小学四年级奥数知识点梳理

合集下载

小学奥数知识点

小学奥数知识点

小学奥数知识点小学奥数知识点小学奥数是指参加全国小学数学奥赛的学生,他们需要掌握一些数学的基础知识和解题技巧。

下面是一些小学奥数常见的知识点:1. 数的认识:认识0-9的数字,知道数字的大小关系和位置价值。

学生需要掌握数字的读法和写法,以及数字之间的加减乘除运算。

2. 计算:学生需要掌握基本的加减乘除法,包括整数的计算和小数的计算。

他们需要学会口算和写算式,能够熟练地进行简单的运算。

3. 分数:学生需要学会认识和运算基本的分数,包括分数的加减乘除运算和带分数的运算。

他们需要知道分数的意义和表示方法,并能够将分数转化为小数和百分数。

4. 小数:学生需要学会认识和运算小数,包括小数的读法和写法,以及小数的加减乘除运算。

他们需要掌握小数和分数之间的转化,并能够将小数进行四舍五入。

5. 数据与图表:学生需要学会统计和分析数据,包括图表的读取和制作。

他们需要能够解决有关数据的问题,比如平均数、中位数和众数的计算,以及数据的比较和排序。

6. 几何:学生需要学会认识几何图形,包括点、线、面和体。

他们需要掌握几何图形的基本性质和分类方法,能够进行几何图形的比较、分析和构造。

7. 逻辑推理:学生需要学会进行逻辑推理和解决逻辑问题。

他们需要学会找出规律和推断结论,能够进行类比和推理,以及解决一些逻辑难题。

8. 排列组合:学生需要学会进行排列和组合的计算。

他们需要掌握基本的排列和组合原则,能够解决与排列组合相关的问题,比如有关种类、选择和次序的问题。

9. 等式与方程:学生需要学会解决等式和方程的问题。

他们需要掌握等式和方程的基本概念和性质,能够解决一些简单的一元一次方程和一元一次不等式。

10. 数学思维:学生需要培养数学思维和解决问题的能力。

他们需要学会分析和解决数学问题,能够运用所学的知识和技巧,寻找解题的方法和策略。

以上是小学奥数常见的一些知识点,学生在备战小学奥数的时候可以重点学习和巩固这些知识点。

通过不断地练习和思考,学生可以提高数学能力,成为一个优秀的小学奥数选手。

四年级下册北师大版数学《奥运中的数学》重点知识

四年级下册北师大版数学《奥运中的数学》重点知识

四年级下册北师大版数学《奥运中的数学》重点知识
1. 加减乘除口诀:包括2~9的乘法口诀、加法口诀、减法口诀、除法口诀等基本口诀。

2. 数字的读写:掌握数字0~9999的英文读法和写法。

3. 数量的比较:通过图像、数字,对大小进行比较,并使用“大于”、“小于”、“等于”等关系符号表示大小。

4. 三角形的认识:通过观察、分析和比较,理解三角形的概念和性质,包括三角形的种类、角度、边长等。

5. 平行四边形的认识:通过观察、分析和比较,掌握平行四边形的概念和性质,包括平行四边形的定义、判断、性质等。

6. 分数的认识:通过实物分割、图形、图像等方式,认识分数的概念和运算法则,包括分子、分母、真分数、假分数等。

7. 小数的认识:通过图像等方式,认识小数的概念和表示法,包括小数的读法、写法等。

8. 时、分、秒的认识:通过观察、分析和比较,掌握时、分、秒的概念和表示法,包括24小时制和12小时制的表示方法。

9. 世界各地的货币:通过比较和分析,认识世界各地的货币类型和兑换关系,包括人民币、美元、欧元、日元等。

10. 体育比赛中的数学:通过奥运比赛中的实际例子,理解数学在运动竞赛中的应用,包括运动员的速度、距离、分数等。

最新小学四年级奥数知识点

最新小学四年级奥数知识点

小学四年级奥数知识点标蓝:基础小学四年级奥数知识点1.常用特殊数的乘积25×4=100 125×8=1000625×16=10000 25×8=200 125×4=500 125×3=小学四年级奥数知识点3=1001 37×3=1112.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家.加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号.100+(21+58)=100+21+ 58100-(21+58)=100-21- 583.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法.除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律.积的变化规律:同扩同缩法.同级运算时,如果有交换数的位置,应该注意符号搬家.加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号.100×(4×5)=100×4×5100÷(4÷5)=100÷4÷54.最大最小1、解答最大最小的问题,可以进行枚举比较.在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值.2、运用规律.(1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为0)时,乘积最大.3、考虑极端情况.如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题”等.5.比较大小估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的“放大”或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度的方法有两条:一是分组(分段),并尽可能使每组所对应的标准相同;另一种方法是按近似数乘除法计算法则,比要求的精确度多保留一位,进行计算.6.平均数求平均数必须知道总数和份数,常用公式:平均数=总数÷份数份数=总数÷平均数总数=平均数×份数(总数=所有数之和)7.余数问题(周期问题,个位数是几)闰年日期周期一个带余数除法算式包含4个数:被除数÷除数=商……余数.相互关系还有:被除数=除数×商+余数,或(被除数-余数)÷除数=商.余数小于除数.周期现象:事物在运动变化的过程中,某些特征有规律循环出现.周期:我们把连续两次出现所经过的时间叫周期.问题类型:找图形(图形计数),找字符,找数字(统计),年月日、星期几问题,个位数是几.关键问题:确定循环周期.闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除.平年:一年有365天.①年份不能被4整除;②如果年份能被100整除,但不能被400整除.例题1小张在计算有余数的除法时,把被除数113错写成131,结果商比原来多3,但余数恰巧相同.那么该题的余数是多少?解析:被除数增加了131-113=18,余数相同,但结果的商是3,所以,除数应该是18÷3=6.又因为113÷6的余数是5,所以该题的余数也是5.例题2:1991年1月1日是星期二,(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?解析:(1)一个星期是7天,因此,7天为一个循环,这类题在计算天数时,可以采用“算尾不算头”的方法.(22-1)÷7=3,没有余数,该月22日仍是星期二;(28-1)÷7=3…6,从星期三开始(包括星期三)往后数6天,28日是星期一. (2)1991年、1993年是平年,1992年是闰年,从1991年1月2日到1994年1月1日共1096天,1096÷7=156…4,从星期三开始往后数4天,1994年1月1日是星期六.8.奇数与偶数加法:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数减法:偶数-偶数=偶数奇数-奇数=偶数偶数-奇数=奇数乘法:偶数×偶数=偶数奇数×奇数=奇数偶数×奇数=偶数9.等差数列(简算数列金字塔找规律)数列是指按一定规律顺序排列成一列数.如果一个数列中从第二个数开始,相邻两个数的差都相等,我们就把这样的一列数叫做等差数列,等差数列中的每一个数都叫做项,第一个数叫第一项,通常也叫“首项”,第二个数叫第二项,第三个数叫第三项……最后一项叫做“末项”.