(完整word版)三角函数及其导数积分公式的六边形记忆法

合集下载

三角函数公式大全(方便记忆)

三角函数公式大全(方便记忆)

三角函数公式大全(方便记忆)三角函数公式大全(方便记忆)倒数关系: 商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin———·cos———2 2α+βα-βsinα-sinβ=2cos———·sin———2 2α+βα-βcosα+cosβ=2cos———·cos———2 2α+βα-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-21cosα ·sinβ=-21cosα ·cosβ=-21sinα ·sinβ=— -2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)。

三角函数的正六边形记忆法(初高中均适用)

三角函数的正六边形记忆法(初高中均适用)


同角异名 三角函数关系呢?
正六边形法
1
1
1
1
小试牛刀
小试牛刀
三角函数赋
三角函数莫惊慌,正六边形来帮忙。 上弦中切下边割,倒三角形平方和。 中心对角元素积,互为倒数结果一。 再说非中心对角,元素乘积顶点撂。 间隔顶点连三角,三元相乘中心跑。 自此三角函数毕,记清关系没问题。
三角函数与正六边形
制作人:Encyclopedia
讲 述 思 路

Ⅱ Ⅲ Ⅳ
• 回顾三角函数的定义
• 正六边形记忆法
• 小试牛刀
• 总结——三角函数赋
三角函数定义
A
正弦(sine)
余割(cosecant)
余弦(cosine)
正割(secant)
正切(tangent)
余切(cotangent)
B
C

高中数学三角函数值记忆顺口溜快速记忆口诀

高中数学三角函数值记忆顺口溜快速记忆口诀

⾼中数学三⾓函数值记忆顺⼝溜快速记忆⼝诀三⾓函数是函数,象限符号坐标注。

函数图像单位圆,周期奇偶增减现。

⾓关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中⼼记上数字⼀,连结顶点三⾓形。

三⾓函数快速记忆⼝诀三⾓函数是函数,象限符号坐标注。

函数图像单位圆,周期奇偶增减现。

同⾓关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中⼼记上数字⼀,连结顶点三⾓形。

向下三⾓平⽅和,倒数关系是对⾓,顶点任意⼀函数,等于后⾯两根除。

诱导公式就是好,负化正后⼤化⼩,变成锐⾓好查表,化简证明少不了。

⼆的⼀半整数倍,奇数化余偶不变,将其后者视锐⾓,符号原来函数判。

两⾓和的余弦值,化为单⾓好求值,余弦积减正弦积,换⾓变形众公式。

和差化积须同名,互余⾓度变名称。

计算证明⾓先⾏,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,⽅程思想指路明。

万能公式不⼀般,化为有理式居先。

公式顺⽤和逆⽤,变形运⽤加巧⽤;⼀加余弦想余弦,⼀减余弦想正弦,幂升⼀次⾓减半,升幂降次它为范;三⾓函数反函数,实质就是求⾓度,先求三⾓函数值,再判⾓取值范围;利⽤直⾓三⾓形,形象直观好换名,简单三⾓的⽅程,化为最简求解集。

符号判断⼝诀全,S,T,C,正。

这五个字⼝诀的意思就是说:第⼀象限内任何⼀个⾓的四种三⾓函数值都是“+”;第⼆象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

