2.4等比数列(一)
2.4等比数列及其通项公式(1)
1,x,x ,x 公比为x
等差中项的定义:
由三个数a , G, b组成的等比数列可 以看成最简单的等比数列。这时,G叫 做a与b的等比中项。且
G ab(或G ab )
2
等比数列的通项公式的推导:
a2 q a2 a1q 因为: a1
2.2 等差数列 2.3 等差数列的前项和
1
1 2
1 4
1 8
1 16
…
取出这些数列, 观察:有什么共同特征?
(1)1, 2, 4,8,16,... 1 1 1 1 (2)1, , , , ,... 2 4 8 16
等比数列的定义:
一般地,如果一个数列从第二项起,每 一项与它前一项的比等于同一个常数,这个 数列就叫做等比数列,这个常数就叫做等比 数列的公比,常用字母q表示(q≠0)。
1, 3, 9或9, 3,1
思考:
已知a n 是等比数列且 an > 0 ,
a2 a4 + 2a3 a5 + a4 a6 = 25
,求
a3 + a5
作业 A ben
课本53页A组 : 1 、 7(1) 、 8(1)
假期作业:
《全优课堂》限时规范训练(卷)
第二章: 2.1 数列的概念与表示方法
an 等比数列定义式: q(q 0) an 1
判断下列数列是否为等比数列。若是,则公比是 多少,若不是,请说明理由 1)、 16,8,4,2, 1, … 2)、 ; 公比是0.5
不是 公比是1 不是
5,-25,125,- 625,…; 公比是-5
3) 、1,0,1,0,1,…;
4)、 2,2,2,2,2,…;
人教版高中数学必修五学案 §2.4 等比数列(一)
§2.4 等比数列(一)学习目标 1.通过实例,理解等比数列的概念并会简单应用(重点);2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式,了解其推导过程(重、难点).知识点1等比数列的定义及通项公式【预习评价】(正确的打“√”,错误的打“×”)(1)等比数列的公比可以为任意实数.()(2)若一个数列从第2项开始每一项与前一项的比是常数,则这个数列是等比数列.()(3)常数列既是等差数列又是等比数列.()提示(1)公比不可以为0.(2)应为同一个常数.(3)0数列除外.答案(1)×(2)×(3)×知识点2等比中项的概念如果a,G,b成等比数列,那么G叫做a与b的等比中项,且G=±ab.【预习评价】1.已知等比数列{a n}中,a1=1,a3=9,则a2=________.解析∵a3=a1·q2.∴9=q 2,∴q =±3,∴a 2=a 1q =±3.答案 ±32.3与27的等比中项是________.解析 由于G 2=3×27=81,故G =±9.答案 ±9题型一 等比数列通项公式的应用【例1】 在等比数列{a n }中,(1)已知a 3=9,a 6=243,求a 5;(2)已知a 1=98,a n =13,q =23,求n .解 (1)法一 由a 3=9,a 6=243,得a 1q 2=9,a 1q 5=243.∴q 3=2439=27,∴q =3.∴a 1=1.∴a 5=a 1q 4=1×34=81.法二 ∵a 6=a 3q 3,∴q 3=a 6a 3=2439=27,∴q =3. ∴a 5=a 3q 2=9×32=81.(2)∵a 1=98,q =23,a n =13,∴13=98×⎝ ⎛⎭⎪⎫23n -1. ∴⎝ ⎛⎭⎪⎫23n -1=827=⎝ ⎛⎭⎪⎫233. ∴n -1=3,∴n =4.规律方法等比数列的通项公式及变形的应用1.在已知等比数列的首项和公比的前提下,利用通项公式a n=a1q n-1(a1q≠0)可求出等比数列中的任意一项.2.在已知等比数列中任意两项的前提下,利用a n=a m q n-m(q≠0)也可求出等比数列中的任意一项.【训练1】在等比数列{a n}中.(1)已知a n=128,a1=4,q=2,求n;(2)已知a n=625,n=4,q=5,求a1;(3)已知a1=2,a3=8,求公比q和通项公式.解(1)∵a n=a1·q n-1,∴4·2n-1=128,∴2n-1=32,∴n-1=5,n=6.(2)a1=a nq n-1=62554-1=5,故a1=5.(3)a3=a1·q2,即8=2q2,∴q2=4,∴q=±2.当q=2时,a n=a1q n-1=2·2n-1=2n,当q=-2时,a n=a1q n-1=2(-2)n-1=(-1)n-12n,∴数列{a n}的公比为2或-2,对应的通项公式分别为a n=2n或a n=(-1)n-12n.题型二等比中项及其应用【例2】已知等比数列的前三项和为168,a2-a5=42,求a5,a7的等比中项. 解设该等比数列的公比为q,首项为a1,∵⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168,a 1q -a 1q 4=42,∴⎩⎪⎨⎪⎧a 1(1+q +q 2)=168,a 1q (1-q 3)=42.∵1-q 3=(1-q )(1+q +q 2).上述两式相除,得q (1-q )=14⇒q =12.∴a 1=42q -q 4=4212-⎝ ⎛⎭⎪⎫124=96. 若G 是a 5,a 7的等比中项,则应有G 2=a 5·a 7=a 1q 4·a 1q 6=a 21q 10=962·⎝ ⎛⎭⎪⎫1210=9. ∴a 5,a 7的等比中项是±3.规律方法 (1)首项a 1和q 是构成等差数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法.(2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项.【训练2】 已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,求a 2-a 1b 2的值. 解 ∵-1,a 1,a 2,-4成等差数列,设公差为d ,则a 2-a 1=d =13[(-4)-(-1)]=-1,∵-1,b 1,b 2,b 3,-4成等比数列,∴b 22=(-1)×(-4)=4,∴b 2=±2.若设公比为q ,则b 2=(-1)q 2,∴b 2<0.∴b 2=-2,∴a 2-a 1b 2=-1-2=12.【例3】 已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *).(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.(1)解 由S 1=13(a 1-1),得a 1=13(a 1-1), ∴a 1=-12.又S 2=13(a 2-1),即a 1+a 2=13(a 2-1),得a 2=14.(2)证明 当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12, 所以{a n }是首项为-12,公比为-12的等比数列.【迁移1】 已知数列{a n }满足a 1=1,a n +1=2a n +1,b n =a n +1(n ∈N *).(1)求证:{b n }是等比数列;(2)求{a n }的通项公式.(1)证明 令a n +1+k =2(a n +k ),即a n +1=2a n +k ,与a n +1=2a n +1比较得k =1.又a 1+1=2,b n =a n +1,故数列{b n }是以2为首项,2为公比的等比数列.(2)解 法一 由(1)知,a n +1=2·2n -1,∴a n =2n -1.法二 ∵a n +1=2a n +1,∴a n =2a n -1+1(n ≥2).∴a n +1-a n =2(a n -a n -1).∴{a n +1-a n }为等比数列,其中首项为a 2-a 1=2a 1+1-a 1=a 1+1=2,公比q =2.则a n +1-a n =2·2n -1=2n .∴2a n +1-a n =2n ,∴a n =2n -1.【迁移2】 已知数列{a n }中,a 1=56,a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1,求a n . 解 令a n +1-A ·⎝ ⎛⎭⎪⎫12n +1=13⎣⎢⎡⎦⎥⎤a n -A ·⎝ ⎛⎭⎪⎫12n , 则a n +1=13a n +A 3·⎝ ⎛⎭⎪⎫12n +1. 由已知条件知A 3=1,得A =3,所以a n +1-3·⎝ ⎛⎭⎪⎫12n +1=13⎣⎢⎡⎦⎥⎤a n -3·⎝ ⎛⎭⎪⎫12n . 又a 1-3·⎝ ⎛⎭⎪⎫121=-23≠0, 所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -3·⎝ ⎛⎭⎪⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3·⎝ ⎛⎭⎪⎫12n =-23·⎝ ⎛⎭⎪⎫13n -1, 故a n =3·⎝ ⎛⎭⎪⎫12n -2·⎝ ⎛⎭⎪⎫13n . 规律方法 判断一个数列是否是等比数列的常用方法(1)定义法:若数列{a n }满足a n +1a n =q (q 为常数且不为零)或a n a n -1=q (n ≥2,q 为常数且不为零),则数列{a n }是等比数列.(2)通项公式法:若数列{a n }的通项公式为a n =a 1q n -1(a 1≠0,q ≠0),则数列{a n }是等比数列.(3)等比中项法:若a 2n +1=a n a n +2(n ∈N *且a n ≠0),则数列{a n }为等比数列.(4)构造法:在条件中出现a n +1=ka n +b 关系时,往往构造数列,方法是把a n +1+x =k (a n +x )与a n +1=ka n +b 对照,求出x 即可.课堂达标1.在等比数列{a n }中,a 1=8,a 4=64,则a 3等于( )A.16B.16或-16C.32D.32或-32 解析 由a 4=a 1q 3,得q 3=8,即q =2,所以a 3=a 4q =32.答案 C2.已知a 是1,2的等差中项,b 是-1,-16的等比中项,则ab 等于( )A.6B.-6C.±6D.±12解析 ∵a =1+22=32,b 2=(-1)(-16)=16,b =±4,∴ab =±6.答案 C3.45和80的等比中项为________.解析 设45和80的等比中项为G ,则G 2=45×80,∴G =±60.答案 -60或604.已知数列{a n }是等比数列,且a 1=18,a 4=-1,则数列{a n }的公比q 为________.解析 q 3=a 4a 1=-8,所以q =-2. 答案 -25.已知a n =2n +3n ,判断数列{a n }是不是等比数列?解 不是等比数列.∵a 1=21+31=5,a 2=22+32=13,a 3=23+33=35,∴a 1a 3≠a 22,∴数列{a n }不是等比数列.课堂小结1.等比数列的判断或证明(1)利用定义:a n +1a n=q (与n 无关的常数). (2)利用等比中项:a 2n +1=a n a n +2(n ∈N *).2.两个同号的实数a 、b 才有等比中项,而且它们的等比中项有两个(±ab ),而不是一个(ab ),这是容易忽视的地方.3.等比数列的通项公式a n =a 1q n -1共涉及a 1,q ,n ,a n 四个量,已知其中三个量可求得第四个量.。
高中数学第二章数列2.4等比数列第1课时等比数列的概念与通项公式同步aa高一数学
(2)a1=qan-n 1=5642-51=5,故 a1=5. (3)a3=a1·q2,即 8=2q2, 所以 q2=4,所以 q=±2. 当 q=2 时,an=a1qn-1=2·2n-1=2n, 当 q=-2 时,an=a1qn-1=2(-2)n-1=(-1)n-12n, 所以数列{an}的公比为 2 或-2, 对应的通项公式分别为 an=2n 或 an=(-1)n-12n.