等差数列中相邻两项的差叫做“公差”,等差数列中项的个数叫做“项数”.公式:和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1第n项=首项+(n-1)×公差 an = a1+(n-1)d关键问题:确定已知量和未知量,确定使用的公式;例题1:有一个数列:4、7、10、13、…、25,这个数列共有多少项?解析:仔细观察可以发现这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答.由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得出答案.例题2:有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?解析:仔细观察可以发现这是一个以2为首项,以公差为5的等差数列,根据等差数列的通项公式即可解答,由等差数列的通项公式:第几项=首项+(项数-1)×公差,可得出答案.例题3:计算2+4+6+8+…+98的和.解析:仔细观察该数列,公差为2,首项是2,末项是100,所以可以用等差数列的求和公式来求.总和=(首项+末项)×项数÷210.和倍问题己知几个数的和及这几个数之间的倍数关系,求这几个数的应用题叫和倍问题.解答和倍问题,一般是先确定较小的数为标准数(或称一倍数),再根据其他几个数与较小数的倍数关系,确定总和相当于标准数的多少倍,然后用除法求出标准数,再求出其他各数,最好采用画线段图的方法.和倍公式:和÷(倍数+1)=小数11.差倍问题己知两个数的差及它们之间的倍数关系,求这两个数的应用题叫差倍问题.解答差倍问题,一般以较小数作为标准数(一倍数),再根据大小两数之间的倍数关系,确定差是标准数的多少倍,然后用除法先求出较小数,再求出较大数.解答这类问题,先画线段图,帮助分析数量关系.差倍公式:差÷(倍数-1)=小数12.和差问题和差问题是根据大小两个数的和与两个数的差求大小两个数各是多少的应用题.解答和差问题的基本公式是:(和-差)÷2=较小数(和+差)÷2=较大数13.年龄问题己知两个人或几个人的年龄,求他们年龄之间的某种数量关系;或己知某些人年龄之间的数量关系,求他们的年龄等,这种题称为年龄问题.年龄问题的特点是:一般用和差或者和倍问题的方法解答.(1)两人的年龄之差是不变的,称为定差.(2)两个人的年龄同时都增加同样的数量.(3)两个年龄之间的倍数关系,年龄增长,倍数缩小.年龄问题的解题方法是:几年后=大小年龄之差÷倍数差-小年龄几年前=小年龄-大小年龄差÷倍数差14.植树问题(排方阵)周期在首尾不相接的路线上植树,段数与棵数关系可分为4类:(1)两端都种树:段数=棵数-1(2)一端种一端不种:段数=棵数(3)两端都不种:段数=棵数+1(4)在首尾相接的路线上种树(如圆、正方形、闭合曲线等):段数=棵棵距×段数=总长关键问题:确定所属类型,从而确定棵数与段数的关系15.盈亏问题(可以直接套公式,注意理解题目即可)一盈一亏一盈一正好一亏一正好两盈两亏通常是比较法和对应法结合使用.公式是:(同盈同亏用减法,一亏一盈用加法)即:两次分配结果差÷两次分配数差=人数(份数)基本特点:对象总量和总的组数是不变的.关键问题:分析差量关系,确定对象总量和总的组数.16.还原问题(逆推问题)还原问题又叫逆推问题.己知一个数的结果,再经过逆运算反求原数,叫做还原问题.解决这类题要从结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算(即变加为减,变减为加,变乘为除,变除为乘).解题关键:在从后往前推算的过程中,每一步都是做同原来相反的运算,原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用乘.17.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差.基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差.18.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示.关键问题:根据题目中的条件确定并求出单一量.19.定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算.基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算.关键问题:正确理解定义的运算符号的意义.注意事项:①新的运算不一定符合运算规律,特别注意运算顺序.②每个新定义的运算符号只能在本题中使用.20.加法乘法原理和几何计数(排列组合)加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法.关键问题:确定工作的分类方法.基本特征:每一种方法都可完成任务.乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法.关键问题:确定工作的完成步骤.基本特征:每一步只能完成任务的一部分.①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数.例题1:从天津到上海的火车,上午、下午各发一列;也可以乘飞机,有3个不同的航班,还有一艘轮船直达上海.那么从天津到上海共有多少种不同的走法?解析:我们把坐火车看成第一类走法,有2种不同的选法;乘飞机是第二类走法,有3种不同的选法;坐轮船为第三类走法,只有1种选法.无论哪一种选法,都可以直接完成这件事.例题2:用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法?解析:运用加法原理,把组成方法分成三大类:①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角. ②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角.③取三种人民币组成1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的.21.逻辑推理(举例子倒推列表)基本方法简介:①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的.例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数.②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析.列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断.③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态.例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识.④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件.⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决. 1.等价条件的转换2.列表法3.对阵图:竞赛问题,涉及体育比赛常识4.假设问题假设法是解答应用题时经常用到的一种方法.所谓“假设法”就是依据题目中的己知条件或结论作出某种设想,然后按照己知条件进行推算,根据数量上出现的矛盾,再适当调整,从而找到正确答案.例1:公路上按一路纵队排列着五辆大客车.每辆车的后面都贴上了该车的目的地的标志.每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志.调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断.