运筹学 对偶原理共66页文档
运筹学对偶理论
动态规划的对偶性
动态规划的对偶性是指对于给定的动态规划问 题,可以构造一个与之对应的对偶问题,这两 个问题的最优解是相互对应的。
在动态规划中,原问题通常关注的是多阶段决 策的最优解,而对偶问题则关注的是如何将原 问题的最优解转化为一系列子问题的最优解。
对偶理论在动态规划中也有着广泛的应用,例 如在计算机科学、人工智能、控制系统等领域。
运筹学对偶理论
• 对偶理论概述 • 对偶理论的基本概念 • 对偶理论在运筹学中的应用 • 对偶理论的局限性与挑战 • 对偶理论案例分析
01
对偶理论概述
对偶问题的定义
对偶问题
在运筹学中,对偶问题是指原问题的 目标函数和约束条件保持不变,但变 量的约束方向被颠倒的问题。
线性规划中的对偶问题
在线性规划中,原问题为最大化问题 ,其对偶问题则为一个等价的线性规 划问题,目标函数变为最小化问题。
对偶理论面临的挑战
算法优化
01
对偶理论在求解大规模优化问题时,算法效率和稳定性面临挑
战。
多目标优化问题
02
对偶理论在处理多目标优化问题时,难以权衡和协调不同目标
之间的矛盾。
动态环境适应性
03
对偶理论在应对动态环境和不确定性因素时,需要进一步改进
和优化。
对偶理论的未来发展方向
拓展应用领域
进一步探索对偶理论在其他领域的应用,如金融、 医疗、交通等。
详细描述
在金融风险管理问题中,动态规划对偶理论可以用于确定 最优的风险管理策略,以最小化风险并最大化收益。通过 构建动态规划模型,可以找到最优的风险管理方案,提高 金融机构的风险管理能力。
总结词
动态规划对偶理论在电力系统优化问题中具有重要应用。
运筹学 对偶原理
解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2
y1 3 y1
2 y2
3 y3 4 y3
3 5
2 y1 7 y2 y3 1
y1
0,
y2
0,
y
无
3
约
束
(3)复杂模型的对偶:可分步骤求对偶;或 依据表2.2求对偶
max Z 2x1 3x2 5x3 x4
( y3 , y4 , y5 )(x1 , x2 , x3 )T 0
( y1 , y2 )(x4 , x5 )T 0 将Y*带入由方程可知,y3=y5=0,y4=1。
∵y2=-2≠0 ∴x5=0
又∵y4=1≠0 ∴x2=0
将x2,x5分别带入原问题约束方程中,得:
x1 x1
x3 x3
4 6
解方程组得:x1=-5,x3=-1, 所以原问题的最优解为
推论2: 在一对对偶问题(P)和(D)中,若原问题可行但目标函 数无界,则对偶问题无可行解;反之不成立。这也是对偶问题的 无界性。
对偶性质
性质3 最优性定理:如果 X 0是原问题的可行 解,Y 0是其对偶问题的可行解,则
CX 0 Y 0b
充分不要条件是,X 0 与 Y 0是原问题和对偶
的最优解。
数列于下表 :
设备 产品
产品数据表
ABC
产品利润
D
(元/件)
甲
2140 2
乙
2204 3
设备可利用机 时数(时)
12
8
16 12
线性规划的对偶模型
•解:设甲、乙型产品各生产x1及x2件,则数 学模型为: max z 2x1 3x2
运筹学第二章 对偶理论
1.3 对偶单纯形法
C
-2
-3
-4
CB
XB
b
X1
X2
X3
0
X4
-1
0
[-5/2]
1/2
-2
X1
2
1
-1/2
3/2
0
-4
-1
确定换出变量: X4
确定换入变量: X2
C
CB
XB
b
-3
X2
2/5
-2
X1
11/5
X * = (11 5 2 5)
-2
-3
-4
X1
X2
X3
0
1
-1/5
1
0
7/5
0
0
-3/5
Y * = (8 5 1 5)
初始可行基,则 σ ≤ 0 。
若
~ bi
≥
0, i
= 1,2,L, m,即表中原问题和
对偶问题均为最优解,否则换基。
1.3 对偶单纯形法
基变换方法:
•确定换出基变量
~ bl
=
min i
~ {bi
~ bi
<
0}
对应变量 xl 为换出变量
•确定换入基变量
θ
=
min
⎪⎧σ
⎨
j
j ⎪⎩ alj
alj
<
0
⎪⎫ ⎬
1.3 对偶理论 Dual Theory
对偶是一般形式的对称。 ¾ 对偶问题的引出 ¾ 原问题与对偶问题的对应关系 ¾ 对偶理论
DUAL
1.3 对偶问题
某家电厂家利用现有资源生产两种产品,有关数据如下表:
运筹学对偶问题
在运筹学中,对偶问题是一个与原问题相对应的问题。
以线性规划问题为例,每一个线性规划问题必然有与之相伴而生的另一个线性规划问题,即任何一个求maxz的LP1都有一个求minw的LP2。