所以 a1=q-42q4=12-42124=96. 若 G 是 a5,a7 的等比中项,则应有 G2=a5·a7=a1q4·a1q6=a21q10=962·1210=9. 所以 G=±3. 即 a5,a7 的等比中项为±3.
归纳升华 等比中项的三点认识
1.当 a,b 同号时,a,b 的等比中项有两个;当 a, b 异号时,没有等比中项.
2.在一个等比数列中,从第二项起,每一项(有穷数 列的末项除外)都是它的前一项与后一项的等比中项.
3.“a,G,b 成等比数列”等价于“G2=ab”(a,b 均不为 0),要特别注意限定的条件,否则是不等价的.可 以用它来判断或证明三个数成等比数列,同时还要注意到 “a,G,b 成等比数列”与“G=± ab”是不等价的.
又 an=1,所以 3212n-1=1, 即 26-n=20,所以 n=6. 法二 因为 a3+a6=q(a2+a5), 所以 q=12. 由 a1q+a1q4=18,知 a1=32. 由 an=a1qn-1=1,知 n=6.
归纳升华 1.在已知 a1 和 q 的前提下,利用公式 an=a1qn-1 可 求出等比数列中任意一项. 2.在通项公式中知道 a1、q、n、an 四个量中的任意 三个,可求得另一个量.
[变式训练] (1)已知-1,x,-4 成等比数列,则 x
2.4 第1课时等比数列的概念与通项公式
第二章 2.4 第一课时1.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为( )A .4B .8C .6D .32解析:由等比数列的通项公式得,128=4×2n -1,2n -1=32,所以n =6.答案:C2.在等比数列{a n }中,a 4=4,则a 2·a 6等于( )A .4B .8C .16D .32 解析:由于a 24=a 2·a 6,所以a 2·a 6=16. 答案:C3.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A .32fB .322fC .1225fD .1227f解析:由题知,这十三个单音的频率构成首项为f ,公比为122的等比数列,则第八个单音的频率为(122)7f =1227f .故选D .答案:D 4.在等比数列{a n }中,已知a 1a 3a 11=8,那么a 2a 8=________.解析:∵a 1a 3a 11=(a 1q 4)3=8,∴a 1q 4=2.∴a 2a 8=a 1q ·a 1q 7=(a 1q 4)2=4.答案:45.已知{a n }为等比数列,且a 5=8,a 7=2,该数列的各项都为正数,求a n . 解:∵a 5=a 1·q 4=8,a 7=a 1·q 6=2,∴q 2=28=14,q =±12. 而a n 各项都为正数,∴q =12,a 1=8⎝⎛⎭⎫124=128. ∴a n =a 1·q n -1=128×⎝⎛⎭⎫12n -1=28-n .。
第二章2.4第1课时等比数列的概念及通项公式
2. 4等比数列第1课时等比数列的概念及通项公式1•通过实例,理解等比数列的概念并学会简单应用. 2•掌握等比中项的概念并会应用. 3•掌握等比数列的通项公式并了解其推导过程.预冃案*自建迸习j 研读• M •営试新知提炼1.等比数列的定义(1) 从第2项起条件(2) 每一项与它的前一项的比等于同一个常数结论这个数列就叫做等比数列有关概念这个常数叫做等比数列的公比,通常用字母q(q M 0)表示2•等比数列的通项公式门―1a n = aq 1.3. 等比中项若a、G、b成等比数列,称G为a, b的等比中项且G= ± ab.■自我尝试‘1•判断(正确的打“V”,错误的打“x”)(1) 数列1,—1, 1, - 1,…是等比数列.()(2) 若一个数列从第2项起每一项与前一项的比为常数,则该数列为等比数列. ()⑶等比数列的首项不能为零,但公比可以为零. ()(4) 常数列一定为等比数列.()(5) 任何两个数都有等比中项. ()答案:(1)2 (2) x⑶x ⑷x ⑸x2.等比数列{a n} 中, a1 = 2, q = 3,贝U a n 等于()A. 6B. 3x 2n—13. 4与9的等比中项为()A . 6B . - 6=1,C . 2 x 3n —1 D . 6n答案:CA . 6B . - 6=1,C . i6D . 36 答案:C 11 14. 等比数列一10-而,一而0,…的公比为 -------------------- . 1 答案:105. ______________________________________________ 在等比数列{a n }中,已知a n = 4n 3,贝V a 1 = _____________________________________________ , q = ________1答案:1 4探究案讲练互普探究点一等比数列的通项公式H 在等比数列{a n }中, (1) a 4 = 2, a 7= 8,求 a n .(2) a 2 + a 5= 18, a 3+ a 6= 9, a n = 1,求 n. a 4= ag 3,[解](1)因为6 a 7= a 1q , a 1q 3= 2,① 所以a 1q 6= 8,②②3, 由①,得43= 4,从而q = - 4,而a 1q 3= 2,n — 1又a n = 1,所以32 x 即 26-n = 20,故 n = 6.方祛归纳于是a 1 = q 3=M2' 2n -5所以 a n = a 1q n -1 = 2 3a 2 + a 5= a 〔q + a 1q 4 = 18, ①⑵因为25② 1由①,得q =P 从而a 1 = 32.等比数列通项公式的求法a i 和q 是等比数列的基本量,只要求出这两个基本量,问题便迎刃而解.关于 a i 和q的求法通常有以下两种方法:⑴根据已知条件,建立关于a i , q 的方程组,求出a i , q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出 q 后,再求a i ,最后求a n ,这种方法带有一定的技巧性,能简化运算.”i.在等比数列{a n }中,(1) 已知 a i = 3, q = — 2,求 a 6; (2) 已知 a 3= 20, a 6 = i60,求 a n ; …9i 2十(3) 已知 a i = 8〉a n = 3, q = 3,求 n.解:⑴由等比数列的通项公式,得a 6= 3 X (— 2)6— i = — 96.⑵设等比数列的公比为 q ,a i q 2= 20,由已知可得a i q 5= i60,q= 2,解得a i = 5.所以 a n = a i q n — i = 5X 2n — i . ⑶由 a n = a i q n —i ,3,得 n = 4.探究点二等比数列的判定■- 在数列{a n }中,若a n >0,且a n +i = 2a n + 3(n € N *).证明:数列{a n + 3}是等比数列.[证明]法一:因为a n >0, 所以 a n + 3>0.i 9得 3=8 Xn — i又因为a n+1= 2a n+ 3,a n +1 + 3 2a n+ 3+ 3 2 (a n + 3)所以= = =2.a n + 3 a n+ 3 a n + 3所以数列{ a n+ 3}是首项为a i + 3,公比为2的等比数列. 法二:因为a n>0, 所以a n+ 3>0.又因为a n+1= 2a n+ 3,所以a n+ 2= 4a n+ 9.所以(a n+ 2+ 3)(a n + 3) = (4a n+ 12)(a n+ 3)=(2a n+ 6)2=(a n+1+ 3)2.即a n+ 3, a n +1 + 3, a n+2+ 3 成等比数列,所以数列{a n+ 3}是等比数列.Rm貝*本例的条件不变,若a1 = 2,求数列{a n}的通项公式.解:由数列{a n + 3}是等比数列,当a1= 2 时,a1 + 3 = 5,所以数列{a n+ 3}是首项为5,公比q= 2的等比数列,所以a n+ 3 = 5 x 2n-1,即a n= 5 x —1—3.方注归期等比数列的三种判定方法(1)定义法探究点三等比中项及其应用方祛归抽已知等比数列中的相邻三项 a n — 1 , a n , a n + 1,则a n 是a n — 1与a n + 1的等比中项, a n -1 a n +1,运用等比中项解决问题,会大大减少运算过程,同时等比中项常起到桥梁作用, 要认真感悟和领会."!" '||[3.