他先让第三个司机猜猜自己的车是开往哪里的.这个司机看看前两辆车的标志,想了想说“不知道”.第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道.第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地.请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?解析:根据第三辆车司机的“不知道”,且已知条件只有两辆车开往A市,说明第一、二辆车不可能都开往A市.(否则,如果第一、二辆车都开往A市的,那么第三辆车的司机立即可以断定他的车一定开往B市).再根据第二辆车司机的“不知道”,则第一辆车一定不是开往A市的.(否则,如果第一辆车开往A市,则第二辆车即可推断他一定开往B市).运用以上分析推理,第一辆车的司机可以判断,他一定开往B市.例题2:李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴. 第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹. 请你判断,小华、小红和小林各是谁的妹妹.解析:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了. 第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红.22.方阵问题很多的人或物按一定条件排成正方形(简称方阵),再根据己知条件求总人数,这类题叫方阵问题.在解决方阵问题时,要搞清方阵中一些量(如层数,最外层人数,最里层人数,总人数)之间的关系.方阵问题的基本特点是:(1)方阵不管在哪一层,每边的人数都相同,每向里面一层,每边上的人数减少2,每一层就少8.(2)每层人数=(每边人数-1)×4(3)每边人数=每层人数÷4+1(4)外层边长数-2=内层边长数(5)实心方阵人数=每边人数×每边人数23.相遇与追及问题(学校同步提高)路程=速度×时间时间=路程÷速度速度=路程÷时间.追及问题运动的物体或人同向而不同时出发,后出发的速度快,经过一段时间追上先出发的,这样的问题叫做追及问题,解答追及问题的基本条件是“追及路程”和“速度差”.追及问题的公式是:追及时间=追及路程÷速度差追及路程=速度差×追及时间速度差=追及路程÷追及时间相遇问题它的特点是两个运动物体或人,同时或不同时从两地相向而行,或同时同地相背而行,要解答相遇问题,掌握以下数量关系:速度和×相遇时间=路程路程÷速度和=相遇时间速度÷相遇时间=速度和24.幻方与数阵幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等.这相相等的和叫“幻和”.两种方法:奇阶:1、九子排列法2、罗伯法,3、巴舍法.偶阶:1、对称交换法2、圆心方阵法.数阵有三种基本类型:(1)封闭型,(2)辐射型(3)综合型解数阵问题一般思路是从和相等入手,确定重处长使用的中心数,是解答解数阵类型题的解题关键.一般答案不唯一.例题1:把1 ~ 6六个数分别填入图中的六个圆圈中,使每条边上三个数的和都等于9.解析:每边上三个数的和都等于9,三条边上数的和等于9×3=27,27-(1+2+3+4+5+6)=6.所以,三个顶点处被重复加了一次的三个数的和为 6.在 1 ~ 6,只有1+2+3=6,故三个顶点只能填1、2、3.这样就得到一组解:1、5、3;1、6、2;3、4、2.例题2:三阶幻方解法“萝卜”法一居上行正中央依次填在右上角上出框时下边填右出框时左边放斜出框时下边放(出角重复一个样)排重便在下格填25.剪纸问题公式:2对折后剪的次数+1=段数.26.一笔画和多笔画(1)凡是由偶点组成的连通图,一定可以一笔画成;画时可以任一偶点为起点,最后能以这个点为终点画完此图.(2)凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画完;画时必须以一个奇点为起点,另一个奇点为终点.(3)多笔画定理有2n(n>1)个奇点的连通图形,可以用n笔画完(彼此无公共线),而且至少要n次画完.27.100内质数:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 28.行船问题船在江河里航行,前进的速度与水流动的速度有关系.船在流水中行程问题,叫做行船问题(也叫流水问题),船顺流而下的速度和逆流而上的速度与船速、水速的关系是:顺水速度=船速+水速逆水速度=船速-水速由于顺水速度是船速与水速的和,逆水速度是船速与水速的差,因此行船问题就是和差问题,所以解答行船问题有时需要驼用和差问题的数量关系.船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2因为行船问题也是行程问题,所以在行船问题中也反映了行程问题的路程、速度与时间的关系.顺水路程=顺水速度×时间逆水路程=逆水速度×时间例:某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时.已知水速为每小时3千米.此船从乙港返回甲港需要多少时?解:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的路程是:18×8=144(千米)此船逆水航行的速度是:15-3=12(千米/小时)此船从乙港返回甲港需要的时间是:144÷12=12(小时)综合算式:(15+3)×8÷(15-3)=144÷12=12(小时)29.过桥问题过桥问题的一般数量关系是:路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速车长=车速×通过时间-桥长桥长=车速×通过时间-车长例:一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?解析:这道题求的是通过时间.根据数量关系式,我们知道要想求通过时间,就要知道路程和速度.路程是用桥长加上车长.火车的速度是已件.总路程:6700+140=6840 (米)通过时间:6840÷400=17.1 (分钟)答:这列火车通过长江大桥需要17.1分钟.30.抽屉原理抽屉原则一:把n+1(或更多)个苹果放到n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果.抽屉原则二:把(m×n+1)个(或更多个)苹果放进n个抽屉里,必须一个抽屉里有(m+1)个(或更多的)苹果.说明:应用抽屉原则解题,要从最坏的情况去思考.例题:黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的2双筷子(每双筷子两根的颜色应一样),问至少要取材多少根才能保证达到要求?解析:这道题并不是品种单一,不能够容易地找到抽屉和苹果,由于有三种颜色的筷子,而且又混杂在一起,为了确保取出的筷子中有2双不同颜色的筷子,可以分两步进行.第一步先确保取出的筷子中有1双同色的;第二步再从余下的筷子中取出若干根保证第二双筷子同色. 首先,要确保取出的筷子中至少有1双是同色的,我们把黑色、白色、黄色三种颜色看作3个抽屉,把筷子当作苹果,根据抽屉原则,只需取出4根筷子即可.其次,再考虑从余下的20根筷子中取多少根筷子才能确保又有1双同色筷子,我们从最不利的情况出发,假设第一次取出的4根筷子中,有2根黑色,1根白色,1根黄色.这样,余下的20根筷子,有6根黑色的,7根白色的,7根黄色的,因此,只要再取出7根筷子,必有1根是白色或黄色的,能与第一次取出的1根白色筷子或黄色筷子配对,从而保证有2双筷子颜色不同,总之,在最不利的情况下,只要取出4+7=11根筷子,就能保证达到目的.解题方法(结合杂题的处理)(1)假设法(尝试、尝试尝试)(2)推理法(推导、找关系)(3)代换法(替换)(4)画图法(画线段、列表格)(5)列表法(6)消元法(7)倒推法(8)极值法(9)设数法(10)整体法(11)排除法11 / 11。

