实验金相试样的制备
金相试样的制备步骤

金相试样的制备步骤一、金相试样的概述金相试样是用于金相显微镜观察和分析材料组织结构的样品。
其制备过程涉及到样品的采集、切割、研磨、腐蚀、清洗等多个步骤。
下面将详细介绍金相试样的制备步骤。
二、样品采集需要选择合适的样品进行金相试样的制备。
样品可以是金属材料、合金、陶瓷、复合材料等。
确保样品的尺寸足够大,以便进行后续的切割和研磨操作。
三、样品切割将采集到的样品切割成适当大小的块状,以便后续的研磨和腐蚀处理。
切割时要注意选择合适的切割工具和切割方式,以避免对样品结构产生损伤。
四、样品研磨将切割好的样品通过研磨工艺进行表面的光洁度处理。
首先使用粗砂纸或磨料对样品进行粗磨,去除表面的粗糙部分。
然后逐渐使用细砂纸或研磨剂进行细磨,直至得到光洁度较高的样品表面。
五、样品腐蚀经过研磨处理后的样品表面可能存在氧化层或其他污染物,需要通过腐蚀处理来去除这些表面层。
常用的腐蚀剂有酸性腐蚀剂和碱性腐蚀剂。
选择合适的腐蚀剂,根据材料的特性和分析需求,进行适当的腐蚀处理。
六、样品清洗腐蚀处理后的样品需要进行彻底的清洗,以去除腐蚀剂和其他残留物。
清洗时可以使用去离子水或其他合适的清洗剂,将样品浸泡清洗一段时间,然后用纯净水冲洗干净。
确保样品表面干净无杂质。
七、样品干燥将清洗后的样品进行干燥处理,以便后续的金相显微镜观察和分析。
可以使用烘箱、吹风机或自然风干等方式进行样品的干燥。
注意控制干燥温度,避免对样品产生热应力。
八、样品封装对于一些容易氧化或易受湿气影响的样品,可以进行封装处理,以保护样品的表面状态。
常用的封装材料有环氧树脂、石蜡等。
将样品浸泡在封装材料中,待封装材料凝固后,即可得到封装的金相试样。
九、金相试样的观察和分析经过以上步骤制备的金相试样,可以进行金相显微镜的观察和分析。
金相显微镜是一种能够放大样品细微结构的显微镜,通过观察样品的显微组织结构,可以了解材料的晶粒结构、相含量、缺陷等信息。
总结:金相试样的制备过程包括样品采集、切割、研磨、腐蚀、清洗、干燥和封装等多个步骤。
金相试样的制备详细

金相试样的制备金相试样的制备金相试样的制备主要包括取样及磨制,如果取样的部位不具备典型性和代表性,其检查结果将得不到正确的结论,而且会造成错误的判断。
金相试样截取的方向、部位及数量应根据金属制造的方法、检验的目的、技术条件或双方协议的规定选择有代表的部位进展切取。
金相试样的制备,磨抛及侵蚀参照GB/T 13298—1991?金属显微镜组织检验方法?的有关规定进展。
一、金相试样的选取1.纵向取样纵向取样是指沿着钢材的锻轧方向进展取样。
主要检验内容为:非金属夹杂物的变形程度、晶粒畸变程度、塑性变形程度、变形后的各种组织形貌、热处理的全面情况等。
2.横向取样横向取样是只垂直于钢材锻扎方向取样。
主要检验内容为:金属材料从表层到中心的组织、显微组织状态、晶粒度级别、碳化物网、表层缺陷深度、氧化层深度、脱碳层深度、腐蚀层深度、外表化学热处理及镀层厚度等。
3.缺陷或失效分析取样截取缺陷分析的试样,应包括零件的缺陷局部在内。
例如,包括零件断裂时的断口,或者是取裂纹的横截面,以观察裂纹的深度及周围组织变化情况。
取样时应注意不能使缺陷在磨制时被损伤甚至消失。
试样尺寸以磨面面积小于400mm2,高度15~20mm为宜。