也可以这样理解:⼀、⼆、三、四指的⾓所在象限。

全正、正弦、正切、余弦指的是对应象限三⾓函数为正值的名称。

⼝诀中未提及的都是负值。

“ASTC”反Z。

意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三⾓函数为正值。

另⼀种⼝诀:正弦⼀⼆切⼀三,余弦⼀四紧相连,⾔之为正。

三角函数知识点公式定理记忆口诀

三角函数知识点公式定理记忆口诀

三角函数知识点公式定理记忆口诀三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

巧妙记忆法之《化学口诀汇总》线键式有机物对应分子式求算:算碳找拐点,求氢四里减。

制氧气口诀:二氧化锰氯酸钾;混和均匀把热加。

制氧装置有特点;底高口低略倾斜。

集气口诀:与水作用用排气法;根据密度定上下。

不溶微溶排水法;所得气体纯度大。

电解水口诀:正氧体小能助燃;负氢体大能燃烧。

化合价口诀:常见元素的主要化合价氟氯溴碘负一价;正一氢银与钾钠。

氧的负二先记清;正二镁钙钡和锌。

正三是铝正四硅;下面再把变价归。

全部金属是正价;一二铜来二三铁。

锰正二四与六七;碳的二四要牢记。

非金属负主正不齐;氯的负一正一五七。

氮磷负三与正五;不同磷三氮二四。

硫有负二正四六;边记边用就会熟。

常见根价口诀:一价铵根硝酸根;氢卤酸根氢氧根。

高锰酸根氯酸根;高氯酸根醋酸根。

二价硫酸碳酸根;氢硫酸根锰酸根。

暂记铵根为正价;负三有个磷酸根。

金属活动性顺序表:(初中)钾钙钠镁铝、锌铁锡铅氢、铜汞银铂金。

(完整word版)三角函数公式及求导公式

(完整word版)三角函数公式及求导公式

一、诱导公式口诀:(分子)奇变偶不变,符号看象限。

1. sin (α+k•360)=sin αcos (α+k•360)=cos atan (α+k•360)=tan α2. sin(180°+β)=-sinαcos(180°+β)=-cosa3. sin(-α)=-sinacos(-a)=cosα4*. tan(180°+α)=tanαtan(-α)=tanα5. sin(180°-α)=sinαcos(180°-α)=-cosα6. sin(360°-α)=-sinαcos(360°-α)=cosα7. sin(π/2-α)=cosαcos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosαcos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosαcos(3π/2+α)=sinα二、两角和与差的三角函数1. 两点距离公式2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβC(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβC(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β):T(α-β):5*.三、二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos¬2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a’: cos2α=1-2sin2αcos2α=2cos2α-1四*、其它杂项(全部不可直接用)1.辅助角公式asinα+bcosα= sin(a+φ),其中tanφ=b/a,其终边过点(a, b)asinα+bcosα= cos(a-φ),其中tanφ=a/b,其终边过点(b,a)2.降次、配方公式降次:sin2θ=(1-cos2θ)/2cos2θ=(1+cos2θ)/2配方1±sinθ=[sin(θ/2)±cos(θ/2)]21+cosθ=2cos2(θ/2)1-cosθ=2sin2(θ/2)3. 三倍角公式si n3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式5. 和差化积公式sinα+sinβ= 书p45 例5(2)sinα-sinβ=cosα+cosβ=cosα-cosβ=6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1)cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2A=2sinA*cosA三倍角公式sin3a=3sina-4(sina)^3cos3a=4(cosa)^3-3cosatan3a=tana*tan(π/3+a)*tan(π/3-a)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)+cos(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2③(sinx)' = cosx(cosx)' = - sinx(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2)④(sinhx)'=coshx(coshx)'=sinhx(tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2(artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)。

三角函数公式汇总及口诀大全

三角函数公式汇总及口诀大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:xy =αtan 余切:y x =αcot 正割:x r =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线.二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα. 商数关系:αααcos sin tan =,αααsin cos cot =. 平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+.三、诱导公式(总口诀:奇变偶不变,符号看象限)⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号. (口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号. (口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- 五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=. 万能公式告诉我们,单角的三角函数都可以用半角的正切..来表示. 七、和差化积公式2cos 2sin 2sin sin βαβαβα-+=+ …⑴2sin 2cos 2sin sin βαβαβα-+=- …⑵2cos 2cos 2cos cos βαβαβα-+=+ …⑶2sin 2sin 2cos cos βαβαβα-+-=- …⑷ 了解和差化积公式的推导,有助于我们理解并掌握好公式:2sin 2cos 2cos 2sin 22sin sin βαβαβαβαβαβαα-++-+=⎪⎭⎫ ⎝⎛-++= 2sin 2cos 2cos 2sin 22sin sin βαβαβαβαβαβαβ-+--+=⎪⎭⎫ ⎝⎛--+= 两式相加可得公式⑴,两式相减可得公式⑵.2sin 2sin 2cos 2cos 22cos cos βαβαβαβαβαβαα-+--+=⎪⎭⎫ ⎝⎛-++= 2sin 2sin 2cos 2cos 22cos cos βαβαβαβαβαβαβ-++-+=⎪⎭⎫ ⎝⎛--+= 两式相加可得公式⑶,两式相减可得公式⑷.八、积化和差公式[])sin()sin(21cos sin βαβαβα-++=⋅ [])sin()sin(21sin cos βαβαβα--+=⋅ [])cos()cos(21cos cos βαβαβα-++=⋅ [])cos()cos(21sin sin βαβαβα--+-=⋅ 我们可以把积化和差公式看成是和差化积公式的逆应用.九、辅助角公式)sin(cos sin 22ϕ++=+x b a x b x a (*)其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,22sin b a b+=ϕ,22cos b a a +=ϕ,ab =ϕtan .十、正弦定理R Cc B b A a 2sin sin sin ===(R 为ABC ∆外接圆半径) 十一、余弦定理A bc c b a cos 2222⋅-+=B ac c a b cos 2222⋅-+=C ab b a c cos 2222⋅-+=十二、三角形的面积公式高底⨯⨯=∆21ABC S B ca A bc C ab S ABC sin 21sin 21sin 21===∆(两边一夹角) Rabc S ABC 4=∆(R 为ABC ∆外接圆半径) 2ABC a b c S r ∆++⎛⎫=⋅⎪⎝⎭(r 为ABC ∆内切圆半径) ))()((c p b p a p p S ABC ---=∆…海仑公式(其中c b a p ++=)十三、不常见的公式1.3sin 33sin 4sin 4sin(60)sin sin(60)θθθθθθ=-=︒-︒+ 3cos34cos 3cos 4cos(60)cos cos(60)θθθθθθ=-=︒-︒+ 2.22sin()sin()sin sin αβαβαβ+-=- 22cos()cos()cos sin αβαβαβ+-=- x α x。