小学奥数所有知识点大汇总(最全)

小学奥数所有知识点大汇总(最全)

1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

四年级奥数知识点归纳

四年级奥数知识点归纳

四年级奥数知识点归纳一、数与计算1、整数四则运算这是四年级奥数的基础,包括加、减、乘、除的运算规则,以及它们的混合运算。

要熟练掌握运算顺序,先乘除后加减,有括号先算括号内的。

同时,要学会运用运算定律进行简便计算,如加法交换律、结合律,乘法交换律、结合律和分配律。

例如:计算 25×44,可以将 44 拆分成 4×11,然后先计算 25×4=100,再乘以 11 得到 1100,这样就简便多了。

2、小数的认识与计算了解小数的意义和性质,能够进行小数的加减法计算。

要注意小数点的对齐,计算方法与整数加减法类似。

比如:35 +28,先将小数点对齐,然后从低位开始相加,得到63。

3、整数和小数的巧算通过观察数字的特点,运用凑整、拆分等方法进行简便计算。

例如:计算 99×78 + 78,可以将 78 提取出来,变成 78×(99 + 1)= 7800。

二、图形与几何1、角的度量认识角的分类,如锐角、直角、钝角、平角和周角,掌握角的度量方法,会用量角器测量角的度数。

2、三角形了解三角形的特性,如稳定性。

掌握三角形的分类,按角分有锐角三角形、直角三角形和钝角三角形;按边分有等边三角形、等腰三角形和不等边三角形。

同时,要会计算三角形的周长和面积。

比如:一个等腰三角形的腰长是 5 厘米,底边长是 6 厘米,它的周长就是 5×2 + 6 = 16 厘米。

3、平行四边形和梯形认识平行四边形和梯形的特征,知道平行四边形具有不稳定性,会计算它们的面积。

例如:一个平行四边形的底是 8 厘米,高是 5 厘米,面积就是 8×5 = 40 平方厘米。

三、应用题1、行程问题包括相遇问题和追及问题。

相遇问题的基本公式是:路程=速度和×相遇时间;追及问题的基本公式是:路程差=速度差×追及时间。

比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度是每小时 5 千米,乙的速度是每小时 4 千米,经过 3 小时相遇,A、B 两地的距离就是(5 + 4)×3 = 27 千米。