试样可用手锯、砂轮切割机、显微切片机、化学切割装置、电火花切割机、剪切、锯、刨、车、铣等截取,必要时也可用气割法截取。
硬而脆的金属可以用锤击法取样。
不管用哪种方法切割,均应注意不能使试样由于变形或过热导致组织发生变化。
对于使用高温切割的试样,必须除去热影响局部。
二、金相试样的镶嵌在金相试样的制备过程中,有许多试样直接磨抛〔研磨、抛光〕有困难,所以应进展镶嵌。
经过镶嵌的样品,不但磨抛方便,而且可以提高工作效率及试验结果准确性。
通常进展镶嵌的试样有:形状不规那么的试件;线材及板材;细小工件;外表处理及渗层镀层;外表脱碳的材料等。
样品镶嵌的常用方法有:1.机械镶嵌法机械镶嵌法系试样放在钢圈或小钢夹中,然后用螺钉和垫块加以固定。
1-第一讲 金相试样的制备

第二讲金相试样的制备样品制备的基本步骤:取样、镶嵌、磨光、抛光四个步骤。
每项操作都必须严格、细心,因为任何阶段上的失误都可能影响以后的步骤;在极端的情况下,不正确的制样可能造成组织的假像,从而得出错误的结论。
样品制备的方式:手工制样、机械制样、自动制样。
一、金相试样的截取选取合适的、具有代表性的试样是金相研究和检验中至关重要的第一步,必须注意取样得部位、数量、尺度、磨面的取向和试样的截取方法。
取样必须恰到好处地给材料提出统计上的可靠描述。
1、取样的原则:取样部位的选取取决于被检验材料或零件的特点、加工工艺过程及热处理过程、使用情况等。
根据检验目的和要求,通常分为两大类:系统取样、指定取样。
⑴系统取样:选取的试样必须能表征被检验材料或零件的特点,即要有代表性。
常规检验所取试样的部位、形状、数量、尺寸等都有明确的规定,详见有关标准:国标(GB)、冶标(YB)、航标(HB)。
例如,标准中规定:棒材、钢锭、钢胚,在材料两端取样;热轧型材则同时取横向、纵向两组试样;航空压气机盘则要从径向、轴向、弦向同时取样。
⑵指定取样:根据所研究的问题,有针对性的取样。
例如:零件失效分析的试样即属此类,必须根据零件使用部位、受力情况、出现裂纹的部位和形状等具体情况,抓住关键部位分别在材料失效部位和完好部位取样,以便对比分析,找出失效的原因。
比如裂纹源区就是重要的取样部位。
磨面取向:根据生产工艺、产品形状、研究目的而定。
形状尺寸:通常是Φ12×12mm的圆柱体或是12×12×12 mm的正方体;实际工作中还要具体问题具体分析。
试样太大、太小都不好;太大,则制备样品时费时费力;太小,则操作不便。
试样边缘无特殊要求时要磨制出倒角。
取样数量:实际生产中,某一材料、某一项目的检验,通常不会是单独的一个样品,一般是3~4个,以求统计上的可靠性。
在研究结果和检验报告上所列举的金相照片,必须注明截取部位和检验面的方向,甚至画图说明。
简述金相试样制备的基本过程

简述金相试样制备的基本过程金相试样制备是金相分析实验的一项重要工作,它是通过一系列的步骤将金属试样制备成适合金相观察的样品。
金相试样制备的基本过程如下:1. 试样的选择:根据分析的需要,选择合适的金属材料作为试样。
试样的形状和尺寸应符合实验要求,通常为圆柱形或方形。
2. 试样的切割:采用金相切割机或者手动切割工具,将试样从大块材料中切割出所需尺寸的样品。
切割过程中要注意避免产生过多的热量,以免影响试样的组织结构。
3. 试样的研磨:通过一系列的研磨步骤,将试样的表面研磨平整。