(1)如果一1, a , b , c,— 9 成等比数列,那么()a n + 1—=q(q 为常数且q z 0)等价于{a n }是等比数列. a n (2)等比中项法a n +1 = a n a n + 2(n € N *且a n 丸)等价于{a n }是等比数列. (3)通项公式法a n = a 1q n —1(a 1^0且q z 0)等价于{a n }是等比数列.1”2.已知数列{a n }是首项为2,公差为一1的等差数列,令b n = 1,求证数列{b n }是等比数列,并求其通项公式.解:由已知得,a n = 2+ (n — 1)x (— 1) = 3— n ,1 3-( n + 1)b n + 1 2 故 = ~b n 1 3—n23 — ( n + 1) — 3+ n所以数列{ b n }是等比数列. 因为b 1= 114,所以 b n =X 2n —1 = 2n ― 3[解]由题意知 3 b 2, b ,243, c 这五个数成等比数列,求 32a ,b ,c 的值.23b2= — 2243 X—亦 3ab = — 2 27 27所以b = ±8•当b =—时,2 10243 3 初/曰bc =—五=—2 ,解得 c =3 6 =2 ,2,解得2 a =3 ;27 2同理,当 b =— "8■时,a =— 3, 3 c =—2综上所述,a , b , c 的值分别为2 27 3, 8 ,2 — 27 3, —8,A . b = 3, ac = 9 B. b =— 3, ac = 9 C. b = 3, ac =— 9 D. b =— 3, ac =— 9⑵已知等比数列{a n }的前三项依次为 a — 1, a +1, a + 4,贝U a n = _________解析:(1)因为 b 2= (— 1)x (— 9) = 9, 且b 与首项—1同号, 所以b =— 3,且a , c 必同号. 所以 ac = b 2= 9.⑵由已知可得(a + 1)2= (a — 1)(a + 4), 解得 a = 5,所以 a 1= 4, a 2= 6,所以a n = 4 x 31. 等比数列定义的再认识(1)每一项与它的前一项的比是同一个常数, 是具有任意性的,但须注意是从“第2项”⑵从“第2项”起,每一项与它的前一项的比是同一个常数,强调的是“同一个”.(3)对于公比q ,要注意它是每一项与它前一项的比,次序不能颠倒,q 不为零.⑷各项不为零的常数列既是等差数列,又是等比数列. 2. 等比数列的通项公式(1)已知首项a 1和公比q ,可以确定一个等比数列.⑵在公式a n = a 1q n 1中有a n , a 1, q , n 四个量,已知其中任意三个量,可以求得第四个量.⑶等比数列{a n }的通项公式的推导所以a 2a 12'答案:(1)B3 n — 1(2)4 x 3起.法一:(迭代法) 根据等比数列的定义,有2n — 2 n —1a n = a n -i q = a n — 2q 2=^= a 2q 2= a i q 1 法二:(累乘法) 根据等比数列的定义,可以得到把以上n -1个等式左右两边分别相乘,得 a 2 a 3 a 4 a i a 2 a 3即 an = q n —1, a i 所以 a n = a 1q n -1.3. 等比中项的理解(1) 当a , b 同号时,a , b 的等比中项有两个;当 a , b 异号时,没有等比中项.(2) 在一个等比数列中, 从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后 一项的等比中项.(3) “a , G , b 成等比数列”等价于“ G 2= ab ”(a , b 均不为0),可以用它来判断或证明 三数是否成等比数列.当堂检测 ♦1•数列{a n }的通项公式是a n = 5x 3n ,则此数列是( )A •公比为3的等比数列B •公比为5的等比数列C .首项为5的等比数列D .公差为3的等差数列 解析:选A.因为a n = 5x 3n , 所以 a n -1= 5x 3n -1(n 》2), 所以当n > 2时,—匹=3.a n - 1由等比数列的定义知,{a n }是公比为3的等比数列. 2.在首项a 1= 1,公比q = 2的等比数列{a n }中,当a n = 64时,序号n 等于()a 2 ar q , a 3 a 4 ar q ,aT q ,a na n -1q ,a n a n -1n -1A. 4B. 5C. 6解析:选 D.因为a n= a i q—1,所以 1 x 2n-1= 64,即1= 26,得 n— 1 = 6,解得n = 7.3. (2015高考广东卷)若三个正数a, b, c成等比数列,其中a = 5+ 2丁6, c= 5—2.6,则b= ________ .解析:因为a, b, c成等比数列,所以b2= a c= (5 + 2 '6) (5 — 2 .:6)= 1.又b>0,所以b= 1.答案:14•求下列各等比数列的通项公式:(1) a1 = —2, a3= —8;(2) a1 = 5,且2a n+1 = —3a n.解:(1)因为a3= a1q2,所以q2= 4,所以q= ±2.当q = 2 时,a n= (—2) x 2n—1= —2n;当q = — 2 时,a n= ( —2)x (—2)n—1= (—2)n.a n+1 3(2)因为q= "a^ =—2,又a1 = 5,3 n—1 所以a n= 5 x — 2.应用案巩固提升丄[A 基础达标]1. 若{a n}为等比数列,且2a4= a6 —a5,则公比是()A. 0 B . 1 或一2D . —1或一2解析:选 C.由已知得2a1q3= a1q5—ag4,得2= q2—q,所以q=—1或q = 2.2. 在等比数列{a n}中,a n>0,且a i+ a2= 1, a3+ a4= 9,贝U a4+ a5 的值为()A. 16B. 27C. 36D. 81解析:选 B.由a3+ a4= q2(a1 + a2)= 9,所以q2= 9,又a n>0,所以q= 3.a4+ a5= q(a3 +a4)= 3X 9 = 27.3. 彳,是等比数列4,2, 4, 2 2,…的()A .第10项B .第11项C.第12项 D .第13项解析:选B.由题意可知q=痣二乎,令¥= 4返x普,所以土= 32=扌210,故n— 1 = 10,即n= 11.4. 在数列{a n}中,a1= 1,点(a n, a n+1)在直线y= 2x上,贝U a4的值为()A . 7B . 8C. 9D. 16解析:选B.因为点(a n, a n+1)在直线y= 2x上,所以a n+1= 2a n.因为a1= 1丰0,所以a n丸,所以{a n}是首项为1,公比为2的等比数列,所以a4= 1 x 23= 8.5. 一个数分别加上20, 50, 100后得到的三个数成等比数列,其公比为()5 4A・3 %3 1CQ DQ解析:选A.设这个数为x,则(50+ x)2= (20 + x) (100 + x).解得x= 25,所以这三个数为45, 75, 125,75 5公比q为45= 36.右一1, 2, a, b成等比数列,则a + b=解析:根据题意有=身=b,解得a=—4, b= 8,—1 2 a所以a+ b= (-4) + 8 = 4.答案:47•下面各数列一定是等比数列的是(填序号).①一1, —2, —4, —8;② 1 , 2, 3, 4;1111③x, x, x, x;④a,評評尹解析:根据等比数列的定义,①④是等比数列,②不是等比数列,③中x可能为0,故③不一定是等比数列.答案:①④1 r,&在等比数列{a n}中,若a4= 27, q= —3,贝卩a6= ,a n =1解析:因为a4= a1q3= a1 —3 = 27,所以a1= —36,所以a6= a1q5= —36x=36x 3 = 3,n- 11a n=—36X—1= (—1)n37—n答案:3 (—1)n37 —n16 a3=—4,且公比为正数.9.已知数列{a n}为等比数列,首项a1=—9,(1)写出此等比数列的通项公式a n;⑵—20丁是否为{a n}中的项?若是,是第几项?若不是,请说明理由.解:(1)设公比为q(q>0),由a3= a i q2,得一4 =—£q2,3解得q=3,16 3 n—1所以a n=—— X 2 .n —1人16、/ 3 1 81⑵令—-X 2 = —204= —7,3 n—1819 3 6得2 =乎X 16= 3,解得n = 7.1故—204是{a n}中的第7项.10.已知数列{a n}的前n项和为S n,对一切正整数n,点(n, S n)都在函数f(x)= 2x+ 2—4的图象上.求证:数列{a n}是等比数列.证明:由题意得S n = 2n+ 2—4,4, n=1,S1, n = 1, 所以a n=S n—S n—1, n》22n+ 1, n》2.