小学数学奥数知识点全面梳理

小学数学奥数知识点全面梳理

小学数学奥数知识点全面梳理【小学数学奥数知识点全面梳理】在小学数学学科中,奥数是一项非常重要的内容之一,它旨在培养学生的逻辑思维能力和解决问题的能力。

本文将全面梳理小学数学奥数的知识点,帮助学生加深对这一领域的理解。

一、计数与排列组合计数是奥数的基础,它包含了统计、概率等概念。

在小学数学中,我们需要掌握基本的计数原理,如“乘法原理”和“加法原理”。

此外,排列与组合也是重要的奥数知识点,它涉及到确定不同排列和组合的方法和公式。

二、数论与整数数论是数学的一个重要分支,它主要研究整数的性质与规律。

小学奥数中的数论知识主要包括整数的性质、质数与合数、倍数与约数等等。

通过学习这些知识点,可以帮助学生提高解决整数问题的能力。

三、图形与几何图形与几何是小学奥数中的另一个重要内容。

学生需要掌握基本的图形,如三角形、正方形、长方形等,并深入了解它们的性质和关系。

此外,对平面图形的变换操作,如翻折、旋转和平移等,也是奥数的重点内容之一。

四、函数与方程在小学奥数中,学生不仅需要学习基本的算式运算,还需要理解函数和方程的概念。

学生需要了解一次方程、二次方程等,以及解方程的常见方法和技巧。

通过学习这些内容,可以提高学生的代数思维能力和问题解决能力。

五、数列与等差数列数列是小学奥数中常见的内容之一,它是由一系列有规律的数按一定顺序排列而成的。

数列的概念和性质对于学生来说非常重要,而等差数列则是数列中的一种特殊形式。

学生需要理解等差数列的定义、性质和求和公式,并能够熟练应用于解决相关问题。

六、概率与统计概率与统计也是小学奥数中的一部分内容,它主要涉及到对数据的处理和分析。

在学习概率时,学生需要掌握事件的基本概念、概率的计算方法和概率的性质。

在统计方面,学生需要了解数据的收集和整理方法,并能够运用图表等形式展示数据。

综上所述,小学数学奥数的知识点涵盖了计数与排列组合、数论与整数、图形与几何、函数与方程、数列与等差数列以及概率与统计等多个领域。

小学生四年级奥数知识点汇总

小学生四年级奥数知识点汇总

小学生四年级奥数知识点汇总1.圆周率常取数据3.14 ×1=3.14 3.14 ×2=6.28 3.14 ×3=9.42 3.14 ×4=12.56 3.14 ×5=15.73.15 ×6=18.84 3.14 7×=21.98 3.14 8×= 25.12 3.14 9×=28.262.常用特别数的乘积125×8 = 1000 25×4 = 100 125×3 = 375 625×16 = 10000 7×11×13=1001 25 ×8=200 125×4=500 37 ×3=1113.100 内质数974.单位换算1 米=3 尺=3.2808 英尺 =1.0926 码 1 公里 =1000 米=2 里 1 码=3 英尺=36英寸 1 海里 =1852米=3.704里=1.15 英里 1 平方公里 =1000000 平方米 =100 公顷 =4 平方里 =0.3861 平方英里 1 平方米 =100 平方分米=10000 平方厘米1 公顷=100 公亩=15 亩=2.4711 英亩1 立方米=1000 立方分米 =1000000 立方厘米 1 立方米 =27 立方尺 =1.308 立方码=35.3147 立方英尺 1 吨=1000 公斤 =1000 千克 1 公斤 =1000 克=2斤(市制) =2.2046 磅5.加减法运算性质同级运算时,假如互换数的地点,应注意符号迁居。

加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后边添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后边添括号,括号里面要变号。

6.乘除法运算性质乘法中性质:(1)乘法互换律( 2)乘法联合律(3)乘法分派律(4)乘法性质( 5)积的变化规律:一扩一缩法。

最全小学奥数知识要点

最全小学奥数知识要点

最全小学奥数知识要点同学们,小学奥数可以分为七大板块:计算、计数、数论、几何、应用题、行程和组合。

在这七大板块中,必须掌握的是三十六个知识点。

下面是这些知识点的清单:2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设某种现象存在(甲和乙一样或者乙和甲一样);②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

小学四年级奥数讲义

小学四年级奥数讲义

小学四年级奥数讲义需要牢背的基本概念1、加法中的巧算:加法交换律: a+b =b+a 加法结合律:a+b+c=a+(b+c)减法和加、减混合运算中的巧算:(1)一个数连续减去几个数,等于减去这几个数的和.相反,一个数减去几个数的和,等于连续减去这几个数.即a-b—c=a-(b+c) a—(b+c) =a-b-c(2)在加、减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。

如:a—b+c=a+c—b(3)加、减混合运算中去括号(或添括号)时,如果括号前面是“-”号,那么括号里“—”变“+”,“+”变“-”;如果括号前面是“+"号,那么括号里的符号不变。

如a-(b-c)=a-b+c,a+(b—c)=a+b-c如果两个数的和恰好可以凑成整十、整百、整千……的数,那么其中一个数叫做另一个数的“互补数”。

2、乘法中的巧算:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c、(a-b)×c=a×c—b×c3、除法中的巧算:(1)除法交换律:a÷b÷c=a÷c÷b(2)根据“被除数和除数同时扩大或缩小相同的倍数,商不变”的规律,进行巧算。

公式:如果a÷b=c 则 (a×n)÷(b×n)=c (a÷n)÷(b÷n)=cn≠0(3)根据“一个数除以两个因数的积等于一个数连续除以这两个因数”的规律,进行巧算.公式:a÷(b×c)= a÷b÷c(4)根据“一个数除以两个因数的商等于一个数除以第一个因数乘以第二个因数"公式:a÷(b÷c)= a÷b×c(5)除法分配律:(a + b)÷c = a÷c + b÷c a÷c + b÷c=(a + b)÷c4、你知道巧算中有几对好朋友吗?请写出来: 2×5=10 4×25=100 8×125=100016×625=10000 3×37=111 7×11×13=1001 37037×3=10101 5、“头同尾合十”:头×(头+1)×100+尾×尾“尾同头合十":(头×头+尾)×100+尾×尾6、平方差公式: a2-b2=(a+b)×(a—b)7、配对求和,也就是等差数列求和。