三角函数记忆顺口溜 记忆的方法和技巧

三角函数记忆顺口溜 记忆的方法和技巧

三角函数记忆顺口溜记忆的方法和技巧三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

也可以等价地用与单位圆有关的各种线段的长度来定义。

1 三角函数记忆口诀三角函数是函数,象限符号坐标注。

函数图像单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字一,连结顶点三角形。

向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

1 三角函数万能公式怎幺记1)正弦:1 加切方除切倍。

要注意‘除’的含义。

2)余弦:阴阳相比是余弦。

解释:化学中‘阴’指‘-’‘阳’指‘+’3)正切:用正余弦之比即可1 三角函数公式大全倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin (α)+cos(α)=11+tan (α)=sec(α)1+cot (α)=csc(α)平常针对不同条件的常用的两个公式sin (α)+cos(α)=1tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h 与水平高度l 的比叫做坡度(也叫坡比),用字母i 表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那幺i=h/l=tan a.锐角三角函数公式正弦:sin α=∠α的对边/∠α的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos (a)-Sin (a)2.Cos2a=1-2Sin (a)3.Cos2a=2Cos (a)-1即Cos2a=Cos (a)-Sin (a)=2Cos (a)-1=1-2Sin (a)正切tan2A=(2tanA)/(1-tan (A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a ·tan(π/3+a)·tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)(60°-a)cos3a=4cos a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2) ]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下: sin2α=2sinαcosαtan2α=2tanα/(1-tan (α))cos2α=cos(α)- sin (α)=2cos(α)-1=1-2sin (α)可别轻视这些字符,它们在数学学习中会起到重要作用。

三角函数公式及其记忆方法

三角函数公式及其记忆方法

一、同角三角函数的基本关系式 (一)基本关系1、倒数关系1cot tan =⋅αα 1csc sin =⋅αα 1sec cos =⋅αα 2、商的关系αααtan cos sin = αααtan csc sec = αααcot sin cos = αααcot sec csc = 3、平方关系1cos sin 22=+αα αα22sec tan 1=+ αα22csc cot 1=+(二)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

