第一层有三个神经元(3),第二层有一个神经元(1)。
第一层的传递函数是tan-sigmoid,输出层的传递函数是linear。
输入向量的第一个元素的范围是-1到2[-1 2],输入向量的第二个元素的范围是0到5[0 5],训练函数是traingd。
net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traingd');这个命令建立了网络对象并且初始化了网络权重和偏置,因此网络就可以进行训练了。
我们可能要多次重新初始化权重或者进行自定义的初始化。
下面就是初始化的详细步骤。
在训练前馈网络之前,权重和偏置必须被初始化。
初始化权重和偏置的工作用命令init 来实现。
这个函数接收网络对象并初始化权重和偏置后返回网络对象。
下面就是网络如何初始化的:net = init(net);我们可以通过设定网络参数net.initFcn和yer{i}.initFcn这一技巧来初始化一个给定的网络。
net.initFcn用来决定整个网络的初始化函数。
前馈网络的缺省值为initlay,它允许每一层用单独的初始化函数。
newff函数的使用(含一个新的函数)
matlab神经网络newff函数的使用设[P,T]是训练样本,[X,Y]是测试样本;net=newrb(P,T,err_goal,spread); %建立网络q=sim(net,p);e=q-T;plot(p,q); %画训练误差曲线q=sim(net,X);e=q-Y;plot(X,q); %画测试误差曲线训练前馈网络的第一步是建立网络对象。
函数newff建立一个可训练的前馈网络。
这需要4个输入参数。
第一个参数是一个Rx2的矩阵以定义R个输入向量的最小值和最大值。
第二个参数是一个设定每层神经元个数的数组。
第三个参数是包含每层用到的传递函数名称的细胞数组。
最后一个参数是用到的训练函数的名称。
举个例子,下面命令将创建一个二层网络。
它的输入是两个元素的向量,第一层有三个神经元(3),第二层有一个神经元(1)。
第一层的传递函数是tan-sigmoid,输出层的传递函数是linear。
输入向量的第一个元素的范围是-1到2[-1 2],输入向量的第二个元素的范围是0到5[0 5],训练函数是traingd。
net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traingd');这个命令建立了网络对象并且初始化了网络权重和偏置,因此网络就可以进行训练了。
我们可能要多次重新初始化权重或者进行自定义的初始化。
下面就是初始化的详细步骤。
在训练前馈网络之前,权重和偏置必须被初始化。
初始化权重和偏置的工作用命令init来实现。
这个函数接收网络对象并初始化权重和偏置后返回网络对象。
下面就是网络如何初始化的:net = init(net);我们可以通过设定网络参数net.initFcn和yer{i}.initFcn这一技巧来初始化一个给定的网络。
net.initFcn用来决定整个网络的初始化函数。
前馈网络的缺省值为initlay,它允许每一层用单独的初始化函数。
matlab神经网络工具箱简介和函数及示例参考PPT
代码运行结果: 网络训练误差
结论:隐含层节点设为8
BP网络训练步骤
步骤1: 初始化 步骤2:计算网络各层输出矢量 步骤3:计算网络各层反向传播的误差变化,并计算各 层权值的修正值及修正值 步骤4:再次计算权值修正后的误差 平方和 步骤5:检查误差 平方和是否小于 误差期望值,若是, 停止训练,否则继续.
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
MATLAB的神经网络工具箱函
数
函数类型
通用函数
函数名 函数用途 称
仿真函数 训练函数
学习函数 初始化函数
SIM train trainh adapt learn int intlay
针对给定的输入,得到网络输出 调用其它训练函数,对网络进行训练 对权值和阈值进行训练 自适应函数 网络权值和阈值的学习 对网络进行初始化 对多层网络初始化
说明:
参数TFi可以采用任意的可微传递函数,比如transig, logsig和purelin等; 训练函数可以是任意的BP训练函数,如trainm,trainbfg, trainrp和traingd等。BTF默认采用trainlm是因为函数的速度 很快,但该函数的一个重要缺陷是运行过程会消耗大量的内 存资源。如果计算机内存不够大,不建议用trainlm,而建议 采用训练函数trainbfg或trainrp。虽然这两个函数的运行速度 比较慢,但它们的共同特点是内存占用量小,不至于出现训 练过程死机的情况。
MATLAB神经网络算法实例讲解【附源代码】
MA TLAB神经网络算法实例讲解【附源代码】例1 采用动量梯度下降算法训练BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MA TLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputW eights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerW eights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。
matlab神经网络工具箱教程
matlab神经网络工具箱教程
MATLAB神经网络工具箱教程
神经网络是一种模拟人脑思维方式的计算模型,能够处理复杂的非线性问题。
MATLAB提供了强大的神经网络工具箱,可
以帮助用户设计、训练和应用神经网络。
本教程将介绍如何使用MATLAB神经网络工具箱进行神经网
络的建模和训练。
以下是教程的主要内容:
1. 神经网络基础知识:介绍神经网络的原理、结构和常用术语。
2. 神经网络建模:使用MATLAB工具箱的GUI界面,在层次结构上创建神经网络模型。
3. 数据处理:介绍如何准备、加载和处理输入数据以及如何将其分为训练集、验证集和测试集。
4. 网络训练:讲解不同的网络训练算法,如梯度下降法和反向传播算法,以及如何设置训练参数。
5. 网络评估和优化:教授如何评估训练好的神经网络的性能,并介绍如何进行网络的优化和调整。