小学四年级奥数知识点

小学四年级奥数知识点

小学四年级奥数知识点国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。

下面是店铺整理的关于四年级奥数知识点,欢迎大家参考!数论1. 奇偶性问题奇+奇=偶奇×奇=奇奇+偶=奇奇×偶=偶偶+偶=偶偶×偶=偶2. 位值原则形如:abc =100a+10b+c3. 数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的.倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4. 整除性质① 如果c|a、c|b,那么c|(a b)。

② 如果bc|a,那么b|a,c|a。

③ 如果b|a,c|a,且(b,c)=1,那么bc|a。

④ 如果c|b,b|a,那么c|a.⑤ a个连续自然数中必恰有一个数能被a整除。

5. 带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a 除以b的不完全商(亦简称为商)。

用带余数除式又可以表示为a÷b=q……r, 0≤r6. 唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1 × p2 ×...×pk7. 约数个数与约数和定理设自然数n的质因子分解式如n= p1 × p2 ×...×pk 那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )8. 同余定理① 同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

小学四年级奥数知识点

小学四年级奥数知识点

小学四年级奥数知识点【小学四年级奥数知识点】奥数,即奥林匹克数学竞赛,是指专门针对小学生的一项数学竞赛活动。

它的目的是培养学生的逻辑思维能力、解决问题的能力和数学创新思维。

对于小学四年级的学生来说,掌握一些基础的奥数知识点有助于提升数学水平。

本文将介绍几个适合四年级学生的奥数知识点。

一、倍数和约数倍数是指一个数可以被另一个数整除,而约数则是指能整除一个数的所有数。

在奥数竞赛中,对倍数和约数的掌握非常重要。

例如,求一个数的倍数时,可以通过不断地加上这个数来得到。

而求一个数的约数时,可以列举所有可以整除这个数的数。

在解答问题时,我们经常需要用到倍数和约数的概念,因此掌握这些基本概念对于解题非常有帮助。

二、分数的计算在奥数竞赛中,分数的计算也是一个重要的考点。

学生需要掌握分数的加减乘除运算,以及分数与整数的混合运算。

比如,学生需要知道分数的相加减时,要先找到分母的公倍数,然后根据公倍数的分母进行计算。

同时,学生还需要学会将分数化简为最简形式,如将分子和分母的公约数约掉。

三、几何形状几何形状是奥数竞赛中的另一个考点。

学生需要熟悉常见的几何形状,如正方形、长方形、三角形、圆等,并了解它们的性质和计算方法。

比如,在计算长方形的面积时,学生需知道长方形的面积等于底边乘以高。

同时,学生还需要了解几何形状之间的关系,如正方形是长方形的特殊情况,圆的半径和直径的关系等。

四、逻辑推理逻辑推理是奥数竞赛中的一大考点,也是培养学生思维能力的重要内容。

在逻辑推理题中,学生需要根据已知条件进行推理,找出问题的解答。

这需要学生具备良好的观察力和思维灵活性。

通过做一些逻辑推理题,可以提高学生的思维能力和解题能力。

五、运算数据的估算在奥数竞赛中,运算数据的估算是一个常见的题型。

学生需要根据问题中给定的信息,对数据进行合理的估算,而不是进行精确的计算。

这需要学生能够迅速抓住问题的主要矛盾,灵活运用数字的大小关系。

培养学生估算能力不仅可以提高计算速度,还可以培养他们的数学直觉。

小学奥数知识总结

小学奥数知识总结

小学奥数知识总结奥数,全称奥林匹克数学竞赛,是一项培养学生逻辑思维和解决问题能力的数学竞赛活动。

在奥数学习中,培养学生的数学兴趣和能力是至关重要的。

下面我将为大家总结一些小学奥数中常见的知识点及解题方法。

一、四则运算四则运算是小学奥数的基础,包括加法、减法、乘法和除法。

在解决四则运算问题时,我们需要掌握运算的优先级和运算法则,例如乘法和除法的优先级高于加法和减法。

此外,还需要注意小数和分数的运算方法,可以通过化简分数、约分、通分等方法进行计算。

二、奇偶性质奇偶性质在奥数题中经常出现,我们可以通过观察数字的个位数、十位数或末几位数字来判断一个数的奇偶性。

奇数的个位数一般是1、3、5、7、9,而偶数的个位数一般是0、2、4、6、8。

利用奇偶性质,我们可以在解答问题时缩小范围,提高解题效率。

三、因数与倍数因数与倍数是小学奥数中常见的概念。

一个数可以被其他数整除的数称为该数的因数,而一个数的倍数就是可被该数整除的数。

通过寻找一个数的因数或倍数,我们可以在解决问题时找到规律或得到答案。

例如,找到一个数的因数可以用于化简分数,找到一个数的倍数可以用于求某个范围内满足条件的数。

四、数列与递推关系数列是由一系列数字按照一定规律排列组成的序列,数列问题在奥数中经常出现。

在解决数列问题时,我们需要找到数列中数字的规律,并根据规律推算出后续的数字。

递推关系是数列中数字之间的关系式。

通过观察前几个数字的差值或倍数,我们可以确定递推关系,进而求得数列中任意位置的数字。

五、面积与周长面积与周长是几何问题中的重要概念。

面积是二维图形所占的区域大小,而周长是封闭图形的边界长度。

在解决面积与周长问题时,我们需要根据给定条件,利用相应图形的公式进行计算。

例如,矩形的面积等于长乘以宽,而周长等于两倍长加两倍宽。

六、逻辑推理逻辑推理是奥数中涉及思维能力的重要部分。

在解决逻辑推理题时,我们需要运用逻辑思维来分析问题,并找到正确答案。

逻辑推理题常常与数学或图形有关,需要进行分析、比较和判断。

四年级奥数单元知识点总结

四年级奥数单元知识点总结

四年级奥数单元知识点总结一、数学基础1.数字:认识0-9999以内的整数,了解数字的大小顺序和大小比较。

掌握数字的读法和写法,可以运用数字填空或者补全。

2.加减法:掌握加法的运算规则和加法口诀,进行十以内、百以内的加减法计算。

学会用竖式进行多位数的加减法计算。

3.乘法:掌握乘法口诀,能够完成乘法口诀表的背诵和填空,了解乘法的意义和应用,进行十以内、百以内的乘法计算。

4.除法:了解除法的定义和运算规则,能够进行十以内的除法计算,理解商和余数的概念,掌握列竖式解决多位数的除法问题。

5.数的整体关系:懂得数字之间的大小比较,了解数轴和数线图,能够找出一组数字中的最大值、最小值和中间值。

6.分数:认识分数的定义和基本概念,能够读写分数,进行分数的比较和加减运算,理解分数的意义和应用。

7.小数:了解小数的概念和性质,能够读写小数,进行小数的比较和加减运算,掌握小数与分数之间的转化。

8.数学应用题:能够灵活运用所学的数学知识解决日常生活中的实际问题,包括物品的购买和交换、时间的计算和转换、长度、容积、重量等各种计量单位的转换等。

二、图形和空间1.平面图形:认识圆、正方形、长方形、三角形、梯形等各种平面图形的性质和特征,能够进行图形的辨认、分类和比较。

2.立体图形:认识立方体、长方体、圆柱体、圆锥体、球体等各种立体图形的性质和特征,能够进行立体图形的辨认、分类和比较。

3.对称与相似:了解图形的对称性和相似性,能够找出图形的中心对称轴,进行图形的对称和旋转,了解图形的相似判定和相似比例的计算。

4.空间方位:学会描述和分析平面图形和立体图形的方位关系,包括上下、前后、左右、内外等各种方位关系。

5.图形的分解和组成:了解图形的分解和组成方法,可以使用小正方体拼装立体图形,或者使用平面图形组成更复杂的图形。

6.空间的计量:能够使用尺子、量角器等工具测量平面图形和立体图形的边长、面积、体积等物理量,掌握计量单位的转换和计算。

小学四年级奥数讲义

小学四年级奥数讲义

小学四年级奥数讲义第一部分:数学基础知识1.1 自然数和整数- 自然数是指从1开始的正整数,用符号$N$表示。

- 整数是自然数和其相反数的集合,用符号$Z$表示。

1.2 加法和减法- 加法是将两个数合并在一起,得到它们的总数。

- 例如:$2 + 3 = 5$。

- 减法是从一个数中减去另一个数,得到它们的差。

- 例如:$5 - 2 = 3$。

1.3 乘法和除法- 乘法是将两个数相乘,得到它们的积。

- 例如:$2 × 3 = 6$。

- 除法是将一个数分割成若干等份,得到它们的商。

- 例如:$6 ÷ 3 = 2$。

第二部分:奥数技巧和练2.1 快速计算- 利用9的乘法法则,可以快速计算一个数乘以9的结果。

- 例如:$4 × 9 = 36$。

- 利用倍数关系,可以快速计算一个数的倍数。

- 例如:$3 × 4 = 12$。

2.2 算式变换- 利用算式的性质,可以将复杂的算式转化为简单的算式。

- 例如:$(3 + 4) × 5 = 7 × 5 = 35$。

- 利用分配律,可以将一个数拆分成两个数的和或差。

- 例如:$8 × 7 = (5 + 3) × 7 = 5 × 7 + 3 × 7 = 35 + 21 = 56$。

2.3 枚举法和猜想法- 枚举法是一种通过列举所有可能情况来解决问题的方法。

- 例如:求两个数的最大公约数,可以列举出所有可能的公约数,然后找出其中最大的一个。

- 猜想法是一种根据已有规律猜测答案的方法,然后通过严谨的推理来证明猜想是否正确。

- 例如:猜测一个数是偶数时,它一定能被2整除,然后通过证明偶数定义来证明猜想的正确性。

第三部分:练题1. 计算:$2 + 3 × 4 - 5 = ?$2. 计算:$7 - (4 × 2 + 1) = ?$3. 快速计算:$6 × 9 = ?$4. 快速计算:$5 × 7 = ?$5. 利用枚举法找出10以内的所有偶数。

小学四年级奥数知识点完整版

小学四年级奥数知识点完整版

小学四年级奥数知识点 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】小学四年级奥数知识点1.和差倍问题和差问题和倍问题差倍问题几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数公式②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型基本公式在直线或者不封闭的曲线上植树,两端都植树棵数=段数+1在直线或者不封闭的曲线上植树,两端都不植树棵距×段数=总长棵数=段数-1在直线或者不封闭的曲线上植树,只有一端植树棵距×段数=总长棵数=段数封闭曲线上植树棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

(完整版)小学四年级奥数知识点(自己整理综合)

(完整版)小学四年级奥数知识点(自己整理综合)

小学四年级奥数知识点总复习1.常用特殊数的乘积25×4=100 125×8=1000625×16=10000 25×8=200 125×4=500 125×3=375 7×11×13=1001 37×3=1112.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家。

加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。

100+(21+58)=100+21+ 58100-(21+58)=100-21- 583.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。

除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律。

积的变化规律:同扩同缩法。

同级运算时,如果有交换数的位置,应该注意符号搬家。

加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号。

100×(4×5)=100×4×5100÷(4÷5)=100÷4÷54.最大最小1、解答最大最小的问题,可以进行枚举比较。

在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。

2、运用规律。

(1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为0)时,乘积最大。

3、考虑极端情况。

如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题”等。

5.比较大小估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的“放大”或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度的方法有两条:一是分组(分段),并尽可能使每组所对应的标准相同;另一种方法是按近似数乘除法计算法则,比要求的精确度多保留一位,进行计算。