1、倒数关系对角线上两个函数互为倒数; 2、商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。

)。

由此,可得商数关系式。

3、平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

二、诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

(一)常用的诱导公式1、公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:z k k ∈=+,sin )2sin(ααπ z k k ∈=+,cos )2cos(ααπz k k ∈=+,tan )2tan(ααπ z k k ∈=+,cot )2cot(ααπ z k k ∈=+,sec )2sec(ααπ z k k ∈=+,csc )2csc(ααπ2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系:ααπsin )sin(-=+ ααπcos )cos(-=+ααπtan )tan(=+ ααπcot )cot(=+ ααπsec )sec(-=+ ααπcsc )csc(-=+3、公式三:任意角α与 -α的三角函数值之间的关系:ααsin )sin(-=- ααcos )cos(=-ααtan )tan(-=- ααcot )cot(-=- ααsec )sec(=- ααcsc )csc(-=-4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:ααπsin )sin(=- ααπcos )cos(-=-ααπtan )tan(-=- ααπcot )cot(-=- ααπsec )sec(-=- ααπcsc )csc(=-5、公式五:利用公式一和公式三可以得2π-α与α的三角函数值之间的关系:sin (2π-α)=-sinα cos (2π-α)= cosα tan (2π-α)=-tanα cot (2π-α)=-cotα sec (2π—α) = secα csc (2π—α) =—cscα 6、公式六:2π+α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)=-sinαtan (2π+α)=-cotα cot (2π+α)=-tanαsec (2π+α) =—cscα csc (2π+α) = secα 7、公式七:2π-α与α的三角函数值之间的关系:sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanαsec (2π—α) = cscα csc (2π—α) = secα8、推算公式:23π+α与α的三角函数值之间的关系:sin (23π+α)=-cosα cos (23π+α)= sinα tan (23π+α)=-cotα cot (23π+α)=-tanα sec (23π+α) = cscα csc (23π+α) =—secα 9、推算公式:23π—α与α的三角函数值之间的关系:sin (23π-α)=-cosα cos (23π-α)=-sinα tan (23π-α)= cotα cot (23π-α)= tanα sec (23π-α) =—cscα csc (23π—α) =—secα 诱导公式记忆口诀:“奇变偶不变,符号看象限”。

三角函数总结大全附记忆口诀

三角函数总结大全附记忆口诀

三角函数总结大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,三角函数是数学中属于初等函数中的超越函数的函数。

它们的本质是任何角的集合与一个比值的集合的变量之间的映射。

通常的三角函数是在平面直角坐标系中定义的。

其定义域为整个实数域。

另一种定义是在直角三角形中,但并不完全。

现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。

而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。

下面为大家整理的三角函数公式大全:(一)任意角的三角函数及诱导公式1.任意角概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。

旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。

为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。

如果一条射线没有做任何旋转,我们称它形成了一个零角。

2.象限角、终边相同的角、区间角角的顶点与原点重合,角的始边与x轴的非负半轴重合。

那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。

要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。

终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2kπ(k∈Z),即β∈{β|β=2kπ+α,k∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。

区间角是介于两个角之间的所有角,如α∈{α|6π≤α≤65π}=[6π,65π]。

3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。

(完整版)三角函数公式记忆

(完整版)三角函数公式记忆

三角函数公式记忆一、基础知识点、公式记忆二、同角三角函数的基本关系式平方关系:__________________、_________________、________________ 倒数关系:_________________、_______________、________________ 商数关系:__________________、___________________ 三、诱导公式:基本方法:奇变偶不变,符号看象限 απ+2α-απ+απ-απ+2απ-2απ+23απ-23象限 sin cos tan四、相关定理正弦定理:在任意△ABC 中有R CcB b A a 2sin sin sin ===,其中a , b , c 分别是角A ,B ,C 的对边,R 为△ABC 外接圆半径。