将LP1称为“原问题”,记为P;将LP2称为“对偶问题”,记为D。
对偶问题的经济学解释——影子价格又称影子利率,用线性规则方法计算出来的反映资源最优使用效果的价格。
用微积分描述资源的影子价格,即当资源增加一个数量而得到目标函数新的最大值时,目标函数最大值的增量与资源的增量的比值,就是目标函数对约束条件(即资源)的一阶偏导数。
用线性规划方法求解资源最优利用时,即在解决如何使有限资源的总产出最大的过程中,得出相应的极小值,其解就是对偶解,极小值作为对资源的经济评价,表现为影子价格。
运筹学第2章-线性规划的对偶理论
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0
(运筹学第二章)线性规划的对偶理论
第二章线性规划的对偶理论1.对偶问题的提出2.原问题与对偶问题3.对偶问题的基本性质4.影子价格5对偶单纯形法5.对偶单纯形法6.灵敏度分析7.参数线性规划1§1.对偶问题的提出原问题设某企业有m种资源用于生产n种不同产品,各种(i=1m)又生产单位第j种资源的拥有量分别为b i (i=1,…,m),又生产单位第j种产品(j=1,…,n)消费第i种资源a ij 单位,产值为c j 元。
用x 代表第j种产品的生产数量,为使该企业产值最大,可将上述问题建立线性规划模型j 将上述问题建立线性规划模型:max z =c 1x 1+c 2x 2+…+c n x n a 11x 1+a 12x 2+…+a 1n x n ≤b 1a 21x 1+a 22x 2+…+a 2n x n ≤b 2………………2a m 1x 1+a m 2x 2+…+a m n x n ≤b m x 1,x 2,…,x n ≥0§1.对偶问题的提出现在从另一角度提出问题:假定有另一企业欲将上述企业拥有的资源收买过来,至少应付出多少代价,才能使前一拥有的资源收买过来,至少应付出多少代价,才能使前企业愿意放弃生产活动,出让资源。
设用y i 代表收买该企业一单位i种资源时付给的代价,则总收买价为:ωb ω = b1y 1+…+b m y m 前一企业生产一单位第j种产品时,消耗各种资源的数量分别为a 1j ,a 2j ,…,a mj ,如果出让这些资源,价值应不低于单位j种产品的价值c j 元,因此:a 1 j y 1+ a 2 j y 2 + …+ a m j y m ≥ c j 3j j j j (j =1,…,n)§1.对偶问题的提出对后一企业来说,希望用最小代价把前一企业所有资源收过来此有有资源收买过来,因此有:min ω=b1y 1+b 2y 2+…+b m y m a11y 1+a 21y 2+…+a m 1y m ≥c 1a 12y 1+a 22y 2+…+a m 2y m ≥c 2………………a 1n y 1+a 2n y 2+…+a mn y m ≥c ny 1,y 2,…,y m ≥04§1对偶问题的提出§1.对偶问题的提出max z = c 1x 1+ c 2x 2+ … + c n x na x +a x ++a xb a 1 1x 1+ a 1 2x 2 + … + a 1 n x n ≤b 1a 2 1x 1+ a 2 2x 2 + … + a 2 n x n ≤b 2………………a m 1x 1+ a m 2x 2 + … + a m n x n ≤b mmin ω = b 1y 1+b 2y 2+…+b m y mx 1 ,x 2 ,… ,x n ≥0a 1 1y 1+ a 21 y 2 + … + a m 1y m ≥c 1a 1 2y 1+ a 22y 2 + … + a m 2y m ≥c 2………………a 1n y + a 2n y 2+ … + a y ≥c 51 n 12 n 2 mn m ny 1,y 2,… ,y m ≥0§2.原问题与对偶问题后一个线性规划问题是前一个问题从不同角度作的阐述如前者称为线性规划问的话的阐述。
运筹学概论 第2章 线性规划的对偶理论
线性规划的对偶问题 对偶问题的基本性质 影子价格
2020/4/29
第一节 线性规划的对偶问题
窗含西岭千秋雪,门泊东吴万里船 对偶是一种普遍现象
2020/4/
一、对偶问题的提出
例1 美佳公司计划制造甲、乙两种家电产品,已知制造一件甲需占用B 设备5小时,调试工序1小时;制造一件乙需占用A设备6小时,B设备2 小时,调试工序1小时; A设备每天可用15小时, B设备可用24小时, 调试工序每天可用5小时。已知售出一件甲获利2元,售出一件乙获利1 元,问该公司每天应制造两种家电各多少件,使获取的利润最大?