小学四年级奥数有几个知识点

小学四年级奥数有几个知识点

小学四年级奥数有几个知识点小学四年级是学生接触奥数的起点,奥数在培养学生逻辑思维、解题技巧和数学能力方面起到了重要的作用。

在小学四年级的奥数学习中,学生需要掌握一些基本的数学概念和解题方法。

下面将介绍小学四年级奥数中的几个重要知识点。

1. 算术运算小学四年级的奥数学习中,算术运算是一个重要的知识点。

这包括四则混合运算、整数的加减法、乘法口诀等。

学生需要通过大量的练习,掌握各种运算的方法和技巧,使其能够熟练地进行计算。

2. 数量关系数量关系是小学四年级奥数中的另一个重要知识点。

学生需要学会解决有关数量关系的问题,包括数量的比较、相等关系、多少倍关系等。

通过分析和判断,学生能够准确地描述和比较不同物体之间的数量关系。

3. 几何图形在小学四年级奥数中,学生需要学习几何图形的相关知识。

这包括识别各种常见的几何图形,如圆、三角形、矩形、正方形等。

学生还需要掌握几何图形的性质和特点,能够通过图形的属性进行判断和证明。

4. 数据分析在小学四年级奥数中,数据分析也是一个重要的知识点。

学生需要学会收集和整理数据,并能够准确地读取和分析图表中的信息。

学生还需要学会运用统计方法,比如计算平均数、众数等,对数据进行分析和解读。

5. 排列组合排列组合是小学四年级奥数中的一项较难的知识点。

学生需要学会解决有关排列组合的问题,包括计算不同颜色的珠子排成项链的方法数、从一组数字中选取若干个数字进行组合等。

通过学习排列组合的知识,学生能够培养逻辑思维和解决问题的能力。

6. 数论数论是小学四年级奥数中的一个拓展内容,对学生的数学能力和逻辑思维能力提出了更高的要求。

学生需要学习素数、倍数、因数等数论的基本概念,并能够解决一些与数论相关的问题。

通过学习以上几个重要的知识点,学生能够在小学四年级的奥数学习中建立起坚实的数学基础,提高解题能力和数学思维能力。

同时,这些知识点也为学生今后更高级别的数学学习打下了良好的基础。

在学习过程中,学生需要通过大量的练习和实际问题的解答来提高自己的数学水平,全面培养自己的数学能力。

四年级奥数知识点归纳

四年级奥数知识点归纳

四年级奥数知识点归纳稿子一嘿,亲爱的小伙伴们!今天咱们来聊聊四年级奥数那些好玩的知识点哟!先来说说加法和乘法运算律吧。

这可有趣啦,就像给数字们找到了快速变整齐的魔法。

比如加法交换律,a + b = b + a ,是不是很神奇?不管谁在前谁在后,它们相加的结果都一样。

还有乘法交换律呢,a × b = b × a ,数字们像在跳欢快的交换舞。

再讲讲简便运算,这个就像是给计算开了个快捷通道。

遇到那种长长的式子,别害怕,咱们找找能凑整的数,一下子就能让计算变得轻松又简单。

还有图形的周长和面积,这可是生活中常常能用到的。

算一算长方形、正方形的周长和面积,就能知道给它们围个篱笆要多长的木条,或者知道能在上面铺多少块地砖。

行程问题也很有意思哟!知道速度、时间和路程的关系,就能算出啥时候能到达目的地,或者走了多远。

数学广角里的优化问题,能让我们学会合理安排时间,做事更有效率。

怎么样,四年级奥数的知识点是不是像一个个小宝藏,等着咱们去发现和挖掘呀?稿子二哈喽呀,小伙伴们!今天咱们一起瞅瞅四年级奥数的知识点,超有趣的哦!说到平均数,这就像是给一组数字找个代表。

通过把所有数字加起来再除以个数,就能知道这组数字的平均水平啦。

排列组合也很奇妙哦!从几个东西里选几个,有多少种不同的选法,就像在玩排列组合的游戏。

还有植树问题,在一条路上种树,间隔和棵数的关系可得搞清楚,不然树可就种乱啦。

逻辑推理更是像个小侦探游戏,通过一点点线索,找出事情的真相。

还有盈亏问题,有时候东西多了,有时候少了,咱们得算清楚到底是怎么回事。

在奥数的世界里,每个知识点都是一颗闪闪发光的星星,咱们把它们都摘下来,就能变得超级厉害哟!是不是感觉很有意思呀?咱们一起加油,把这些知识点都拿下!。

四年级下册奥数知识点

四年级下册奥数知识点

四年级下册奥数知识点奥数,即奥林匹克数学竞赛,是一种培养学生数学思维和解决问题能力的竞赛形式。

对于四年级的学生来说,奥数的学习不仅仅是为了参加竞赛,更重要的是通过学习奥数来锻炼思维,提高解决问题的能力。

以下是一些四年级下册奥数的知识点,供学生和家长参考:1. 四则运算的灵活运用:- 熟练掌握整数的加、减、乘、除运算法则。

- 学习分数和小数的运算,理解分数加减法的通分和约分,以及小数点的移动规律。

2. 整数的性质:- 学习整数的奇偶性,理解奇数和偶数的定义及其性质。

- 掌握整数的因数和倍数,学习如何找出一个数的所有因数或倍数。

3. 分数和小数:- 理解分数的基本概念,如分子、分母、分数线。

- 掌握分数的加减法和乘除法,以及分数的化简和比较大小。

4. 几何图形:- 学习基本的几何图形,如三角形、正方形、长方形、圆形等。

- 理解面积和周长的概念,学习如何计算这些几何图形的面积和周长。

5. 逻辑推理:- 培养逻辑推理能力,解决一些简单的逻辑问题。

- 学习如何通过已知条件推导出未知信息。

6. 数列问题:- 学习数列的概念,理解等差数列和等比数列。

- 解决一些简单的数列问题,如求数列的和、项数等。

7. 组合数学:- 学习排列组合的基本概念,理解排列和组合的区别。

- 掌握一些基本的排列组合公式,解决实际问题。

8. 应用题:- 学习如何将实际问题转化为数学问题,并用数学方法解决。

- 培养阅读和理解问题的能力,提高解题速度。

9. 思维训练:- 通过解决各种数学问题,训练学生的思维能力,提高解决问题的灵活性和创造性。

10. 竞赛技巧:- 学习一些竞赛中的解题技巧,如代入法、排除法等。

- 练习快速准确地完成竞赛题目。

学习奥数是一个循序渐进的过程,需要学生不断练习和思考。

家长和老师应鼓励学生在理解的基础上进行练习,培养他们独立思考和解决问题的能力。

同时,也要注意劳逸结合,避免过度学习带来的压力。

希望这些知识点能够帮助四年级的学生们在奥数学习中取得进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.圆周率常取数据3.14×1=3.14 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.73.15×6=18.84 3.14×7=21.98 3.14×8=25.123.14×9=28.262.常用特殊数的乘积125×8=1000 25×4=100 125×3=375 625×16=10000 7×11×13=1001 25×8=200 125×4=500 37×3=1113.100内质数:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 974.单位换算:1米=3尺=3.2808英尺=1.0926码1公里=1000米=2里1码=3英尺=36英寸1海里=1852米=3.704里=1.15英里1平方公里=1000000平方米=100公顷 =4平方里=0.3861平方英里1平方米=100平方分米=10000平方厘米1公顷=100公亩=15亩=2.4711英亩1立方米=1000立方分米=1000000立方厘米1立方米=27立方尺=1.308立方码=35.3147立方英尺1吨=1000公斤=1000千克1公斤=1000克=2斤(市制)=2.2046磅5.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家。

加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。

6.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。

除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律积的变化规律:同扩同缩法。

同级运算时,如果有交换数的位置,应该注意符号搬家。

加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号;7.等差数列数列是指按一定规律顺序排列成一列数。

如果一个数列中从第二个数开始,相邻两个数的差都相等,我们就把这样的一列数叫做等差数列,等差数列中的每一个数都叫做项,第一个数叫第一项,通常也叫“首项”,第二个数叫第二项,第三个数叫第三项……最后一项叫做“末项”。

等差数列中相邻两项的差叫做“公差”,等差数列中项的个数叫做“项数”。

公式:和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 第n项=首项+(n-1)×公差8.和倍问题己知几个数的和及这几个数之间的倍数关系,求这几个数的应用题叫和倍问题。

解答和倍问题,一般是先确定较小的数为标准数(或称一倍数),再根据其他几个数与较小数的倍数关系,确定总和相当于标准数的多少倍,然后用除法求出标准数,再求出其他各数,最好采用画线段图的方法。

和倍公式:和÷(倍数+1)=小数9.差倍问题己知两个数的差及它们之间的倍数关系,求这两个数的应用题叫差倍问题。

解答差倍问题,一般以较小数作为标准数(一倍数),再根据大小两数之间的倍数关系,确定差是标准数的多少倍,然后用除法先求出较小数,再求出较大数。

解答这类问题,先画线段图,帮助分析数量关系。

差倍公式:差÷(倍数-1)=小数10.和差问题和差问题是根据大小两个数的和与两个数的差求大小两个数各是多少的应用题。

解答和差问题的基本公式是:(和-差)÷2=较小数(和+差)÷2=较大数九、11.年龄问题己知两个人或几个人的年龄,求他们年龄之间的某种数量关系;或己知某些人年龄之间的数量关系,求他们的年龄等,这种题称为年龄问题。