余弦定理:在任意△ABC 中有a 2=b 2+c 2-2bco s A ,其中a ,b ,c 分别是角A ,B ,C 的对边。

五、图像变化(由复杂的做简单的可以方向作出)辅角公式:a sin x +b cos x =______________________________ 其中: ____________________常用:ααcos sin ±=______________________ ααcos 3sin ±=___________________________ααcos sin 3±=__________________________降幂公式:(sin α+cos α )2=__________________________ (sin α-cos α )2=__________________________ sin 2α =___________________________ cos 2 α =___________________________ 横变ω/1 纵不变 左加右减 横不变纵变A 倍 x y sin =x y ωsin =)sin(ϕω+=x y 移动|/|ωϕ )sin(ϕω+=x A y)sin(ϕω+=x A y 左加右减移动||ϕ横变ω/1横不变 纵变A 倍x y sin =)sin(ϕ+=x y)sin(ϕω+=x y纵不变六、三角函数的图像与性质(在图像上标出横坐标)正弦函数余弦函数正切函数解析式图像定义域值域单调性单增单减奇偶性最值点最大最小对称性轴中心周期性特殊点基 础 训 练一、任意角的三角函数1、已知α是锐角,则2α是 ( )A 、第一象限角B 、 第二象限角C 、小于0180的正角 D 、不大于直角的正角 2、已知α是钝角,则2α是 ( ) A 、 第四象限角 B 、第二象限角 C 、第一、三象限角 D 、锐角 3、 已知α是第二象限角, 则2α是 ( ) A 、 第一象限角 B 、 第一、三象限角 C 、 第二、四象限角 D 、锐角 4、 角θ为第一或第二象限角的充要条件是 ( )A 、sin 0θ>B 、|sin |sin θθ=C 、cos tan 0θθ>gD 、θ为锐角或钝角5、已知4sin =5α,则cos α= ,tan α= ,cot α= ,sec α= , 6、 已知8cos 17α=-,则sin =α ,tan α= .7、已知tan α=则sin =α , cos α= , cot α= , 8、下列等式不正确的是 ( )A 、cos 1sin 1sin cos αααα+=- B 、4222sin sin cos cos 1αααα++= C 、2222tan sin tan sin αααα-= D 、1sin cos tan 1cos sin 2ααααα+-=++9 、 已知tan 2α=,则sin cos sin cos αααα+- 。

三角函数六边形记忆法

三角函数六边形记忆法

三角函数六边形记忆法
三角函数六边形记忆法
六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。


《三角函数》
三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;。

三角函数及其导数积分公式六边形记忆法

三角函数及其导数积分公式六边形记忆法

三⾓函数及其导数积分公式六边形记忆法从俞诗秋的⽂章修改⽽来,原来的⼝诀不太好记原⽂:三⾓函数双曲函数及其导数积分公式的六边形记忆法三⾓函数及其导数积分公式的六边形记忆法2. 三⾓函数的定义1. 三⾓函数的记忆:●对⾓线倒数:对⾓线互为倒数sinx=1/cscx,指在三⾓函数六边形中,过中点且连接两个顶点的线段中,两端点处的函数乘积等于中间的数1,即sinxcscx=1, cosxsecx=1, tanxcotx=1.●倒三⾓形平⽅和:指在三⾓函数六边形中,每个有阴影的三⾓形下顶处函数的平⽅等于上⾯两个顶处函数平⽅的和.即sin2x+cos2x=1, tan2x+1=sec2x, cot2x+1=csc2x.●邻点积:指在三⾓函数六边形中,任何⼀个顶处的函数等于相邻两个顶处函数的乘积.即sinx=tanxcosx, cosx=sinxcotx, cotx=cosxcscx, cscx= cotxsecx, secx=cscxtanx, tanx=secxsinx. 2.三⾓函数求导数图中左⾯“+”号表⽰六边形左⾯三个顶⾓处函数的导数为正值,右⾯“-”号表⽰六边形右⾯三个顶⾓处函数的导数为负值。

●上互换:指在三⾓函数求导六边形中,上顶⾓处函数的导数为另⼀上顶⾓处函数的导数.即:(sinx)’=cosx, (cosx)’=-sinx。

●中下2:指在三⾓函数求导六边形中,中间顶⾓处函数的导数为对应边下顶⾓处函数导数的平⽅.即:(tanx)’=sec2x,(cotx)’=-csc2x。

●下中下:指在三⾓函数求导六边形中,下顶⾓处函数的导数为对应边中间顶⾓处函数的导数与下顶⾓处函数的导数之乘积。

即:(secx)’=tanxsecx,(cscx)’=-cotxcscx。

3.三⾓函数求积分由于积分是导数的逆运算,我们⽴即可以有求积分记忆⼝诀:上互换,下2中,中下下。

注:原函数的符号视其在相应六边形的位置⽽定。

例如:例1求.步骤:(a)与secx有关的积分⼝诀是“下2中”,(b)通过调整以及从六边形中可知,===ln+c= ln+c。

三角函数公式及其记忆方法

三角函数公式及其记忆方法

三角函数公式及其记忆方法一、同角三角函数的基本关系式 (一)基本关系1、倒数关系1cot tan =⋅αα 1csc sin =⋅αα 1sec cos =⋅αα 2、商的关系αααtan cos sin = αααtan csc sec = αααcot sin cos = αααcot sec csc = 3、平方关系1cos sin 22=+αα αα22sec tan 1=+ αα22csc cot 1=+(二)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