又a i= 4 也符合a n= zZln G N*, n》2),所以a n= 2n+ 1(n € N ),a n +1 2n+ 2因为百=产=2,所以数列{a n}是等比数列.[B 能力提升]1. 已知数列{a n},下列选项正确的是()A .若a2= 4n, n € N*,则{a n}为等比数列B. 若a n a n+2= a n+1, n € N*,则{a n}为等比数列C. 若a m a n= 2m n, m, n €N*,则{a n}为等比数列D .若a n a n+ 3= a n+ 1a n+ 2, n€ N*,则{ a n}为等比数列解析:选C•由a2= 4n知|a n| = 2n,则数列{a n}不一定是等比数列;对于 B , D选项,满足条件的数列中可以存在为零的项,所以数列{a n}不一定是等比数列;对于C选项,由a m a na n + 1=2m+n知,a m a n+ 1= 2m+ n+ S两式相除得石 =2(n € N ),故数列{a n}是等比数列.故选C.12. ___________________________________________________________________ 已知等比数列{a n}中,a i= 1,且a i, 2玄3, 2a2成等比数列,则a n = _____________________ 解析:设等比数列{a n}的公比为q,贝U a2= q, a3 = q2.1因为a i, §a3, 2a2成等比数列,1所以4q4= 2q,解得q= 2,所以an= 2n—I答案:2n_13. 已知数列{a n}的前n项和S n= 2a n + 1.(1)求证:{a n}是等比数列,并求出其通项公式;⑵设b n= a n+ 1+ 2a n,求证:数列{b n}是等比数列.解:(1)因为S= 2a n+ 1,所以S n+1= 2a n+1+ 1,S n + 1 —S n = a n+ 1 = (2a n + 1 + 1) —(2a n+ 1) = 2a n+ 1 —2a n,所以a n+ 1 = 2a n①,由已知及①式可知a n M O.a n+1所以由丁 = 2,知{a n}是等比数列.a n由a1= S1= 2a1 + 1,得a1=—1,所以a n = —2n—1.⑵证明:由(1)知,a n= —2n—1,所以b n= a n+1+ 2a n=—2n—2X 2n—1=—2X 2n=—2n +1= —4X 2n —1.所以数列{b n}是等比数列.4. (选做题)已知等比数列{a n}中,a1 = 1,公比为q,且b n= a n+1—a n.(1)判断数列{b n}是否为等比数列?说明理由;⑵求数列{b n}的通项公式.解:⑴因为等比数列{a n}中,a i= 1, 公比为q,所以a n = 1 x q n—1= q n一1, 若q = 1 ,贝y a n=1 , b n = a n+ 1 —a n= 0,所以数列{b n}是各项均为0的常数列,不是等比数列.若q丰1,由于b n+ 1a n+2—a n+1 q n+1—q nb n - =a n+1—a n = q n—q n-1q n(q —1)=q,q n —1(q —1)所以数列{ b n}是首项为b1= a2—a1= q —1,公比为q的等比数列.⑵由(1)可知,当q = 1时,b n= 0;当q 工 1 时,b n= (q —1)q n—1。
高中数学第2章数列2.4等比数列第1课时等比数列的概念与通项公式aa高二数学
12/8/2021
第二十二页,共三十九页。
[解析] (1)证明:∵an+1=2an+1,∴an+1+1=2(an+1),即 bn+1=2bn, ∵b1=a1+1=2≠0.∴bn≠0,∴bbn+n 1=2,∴{bn}是等比数列. (2)由(1)知{bn}是首项 b1=2,公比为 2 的等比数列, ∴bn=2×2n-1=2n,即 an+1=2n,∴an=2n-1.
12/8/2021
第五页,共三十九页。
1.等比数列的定义 如 果 一 个 数 列 从第_2_项_______ 起 , 每 一 项 与 它 的 前 一 项 的 比 都 等 于
同_一__个__常__数__(ch_á_ng_sh_ù)_,那么这个数列叫做等比数列,这个常数(chángshù)叫做等比数列的
12/8/2021
第九页,共三十九页。
2.如果-1,a,b,c,-9成等比数列,那么(nàme)a-bc2=7 ________. [解析] 由题意知b2=(-1)×(-9)=9,∴b=±3. 又b<0,∴b=-3,而b2=ac.∴ac=9.∴abc=-27. 3.在等比数列{an}中,a2 020=8a2 017,则公比q的值为2_____. [解析] a2 020=a2 017q3,∴q3=8,q=2. 4.已知等比数列{an}中,a1=-2,a3=-8,则an=__-__2_n_或__(-__2_)n______. [解析] 设公比为 q,则 a3=a1q2,∴q2=--82=4,∴q=±2. ∴an=(-2)×2n-1=-2n 或 an=(-2)×(-2)n-1=(-2)n.
12/8/2021
第二十八页,共三十九页。
∵1-q3=(1-q)(1+q+q2),∴由②除以①,得 q(1-q)=14. ∴q=12,∴a1=12-42124=96.∴a6=a1q5=96×(12)5=3. ∵a5、a7 的等比中项为 a6,∴a5、a7 的等比中项为 3. [误区警示] 错误的原因在于认为 a5,a7 的等比中项是 a6,忽略了同号两数 的等比中项有两个且互为相反数.
2.4等比数列 课件 (人教A版必修5)
解析:∵a1=1,a2=2,a3=4,仅给出了数列前3项, 后边各项不知有何规律,给出不同的值会得出不同结论.
答案:D
3.等比数列{an}中,a1=
1 8
,q=2,则a4与a8的等比中
项是( )
A.±4
B.4
C.±14
[例2]
已知a,-
3 2
,b,-
243 32
,c五பைடு நூலகம்数成等比数
列,试求a,b,c的值.
[解] ∵b2=(-32)×(-23423)=(32)6, ∴b=±287. 当b=287时,∵ab=(-32)2,∴a=23. 由bc=(-23423)2=(32)10及b=287,得c=2112887=(32)7.
2.4 等比数列
第1课时 等比数列
课前自主预习
课堂互动探究
随堂知能训练
课时作业
目标了然于胸,让讲台见证您的高瞻远瞩
1.掌握等比数列的通项公式,体会等比数列的通项公式
与指数函数的关系.
2.掌握等比中项的定义,能够应用等比中项的定义解 决问题.
课前 自 主 预 习
课 前 预 习 ········································· 明 确 目 标
D.①②③④
解析:根据等比数列的定义,从第2项起检查每一项与 其前一项的比是否为同一个常数.
①中数列是等比数列,公比q=-2;②中数列是等比 数列,公比q=- 2;③中数列当x=0时,不是等比数列; ④中数列是等比数列,公比q=1a.
答案:C
2.在数列{an}中,a1=1,a2=2,a3=4,…,那么数 列{an}是( )
高中数学必修五第二章数列2.4.1
(2)设等比数列{bn}的公比为q,则b2=8,b3=16,
所以q= b3
b2
=2,b1=4,bn=2n+1,
b6=26+1=128.由2(n+1)=128得n=63.
所以b6与数列{an}的第63项相等.
【方法技巧】等比数列通项公式的求法 (1)根据已知条件,建立关于a1,q的方程组,求出a1,q后 再求an,这是常规方法. (2)充分利用各项之间的关系,直接求出q后,再求a1,最 后求an,这种方法带有一定的技巧性,能简化运算.
则
a
2 3
=-1×(-9)=9,解得a3=±3,
设数列的公比为q,
因为a3=-1×q2<0,故a3=-3. 答案:-3
=
1 3
(an-1)-
1 3
(an-1-1),
得
an a n1
1,又a1=-
2
1 2
,
所以{an}是首项为- 1 ,公比为- 1 的等比数列.
2
2
【延伸探究】
1.将本例的条件改为“a1=
7 8
,且an+1=
1 2
a
n+
1 3
”,求证
数列
{a n
2} 3
是等比数列.
【证明】因为an+1=
(1)已知an=128,a1=4,q=2,求n.
(2)已知an=625,n=4,q=5,求a1.
(3)a3=2,a2+a4=
20 3
,求通项公式an.
【解析】(1)因为an=a1qn-1, 所以4·2n-1=128,
所以2n-1=32,所以n-1=5,n=6.