6. 使用已训练的网络进行预测:演示如何使用训练好的神经网络进行新数据的预测和分类。
7. 神经网络应用案例:通过案例研究,展示神经网络在各种领域的应用,如图像识别、声音处理等。
通过学习本教程,您将掌握神经网络的基本原理和MATLAB
神经网络工具箱的使用方法,能够利用神经网络解决实际问题。
祝您学习愉快!。
神经网络算法matlab
神经网络算法matlab神经网络算法是一种基于大脑神经元行为的计算模型,通过模拟神经元之间的相互连接和信息传递来实现智能的数据处理和学习能力。
Matlab是一种专门用于科学计算和算法开发的高级编程语言,在神经网络领域也有广泛的应用。
本文将介绍神经网络算法在Matlab中的实现方法。
首先,为了使用神经网络算法,首先需要安装Matlab并确保正确配置了相应的神经网络工具箱。
Matlab的神经网络工具箱提供了一系列用于构建、训练和测试神经网络模型的函数和工具。
在Matlab中,可以使用`feedforwardnet`函数来创建一个前馈神经网络。
这个函数可以指定网络的架构,包括神经元的数量、层数和激活函数等。
例如,下面的代码创建一个具有一个隐藏层和一个输出层的前馈神经网络:net = feedforwardnet([10]);```接下来,需要准备训练数据和目标数据。
在Matlab中,可以使用`mat2vec`函数将训练数据和目标数据转换为神经网络所需的格式。
然后,可以使用`train`函数将训练数据和目标数据输入到神经网络中进行训练。
例如,下面的代码将训练一个前馈神经网络来拟合一组数据:input = [1 2 3 4 5];target = [2 4 6 8 10];data = mat2vec(input, target);net = train(net, data.input, data.target);```在训练完成后,可以使用`sim`函数来对新的输入数据进行预测。
例如,下面的代码使用训练好的神经网络对新的输入数据进行预测:input_test = [6 7 8 9 10];output = sim(net, input_test);```除了前馈神经网络,Matlab还支持其他类型的神经网络模型,例如循环神经网络和自适应神经网络。
对于循环神经网络,可以使用`cascadeforwardnet`函数来创建一个具有循环连接的神经网络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab 中神经网络算法指令newff的使用设[P,T]是训练样本,[X,Y]是测试样本;net=newrb(P,T,err_goal,spread); %建立网络q=sim(net,p);e=q-T;plot(p,q); %画训练误差曲线q=sim(net,X);e=q-Y;plot(X,q); %画测试误差曲线训练前馈网络的第一步是建立网络对象。
函数newff建立一个可训练的前馈网络。
这需要4个输入参数。
第一个参数是一个Rx2的矩阵以定义R个输入向量的最小值和最大值。
第二个参数是一个设定每层神经元个数的数组。
第三个参数是包含每层用到的传递函数名称的细胞数组。
最后一个参数是用到的训练函数的名称。
举个例子,下面命令将创建一个二层网络。
它的输入是两个元素的向量,第一层有三个神经元(3),第二层有一个神经元(1)。
第一层的传递函数是tan-sigmoid,输出层的传递函数是linear。
输入向量的第一个元素的范围是-1到2[-1 2],输入向量的第二个元素的范围是0到5[0 5],训练函数是traingd。
net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traingd');这个命令建立了网络对象并且初始化了网络权重和偏置,因此网络就可以进行训练了。
我们可能要多次重新初始化权重或者进行自定义的初始化。
下面就是初始化的详细步骤。
在训练前馈网络之前,权重和偏置必须被初始化。
初始化权重和偏置的工作用命令init 来实现。
这个函数接收网络对象并初始化权重和偏置后返回网络对象。
下面就是网络如何初始化的:net = init(net);我们可以通过设定网络参数net.initFcn和yer{i}.initFcn这一技巧来初始化一个给定的网络。
net.initFcn用来决定整个网络的初始化函数。
前馈网络的缺省值为initlay,它允许每一层用单独的初始化函数。
设定了net.initFcn ,那么参数yer{i}.initFcn 也要设定用来决定每一层的初始化函数。
对前馈网络来说,有两种不同的初始化方式经常被用到:initwb和initnw。
initwb函数根据每一层自己的初始化参数(net.inputWeights{i,j}.initFcn)初始化权重矩阵和偏置。
前馈网络的初始化权重通常设为rands,它使权重在-1到1之间随机取值。
这种方式经常用在转换函数是线性函数时。
initnw通常用于转换函数是曲线函数。
它根据Nguyen和Widrow[NgWi90]为层产生初始权重和偏置值,使得每层神经元的活动区域能大致平坦的分布在输入空间。
它比起单纯的给权重和偏置随机赋值有以下优点:(1)减少神经元的浪费(因为所有神经元的活动区域都在输入空间内)。
(2)有更快的训练速度(因为输入空间的每个区域都在活动的神经元范围中)。
初始化函数被newff所调用。
因此当网络创建时,它根据缺省的参数自动初始化。
init不需要单独的调用。
可是我们可能要重新初始化权重和偏置或者进行自定义的初始化。
例如,我们用newff创建的网络,它缺省用initnw来初始化第一层。