1、倒数关系对角线上两个函数互为倒数; 2、商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。

)。

由此,可得商数关系式。

3、平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

二、诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

(一)常用的诱导公式1、公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:z k k ∈=+,sin )2sin(ααπ z k k ∈=+,cos )2cos(ααπz k k ∈=+,tan )2tan(ααπ z k k ∈=+,cot )2cot(ααπ z k k ∈=+,sec )2sec(ααπ z k k ∈=+,csc )2csc(ααπ2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系:ααπsin )sin(-=+ ααπcos )cos(-=+ααπtan )tan(=+ ααπcot )cot(=+ ααπsec )sec(-=+ ααπcsc )csc(-=+3、公式三:任意角α与 -α的三角函数值之间的关系:ααsin )sin(-=- ααcos )cos(=-ααtan )tan(-=- ααcot )cot(-=- ααsec )sec(=- ααcsc )csc(-=-4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:ααπsin )sin(=- ααπcos )cos(-=-ααπtan )tan(-=- ααπcot )cot(-=- ααπsec )sec(-=- ααπcsc )csc(=-5、公式五:利用公式一和公式三可以得2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)= cosα tan (2π-α)=-tanα cot (2π-α)=-cotα sec (2π—α) = secα csc (2π—α) =—cscα6、公式六:2π+α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)=-sinα tan (2π+α)=-cotα cot (2π+α)=-tanαsec (2π+α) =—cscα csc (2π+α) = secα7、公式七:2π-α与α的三角函数值之间的关系:sin (2π-α)= cosα cos (2π-α)= sinαtan (2π-α)= cotα cot (2π-α)= tanα sec (2π—α) = cscα csc (2π—α) = secα8、推算公式:23π+α与α的三角函数值之间的关系:sin (23π+α)=-cosα cos (23π+α)= sinα tan (23π+α)=-cotα cot (23π+α)=-tanαsec (23π+α) = cscα csc (23π+α) =—secα 9、推算公式:23π—α与α的三角函数值之间的关系:sin (23π-α)=-cosα cos (23π-α)=-sinα tan (23π-α)= c otα cot (23π-α)= tanα sec (23π-α) =—cscα csc (23π—α) =—secα诱导公式记忆口诀:“奇变偶不变,符号看象限”。

三角函数公式及其记忆方法

三角函数公式及其记忆方法

三角函数公式及其记忆方法一、同角三角函数的基本关系式 (一)基本关系1、倒数关系1cot tan =⋅αα 1csc sin =⋅αα 1sec cos =⋅αα 2、商的关系αααtan cos sin = αααtan csc sec = αααcot sin cos = αααcot sec csc = 3、平方关系1cos sin 22=+αα αα22sec tan 1=+ αα22csc cot 1=+(二)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

1、倒数关系对角线上两个函数互为倒数; 2、商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。

)。

由此,可得商数关系式。

3、平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

二、诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

(一)常用的诱导公式1、公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:z k k ∈=+,sin )2sin(ααπ z k k ∈=+,cos )2cos(ααπz k k ∈=+,tan )2tan(ααπ z k k ∈=+,cot )2cot(ααπ z k k ∈=+,sec )2sec(ααπ z k k ∈=+,csc )2csc(ααπ2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系:ααπsin )sin(-=+ ααπcos )cos(-=+ααπtan )tan(=+ ααπcot )cot(=+ ααπsec )sec(-=+ ααπcsc )csc(-=+3、公式三:任意角α与 -α的三角函数值之间的关系:ααsin )sin(-=- ααcos )cos(=-ααtan )tan(-=- ααcot )cot(-=- ααsec )sec(=- ααcsc )csc(-=-4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:ααπsin )sin(=- ααπcos )cos(-=-ααπtan )tan(-=- ααπcot )cot(-=- ααπsec )sec(-=- ααπcsc )csc(=-5、公式五:利用公式一和公式三可以得2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)= cosα tan (2π-α)=-tanα cot (2π-α)=-cotα sec (2π—α) = secα csc (2π—α) =—cscα6、公式六:2π+α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)=-sinα tan (2π+α)=-cotα cot (2π+α)=-tanαsec (2π+α) =—cscα csc (2π+α) = secα7、公式七:2π-α与α的三角函数值之间的关系:sin (2π-α)= cosα cos (2π-α)= sinαtan (2π-α)= cotα cot (2π-α)= tanα sec (2π—α) = cscα csc (2π—α) = secα8、推算公式:23π+α与α的三角函数值之间的关系:sin (23π+α)=-cosα cos (23π+α)= sinα tan (23π+α)=-cotα cot (23π+α)=-tanαsec (23π+α) = cscα csc (23π+α) =—secα 9、推算公式:23π—α与α的三角函数值之间的关系:sin (23π-α)=-cosα cos (23π-α)=-sinα tan (23π-α)= c otα cot (23π-α)= tanα sec (23π-α) =—cscα csc (23π—α) =—secα诱导公式记忆口诀:“奇变偶不变,符号看象限”。