x1,x2,x3,x4 0
假设有商人要向厂方购买资源A和B,问他们 谈判原料价格的模型是怎样的?
2020/4/29
●设A、B资源的出售价格分别为 y1 和 y2 ●显然商人希望总的收购价越小越好(目标) ●工厂希望出售资源后所得不应比生产产品所得少(约束)
2020/4/29
maxZ x1 2x2 3x3 4x4
(2)
3y1 5y1
y2 y3 y3 4 6y2 y3 y3 3
(3) (4)
5y1 6y2 y3 y3 3
(5)
y1, y2 , y3, y3 0
(6)
y2=-y2’;y3=y3’-y3’’;(3)式 两端乘“-1”,(4)、(5)合并。
A’YC’
决策变量
X 0
Y 0
2020/4/29
min w Y 'b A 'Y C ' Y 0
max w ' Y 'b - A 'Y C ' Y 0
min z ' CX - AX b X 0
运筹学 对偶理论
3
对偶问题的提出
解:设两种家电产量分别为变量x1 , x2
max z= 2x1 +x2
5x2 15
6x1 + 2x2 24
(1)
x1 + x2 5
x1,x2 0
4
对偶问题的提出 Ⅰ Ⅱ 每天可用能力
②另设一备家A(公h) 司至0少应付5 出多少15代价才能使美 佳品公的调设利生司试备润工产愿B(序元(意?h())h出) 让621自己的211 资源而254不组织两种产 解:设 y1 , y2 , y3 分别为A, B设备和调试工序 工时出让的单价。
-AX≥- b X0
原问题
对
max z=CX
偶
AX≤ b
问
题
X0
12
对偶问题与原问题的关系—对称形式
例1:写出下面问题的对偶问题
max z= 5x1 +6x2
3x1 -2x2 7 4x1 +x2 9 x1 , x2 0
min w=7y1 +9y2
3y1+4y2 5 -2y1 +y2 6 y1, y2 0
a21x1 + a22x2+ a23x3 b2
- a31x1 - a32x2 - a33x3 - b3
x1 0
x2'
x2 ,
x2'
0
x3 x3' x3", x3' 0, x3" 0 22
对偶问题与原问题的关系—非对称形式
对偶问题 min w= b1 y1 +b2y2 +b3y3
xk
xk'
x
" k
其中,
运筹学对偶理论
min w 5 y1 9 y2 4 y3
y1 3y2 2 y3 2
s.t.2
y1 3 y1
y
2 2y
2y 2
3 1 4 y3
3
y1
y1
y2 0,
y2
y3
0,
5
y
无约束
3
LP1: max z=3x1+2x2
xx11++22xx2 2≤+5x3
=5
st.