首先使用粗砂纸或砂轮对试样进行粗磨,去除试样表面的粗糙度和氧化层。
然后使用细砂纸或砂轮进行细磨,使试样表面光滑均匀。
4. 试样的抛光:通过抛光过程,进一步提高试样的表面质量。
抛光一般采用金相抛光机,通过旋转的抛光盘和涂抹研磨剂的方式,对试样进行抛光处理。
抛光的时间和压力要控制好,以避免过度抛光导致试样表面的形貌发生改变。
5. 试样的清洗:将抛光后的试样放入超声波清洗器中,用溶剂清洗试样表面的污垢和抛光剂残留。
清洗过程中要注意避免试样受到机械冲击,以免损坏试样。
6. 试样的腐蚀:某些金属材料需要进行腐蚀处理,以去除试样表面的氧化层和其他不良组织。
腐蚀一般采用酸性溶液,如酸性硝酸或酸性硫酸溶液。
腐蚀时间要根据试样的材料和要求进行控制,过长的腐蚀时间可能会导致试样的形貌和组织结构发生变化。
7. 试样的洗净:将腐蚀后的试样放入清水中进行反复洗净,以去除腐蚀液的残留物。
洗净过程中要避免试样受到机械冲击,以免试样变形或损坏。
8. 试样的干燥:将洗净后的试样放入烘箱或用吹风机进行干燥,以去除试样表面的水分。
干燥过程中要控制好温度和时间,以避免试样的热膨胀和变形。
9. 试样的打磨:对于需要进行金相观察的试样,还需要进行一定程度的打磨处理,以获得更好的观察效果。
打磨一般采用细砂纸和研磨液,通过手工或机械的方式对试样进行打磨,使试样表面更加光滑。
实验一 金相试样的制备

实验一金相试样的制备一、实验目的1.了解金相试样的制备过程。
2.初步掌握金相试样制备、浸蚀的基本方法。
二、实验内容1. 试样的取样、磨制;2. 浸蚀剂的选取,试样的浸蚀;3. 试样制备质量检验。
三、实验设备及材料1. 设备:金相切割机、抛光机、吹风机、显微镜。
2. 材料:金相砂纸、抛光粉、抛光布、浸蚀剂、棉球、酒精。
3. 试样:45钢要求:独立制备试样,试样无明显划痕、扰乱层等缺陷。
四、实验相关知识在科研和实验中,人们经常借助于金相显微镜对金属材料进行显微分析和检测,以控制金属材料的组织和性能。
在进行显微分析前,首先必须制备金相试样,若试样制备不当,就不能看到真实的组织,也就得不到准确的结论。
金相试样制备过程包括:取样、磨制、抛光和浸蚀。
1.取样取样部位的选择应根据检验的目的选择有代表性的区域。
一般进行如下几方面的取样。
原材料及锻件的取样:原材料及锻件的取样主要应根据所要检验的内容进行纵向取样和横向取样。
纵向取样检验的内容包括:非金属夹杂物的类型、大小、形状;金属变形后晶粒被拉长的程度;带状组织等。
横向取样检验的内容包括:检验材料自表面到中心的组织变化情况;表面缺陷;夹杂物分布;金属表面渗层与覆盖层等。
事故分析取样:当零件在使用或加工过程中被损坏,应在零件损坏处取样然后再在没有损坏的地方取样,以便于对比分析。
取样的方法:取样的方法因为材料的性能不一样,有硬有软,所以取样的方法也不一样。
软材料可用锯、车、铣、刨等来截取;对于硬的材料则用金相切割机或线切割机床截取,切割时要用水冷却,以免试样受热引起组织变化;对硬而脆的材料,可用锤击碎,选取合适的试样。
试样的大小以便于拿在手里磨制为宜,通常一般为φ12×15mm圆柱体或12×12×15mm正方体。
取样的数量应根据工件的大小和检验的内容取2-5个为宜。
2.磨光目的是得到一个平整光滑的表面。
磨光分粗磨和细磨。