(2)a1=
【创新设计】2022-2021学年高二数学人教A必修5学案:2.4 等比数列(一) Word版含答案
2.4 等比数列(一)[学习目标] 1.通过实例,理解等比数列的概念并会简洁应用.2.把握等比中项的概念并会应用.3.把握等比数列的通项公式了解其推导过程.[学问链接]下列推断正确的是________.(1)从第2项起,每一项与它前一项的差等同一个常数的数列是等差数列; (2)从第2项起,每一项与它前一项的比等同一个常数的数列是等差数列; (3)等差数列的公差d 可正可负,且可以为零; (4)在等差数列中,a n =a m +(n -m )d (n ,m ∈N *). 答案 (1)(3)(4) [预习导引]1.等比数列的概念:假如一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).2.等比中项的概念:假如a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项,且G =±ab .3.等比数列的通项公式:已知等比数列{a n }的首项为a 1,公比为q ,该等比数列的通项公式为a n =a 1q n -1.要点一 等比数列通项公式的基本量的求解 例1 在等比数列{a n }中, (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n . (3)a 3=2,a 2+a 4=203,求a n .解 (1)由于⎩⎪⎨⎪⎧a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧ a 1q 3=2,a 1q 6=8,①②由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=2532n -.(2)法一 由于⎩⎪⎨⎪⎧ a 2+a 5=a 1q +a 1q 4=18,a 3+a 6=a 1q 2+a 1q 5=9,③④由④③得q =12,从而a 1=32,又a n =1所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 法二 由于a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,知a 1=32. 由a n =a 1q n -1=1,知n =6.(3)设等比数列{a n }的公比为q ,则q ≠0. a 2=a 3q =2q ,a 4=a 3q =2q ,∴2q +2q =203. 解得q 1=13,q 2=3.当q =13时,a 1=18,∴a n =18×⎝⎛⎭⎫13n -1=2×33-n .当q =3时,a 1=29,∴a n =29×3n -1=2×3n -3.综上,当q =13时,a n =2×33-n ;当q =3时,a n =2×3n -3.规律方法 a 1和q 是等比数列的基本量,只要求出这两个基本量,其他量便可迎刃而解.此类问题求解的通法是依据条件,建立关于a 1和q 的方程组,求出a 1和q .跟踪演练1 (1)若等比数列{a n }的首项a 1=98,末项a n =13,公比q =23,求项数n .(2)在等比数列{a n }中,已知a 5-a 1=15,a 4-a 2=6,求a n . 解 (1)由a n =a 1·q n -1,得13=98⎝⎛⎭⎫23n -1,即⎝⎛⎭⎫23n -1=⎝⎛⎭⎫233,得n =4.(2)由于⎩⎪⎨⎪⎧ a 5-a 1=a 1q 4-a 1=15,a 4-a 2=a 1q 3-a 1q =6,①②由①②得q =12或q =2.当q =12时,a 1=-16;当q =2时,a 1=1.∴a n =-25-n 或a n =2n -1. 要点二 等比中项的应用例2 等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于多少?解 由题意知a 3是a 1和a 9的等比中项,∴a 23=a 1a 9,∴(a 1+2d )2=a 1(a 1+8d ),得a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=13d 16d =1316.规律方法 由等比中项的定义可知:G a =bG ⇒G 2=ab ⇒G =±ab .这表明只有同号的两项才有等比中项,并且这两项的等比中项有两个,它们互为相反数.反之,若G 2=ab ,则G a =bG ,即a ,G ,b 成等比数列.所以a ,G ,b成等比数列⇔G 2=ab (ab ≠0).跟踪演练2 已知a ,-32,b ,-24332,c 这五个数成等比数列,求a ,b ,c 的值.解 由题意知b 2=⎝⎛⎭⎫-32×⎝⎛⎭⎫-24332=⎝⎛⎭⎫326, ∴b =±278.当b =278时,ab =⎝⎛⎭⎫-322,解得a =23; bc =⎝⎛⎭⎫-243322=⎝⎛⎭⎫-3210,解得c =⎝⎛⎭⎫327. 同理,当b =-278时,a =-23,c =-⎝⎛⎭⎫327. 综上所述,a ,b ,c 的值分别为23,278,⎝⎛⎭⎫327或-23,-278,-⎝⎛⎭⎫327. 要点三 等比数列的判定例3 数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列;(2)求a n .解 (1)a 2=3a 1-2×2+3=-4, a 3=3a 2-2×3+3=-15. 下面证明{a n -n }是等比数列: 证明a n +1-(n +1)a n -n =3a n -2(n +1)+3-(n +1)a n -n=3a n -3na n -n=3(n =1,2,3,…). 又a 1-1=-2,∴{a n -n }是以-2为首项,以3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1, ∴a n =n -2·3n -1.规律方法 推断一个数列是否是等比数列的常用方法有 (1)定义法:a n +1a n=q (q 为常数且不为零)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n a n +2(n ∈N *且a n ≠0)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(a 1≠0且q ≠0)⇔{a n }为等比数列.跟踪演练3 已知数列{a n }的前n 项和S n =2a n +1,求证{a n }是等比数列,并求出通项公式. 解 ∵S n =2a n +1, ∴S n +1=2a n +1+1.∴a n +1=S n +1-S n =(2a n +1+1)-(2a n +1)=2a n +1-2a n . ∴a n +1=2a n ,又∵S 1=2a 1+1=a 1,∴a 1=-1≠0. 又由a n +1=2a n 知a n ≠0, ∴a n +1a n =2,∴{a n }是等比数列.∴a n =-1×2n -1=-2n -1.要点四 由递推公式构造等比数列求通项例4 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. (1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列.∵首项c 1=a 1-1,又a 1+a 1=1. ∴a 1=12,∴c 1=-12,公比q =12.又c n =a n -1,所以q =12.∴{c n }是以-12为首项,公比为12的等比数列.(2)解 由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =c n +1=1-⎝⎛⎭⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12代入上式也符合,∴b n =⎝⎛⎭⎫12n . 规律方法 (1)已知数列的前n 项和,或前n 项和与通项的关系求通项,常用a n 与S n 的关系求解.(2)由递推关系a n +1=Aa n +B (A ,B 为常数,且A ≠0,A ≠1)求a n 时,由待定系数法设a n +1+λ=A (a n +λ)可得λ=B A -1,这样就构造了等比数列{a n +λ}. 跟踪演练4 已知数列{a n }中,a 1=1,a n +1=52-1a n ,b n =1a n -2,求数列{b n }的通项公式.解 a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2,b n +1+23=4⎝⎛⎭⎫b n +23.又a 1=1,故b 1=1a 1-2=-1,所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,所以b n +23=-13×4n -1,b n =-4n -13-23.1.在等比数列{a n }中,a 1=8,a 4=64,则a 2等于( ) A .16 B. 16或-16 C. 32 D. 32或-32答案 A解析 由a 4=a 1q 3,得q 3=8,即q =2,所以a 2=a 1q =16.2.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为 ( ) A .4 B .8 C .6 D .32 答案 C解析 由等比数列的通项公式,得128=4×2n -1,2n -1=32,所以n =6. 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( ) A .64 B .81 C .128 D .243 答案 A解析 ∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2.又a 1+a 2=3,∴a 1=1. 故a 7=1·26=64.4.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.答案 (-2)n -1解析 当n =1时,a 1=1;当n ≥2时, a n =S n -S n -1=23a n -23a n -1,故a na n -1=-2,故a n =(-2)n -1.1.等比数列定义的理解(1)由于等比数列的每一项都可能作分母,故每一项均不能为零,因此q 也不行能为零. (2)a n +1a n均为同一常数,由此体现了公比的意义,同时应留意分子、分母次序不能颠倒.(3)假如一个数列不是从第2项起,而是从第3项或第4项起每一项与它的前一项之比是同一个常数,那么这个数列不是等比数列. 2.等比中项的理解(1)当a ,b 同号时,a ,b 的等比中项有两个;当a ,b 异号时,没有等比中项.(2)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. (3)“a ,G ,b 成等比数列”等价于“G 2=ab ”(a ,b 均不为0),可以用它来推断或证明三数是否成等比数列. 3.等比数列的通项公式(1)已知首项a 1和公比q ,可以确定一个等比数列.(2)在公式a n =a 1q n -1中有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量.一、基础达标1.在等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B. 8 C. 16 D. 32 答案 C解析 由于a 24=a 2·a 6,所以a 2·a 6=16.2.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( ) A .16 B .27 C .36 D .81 答案 B解析 由已知a 1+a 2=1,a 3+a 4=9,∴q 2=9. ∴q =3(q =-3舍),∴a 4+a 5=(a 3+a 4)q =27. 3.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24答案 A解析 由(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-1或x =-3.当x =-1时,前三项为-1,0,0不成立,舍掉.当x =-3时,前三项为-3,-6,-12,公比为2,所以第四项为-24,选A.4.假如-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9答案 B解析 ∵b 2=(-1)×(-9)=9,且b 与首项-1同号, ∴b =-3,且a ,c 必同号. ∴ac =b 2=9.5.在等比数列{a n }中,a 3=3,a 10=384,则公比q =________. 答案 2解析 a 3=a 1q 2=3,a 10=a 1q 9=384,两式相除得,q 7=128,所以q =2.6.在160与5中间插入4个数,使它们同这两个数成等比数列,则这4个数依次为________. 答案 80,40,20,10解析 设这6个数所成等比数列的公比为q ,则5=160q 5,∴q 5=132,∴q =12.∴这4个数依次为80,40,20,10.7.已知等比数列{a n },若a 1+a 2+a 3=7,a 1a 2a 3=8,求a n .解 ∵a 1a 3=a 22,∴a 1a 2a 3=a 32=8,∴a 2=2.从而⎩⎪⎨⎪⎧a 1+a 3=5a 1a 3=4,解得a 1=1,a 3=4或a 1=4,a 3=1.当a 1=1时,q =2;当a 1=4时,q =12.故a n =2n -1或a n =23-n .8.在四个正数中,前三个成等差数列,和为48,后三个成等比数列,积为8 000,求这四个数. 解 设前三个数分别为a -d ,a ,a +d ,则有 (a -d )+a +(a +d )=48,即a =16. 设后三个数分别为bq,b ,bq ,则有bq·b ·bq =b 3=8 000,即b =20, ∴这四个数分别为m,16,20,n , ∴m =2×16-20=12,n =20216=25.即所求的四个数分别为12,16,20,25. 二、力量提升9.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( ) A .9 B .10 C .11 D .12 答案 C解析 在等比数列{a n }中,∵a 1=1,∴a m =a 1a 2a 3a 4a 5=a 51q 10=q 10.∵a m =a 1q m -1=q m -1, ∴m -1=10,∴m =11.10.