三角函数公式及其记忆方法

三角函数公式及其记忆方法

三角函数公式及 其记忆方式一、同角三角函数的基本关系式(一)基本关系1、倒数关系2、商的关系3、平方关系(二)同角三角函数关系六角形记忆法构造以 " 上弦、中切、下割;左正、右余、中间 1" 的正六边形为模型。

1、倒数关系对角线上两个函数互为倒数;2、商数关系六边形任意一极点上的函数值等于与它相邻的两个极点上函数值的乘积。

(首若是两条虚线两端的三角函数值的乘积,下面 4 个也存在这种关系。

)。

由此,可得商数关系式。

3、平方关系在带有阴影线的三角形中,上头两个极点上的三角函数值的平方和等于下面极点上的三角函数值的平方。

二、引诱公式的本质所谓三角函数引诱公式,就是将角n ·( π/2) ±α的三角函数转变成角α 的三角函数。

(一)常常使用的引诱公式1、公式一:设 α 为任意角,终边同样的角的一致三角函数的值相当 :2、公式二:α 为任意角,π +α 的三角函数值与 α 的三角函数值之间的关系 :3、公式三:任意角 α 与 - α 的三角函数值之间的关系:4、公式四:利用公式二和公式三可以获取 π - α 与 α 的三角函数值之间的关系:5、公式五:利用公式一和公式三可以得2π - α 与 α 的三角函数值之间的关系: sin (2π-α) =-sin αcos (2π-α) =cos α tan (2π-α) =-tan αcot (2π-α) =-cot α sec(2 π—α )=sec αcsc(2 π—α )= —csc α6、公式六: π+α 与 α 的三角函数值之间的关系:2sin ( π+α) =cos αcos (π+α) =-sin α22 ππtan ( 2 +α) =-cot αcot ( 2 +α) =-tan αsec( π+α)=—csc α csc(π+α)=sec α2 27、公式七:π- α 与 α的三角函数值之间的关系: 2sin ( π-α) =cos αcos (π -α) =sinα 22tan ( π-α) =cot αcot (π-α)=tanα22 sec( π —α )=csc αcsc( π —α )=sec α28、计算公式:sin ( 3π2 +α) tan ( 3π +α) 223π+α 与 α 的三角函数值之间的关系:23π=-cos αcos (+α) =sin α2=-cot αcot ( 3π +α) =-tan α23πsec(+α)=csc α csc(3π+α)=—sec α229、计算公式: 3π—α 与 α 的三角函数值之间的关系:2sin (tan ( 3π23π-α) =- cos α cos ( 3π-α) =-sin α2-α) =cot αcot (3π-α) =tan α22sec (3π- α)= —csc α csc ( 3π —α )= —sec α22引诱公式记忆口诀:“奇变偶不变,符号看象限”。

三角函数定义与公式及记忆方法大全

三角函数定义与公式及记忆方法大全

cos3 4cos3 3cos 4cos cos(60。- ) cos(60。 )
tan 3

3 tan tan3 1 3 tan2

tan
tan(60。- ) tan(60。 )
4
sin 4 4(cos sin (2sin2 1))
三角函数和差化积公式快速记忆口诀:
正加正,正在前。正减正,余在前。余加余,余并肩。余减余,余不见,负号很讨厌。
7、积化和差公式
5
sin cos 1 [sin( ) sin( )] 2
cos sin 1 [sin( ) sin( )] 2
8、推算公式: 3 与 的三角函数值之间的关系: 2
sin(3 ) -cos 2
cos(3 ) sin 2
tan(3 ) -cot 2
cot(3 ) - tan 2
sec(3 ) csc 2
csc(3 ) -sec 2
������ ������������������ ������ = ������������ ������������������ ������ = ������
������ ������������������ ������ = ������������ ������������������ ������ = ������������ ������������������ ������ = ������
构造以"上弦、中切、下割;左正、右余、中间 1"的正六边形为模型。 1、倒数关系 对角线上两个函数互为倒数; 2、商数关系
六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积,下面 4 个也存在这种关系。)。由 此,可得商数关系式。