粗磨:一般材料可用砂轮机将试样磨面磨平;软材料可用锉锉平,磨时要用水冷却以防止试样受热改变组织。
简述制备金相试样的过程

简述制备金相试样的过程摘要:一、金相试样的制备意义二、金相试样的制备步骤1.取样2.镶嵌3.磨光4.抛光5.腐蚀6.清洗7.观察正文:一、金相试样的制备意义金相试样制备是为了获得清晰的显微组织图像,以便对材料的内部结构进行分析。
这种分析对于了解材料的性能、制定合适的加工工艺和评估材料质量具有重要意义。
在金属学、材料科学和工程领域,金相试样的制备和观察已经成为必不可少的实验手段。
二、金相试样的制备步骤1.取样:首先从材料中切取一定尺寸的试样。
一般情况下,试样的大小为10mm×10mm×10mm。
对于硬质、难加工的材料,可以采用线切割或激光切割方式获取试样。
2.镶嵌:将取好的试样固定在镶嵌剂中,以保证在后续的磨光和抛光过程中试样不会损坏。
镶嵌剂可以选择环氧树脂或其他适合的材料。
3.磨光:将镶嵌好的试样进行初步磨光,逐步去除表面的划痕和瑕疵。
通常采用粗磨、中磨和细磨三个阶段,每个阶段都需要使用相应粒度的砂纸或金刚石膏进行磨光。
4.抛光:在磨光的基础上,使用抛光剂进一步去除磨痕,使试样表面光滑。
抛光过程中,可以使用抛光机或手动抛光。
抛光剂可以选择液体抛光剂或固体抛光剂,具体选用取决于试样材质。
5.腐蚀:为了使金相组织更加清晰,需要对试样进行腐蚀。
腐蚀过程中,要注意控制腐蚀液的浓度、温度和腐蚀时间。
常用的腐蚀剂有硝酸、氢氟酸等。
6.清洗:腐蚀后,需将试样表面残留的腐蚀液清洗干净,以免对金相组织观察产生影响。
7.观察:将清洗干净的试样放入金相显微镜下观察,记录并分析试样的显微组织结构。
观察时,可以选择不同的放大倍数和光源,以获得更全面的组织信息。
通过以上七个步骤,就可以顺利完成金相试样的制备。
在实际操作中,制备过程还需根据材料性质和观察需求进行适当调整。
金相试样的制备及金相组织观察

金相试样的制备及金相组织观察金相试样是金相学中的重要实验手段,用于观察金属材料的晶体结构、相组成和组织形态等信息。
下面我们将介绍金相试样的制备方法及金相组织观察过程。
一、金相试样的制备方法1.试样的切割:首先需要从金属材料中切割出代表性的试样。
切割试样时应注意保持试样尺寸的标准,确保试样的大小符合实验要求。
2.粗磨:经切割获得的试样通常都有较粗糙的表面。
因此需要进行粗磨,以便进一步处理。
粗磨可以使用粗磨纸或砂轮进行,以去除试样表面粗糙度和切割留下的锋利边缘。
3.嵌埋:经过粗磨后的试样需要进行嵌埋。
嵌埋是将试样固定在一个透明的树脂中,以便进行后续的研磨和观察。
常用的嵌埋材料有环氧树脂和酚醛树脂。
4.精磨:嵌埋好的试样需要进行精磨,使试样表面更加光滑细腻。
精磨可以使用细磨纸或细磨粉进行,常见的精磨粉有二氧化硅粉和氧化铝粉。
5.抛光:精磨后的试样表面通常仍然存在一些微小的研磨痕迹和表面附带物。
为了进一步减小试样表面的痕迹和提高试样表面的光洁度,可以进行抛光。
抛光可以使用砂轮、刚玉研磨粉或抛光膏进行。
6.腐蚀:一些试样需要进行腐蚀处理,以便观察金相组织。
腐蚀可以通过直接浸泡试样在腐蚀剂中,或者使用腐蚀电解槽进行。
7.清洗:试样制备完成后,需用酒精/丙酮和超声清洗剂进行清洗,以彻底清除试样表面的污染物和残留物。
