平面向量知识点总结华
高中数学平面向量知识点归纳总结
高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。
常
用字母表示向量,如a、b等。
向量的大小可以用模表示,记作|a|。
2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。
加法满足交换律和结合律。
2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。
2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。
数量积满足交换律和分配律。
2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。
3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。
平行向
量的数量积等于两个向量的模的乘积。
3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。
垂直向量的
点积为0。
3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。
4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。
在物理学中,平面向量可以用来表示力的大小
和方向。
以上是关于高中数学平面向量的基本知识点归纳总结。
希望能够对你的学习和理解有所帮助!。
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
平面向量知识点总结(精华)
必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示.注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.举例1 已知(1,2)A ,(4,2)B ,则把向量AB 按向量(1,3)a =-平移后得到的向量是_____. 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:0,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0); ④三点A B C 、、共线 AB AC ⇔、共线. 6.相反向量:长度相等方向相反的向量叫做相反向量.a 的相反向量记作a -.举例2 如下列命题:(1)若||||a b =,则a b =.(2)两个向量相等的充要条件是它们的起点相同,终点相同. (3)若AB DC =,则ABCD 是平行四边形. (4)若ABCD 是平行四边形,则AB DC =. (5)若a b =,b c =,则a c =.(6)若//a b ,//b c 则//a c .其中正确的是 . 结果:(4)(5) 二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2.符号表示:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,i j 为基底,则平面内的任一向量a 可表示为(,)a xi yj x y =+=,称(,)x y 为向量a 的坐标,(,)a x y =叫做向量a 的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.三、平面向量的基本定理定理 设12,e e 同一平面内的一组基底向量,a 是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+.(1)定理核心:1122a λe λe =+;(2)从左向右看,是对向量a 的分解,且表达式唯一;反之,是对向量a 的合成.(3)向量的正交分解:当12,e e 时,就说1122a λe λe =+为对向量a 的正交分解.举例3 (1)若(1,1)a =,(1,1)b =-,(1,2)c =-,则c = . 结果:1322a b -. (2)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e =,2(1,2)e =- B.1(1,2)e =-,2(5,7)e = C.1(3,5)e =,2(6,10)e =D.1(2,3)e =-,213,24e ⎛⎫=- ⎪⎝⎭(3)已知,AD BE 分别是ABC △的边BC ,AC 上的中线,且AD a =,BE b =,则BC可用向量,a b 表示为 . 结果:2433a b +. (4)已知ABC △中,点D 在BC 边上,且2CD DB =,CD rAB sAC =+,则r s +=的值是 . 结果:0. 四、实数与向量的积实数λ与向量a 的积是一个向量,记作a λ,它的长度和方向规定如下:(1)模:||||||a a λλ=⋅;(2)方向:当0λ>时,a λ的方向与a 的方向相同,当0λ<时,a λ的方向与a 的方向相反,当0λ=时,0a λ=,注意:0a λ≠.五、平面向量的数量积1.两个向量的夹角:对于非零向量a ,b ,作OA a =,OB b =,则把(0)AOB θθπ∠=≤≤称为向量a ,b 的夹角.当0θ=时,a ,b 同向;当θπ=时,a ,b 反向;当2πθ=时,a ,b 垂直.2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:a b ⋅,即||||cos a b a b θ⋅=⋅.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB =,||4AC =,||5BC =,则AB BC ⋅=_________. 结果:9-.(2)已知11,2a ⎛⎫= ⎪⎝⎭,10,2b ⎛⎫=- ⎪⎝⎭,c a kb =+,d a b =-,c 与d 的夹角为4π,则k = ____. 结果:1.(3)已知||2a =,||5b =,3a b ⋅=-,则||a b +=____. (4)已知,a b 是两个非零向量,且||||||a b a b ==-,则a 与a b +的夹角为____. 结果:30.3.向量b 在向量a 上的投影:||cos b θ,它是一个实数,但不一定大于0.举例 5 已知||3a =,||5b =,且12a b ⋅=,则向量a 在向量b 上的投影为______. 结果:125. 4.a b ⋅的几何意义:数量积a b ⋅等于a 的模||a 与b 在a 上的投影的积.5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: (1)0a b a b ⊥⇔⋅=;(2)当a 、b 同向时,||||a b a b ⋅=⋅,特别地,222||||a a a a a a =⋅=⇔=; ||||a b a b ⋅=⋅是a 、b 同向的充要分条件;当a 、b 反向时,||||a b a b ⋅=-⋅,||||a b a b ⋅=-⋅是a 、b 反向的充要分条件;当θ为锐角时,0a b ⋅>,且a 、b 不同向,0a b ⋅>是θ为锐角的必要不充分条件;当θ为钝角时,0a b ⋅<,且a 、b 不反向;0a b ⋅<是θ为钝角的必要不充分条件.(3)非零向量a ,b 夹角θ的计算公式:cos ||||a b a b θ⋅=;④||||a b a b ⋅≤.