2x1+ x2 ≤4 +x4 = 4
0
0
1
3
x1
1
0
0
2
x2
0
1
0
0
0
0
0
0
x4
x5
b
0
05
1
04
0
19
0
00
-1/2
0
3
1/2
02
-2
11
-3/2
0
6
5/2 -3/2 3/2
3/2 -1/2 3/2
-2
11
-1/2 -1/2 13/2
单纯形算法的矩阵表示
LP: max z = CX st. AX ≤ b
X≥0
max z = CX + 0XS st. AX +I XS = b ( I式 )
3.2.4 强对偶性定理(对偶定理)
如果原问题存在最优解X*,则其对偶问题一定具 有最优解Y*,且 CX * b'Y *
• 如果原问题存在最优解,假设其对应的基是B,即
X
* B
B 1b,
X
* N
0
运筹学第三章 对偶理论
8
线性规划的对偶理论
原始( 非对称形式下对偶问题的一般形式 —原始(对偶) 原始 对偶) 对偶(原始) 对偶(原始)关系表
项目 目标函数类型
目标函数系数与右边项的对应 关系 变量个数与约束条件个数的对 应关系 原问题变量类型与对偶问题约 束条件类型的对应关系 原问题约束条件类型与对偶问 题变量类型的对应关系
约束条件类型
变量类型
线性规划的对偶理论
例:
maxz =5x1+12x2+4x3 x1 + 2x2+ x3 ≤ 4 2x1 - x2 +3 x3 = 2 x1 + x2 + x3 ≥6 x1 ≥ 0 , x2 ≤ 0 , x3 自由
min w = 4y1 + 2y2 + 6y3 y1 + 2y2 + y3 ≥ 5 2y1 - y2 + y3 ≤ 12 y1 +3y2 + y3 = 4 y1≥ 0, y2自由, y3 ≤ 0 , 自由,
原问题(对偶问题) 原问题(对偶问题) max
目标函数各变量系数对应约束条 件右边项的系数 变量个数 n 约束条件个数 m 变量类型 ≥0 ≤0 自由 ≥ ≤ =
对偶问题(原问题) 对偶问题(原问题) min
右边项的系数对应目标函数系 数 约束条件个数 n 变量个数 m 约束条件类型 ≥ ≤ = ≤0 ≥0 自由 9
王 老 板
李 老 板
3
线性规划的对偶理论
王老板的家具生产模型: 王老板的家具生产模型: 家具生产模型 x1 、 x2是桌、椅生产量。 是桌、椅生产量。 Z是家具销售总收入(总利润)。 是家具销售总收入(总利润)。 是家具销售总收入 max Z = 50x1 + 30x2 s.t. 4x1+3x2 ≤ 120(木工) (木工) 2x1+ x2 ≤ 50 (油漆工) 油漆工) x1 , x2
运筹学:第2章 线性规划的对偶理论
y1 y2
ym
2021/4/18
12
类似于前面的资源定价问题,每一个约束条件对 应一个“ 对偶变量”,它就相当于给各资源的单 位定价。于是我们有如下的对偶规划:
min W b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym c1 a12y1 a22y2 am2ymc2 a1n y1 a2n y2 amn ym cn y1, y2 ,, ym 0
1/5
0
-4/5
1
1/5 -1/5
j
0
4
0
3
3
x3
x4
x5
x1
x2
2021/4/18
31
§4 影子价格
假设有原问题和对偶问题如下:
max Z CX
minW bTY
AX b
ATY CT
X 0
Y 0
1、 对偶变量 yi 可理解为对一个单位第 i 种资源
的估价,称为影子价格,但并非市场价格。
2、 对偶变量 yi 的值(即影子价格)表示第 i 种资
若
n
yˆi 0, 则 aij x j bi ;
j 1
n
若
aij x j bi , 则yˆi 0.