最后使用纯酒精对试样进行干燥。
二、金相组织观察过程1.试样装入金相显微镜:制备好的金相试样需要装入金相显微镜进行观察。
可以将试样固定在显微镜的试样夹上,并通过显微镜的调节装置使试样位于镜头的焦点上。
2.调焦:通过调节显微镜的焦距,使试样清晰可见。
根据试样的形状和纵深,需要调整显微镜的焦距,以确保试样表面和内部的细节都能清晰显示。
3.选择放大倍率:根据所需观察的试样细节,选择合适的放大倍率进行观察。
通常金相显微镜的放大倍率范围从10倍至1000倍不等。
4.观察金相组织:通过显微镜观察试样中的金相组织。
金相试样的制备

金相试样的制备第一部分:引言金相试样是金属材料工程中常用的一种试验方法,用于研究金属材料的结构和性能。
制备金相试样是金相分析的基础,能够提供金属材料的显微组织和晶体结构信息,为后续的金相分析提供依据。
第二部分:金相试样的制备方法1. 切割:首先将金属材料切割成适当的形状和尺寸,常用的切割工具包括锯片、剪刀和切割机等。
切割时要注意避免产生过多的热量,以免影响金属的组织结构。
2. 研磨与打磨:将切割好的金属试样进行研磨和打磨,以去除切割过程中的瑕疵和氧化层。
研磨和打磨时要使用不同粒度的研磨纸和打磨布,逐渐降低粒度,直至获得光滑平整的试样表面。
3. 压制:将研磨后的试样放入金相试样的模具中,然后使用压力机进行压制。
压制的目的是使试样表面平整,避免出现裂纹和变形。
4. 粗磨:经过压制后的试样表面还存在一定的瑕疵和粗糙度,需要进行进一步的粗磨。
粗磨可以使用砂轮、砂带或研磨机进行,直到试样表面光滑。
5. 细磨:细磨是为了获得更高质量的试样表面。
可以使用细磨纸、细磨布和细磨液进行细磨,直到试样表面得到光洁度要求。
6. 腐蚀:对于某些金属材料,为了观察其组织结构,需要进行腐蚀处理。
腐蚀试剂的选择根据材料的不同而不同,可以使用酸性腐蚀剂或碱性腐蚀剂,腐蚀时间和温度也需要控制好。
7. 清洗与干燥:腐蚀后的试样需要进行充分的清洗,以去除腐蚀剂残留和杂质。
清洗时可以使用溶剂或超声波清洗机。
清洗完成后,将试样放在通风处进行自然干燥或使用干燥箱进行烘干。
第三部分:金相试样的注意事项1. 制备过程中要注意安全,佩戴好防护眼镜和手套,避免受伤。
2. 切割时要选择合适的切割工具和切割速度,以避免产生过多的热量和变形。
3. 研磨与打磨时要注意连续进行,避免过度研磨和打磨造成形状和尺寸的变化。
4. 压制时要控制好压力和时间,避免过度压制导致试样变形。
5. 粗磨、细磨和腐蚀时要注意操作规范,避免试样表面受损和腐蚀不均匀。
6. 清洗和干燥时要彻底,避免残留物和水分对试样的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验金相试样的制备一、实验目的1.熟悉金相显微试样的制备过程2.了解掌握金相显微试样的制备方法二、概述在利用金相显微镜作金相显微分析时,必须首先制备金相试样,我们在显微镜中所观察到的显微组织,是靠光线从试样观察面上的反射来实现的。
若试样观察面上的反射光能进入物镜。
我们就可以从目镜中观察到反射的象,否则就观察不到。
图2-1 光线在不同表面上的反射情况由图2-1所示可见,未经制备的试样的表面相当于无数多个与镜筒不垂直的平滑表面,这是不能成象的。
因此,我们要先把试样观察面制备成光滑平面。