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于( ) A .3 B .2 C .1 D .-2 答案 B 解析∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2.11.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值是________.答案 12解析 ∵-1,a 1,a 2,-4成等差数列,设公差为d , 则a 2-a 1=d =13[(-4)-(-1)]=-1,∵-1,b 1,b 2,b 3,-4成等比数列, ∴b 22=(-1)×(-4)=4,∴b 2=±2. 若设公比为q ,则b 2=(-1)q 2,∴b 2<0. ∴b 2=-2,∴a 2-a 1b 2=-1-2=12.12.设{a n }是各项均为正数的等比数列,b n =log 2a n ,若b 1+b 2+b 3=3,b 1b 2b 3=-3,求数列{a n }的通项公式. 解 设等比数列{a n }的公比为q (q >0),则a n =2b n , ∵b n -b n -1=log 2a n -log 2a n -1=log 2a na n -1=log 2q , ∴{b n }为等差数列,且d =log 2q ,而⎩⎪⎨⎪⎧b 1+b 2+b 3=3b 2=3(b 1+d )=3,b 1·b 2·b 3=b 1(b 1+d )(b 1+2d )=-3, ⇒⎩⎪⎨⎪⎧ b 1=-1,d =2或⎩⎪⎨⎪⎧b 1=3,d =-2.∴b n =2n -3或5-2n .∴a n =22n -3或a n =25-2n . 三、探究与创新13.已知数列{a n }满足a 1=1,a n +1=2a n +1,(1)求证:数列{a n +1}是等比数列; (2)求{a n }的表达式.(1)证明 法一 ∵a n +1=2a n +1,∴a n +1+1=2(a n +1), ∴a n +1+1a n +1=2,且a 1+1=2. ∴{a n +1}是等比数列,公比为2,首项为2. 法二 ∵a n +1+1a n +1=2a n +1+1a n +1=2(a n +1)a n +1=2(n ∈N *),∴数列{a n +1}是等比数列.(2)解 由(1)知{a n +1}是等比数列.公比为2,首项a 1+1=2. ∴a n +1=(a 1+1)·2n -1=2n .∴a n =2n -1.。
高中数学 第二章 数列 2.4 等比数列(第1课时)等比数列的概念及通项公式巩固提升(含解析)新人教
第1课时 等比数列的概念及通项公式[学生用书P105(单独成册)][A 基础达标]1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( ) A .108 B.54 C .36D .18解析:选B.因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54. 2.在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( )A .±4 B.4 C .±14D .14解析:选A.由题意得(±a 6)2=a 4a 8,因为a 1=18,q =2,所以a 4与a 8的等比中项为±a 6=±4.3.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B.b =-3,ac =9 C .b =3,ac =-9D .b =-3,ac =-9解析:选B.因为b 是-1,-9的等比中项,所以b 2=9,b =±3. 又等比数列奇数项符号相同,得b <0,故b =-3, 而b 又是a ,c 的等比中项, 故b 2=ac ,即ac =9.4.(2019·丰台高二检测)数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( )A. 2B.4 C .2D .12解析:选C.因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2.5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则{a n }的通项公式a n =( ) A .22n -1B.2nC .22n +1D .22n -3解析:选A.由a 2n +1-3a n +1a n -4a 2n =0,得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4.由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.故选A.6.下面四个数列:①1,1,2,4,8,16,32,64;②在数列{a n }中,已知a 2a 1=2,a 3a 2=2; ③常数列a ,a ,…,a ,…; ④在数列{a n }中,a n +1a n=q (q ≠0),其中n ∈N *. 其中一定是等比数列的有________.解析:①不符合“每一项与它的前一项的比等于同一常数”,故不是等比数列. ②不一定是等比数列.当{a n }只有3项时,{a n }是等比数列;当{a n }的项数超过3时,不一定符合.③不一定.若常数列是各项都为0的数列,它就不是等比数列;当常数列各项不为0时,是等比数列.④等比数列的定义用式子的形式表示:在数列{a n }中,对任意n ∈N *,有a n +1a n=q (q ≠0),那么{a n }是等比数列.答案:④7.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________. 解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .因为a 1=b 1=-1,a 4=b 4=8,所以⎩⎪⎨⎪⎧-1+3d =8,-1·q 3=8,所以⎩⎪⎨⎪⎧d =3,q =-2. 所以a 2=2,b 2=2.所以a 2b 2=22=1.答案:18.等比数列{a n }中,若a 2a 5=2a 3,a 4与a 6的等差中项为54,则a 1=________.解析:设等比数列{a n }的公比为q , 因为a 2a 5=2a 3,所以a 21q 5=2a 1q 2,化简得a 1q 3=2=a 4. 因为a 4与a 6的等差中项为54,所以a 4+a 6=2×54,所以a 4(1+q 2)=52.所以q 2=14,解得q =±12.则a 1×⎝ ⎛⎭⎪⎫±18=2,解得a 1=±16. 答案:±169.在等比数列{a n }中,a 3=32,a 5=8. (1)求数列{a n }的通项公式a n ; (2)若a n =12,求n .解:(1)因为a 5=a 1q 4=a 3q 2,所以q 2=a 5a 3=14.所以q =±12.当q =12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫12n -3=28-n ;当q =-12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫-12n -3.所以a n =28-n或a n =32×⎝ ⎛⎭⎪⎫-12n -3.(2)当a n =12时,即28-n=12或32×⎝ ⎛⎭⎪⎫-12n -3=12,解得n =9.10.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n -2)=5a n -1,求数列{a n }的通项公式.解:设数列{a n }的公比为q . 因为a 25=a 10,2(a n +a n -2)=5a n -1,所以⎩⎪⎨⎪⎧a 21·q 8=a 1·q 9①2(q 2+1)=5q ②, 由①,得a 1=q , 由②,得q =2或q =12,又数列{a n }为递增数列,所以a 1=q =2,所以a n =2n.[B 能力提升]11.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则a n =( ) A .2n-1 B.2n -1-1C .2n -1D .2(n -1)解析:选A.等式两边同时加1,得a n +1+1=2(a n +1),所以数列{a n +1}是以a 1+1=2为首项,q =2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n-1.12.已知等比数列{a n }的各项均为正数,公比q ≠1,ka 1a 2·…·a k =a 11,则k =( ) A .12 B.15 C .18D .21解析:选D.ka 1a 2·…·a k =a 1q 1+2+3+…+(k -1)k=a 1q k -12=a 1q 10,因为a 1>0,q ≠1,所以k -12=10,所以k =21,故选D.13.已知数列{a n }是等差数列,且a 2=3,a 4+3a 5=56,若log 2b n =a n . (1)求证:数列{b n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:由log 2b n =a n ,得b n =2a n .因为数列{a n }是等差数列,不妨设公差为d ,则b n b n -1=2a n 2a n -1=2a n -a n -1=2d ,2d 是与n 无关的常数, 所以数列{b n }是等比数列.(2)由已知,得⎩⎪⎨⎪⎧a 1+d =3,a 1+3d +3(a 1+4d )=56,解得⎩⎪⎨⎪⎧a 1=-1,d =4,于是b 1=2-1=12,公比q =2d =24=16,所以数列{b n }的通项公式b n =12·16n -1=24n -5.14.(选做题)已知数列{a n }的前n 项和为S n ,a n =3S n +1(n ∈N *). (1)求a 1,a 2;(2)求数列{a n }的通项公式.解:(1)由题意,知a 1=3S 1+1,即a 1=3a 1+1, 所以a 1=-12.又a 2=3S 2+1,即a 2=3(a 1+a 2)+1,解得a 2=14.(2)由a n =3S n +1,① 得a n -1=3S n -1+1(n ≥2),② 由①-②,得a n -a n -1=3(S n -S n -1)=3a n ,得a n a n -1=-12,所以数列{a n }是首项为-12,公比为-12的等比数列,所以a n =⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-12n -1=⎝ ⎛⎭⎪⎫-12n.。
13-等比数列(1)
2.4 等比数列(1)教材分析本节内容是《数列》第3小节的内容,是我们在认识了等差数列后,学生有接触的一个新的数列,是对数列知识的延伸,可以借助研究等差数列的方法类比来研究等比数列。
等比数列在实际生活中也有广泛的应用,因此等比数列的教学可以选择更多的有实际背景的例子。
等比数列与等差数列之间存在着很多类似的地方,但也有本质的区别,学生容易混淆。
一方面,建议在本节的教学中始终强调等比数列的定义和体现等比数列的本质的公比q ;另一方面,本节有利于培养学生的类比推理的能力。
课时分配本节内容用2课时的时间完成,主要讲解等比数列的定义,通项公式和性质.教学目标重点:等比数列的定义及通项公式.难点:灵活应用等比数列的定义式及通项公式解决一些相关问题. 知识点:等比数列定义和通项公式.能力点:类比等比数列的定义,并如何探寻等比数列的通项公式.教育点:经历由特殊到特殊的类比研究数学问题的过程,体会探究的乐趣,激发学生的学习热情.自主探究点:如何运用等比数列的通项公式.考试点:用等比数列的通项公式解决数列中的简单量. 易错易混点:运用等比数列通项公式时的项数. 拓展点:等比数列通项的变形形式mn m n qa a -=.教具准备 多媒体课件和三角板 课堂模式 学案导学 一、 引入新课前面几节课,我们共同探讨了等差数列,现在我们再来回顾一下等差数列的主要内容。
下面我们来看这样几个数列,看其又有何共同特点?1,2,4,8,16,…,263; ① 5,25,125,625,…; ②1,-12 ,14 ,-18,…;③思考:(1)是不是等差数列?(2)每一项与前一项之间有什么关系?【师生活动】教师分析:仔细观察数列,寻其共同特点.对于数列①,2;211==--n nn n a a a (2≥n ) 对于数列②,5;51==-n nnn a a a (2≥n ) 对于数列③,21;21)1(111-=-=--+n n n n n a a a (2≥n ) 学生总结共同特点:从第二项起,第一项与前一项的比都等于同一个常数.也就是说,这些数列从第二项起,每一项与前一项的比都具有“相等”的特点.教师总结: 1.等比数列定义一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:a n ∶a n -1=q (q ≠0)如:数列①,②,③都是等比数列,它们的公比依次是2,5,-12 .与等差数列比较,仅一字之差.总之,若一数列从第二项起,每一项与其前一项之“差”为常数,则为等差数列,之“比”为常数,则为等比数列,此常数称为“公差”或“公比”.注意(1)公差“d ”可为0,(2)公比“q ”不可为0.【设计意图】 通过具学生对等比数列下定义,培养学生类比的数学思想.二、探究新知 (一)归纳通项公式等比数列的通项公式又如何呢? 写出上面三个数列的通项公式对于数列①,12-=n n a (2≥n )对于数列②,nn a 5=(2≥n ) 对于数列③,;21)1(11-+-=n n n a (2≥n )探究课本50页类比等差数列写出等比数列的通项公式的推导,请你补全首项是1a ,公比是q 的等比数列}{n a 的通项公式()1q a a n =[设计意图]培养学生由特殊到一般的总结问题的能力,在探究寻找中找到学习的兴趣。
等比数列的概念(教案)
§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。
而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。
所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。
高中数学第二章数列2.4.1等比数列的概念及通项公式人教A版必修5
2.等比中项 如果在 a 与 b 中间插入一个数 G,使 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项,这三个数满足关系式 ab=G2.