j 1
2021/4/18
25
证明 由弱对偶性知:
n
mn
m
c j xˆ j
aij xˆ j yˆi bi yˆi
j 1
i1 j1
i 1
又因在最优解中 应为等式,即有
n
m
c j xˆ j bi yˆi
可以先将原问题化成规范的原问题,再写出对偶 问题。
2021/4/18
对偶定理运筹学
对偶定理是运筹学中最基本的概念之一,它在线性规划中起着非常重要的作用。
在线性规划问题中,存在原始问题和对偶问题两种形式,它们之间通过对偶定理建立了密切的联系。
对偶定理的核心思想是将原始线性规划问题转化为对偶问题,并且通过对偶问题来分析原始问题,从而得到有关原始问题的有效信息。
具体来说,对偶定理可以帮助我们在求解原始问题时,通过求解对偶问题来获得额外的信息和优化结果。
在运筹学中,对偶定理的应用主要体现在以下几个方面:
1. 最优性分析:对偶定理可以帮助我们分析原始问题的最优解以及对应的对偶问题,从而验证原始问题的最优性和对偶问题的最优性,并且可以相互印证,增强了问题解的可靠性。
2. 敏感度分析:对偶定理也可以用于进行敏感度分析,通过对对偶问题的解进行改变,可以评估原始问题解对参数变化的敏感程度,从而指导决策者进行风险评估和决策制定。
3. 经济学解释:对偶问题的解可以提供经济学上的解释和意义,比如对偶问题中的对偶变量可以表示资源的单位价值,对偶问题的约束条件可以反映出资源的受限性,这些信息可以为管理决策提供重要参
考。
总之,对偶定理在运筹学中具有重要的作用,通过对原始问题和对偶问题的分析,可以为决策者提供更全面的信息,帮助其做出更加合理的决策。
因此,对偶定理是线性规划理论中不可或缺的重要内容。
第3章 对偶原理
对偶原理
本章知识内容
线性规划的对偶关系 线性规划的对偶性质 对偶关系的经济解释 对偶单纯形法 交替单纯形法
3.1 线性规划的对偶关系
3.1.1 对偶问题 引例: 引例:胜利家具厂生产桌子和椅子两种家具。 桌子售价50元/个,椅子售价30元/个,生产桌 子和椅子都需要木工和油漆工两种工种。现已 知生产一个桌子需要木工4小时,油漆工2小时。 生产一个椅子需要木工3小时,油漆工1小时。 该厂每个月可用木工工时为120小时,油漆工工 时为50小时。问该厂如何组织生产才能使每月 的销售收入最大?
min ω = 3 x1 + 2 x2 − x3
max z = 2 y1 + 5 y2 + y3
2 x1 + x2 + 3 x3 ≥ 2 2 y1 + 3 y2 + y3 ≥ 3 3 x − 5 x y − 5y + y = 2 ≤5 1 1 2 2 3 s.t. ⇒ s.t. + y3 ≤ −1 x1 + x2 + x3 = 1 3 y1 x1 ≤ 0, x3 ≥ 0 y1 ≥ 0, y2 ≤ 0
其对偶问题的最优解为: 对偶问题的最优解为: 的最优解为
4 , 3 z* = 5 Y = 5 5
*
试用对偶性质求出原问题的最优解。 原问题的最优解 试用对偶性质求出原问题的最优解。
解:先写出其对偶问题
max z = 4 y1 + 3 y 2 ≤ 2 ≤ 3 ≤ 5 ≤ 2 ≤ 3 (1) (2) (3) (4) (5)
1 Y = 0, ,1 2
最优值都是42, 最优值都是42,即: 42
《管理运筹学》02-5对偶原理
THANKS
感谢观看
《管理运筹学》025对偶原理
目录
• 对偶理论概述 • 对偶理论的基本概念 • 对偶理论的应用 • 对偶理论的局限性 • 对偶理论的展望
01
对偶理论概述
对偶问题的定义
对偶问题
对于原问题中的目标函数和约束条件,将它们进行适当 的变换,得到与原问题等价的新问题。
对偶问题的特点
对偶问题的目标函数和约束条件与原问题相反,但最优 解相同。
线性规划问题可以通过使用单纯形法、对偶法等求解方法 求解。
原问题与对偶问题
原问题是给定的线性规划问题,对偶问题是通过 引入新的变量和约束条件,将原问题的约束条件 转化为等价的不等式约束条件,同时目标函数也 相应地转化为对偶问题的目标函数。
对偶问题与原问题之间的关系是:当原问题的最 优解存在时,对偶问题的最优解也一定存在,并 且它们的目标函数值相等。
对偶定理
01
对偶定理是线性规划中的一个基本定理,它表明原问题和对偶问题的最优解是 等价的。
02
对偶定理的证明基于互补松弛定理和最优解的性质。