但是光滑平面在显微镜下只看到光亮一片,而不能看到显微组织结构特征,故还须用一定的浸蚀剂浸蚀试样观察面,使某些耐浸蚀弱的区域不同程度地受到浸蚀而呈现微观察的凸凹不平。
这些区域的反射光线被散射而呈暗色。
由于明暗相衬,在显微观察中就能表示试试样磨面组织结构的特征了。
金相试样的制备包括试样的切取、镶嵌、磨制抛光、锓蚀等五个步骤。
1. 取样试样应根据分析目的和要求在有代表的位置上截取。
一般地说,取横截面主要观察:1、试样边缘到中心部位显微组织的变化。
2、表层缺陷的检验、氧化、过滤、折叠等。
3、表面处理结果的研究,如表面淬火、硬化层、化学热处理层、镀层等。
4、晶粒度测定等。
通过纵截面可观察:1、非金属夹杂;2、测定晶粒变形程度;3、鉴定带状组织及通过热处理消除带状组织的效果等。
试样一般可用手工切割、机床切割、切片机切割等方法截取(试样大小为φ12×12mm圆柱体或12×12×12mm的立方体)。
不论采用哪种方法,在切取过程中均不宜使试样的温度过高,以免引起金属组织的变化,影响分析结果。
2. 镶嵌当试样的尺寸太小(如金属丝、薄片等)时,直接用手来磨制很困难,需要使用试样夹或利用样品镶嵌机,把试样镶嵌在低熔点合金或塑料(如胶木粉、聚乙烯及聚合树脂等)中,如图2-2所示。
图2-2 试样的镶嵌(见实验室挂图)3. 磨制试样的磨制一般分粗磨和细磨两道工序。
a. 粗磨:粗磨的目的是为了获得一个平整的表面,钢铁材料试样的粗磨可用锉刀锉平,也可在砂轮机上磨制。
但应注意:试样对砂轮压力不宜过大。
否则会在试样表面形成很深的磨良,增加精磨和抛光的困难,要随时用水冷却试样,以免受热引起组织交化;试样边缘的棱角若无保存必要,可先行磨圆(倒角),以免在细磨及抛光时撕破砂纸或抛光布,甚至造成试样从抛光机上飞出伤人。
b. 细磨:经粗磨后试样表面虽较平整,但仍还存在有较深的痕(如图2-3)所示。
细磨的目的就是为了消除这些磨痕,以得到平整而光滑的磨面,为下一步的抛光作好准备;将粗磨好的试样用水冲洗擦干后就开始进行细磨,细磨是在一套粗细程度不同的金相少纸上,由粗到细依次顺序进行的。
细磨时将砂纸放在玻璃扳上,手指紧握试样,并使磨面朝下,均匀用力向前推行磨制。
在回程时,应提起试样不与砂纸接触。
以保证磨面平整面不产生弧度,每更换一号砂纸时,须将试样的研磨方向转90°,即与上道磨痕方向垂直。
直到将上一号砂纸所产生的磨痕全部消除为止更换砂纸前试样用棉花顺磨痕擦试或水顺磨痕冲洗。
为了加快磨制速度,除手工磨制外。
还可以将不同型号砂纸贴在带有旋转圆盘的预磨机上,实现机械磨制。
细磨后的试样表面应呈白色,平整光滑、细看才见到相互平行的细纹。
然后用水冲洗干净进行抛光。
4. 抛光抛光的目的是去除试样磨面上经细磨后遗留下来的细微磨痕,而获得光亮的镜面,抛光的方法一般可分为机械抛光、电解抛光和化学抛光三种。
(1)机械抛光;在专用的抛光机上进行。
抛光机由电动机带动两个抛光圆盘(Φ200~300mm)组成。
抛光盘上铺以细帆布。
呢绒乙丝绸等。
抛光时试样磨面均匀地压在抛光盘上并不断滴注抛光液。
抛光液通常采用A1203MgO或Cr2O3等细粉末(粒度约为0.3~1mm)在水中的悬浮液,机构抛光就是靠极细的抛光粉末与磨面间产生相对磨削和流压作用来消除磨痕的。
在抛光过程中要注意用力均匀。
不可过轻过重。