如果我们想要用rands重新初始化第一层的权重和偏置,我们用以下命令:yers{1}.initFcn = 'initwb';net.inputWeights{1,1}.initFcn = 'rands';net.biases{1,1}.initFcn = 'rands';net.biases{2,1}.initFcn = 'rands';net = init(net);IW: 输入层到隐含层的权重矩阵LW: 隐含层和输出层间的权重矩阵b: 阀值向量如网络为net, 输入层和输出均为一个接点情况下,则用net.IW{1,1}可以看到第一个输入接点到第一隐含层的权重向量;net.LW{2,1}可以看到隐含层到输出层的权值向量;net.b{1,1}是隐含层的阀值向量,net.b{2,1}是输出接点的阀值;在多输入输出下先用net.IWnet.LWnet.b查看各矩阵结构,再相应用net.IW{?,?}等语句查到相关的向量_______________________________________________________________________________ _______________clear all;%define the input and outputp= [974 874 527;388 466 1764;1316 2439 2251;1836 2410 1860;1557 2301 1578;1490 1877 2749;1513 1278 2026;1070 1561 2794;1347 2415 3306;1324 2746 1233;1383 1463 1847;1282 0 2347];t=[19797 24282 34548];% 创建bp网络和定义训练函数% 这里是为了方便而建立一个矩阵,注意是12x2,不是3x2pr=[ 527 974;388 1764;1316 2439;1836 2410;1557 2301;1490 2749;1278 2026;1070 2794;1347 3306;1233 2746;1383 1847;0 2347]net=newff(pr,[15,1],{'tansig' 'purelin'},'trainlm'); %这里要加入输出层的转移函数,一般是trainlmnet.trainparam.goal=50;net.trainparam.epochs=5000;%训练神经网络[net,tr]=train(net,p,t);%输出训练后的权值和阈值iw1=net.IW{1};b1=net.b{1};lw2=net.LW{2};b2=net.b{2};%存储训练好的神经网络save netkohler net_______________________________________________________________________________ _______________怎样知道matlab已经训练好的神经网络的权值、步长以及阙值用matlab训练神经网络时不需输入权值、步长以及阙值,如果我想知道matlab已经训练好的神经网络的权值、步长以及阙值该怎末操作?训练好的权值、阈值的输出方法是:输入到隐层权值:w1=net.iw{1,1}隐层阈值:theta1=net.b{1}隐层到输出层权值:w2=net.lw{2,1};输出层阈值:theta2=net.b{2}_______________________________________________________________________________ _______________帮我看看matlab的这段程序(有关神经网络BP算法)在一位老师的讲义上看到的程序,但是有些东西不太明白,请求帮助程序如下:****************************************************************clf;figure(gcf)%NEWFF —建立一个BP网络%TRAIN —对BP网络进行训练%SIM —对BP网络进行仿真pauseP = -1:0.1:1;T = [-.9602 -.5770 -.0729 .3771 .6405 .6600 .4609 ....1336 -.2013 -.4344 -.5000 -.3930 -.1647 .0988 ....3072 .3960 .3449 .1816 -.0312 -.2189 -.3201];plot(P,T,'+');title('Training Vectors');xlabel('Input Vector P');ylabel('Target Vector T');pausenet=newff(minmax(P),[5 1],{'tansig' 'purelin'},'traingd','learngd','sse'); echo offk = pickic;if k == 2net.iw{1,1} = [3.5000; 3.5000; 3.5000; 3.5000; 3.5000];net.b{1} = [-2.8562; 1.0774; -0.5880; 1.4083; 2.8722];net.lw{2,1} = [0.2622 -0.2375 -0.4525 0.2361 -0.1718];net.b{2} = [0.1326];endnet.iw{1,1}net.b{1}net.lw{2,1}net.b{2}pauseecho onme=8000;net.trainParam.show=10;net.trainParam.goal=0.02;net.trainParam.lr=0.01;A=sim(net,P);sse=sumsqr(T-A);for i=1:me/100if sse>net.trainparam.goal,i=i-1;break,endnet.trainParam.epochs=100;[net,tr]=train(net,P,T);trp((1+100*(i-1)):(max(tr.epoch)+100*(i-1)))=tr.perf(1:max(tr.epoch)); A=sim(net,P);sse=sumsqr(T-A);plot(P,T,'+');plot(P,A)hold offpauseendmessage=sprintf('Traingd, Epoch %%g/%g, SSE %%g\n',me); fprintf(message,(max(tr.epoch)+100*(i-1)),sse)plot(tr)[i,j]=size(trp);hold onplot(1:j,net.trainParam.goal,'r--')hold offtitle('Error Signal')xlabel('epoch')ylabel('Error')p = 0.5;a = sim(net,p)echo off。