03
对偶定理的应用包括在求解线性规划问题时,通过求解对偶问题来获得原问题 的最优解,以及在确定原问题和对偶问题的解是否为最优解时,使用对偶定理 进行验证。
03
生产、管理、运输等领域的问题。
实际问题验证
02
通过对偶理论的应用,可以验证实际问题的解决方案是否可行,
并优化解决方案。
实际应用拓展
03
通过对偶理论的深入研究,可以拓展其在实际问题中的应用范
围,提高解决问题的效率和质量。
05
对偶理论的展望
对偶理论的未来发展方向
深化理论体系
运筹学之对偶理论
1.如果原问题是对目标函数CX求最大(小)值, 2.对偶问题就是对目标函数Yb求最小(大)值. 二,
对偶问题的一般规则
1.将原问题的不等式约束统一成 ≤ 的形式,对目标函数求最大值; 2.将原问题的不等式约束统一成 ≥ 的形式,对目标函数求最小值; 三, .原问题的每一个行约束(指除非负性条件外的线性等式或不等式约束) 对应对偶问题的一个变量. 1.若该行约束是不等式,则限制Yi ≥ 0 2.若该行约束是等式,则Yi 无符号限制. 四,原问题的每一个变量x j的相应的系数向量Pj = (a1 j , a 2 j , a mj )对应对偶问题 的一个行约束. 1.如果 原问题不等式 约束统一成 ≤ 的形式,且 该x j 有非负限制,则对应行约束为∑ aij y i ≥ c j ;
),对偶问题的形式 (一),对偶问题的形式 对称型对偶问题: 1,对称型对偶问题:已知 P,写出 D. , .
矩阵形式: 矩阵形式: P maxZ = CX AX ≤ b X≥0
D min W = Yb YA ≥ C Y≥0
例一, 例一,写出线性规划问题的对偶问题 max Z = 2 x 1 3 x 2 + 4 x 3
项目 A b C 目标函数 约束条件 决策变量
原问题 约束的系数矩阵
对偶问题 约束的系数矩阵的 转置
约束条件的右端项向量 目标函数的价值系 数系数向量 目标函数的价值系数系 约束条件的右端项 数向量 向量
max z = CX
AX ≤ b
minω = Y ′b A′ Y ≥ C ′
X ≥0
Y ≥0
二,线性规划的对偶理论
模型对比: 模型对比:
max Z = 10 x
1
+ 18 x
《管理运筹学》课件03-对偶原理
扩展应用范围
研究对偶算法在其他领域的应用,如机器学习、 图像处理等。
05
对偶理论的扩展与展望
对偶理论与人工智能的结合
人工智能算法优化
对偶理论在人工智能领域的应用,主要是用于优 化算法,通过对偶形式将原问题转化为更易处理 的子问题,从而提高算法的效率和精度。
01 线性规划的对偶问题是在原问题的基础上,将约 束条件和目标函数互换,形成一个新的优化问题。
02 对偶问题可以帮助我们更好地理解原问题,并且 在某些情况下,可以通过求解对偶问题来得到原 问题的最优解。
02 对偶问题的数学表达通常包括原问题的目标函数 和约束条件的对偶形式。
整数规划的对偶问题
01
整数规划的对偶问题是在整数 规划问题的基础上,将约束条 件和目标函数互换,形成一个 新的优化问题。
01
缺点
02
对偶问题可能不是唯一的,因此需要选择 一个合适的问题进行求解。
03
对偶问题可能不是原问题的最优解,因此 需要验证转换后的解是否为最优解。
04
对偶算法可能无法处理一些特殊问题,如 非线性规划问题。
对偶算法的改进方向
开发更高效的算法
针对不同类型的问题,开发更高效的算法来求解 对偶问题。
改进转换过程
进一步探索对偶理论在其他领域的应 用,如生物学、物理学、社会科学等, 将对偶理论的应用范围不断扩大。
THANKS
感谢观看
对偶理论的应用场景
01 供应链管理
在供应链优化中,对偶理论可用于协调供应商和 制造商之间的利益,实现整体最优。
02 金融规划
在金融领域,对偶理论可用于投资组合优化、风 险管理等问题。
《运筹学》对偶理论
s.t
6
x1 2x2 x1 x2
x4 x5
2 5
4
xj 0
s.t
5
6 y2 y3 y1 2 y2
y
y4 3
2 y5
1
yi 0
分别用单纯形法求解上述2个规划问题,得到最终单纯形表如
下表:
对偶性质
原问 题最 优表
XB
b
x3
15/2
x1
7/2
x2
3/2
j
原问题的变量
x1
x2
0
max z c1x1 c2 x2
s.t.