以免试样飞出来或刮破绒布,要随时补充抛光剂以保持一定湿度太干干则使磨面产生变形层和暗黑斑,过湿会减弱抛光作用,适宜的湿度是试样磨面附着的湿膜在3~5秒内挥发完,抛光时间不宜过长,一般是在磨面的划痕消除,而不产生麻点,在抛光结束后,试样表面应呈光亮的镜面。
然后用水冲洗再以酒精洗涤,用棉花或滤纸吸干,或用吹风机吹干。
(2)电解抛光:是利用阳极浸蚀法使试样表面变得平滑光亮的一种方法.将试样浸入电解液中作为阳极,用铝片或不锈钢作为阳极,使试样与阴极之间保持—定距离(20~30mm),接通直流电源,当电流密度足够时每试样磨面即由于电化作用而发生选择性溶解,从而获得光滑平整的表面。
这种方法的优点是速度快,只产生纯化学的溶解作用而无机械力的影响;因此查避免在机械抛光时可能引起的表层金属的塑性变形,从而能确切地显示真实的金相组织。
但电解抛光操作时工艺规程不易控制。
(3)化学抛光:其实质与电解抛光相似,也是一个表层溶解过程,从而得到光滑平整的表面。
5. 试样的浸蚀试样抛光后在显微镜下,只能观察到光亮的研磨面及非金属夹杂物,裂纹等,显微组织只有腐蚀浸蚀后才能显示出来。
试样的浸蚀方法有多种。
这里只介绍化学浸蚀法。
化学浸蚀法是利用化学浸蚀剂,通过化学或电化学作用显示金属组织。
纯金属和单相合金的浸蚀是一个化学溶解过程。
由于晶界上原子排列规律性差,具有较高的自由能,所以晶界处较容易浸蚀而呈凹陷。
若浸蚀较浅,由于垂直光线在晶界处的散射作用,在显微镜下可显示出纯金属或固溶体目多面体晶粒。
若浸蚀较深,则在显微镜下可显示出明暗不一的晶粒,这是由于各晶粒的位向不同.溶解速度亦异,浸蚀后的显微平面和原磨面的角度不同,在垂直光线照射下。
反射光线方向各异。
显示出明暗不一。
二相合金的浸蚀主要是一个电化学腐蚀过程。
由于两组成相电位不同,在浸蚀剂(即电解液)中,形成板多的局部微电池负电位较高的一组成为阳极,被迅速溶入电解液中逐渐凹下去,而正电位较高的另一相成为阴极保持原光滑平瓦在显微镜下就可清楚地显示出两相。
多相合金的浸蚀也是一个电化溶解过程,浸蚀法有选择浸蚀法和选择着色法,这里不介绍,请看有关参考书。
常用的浸蚀剂很多,对试样的浸蚀视不同材料及不同目的来选用恰当的浸蚀剂,以达到某一组织的真实显示。
如钢铁材料常用的漫蚀剂有2~4%的硝酸酒精溶液,4%苦味酸酒精溶液,铝合金常用的浸蚀剂有:氢氟酸水溶液,1%NaOH 水溶液.铜合金常用的浸蚀剂有8%CaCl2氨水溶液,三氯化铁盐酸冰溶液等(见附表)。
浸蚀的深浅根据组织特点和观察的放大倍数来确定,在一般情况下,抛光表面微微发暗和失去金属光泽即可。
如高倍观察时。
浸蚀要浅一些,低倍观察时,浸蚀要深一些,单相组织要深一些,双相组织浸蚀要浅一些。
三、实验设备及器材1. 碳钢试样一块。
2. 砂纸一套、玻璃板一块。
3. 抛光机、吹风机、金相显微镜。
4. 4%硝酸酒精溶液,Cr2O3抛光粉。
四、实验内容1. 每人制备一块碳钢的显微分析试样,观察浸蚀前后的显微组织,并画出组织示意图。
2. 观察不同浸蚀程度对显微镜组织显示的影响。
五、实验报告要求1. 实验目的。
2. 根据自己的初步实践,简述显微分析试样的制备过程。
3. 在直径30mm的圆内描绘试样浸蚀前后的显微组织,并对金相试样制备的质量进行分析。
4. 简述浸蚀程度对显微组织显示的影响。