思考 1 若 G2=ab,则 a,G,b 一定成等比数列吗?
提示:不一定.因为若 G=0,则 a,b 中至少有一个为 0,使 G2=ab,根据等比 数列的定义,a,G,b 不成等比数列.当 a,G,b 全不为零时,若 G2=ab,则 a,G,b 成
探究四
探究二 等比中项的应用
若 a,G,b 成等比数列,则 G 叫做 a 与 b 的等比中项,此时 G=± ������������. 注意:(1)在 a,b 同号时,a,b 的等比中项有两个,异号时,没有等比中项. (2)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是 它的前一项与后一项的等比中项. (3)“a,G,b 成等比数列”等价于“G2=ab”(a,b 均不为 0),可以用它来判断 或证明三个数成等比数列. 同时还要注意到“a,G,b 成等比数列”与“G= ������������”不是等价的.
探究一
探究二
探究三
探究四
解:(1)∵a1=-1,an=3an-1-2n+3,∴a2=3a1-2×2+3=-4,a3=3a2-2×3+3=-15.
下面证明{an-n}是等比数列:
������������+1-(n + ������������-n
1)
=
3������������-2(n
+ 1) + ������������-n
是等比数列. (3)通项公式法:若数列{an}的通项公式为 an=a1qn-1(a1≠0,q≠0),则数列
2.4等比数列(一)
二、新课讲解
等比中项 : 如果在a与b中间插入一个数G, 使a, G, b成等比数列 , 那么G叫做a与b的等比中项.
(1) G b G2 ab G ab(aGb 0); aG
(2)任一个等比数列, 从第2项起每一项是它的前一 项和后一项的等比中项.
§ 2.4 等比数列 (一)
一、新课引入
观察以下数列: (1)1,2,4,8, (2)1, 1 , 1 , 1 ,
248 (3)1,20,202 ,203 ,
问题 : (1)三个数列各自的特点? (2)三个数列有何共同点?
二、新课讲解
等比数列 :
一般地, 如果一个数列从第2项起, 每一项与它的前 一项的比等于同一个常数, 那么这个数列称之.这个 常数叫做等比数列的公比,通常用字母q表示(q 0 ).
(迭代法)
an a1qn1
二、新课讲解
例1、一个等比数列的第3项和第4项分别是12和18, 求它的第1项和第2项.
练1、在等比数列an中:
(1)a4 27, q 3,求a7; (2)a2 18, a4 8,求a1和q; (3)a5 4, a7 6,求a9; (4)a5 a1 15, a4 a2 6,求a3.
二、新课讲解
等比数列的通项公式 :
一般地, 如果等比数列an 的首项是a1 , 公比是q, 则
பைடு நூலகம்
a2 a1q, a3 a2q a1q2 , a4 a3q a1q3,
a2 q, a3 q, a4 q,, an q.
a1
a2
a3
an1
等比数列课件PPT
探究3:对任意的等比数列{an},若am·an=ap·al(m,n,p, l∈N*),则m+n=p+l吗? 提示:不一定相等,当数列{an}为常数列时,m+n与p+l不一 定相等.
【探究总结】 1.等比数列性质的关注点 (1)利用性质m+n=p+q⇒am·an=ap·aq时要注意只有序号之和 相等时才成立,且am·an=ap·aq m+n=p+q.
答案:1
例1 某种放射性物质不断变化为其他物质,每
经过一年剩留的这种物质是原来的84%.这种物
质的半衰期为多长(精确到1年)?
分析:
时间: 剩留量:
最初
1
经过1年 a1=0.84 经过2年 a2=0.842 经过3年 a3=0.843 ……
经过n年 an=0.84n
解:设这种物质最初的质量是1,经过n年,剩留量是
(1)若{an}为正项等比数列,则{logaan}(a>0且a≠1)为等差
联 系
数列;
(2)若{an}为等差数列,则{ }为等比数列(b≠0).
百川东到海,何时复西归?少壮不努力, 老大徒伤悲。
——汉乐府《长歌行》
第2课时 等比数列的性质
1.了解等比数列的单调性与首项a1及公比q的关系. 2.结合等差数列的性质,了解等比数列的性质. 3.掌握等比数列的性质,并能综合应用解决有关问题.
以
a92
a7=3,而a7a11=a92,所以a11
=a7=3.
答案:3
等比数列的性质
探究1:已知等比数列{an}:1,2,4,8,16,…,2n-1,…,
(1)计算a1a4=
;a2a3=
.并说明a1a4与a2a3有什
2.4等比数列性质1
q1
思考:
an k 成等比数列吗? an bn 成等比数列吗?
1、在等比数列{an }中,已知a7 a12 5, 求a8 a9 a10 a11的值。
解 : a7 a12 a8 a11 a9 a10 5 a8 a9 a10 a11 5 25
2
b1b7 b2 b6 b3b5 b4
3 3 2187
7
∴前七项之积 3 b4 ຫໍສະໝຸດ b1b7 b2 b6 b3b5
2 3
7 、在等比数列 { a n } 中, a 4 16 , a 6 64 , 则 a
8
?
256
8、等比数列{a 则下式 n }中,公比为q, 正确的是( D)
(A)an a 5q
n 1
, (B)an a 4 q
n 2 n 4
(C)an a 4 q
n 4
, (D)an a 4 q
9、等比数列{an} 中,
a4 a7 512 , a3 a8 124,求a10
a10 212 或a10 1
10、三个数成等比数列,它们的和等于14, 它们的积等于64,求这三个数。
总结:证明等比数列的三种方法 1、定义法 an 1 an q q n 2 或 an an 1
an 成等比数列
3、等比中项法
2、通项公式法
an A q A, q 0
n
an 成等比数列
a
2 n 1
an an 2
(an , an 1 , an 2 0)
2.4 等比数列的性质
性质1
在等比数列中取出等距离的项所组成的新数列 仍成等比数列。(序号成等差数列,则序号相对 应的项成等比数列)
2.4等比数列(第1课时)
an q(n 2) an1
或
an1 * q(n N ) an
6
名称
等差数列
等比数列
定 义
如果一个数列从第2 项起,每一项与前 一项的差都等于同 一个常数,那么这 个数列叫做等差数 列.这个常数叫做等 差数列的公差,用d 表示
如果一个数列从 第2项起,每一项 与它前一项的比 都等于同一个常 数,那么这个数列 叫做等比数列. 这个常数叫做等比 数列的公比,用 q表示.
若数列{an}的首项是a1=1,公比q=2,则用通项公式表示是: ______ an=2 n-1
a
上式还可以写成
1 n an 2 2
n
8 7 6 5 4 3 2 1
0 n
·
可见,表示这个等比数列
的各点都在函数
y 2
1 2
x
的图象上,如右图所示。
结论:等比数列an 的图象 是其对应的函数的图象 上一些孤立的点
2 3 4
an 2 2
n1 n1
2
n n1
an 1 3
3
(3) 1, x, x , x , x ,( x 0) an 1 xn1 xn1
(4) 1 1 1 1 , , , , 2 4 8 16
1 1 n 1 1 n an ( ) ( ) 2 2 2
7
注意:
1. 公比是等比数列,从第2项起,每一 项与前一项的比,不能颠倒。
2.对于一个给定的等比数列,它的公比 是同一个常数。
8
练一练
1、判别下列数列是否为等比数列?