年龄问题的特点是:一般用和差或者和倍问题的方法解答。

(1)两人的年龄之差是不变的,称为定差。

(2)两个人的年龄同时都增加同样的数量。

(3)两个年龄之间的倍数关系,随着年龄的增长,也在发生变化。

年龄问题的解题方法是:几年后= 大小年龄之差÷倍数差-小年龄几年前=小年龄-大小年龄差÷倍数差12.平均数求平均数必须知道总数和份数,常用公式:平均数=总数÷份数总数=平均数×份数份数=总数÷平均数相遇问题行程问题又分为相遇问题、13.相遇与追及问题路程=速度×时间时间=路程÷速度速度=路程÷时间。

相遇问题它的特点是两个运动物体或人,同时或不同时从两地相向而行,或同时同地相背而行,要解答相遇问题,掌握以下数量关系:速度和×相遇时间=路程路程÷速度和=相遇时间速度÷相遇时间=速度和追及问题运动的物体或人同向而不同时出发,后出发的速度快,经过一段时间追上先出发的,这样的问题叫做追及问题,解答追及问题的基本条件是“追及路程”和“速度差”。

追及问题的基本数量关系是:追及时间=追及路程÷速度差追及路程=速度差×追及时间速度差=追及路程÷追及时间14.行船问题船在江河里航行,前进的速度与水流动的速度有关系。

船在流水中行程问题,叫做行船问题(也叫流水问题),船顺流而下的速度和逆流而上的速度与船速、水速的关系是:顺水速度=船速+水速逆水速度=船速-水速由于顺水速度是船速与水速的和,逆水速度是船速与水速的差,因此行船问题就是和差问题,所以解答行船问题有时需要驼用和差问题的数量关系。

船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2因为行船问题也是行程问题,所以在行船问题中也反映了行程问题的路程、速度与时间的关系。

顺水路程=顺水速度×时间逆水路程=逆水速度×时间15.过桥问题过桥问题的一般数量关系是:路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速车长=车速×通过时间-桥长桥长=车速×通过时间-车长16.植树问题在首尾不相接的路线上植树,段数与棵数关系可分为三类:(1)两端都种树段数=棵数-1 (2)一端种一端不种段数=棵数(3)两端都不种段数=棵数+1 在首尾相接的路线上种树(如圆、正方形、闭合曲线等)段数=棵数17.还原问题还原问题又叫逆推问题。

己知一个数的结果,再经过逆运算反求原数,叫做还原问题。

解决这类题要从结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算(即变加为减,变减为加,变乘为除,变除为乘)。

18.方阵问题很多的人或物按一定条件排成正方形(简称方阵),再根据己知条件求总人数,这类题叫方阵问题。

在解决方阵问题时,要搞清方阵中一些量(如层数,最外层人数,最里层人数,总人数)之间的关系。

方阵问题的基本特点是:(1)方阵不管在哪一层,每边的人数都相同,每向里面一层,每边上的人数减少2,每一层就少8。

(2)每层人数=(每边人数-1)×4 (3)每边人数=每层人数÷4+1 (4)实心方阵人数=每边人数×每边人数19.幻方与数阵幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等。

这相相等的和叫“幻和”。

两种方法:奇阶:1、九子排列法2、罗伯法,3、巴舍法。

偶阶:1、对称交换法2、圆心方阵法。

数阵有三种基本类型:(1)封闭型,(2)辐射型(3)综合型解数阵问题一般思路是从和相等入手,确定重处长使用的中心数,是解答解数阵类型题的解题关键。

一般答案不唯一。

20.奇数与偶数加法:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数减法:偶数-偶数=偶数奇数-奇数=偶数偶数-奇数=奇数乘法:偶数×偶数=偶数奇数×奇数=奇数偶数×奇数=偶数盈亏问题解21.盈亏问题通常是比较法和对应法结合使用。

公式是:(同盈同亏用减法,一亏一盈用加法)即:两次分配结果差÷两次分配数差=人数22.牛吃草问题牛吃草问题涉及三种数量:A.原有的草。

B.新长出的草。

C.牛吃掉的草。

牛吃草问题解法一般分为三步:一、求每天新生的草量;二、求原有草量;三、求出最终的问题。

(类似于行程问题中的追及问题)23.还原问题解题关键:在从后往前推算的过程中,每一步都是做同原来相反的运算,原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用乘。

24.假设问题假设法是解答应用题时经常用到的一种方法。

所谓“假设法”就是依据题目中的己知条件或结论作出某种设想,然后按照己知条件进行推算,根据数量上出现的矛盾,再适当调整,从而找到正确答案。

25.余数问题一个带余数除法算式包含4个数:被除数÷除数=商……余数。

它们的关系也可表示为:被除数=除数×商+余数,或(被除数-余数)÷除数=商。

26.一笔画和多笔画(1)凡是由偶点组成的连通图,一定可以一笔画成;画时可以任一偶点为起点,最后能以这个点为终点画完此图。

(2)凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画完;画时必须以一个奇点为起点,另一个奇点为终点。

(3)多笔画定理有2n(n>1)个奇点的连通图形,可以用n笔画完(彼此无公共线),而且至少要n次画完.27.抽屉原理抽屉原则一:把n+1(或更多)个苹果放到n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。

抽屉原则二:把(m×n+1)个(或更多个)苹果放进n个抽屉里,必须一个抽屉里有(m+1)个(或更多的)苹果。

说明:应用抽屉原则解题,要从最坏的情况去思考。

28.分解因式把一个合数写成几个质数相乘的形式,叫做分解质因数。

一个自然数的约数的个数,恰为各个质因数的指数加1后的乘积。

一个数的完全平方数,各个质因数的个数,恰好是平方前这个数各个质因数个数的2倍。

一个完全平方数各个质因数的个数都是偶数。

29.最大公约数与最小公倍数求两个数的最大公约数一般有三种方法:(1)分解质因数法(2)短除法(3)辗转相除法30.分数的比较分母相同的分数比较大小,分子大的分数比较大。

分子相同的分数比较大小,分母大的分数反而小。

分子和分母都不相同的分数比较大小,可以把它们转化成分母相同的分数比较大小;也可以把它们转化成分子相同的分数比较大小。

性质: 1.一个真分数的分子和分母都加上同一个自然数,所得的新分数比原分数大。

2.一个真分数的分子、分母都减去同一个自然数(这个自然数小于真分数的分子),所得的新分数比原分数小。

3.一个假分数的分子、分母都减去同一个自然数(这个自然数小于假分数分母),所得的新分数比原分数大。

相关文档
最新文档