附表常用浸蚀剂实验铁碳合金平衡组织显微分析一、实验目的1. 熟悉碳钢在平衡状态下的显微组织2. 熟悉白口铸铁的显微组织3. 了解铁碳合金组织的变化规律二、原理概述由铁——碳相图可知铁碳合金的基本相为铁素体、奥氏体和渗碳体,而在室温下仅能看到两个相:铁素体和渗碳体。
各种碳钢和白口铁的组织均由这两个相组成。
图4-1 铁碳相图(见实验室挂图)铁素体、渗碳体、珠光体和莱氏体的显微组织特征。
(1)铁素体(F)α中的间隙固溶体,用4%硝酸酒精溶液浸蚀后呈白色,亚共析钢碳在Fe-中铁素体一般呈块状分布;当含碳量接近于共析成分时,铁素体则呈断续的网状分布于光体周围。
(2)渗碳体(Fe3O)铁与碳形成的一种间隙化合物,其碳含量为6.69%,质硬而脆,经4%硝酸酒精溶液浸蚀后呈亮白色,若用苦味酸钠溶液浸蚀后呈暗黑色,而铁素体仍为白色,由此可区别铁素体与渗碳体。
按照成份和形成条件的不同,渗碳体可以呈现不同的形态;一次渗碳体(初生相)是直接由液体中析出的,故在白口铸伯中呈粗大的条片状,二次渗碳体(次生相)是从奥氏体中析出的,往往呈网络状沿奥氏体晶界分布;三次渗碳是由铁素体中析出的,通常呈不连续薄片状存在于铁素体晶界处,数量很少。
(3)珠光体(P)铁素体和渗碳体的机械混合物,铁素体与渗碳体相互混合交替排列形成的层片状组织,在高倍下能看清珠光体中平行相同的宽条铁素体和细条渗碳体,当放大倍数较低时由于显微镜的鉴别能力小于渗碳体片厚度,这时珠光体中的渗碳体就只能看到是一条黑线,珠光体在较低放大倍数下片层不能分辨,呈黑色。
高碳工具钢(过共析钢)经球化退火处理后还可以获得球状珠光体。
(4)莱氏体(dL )在室温下是由共晶Fe3O珠光体及二次渗碳体所组成的机械混合物,含碳量4.3%的共晶白口铁,在1148℃时形成由奥氏体和渗碳体组成的共晶体,其中奥氏体冷却时析出二次渗碳体,并在727℃以下分解为珠光体。
莱氏体的显微组织特征是在亮白色的渗碳体基底上相间地分布着暗黑色斑点及细条状的珠光体。
二次渗硕体和共晶渗碳体连在一起,从形态上难以区分。
根据组织特点及碳含量不同,铁碳合金可分为工业纯铁、钢和铸铁三大类。
1. 工业纯铁。
纯铁在室温下具有单相铁素体组织,含碳量<0.02%的铁碳合金通常称为工业纯铁,即由铁素体和少量三次渗碳体组成。
工业纯铁的显微组织,其中黑色线条是铁素体的晶界,而白色基底则是铁素体的不规则等轴晶粒,在某些晶界处可以看到不连续的薄片状三次渗碳体,图4-2为工业纯铁的退火组织。
2. 钢(1)亚共析钢:亚共析钢的含碳量在0.02~0.77%范围内,其组织由铁素体和珠光体所组成。
图4-3和图4-4分别为亚共析钢(20钢和45钢)的显微组织,其中白色为铁素体,暗黑色为珠光体,随着含碳量的增加,铁素体的数量逐渐减少,而珠光体的数量则相应地增多,可以通过直接在显微镜下观察珠光体和铁素体各自所占面积的百分数,近似地计算出钢的含碳量,即碳含量≈P×0.8%,其中P为珠光体所占面积百分数。
例如:在显微镜中观察到有50%的面积为珠光体,图4-2 工业纯铁退火组织(见实验室挂图)50%的面积为铁素体则此钢的含碳量%4.01008.050%=⨯=C (室温下铁素体含碳量极微,约为0.008%,可忽略不计)即相当于40钢。
(2) 共析钢含硫量为0.77%的碳钢称为共析钢的它由单一的珠光体组成。