2 1 …… (1) 2, 1, , , 是 2 2 不是 (2)1.2, 2.4 , -4.8 , -9.6 ……
2.4 等比数列(1)
等比数列所有奇数项符号相同; 思考: 所有偶数项符号相同。
问题1:如果在a与b中间插入一个数G,使 a,G,b成等比数列,那么G应满足什么条件? 问题2:G
2
a b a,G,b成等比数列
G b 问题3: 是a,G,b成等比数列 a G
如果在a与b中间插入一个数G,使a,G,b成等比数列, 那么G叫做a与b的等比中项。且 G ab (a,b同号) 注意: 若a,b异号则无等比中项;若a,b同 号则有两个等比中项
二、讲解新课:
Ⅰ.课题导入
(1)细胞分裂问题 课本P48页的4个例子:
, ①1 ,2,4,8,16,…
1 1 , , 8 16
(2)“一尺之棰,日取其半,万世不竭” 从第
(3)计算机病毒感染问题
(4)银行复利计算问题
1 ② 1, 2 ,
1 4
,…
③1,20,20 2 , 203 ,20 4 ,…
10000 1.0198 ④ 10000 1.0198 , 10000 1.0198 , 4 5 ,…… , 10000 1.0198 10000 1.0198
2.4 等比数列(1)
一.复习回顾:
1.前n项和的最大值和最小值问题 (1) 利用 S n (2)利用 an :
利用二次函数配方法求得最值。(注意:n为正整数)
当
d 2 d 由 S n n (a1 )n 2 2
a n 0 ,求得n的值。 a n 1 0 当 a1 <0,d>0,前n项和有最大值。可由 a n 0 ,求得n的值。 a n 1 0
等比数列
(a 1 ≠0 且 q ≠0,n ∈N +)
等比数列通项公式: a n= a 1 q n- 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 :设等比数列{an} 的公比为q,由已知条件,有
例3.一个等比数列的第3项和第4项分别是12
an a1 q a1q 12 即 a1q 3 18 3 16 解得 q a1 2 3 因此, a a q 16 3 8 2 1 3 2 方程组思想
公比为q. 令cn an • bn
证明:设数列an 的首项a1、公比为p,数列bn 的首项为b1、
数列an • bn 是以a1 • b1为首项,pq为公比的等比数列.
cn1 an1 • bn1 则 pq cn an • bn
结论:
如果a n bn 是项数相同的等比数列,那么 a n bn 也是等比数列.
问题 : (1)三个数列各自的特点? (2)三个数列有何共同点? 从第二项起,后一项与前一项的比都是
______________。
同一个常数
1.定义:
一般地,如果一个数列从第二项起每 一项与它的前一项的比等于同一个常数,那 么这个数列就叫做等比数列,这个常数叫做 等比数列的公比,公比通常用字母q表示(q≠0) 。
2.等比数列的分类: q>1 0<q<1 a1>0 递增 a1<0 递减递减 递增Fra bibliotekq=1
q<0
常数列 摆动数列 常数列 摆动数列
3、等比中项
如果在a与b中间插入一个数G,使a,G,b成等 比数列,那么G叫做a与b的等比中项。
G b 2 G ab G ab (aGb 0); a G
定义式: an q(n 1) an1
或
an1 * q(n N ) an
思考:
(1) 等比数列中有为0的项吗? 没有,每一项都不为0 (2)公比q能是0吗?
不能
(3) 公比为1的数列是什么数列? 非零常数列 (4) 既是等差数列又是等比数列的数列 存在吗?是什么样的数列? (5) 常数列都是等比数列吗?
③看前n项和法: n S
An Bn( A、B为常数)
2
6. 数列{an}的an与前n项和Sn的关系
(n 1) S1 利 an与Sn的关系为an 求通项公式 用 Sn - Sn-1(n 1)
7. 等差数列{an}的前n项和Sn的最值问题 法一:利用通项公式
两种方法:
(1) 当a1>0,d<0,前n项和有最大值. 可由an≥0,求得n的值;
证明: am an a1q a p • aq a1q
m 1 p 1
• a1q • a1q
n 1
a q
2 1
mn2 p q 2
q 1
a q
2 1
m n p q a •a a
m n
p
• aq
5.等比数列的性质 (2)若数列an 是公比为q的等比数列,m、
(5)性质:①an=amqn- m(n,m∈N+ ). ②若 m+n=p+q,则 aman=apaq (p,q,m,n∈N+ ).
③若数列 {an }是等比数列,则
Sk ,S2k - Sk ,S3k - S2k ,S4k - S3k .....也是等比数列
复习回顾 an an1 d (n 1, n N * ) 1.等差数列的定义式: 2.等差数列的通项公式: an=a1+(n-1)d. 3.等差数列的性质: ①an=am+(n-m)d ②若m+n=p+q,则am + an= ap + aq ③若a,A,b成等差数列,则2 A a b ④等差数列的单调性 递增数列 若公差d 0, 则数列an 为-------------------------递减数列 若公差d 0, 则数列an 为-------------------------常数列 若公差d 0, 则数列an 为-------------------------⑤Sk , S2k - Sk , S3k - S2k , S4k - S3k ,成等差,公差k 2d ⑥ 若am n, an m 则 am n 0,
定义
等差数列()
等比数列()
an 1 an d
d∈R
等差中项
an 1 q an
q≠0且q∈R
等比中项
公比(差)
等比(差) 中项 通项公式
2A a b
G ab
an a1 (n 1)d an am (n m)d
an a1q
n 1
an am q
an a1q
*
n 1
(n N , a1 0, q 0)
(迭代法)
写出通项公式
(1)1,2,4,8,
1 1 1 (2)1, , , , 2 4 8
(3)1,20,202 ,203 ,
an 2 1 n-1 an ) ( 2 n -1 an -20) (
n -1
应用 (1). 等比数列通项公式的应用
(a1 a2 n 1 ) (2n 1) an A2 n 1 2 b n (2n 1) (b1 b2 n 1 ) B2 n 1 2
一、新课引入
观察以下数列 :
(1)1,2,4,8,
1 1 1 ( 2)1, , , , 2 4 8
(3)1,20,202 ,203 ,
nm
性质 (若m+n=p+q)
am an a p aq am an a p aq
2.等比数列 an+1 (1)定义式: =q(n∈N+,q 为非零常数). an a1qn-1 . (2)通项公式:a =
n
na1 q=1 (3)前 n 项和公式:Sn= a11-qn q≠1 1-q . 2 (4)等比中项公式:an=an-1an+1(n∈N+,n≥2).
当a1<0,d>0,前n项和有最小值. 可由an≤0,求得n的值.
法二:利用前n项和公式
(2) 由
Sn An Bn
2
利用二次函
函数配方法求得最值时n的值.
8. 等差数列{|an|}的前n项和Tn问题
9.若两个等差数列an 和bn 的前n项和An和Bn满足 An 7n 1 a3 a7 an 关系式 ,求 , , . Bn 4n 7 b3 b7 bn
an nm n N ,那么是否有 q 成立? am
证明: an a1q ,am a1q
n -1 m -1
an a1q n -m q m -1 am a1q
n -1
an amq
n- m
应用 (2).证明等比数列的方法 例4、若 an , bn 是项数相同的等比数列, 求证 : an bn 也是等比数列.
2
a3 12, a4 18,
n1
练习2
在等比数列an 中: (1)a4 27, q 3, 求a7 ;
(2)a2 18, a4 8, 求a1和q;
5.等比数列的性质
(1)若数列an 为公比为q等比数列,且有 m n p q,否有am • an a p • aq ?
练习3 n 在数列an 中,an 7 , 求证:数列an 是等比数列 3
思考1:如果an 是等比数列,c是非零常数,数列c • an 是等比数列吗? an 思考2:如果 an ,bn 是等比数列,数列 是等比数列吗? bn
总结比较:
非零的常数列 不一定,各项为0 的常数列除外
(6) 若一数列不是从第2项起而是从第3项 或第4项开始,后项与前项的比值等于同 一个常数,此数列是等比数列吗? 不是
注:对定义的认识
1.等比数列的每一项都不为0,即an≠0。 2.公比不为0,即q≠0。
问:数列a, a, a, a, …(a∈R)是否为等比数列? 如果是,a必须满足什么条件? (1) a=0; 它只是等差数列。 (2) a≠0; 它既是等差数列又是等比数列。
若Sn m,Sm n则Sm n (m n) -
4.等差数列的前n项和公式
n(a1 an ) n(n 1) Sn na1 d 2 2
5.等差数列判定 ①定义法: an1 an d ②看通项法:
an - an-1 d n 1) (
an kn (其中k, b为常数) b
练习1
观察如下的两个数之间,插入一个什么数后三个数 就会成为一个等比数列:
(1)1,±3, 9 (3)-12, ,-3 ±6 (2)-1,±2 ,-4 (4)1,±1 ,1
依据:G ab
4.等比数列的通项公式
如果等比数列an 的首项是a1 , 公比是q, 则an ?
a2 a1q, 2 a3 a2 q a1q , 3 a4 a3 q a1q , n 1 an an 1q a1q .