三角函数记忆口诀

三角函数记忆口诀

三角函数记忆口诀
三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割; 中心记上数字一,连结顶点三角形。

向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。

pi的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用; 一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

三角函数六边形记忆法

三角函数六边形记忆法

三角函数六边形记忆法
三角函数六边形记忆法是一种帮助记忆三角函数关系的方法。

这种方法通过将三角函数的关系用六边形的形式表示来帮助记忆。

六边形记忆法的六个顶点分别代表三角函数sin、cos、tan、cot、sec、csc。

在三角函数六边形中,sin和cos位于正三角形的顶点,tan和cot位于倒三角形的顶点,sec 和csc位于正方形的顶点。

sin和cos之间有关系,tan和cot之间有关系,sec和csc之间有关系。

正三角形和倒三角形是对称的,正方形和正方形之间也是对称的。

通过这种方法可以帮助我们记忆三角函数的关系和相互之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从俞诗秋的文章修改而来,原来的口诀不太好记
原文:三角函数双曲函数及其导数积分公式的六边形记忆法
三角函数及其导数积分公式的六边形记忆法
2. 三角函数的定义
[三角函数的定义和符号变化] 名称 正弦
余弦
正切 余切
正割 余割
定 义
r
y
==斜边对边αsin
r
x ==斜边邻边αcos
x
y
==
邻边对边αtan
y
x ==对边邻边αcot
x
r ==邻边斜边αsec
y
r ==对边斜边αcsc
符 号 与
增 减 变 化
Ⅰ +↑ +↓ +↑ +↓ +↑ +↓ Ⅱ +↓ -↓ -↑ -↓ -↑ +↑ Ⅲ -↓ -↑ +↑ +↓ -↓ -↑ Ⅳ
-↑
+↑
-↑
-↓
+↓
-↓
1
sinx
cosx
cscx
cotx
secx
tanx
+
-
1. 三角函数的记忆:
●对角线倒数:对角线互为倒数sinx=1/cscx,指在三角函数六边形
中,过中点且连接两个顶点的线段中,两端点处的函数乘积等于中间的数1,即sinxcscx=1, cosxsecx=1, tanxcotx=1.
●倒三角形平方和:指在三角函数六边形中,每个有阴影的三角形下
顶处函数的平方等于上面两个顶处函数平方的和.即sin2x+cos2x=1, tan2x+1=sec2x, cot2x+1=csc2x.
●邻点积:指在三角函数六边形中,任何一个顶处的函数等于相邻两
个顶处函数的乘积.即sinx=tanxcosx, cosx=sinxcotx, cotx=cosxcscx, cscx= cotxsecx, secx=cscxtanx, tanx=secxsinx.
2.三角函数求导数
图中左面“+”号表示六边形左面三个顶角处函数的导数为正值,右面“-”号表示六边形右面三个顶角处函数的导数为负值。

●上互换:指在三角函数求导六边形中,上顶角处函数的导数为另一
上顶角处函数的导数.即:(sinx)’=cosx, (cosx)’=-sinx。

●中下2:指在三角函数求导六边形中,中间顶角处函数的导数为对
应边下顶角处函数导数的平方.即:(tanx)’=sec2x,(cotx)’=-csc2x。

●下中下:指在三角函数求导六边形中,下顶角处函数的导数为对应
边中间顶角处函数的导数与下顶角处函数的导数之乘积。

即:(secx)’=tanxsecx,(cscx)’=-cotxcscx。

3.三角函数求积分
由于积分是导数的逆运算,我们立即可以有求积分记忆口诀:
上互换,下2中,中下下。

注:原函数的符号视其在相应六边形的位置而定。

例如:
∫cosxdx=sinx+c
例1求∫secxdx.
步骤:(a)与secx有关的积分口诀是“下2中”,
(b)通过调整以及从六边形中可知,
∫secxdx=∫(secx)2dx
secx =
√1+tan2x
=ln|tanx+√1+tan2x|+c=
ln|tanx+ secx|+c。

相关文档
最新文档