11x1 12x2 21x1 22x2
b1 b2
x1
0,
x
无约束
2
min w b1 y1 b2 y2
s.t.1121yy11
21y2 22 y2
c1 c2
y1, y2 0
min w b1 y1 b2 y2
s.t.1121yy11
4
y1 , y2 , y3 0
线性规划的对偶模型
(2) 非对称型对偶问题 若给出的线性规划不是对称形式, 可以先化成对称形式
再写对偶问题。也可直接写出非对称形式的对偶问题。
线性规划的对偶模型
原问题(或对偶问题)
约束条件右端项
目标函数变量的系数
目标函数 max
约
m个
束
≤
条
件
≥
=
n个
变
≥0
量
≤0
s.t.2111xx11
12 22
x2 x2
b1 b2
x1 0, x2 0
min w b1 y1 b2 y2
运筹学-对偶问题
对偶问题的应用场景
资源分配问题
在资源有限的情况下,如何合理分配资源以达到 最优目标。
运输问题
如何制定运输计划,使得运输成本最低且满足运 输需求。
生产计划问题
如何制定生产计划,使得生产成本最低且满足市 场需求。
投资组合优化问题
如何选择投资组合,使得投资收益最大且风险最 小。
02
对偶问题在运筹学中的重要性
对偶问题的理论完善与深化
对偶理论的数学基础
进一步深入研究对偶理论的数学基础,包括对偶映射、对偶函 数、对偶不等式等,为解决对偶问题提供更坚实的理论基础。
对偶问题的转化与求解
研究如何将复杂的对偶问题转化为更容易求解的形式,或 者设计有效的求解方法,以提高对偶问题的求解效率。
对偶理论与实际应用的结合
在对偶理论不断完善的基础上,进一步探索如何将其应用于实际问题 中,以解决实际问题的优化问题,提高决策的科学性和效率。
在整数规划中,对偶问题通常 是指将原问题的约束条件或目 标函数进行一些变换,使得原 问题与对偶问题在结构上存在 一定的对称性。
对偶问题的性质
02
01
03
对偶问题的最优解与原问题的最优解具有密切关系。
在线性规划中,如果原问题是最大化问题,则对偶问 题是最小化问题,反之亦然。
在整数规划中,对偶问题的约束条件和目标函数通常 与原问题存在一定的对称性。
02 求解步骤
03 1. 定义原问题和对偶问题。
04
2. 利用状态转移方程和最优子结构性质,求解对偶问 题。
05 3. 利用对偶问题的解,求解原问题。
博弈论中的对偶策略
1. 定义博弈中的策略空间和支付 函数。
求解步骤
2. 构造对偶问题。
运筹学对偶原理
对偶
Y≥0
引进松弛变量
min z=CTX s.t. AX-XS=b
X, XS≥0
X,Xs
max y=bTY s.t. ATY+YS=C
Y, YS≥0
Y,Ys
XTYS=0 YTXS=0
互补松弛关系
原始问题的变量
x1
xj
原始问题的松弛变量 xn xn+1 xn+i xn+m
y1 yi ym ym+1
ym+j
x2
10
x3
11 14
x1 0, x2符号不限 , x3 0
mW a 7 x y 1 1y2 1 1y3 4
4 y1 8y2 12y3 4
5y1 9 y2 13y3 2
6 y1 10y2
3
y1符号不限, y2 0, y3 0
•例题 minZ=3x1+2x2-6x3+x5
关系2 标准性LP问题的对偶关系 非 对 称 对 偶
Y 自 由
关系3 一般对偶关系
关系3 一般对偶关系
原问题(或对偶问题) 对偶问题(或原问题)
目标函数 MaxZ
目标函数 MinW
约束条件数:m个
对偶变量数:m个
第i个约束条件类型为“≤” 第i个变量≥0
第i个约束条件类型为“≥” 第i个变量≤0
3.3 对偶的经济解释
原始问题是利润最大化的生产计划问题
总利润(元)
单位产品的利润(元/件)
产品产量(件)
maxz c1x1 c2x2 c2x2
s.t.
1)若一个问题有最优解,则另一问题也 有最优解,且目标函数值相等。
2) 原问题无界,对偶问题无可行解。