举例6 (1)已知(,2)a λλ=,(3,2)b λ=,如果a 与b 的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠; (2)已知OFQ △的面积为S ,且1OF FQ ⋅=,若12S <,则OF ,FQ 夹角θ的取值范围是_________. 结果:,43ππ⎛⎫⎪⎝⎭;(3)已知(cos ,sin )a x x =,(cos ,sin )b y y =,且满足||3||ka b a kb +=-(其中0k >).①用k 表示a b ⋅;②求a b ⋅的最小值,并求此时a 与b 的夹角θ的大小.结果:①21(0)4k a b k k +⋅=>;②最小值为12,60θ=. 六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若AB a =,BC b =,则向量AC 叫做a 与b 的和,即a b AB BC AC +=+=;作图:略.注:平行四边形法则只适用于不共线的向量. (2)向量的减法运算法则:三角形法则.运算形式:若AB a =,AC b =,则a b AB AC CA -=-=,即由减向量的终点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:①AB BC CD ++= ;②AB AD DC --= ;③()()AB CD AC BD ---= . 结果:①AD ;②CB ;③0;(2)若正方形ABCD 的边长为1,AB a =,BC b =,AC c =,则||a b c ++= . 结果:(3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC △的形状为. 结果:直角三角形;(4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为 . 结果:2; (5)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的内角C 为 .结果:120.2.坐标运算:设11(,)a x y =,22(,)b x y =,则(1)向量的加减法运算:1212(,)a b x x y y +=++,1212(,)a b x x y y -=--. 举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R ,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12; (2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =,,(,)22x y ππ∈-,则x y += .结果:6π或2π-; (3)已知作用在点(1,1)A 的三个力1(3,4)F =,2(2,5)F =-,3(3,1)F =,则合力123F F F F =++的终点坐标是 . 结果:(9,1). (2)实数与向量的积:1111(,)(,)a x y x y λλλλ==.(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13AC AB =,3AD AB =,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-. (4)平面向量数量积:1212a b x x y y ⋅=+.举例10 已知向量(sin ,cos )a x x =,(sin ,sin )b x x =,(1,0)c =-. (1)若3x π=,求向量a 、c 的夹角; (2)若3[,]84x ππ∈-,函数()f x a b λ=⋅的最大值为12,求λ的值.结果:(1)150;(2)12或1.(5)向量的模:222222||||a a x y a x y ==+⇔=+.举例11 已知,a b均为单位向量,它们的夹角为60,那么|3|a b +== . 结果:(6)两点间的距离:若11(,)A x y ,22(,)B x y ,则||AB =举例12 如图,在平面斜坐标系xOy 中,xOy ∠=P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+,其中12,e e 分别为与y 轴同方向的单位向量,则P 点斜坐标为(,)x y .(1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=. 七、向量的运算律1.交换律:a b b a +=+,()()a a λμλμ=,a b b a ⋅=⋅;2.结合律:()a b c a b c ++=++,()a b c a b c --=-+,()()()a b a b a b λλλ=⋅=⋅;3.分配律:()a a a λμλμ+=+,()a b a b λλλ+=+,()a b c a c b c +⋅=⋅+⋅.举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅;② ()()a b c a b c ⋅⋅=⋅⋅;③ 222()||2||||||a b a a b b -=-+;④ 若0a b ⋅=,则0a =或0b =;⑤若a b c b ⋅=⋅则a c =;⑥22||a a =;⑦2a b b a a⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+.其中正确的是 . 结果:①⑥⑨. 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,60两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅,为什么? 八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=.举例14 (1)若向量(,1)a x =,(4,)b x =,当x =_____时,a 与b 共线且方向相同. 结果:2.(2)已知(1,1)a =,(4,)b x =,2u a b =+,2v a b =+,且//u v ,则x = . 结果:4.(3)设(,12)PA k =,(4,5)PB =,(10,)PC k =,则k = _____时,,,A B C 共线. 结果:2-或11.九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=.特别地||||||||ABAC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭. 举例15 (1)已知(1,2)OA =-,(3,)OB m =,若OA OB ⊥,则m = .结果:32m =; (2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1));(3)已知(,)n a b =向量n m ⊥,且||||n m =,则m =的坐标是 .结果:(,)b a -或(,)b a -.十、线段的定比分点1.定义:设点P 是直线12PP 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=,则实数λ叫做点P 分有向线段12P P 所成的比λ,P 点叫做有向线段12P P 的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系 (1)P 内分线段12P P ,即点P 在线段12PP 上0λ⇔>; (2)P 外分线段12P P 时,①点P 在线段12PP 的延长线上1λ⇔<-,②点P 在线段12PP 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12PP 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ.举例16 若点P 分AB 所成的比为34,则A 分BP 所成的比为 . 结果:73-. 3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P 所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩. 特别地,当1λ=时,就得到线段12PP 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ.举例17 (1)若(3,2)M --,(6,1)N -,且13MP MN =-,则点P 的坐标为 . 结果:7(6,)3--; (2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M ,且2AM MB =,则a =. 结果:2或4-.十一、平移公式如果点(,)P x y 按向量(,)a h k =平移至(,)P x y '',则,.x x h y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k =平移得曲线(,)0f x h y k --=. 说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量a 把(2,3)-平移到(1,2)-,则按向量a 把点(7,2)-平移到点______. 结果:(8,3)-;(2)函数sin 2y x =的图象按向量a 平移后,所得函数的解析式是cos21y x =+,则a =________. 结果:(,1)4π-. 十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+.(1)右边等号成立条件: a b 、同向或 a b 、中有0||||||a b a b ⇔+=+; (2)左边等号成立条件: a b 、反向或 a b 、中有0||||||a b a b ⇔-=+; (3)当 a b 、不共线||||||||||a b a b a b ⇔-<+<+. 3.三角形重心公式 在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++.举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭. 5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔为△ABC 的重心,特别地0PA PB PC G++=⇔为△ABC 的重心.(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔为△ABC 的内心;向量(0)||||ABAC AB AC λλ⎛⎫+≠ ⎪⎪⎝⎭所在直线过△ABC 的内心. 6.点P 分有向线段12P P 所成的比λ向量形式设点P 分有向线段12P P 所成的比为λ,若M 为平面内的任一点,则121MP MP MP λλ+=+,特别地P 为有向线段12P P 的中点122MP MP MP +⇔=.7. 向量,,PA PB PC 中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+且1αβ+=.举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 . 结果:直线AB .。
高中数学平面向量知识点总结
高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。
2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。
3. 相等:两个向量大小相等且方向相同时,这两个向量相等。
4. 零向量:大小为零的向量,没有特定方向。
二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。
- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。
- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。
2. 减法:- 规则:与加法类似,但方向相反。
- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。
3. 数乘:- 定义:向量与实数相乘。
- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。
- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。
- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。
三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。
2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。
3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。
- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。
- 数乘:$k(x, y) = (kx, ky)$。
四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。
平面向量知识点梳理
平面向量知识点梳理第一篇:一、平面向量的基本概念及表示方法1. 平面向量的定义:平面向量是具有大小和方向的量,用箭头表示。
2. 平面向量的表示方法:平面向量通常用有向线段来表示,线段的长度表示向量的大小,箭头的方向表示向量的方向。
二、平面向量的运算法则1. 向量的加法:将两个向量的起点放在一起,然后将两个箭头相连,连接结果的箭头即为两个向量相加的结果。
2. 向量的减法:将两个向量的起点放在一起,然后将第二个向量取反,再按向量加法的法则进行运算。
3. 向量的数乘:将向量的长度与一个数相乘,结果的方向保持不变,只改变了大小。
三、平面向量的性质1. 平面向量的相等:两个向量的大小和方向完全相同,则它们是相等的。
2. 平面向量的负向量:具有相同大小但方向相反的向量称为原向量的负向量。
3. 平面向量的数量积:两个向量的数量积等于两个向量的模长的乘积与它们夹角的余弦值的乘积。
4. 平面向量的夹角:两个向量的夹角是一个锐角,它与它们的余弦值有关。
5. 平面向量的线性相关与线性无关:若存在不全为零的实数使得向量的线性组合等于零向量,则称这些向量线性相关;否则称这些向量线性无关。
四、平面向量的坐标表示1. 平面向量的坐标表示方法:平面向量可以用有序数对或者列向量来表示。
2. 平面向量的坐标运算:平面向量的加法、减法和数乘运算可以通过对应元素之间的运算来进行。
五、平面向量的标准表示1. 平面向量的标准表示方法:平面向量可以表示为单位向量与它的长度的乘积。
2. 平面向量的标准化:将向量除以它的模长,使其成为单位向量。
六、平面向量的数量积1. 平面向量的数量积的计算:将两个向量的对应坐标相乘,再将相乘结果相加。
2. 平面向量的数量积与夹角:两个向量的数量积等于它们的模长的乘积与它们的夹角的余弦值的乘积。
以上是平面向量的一些基本概念、运算法则、性质和表示方法的梳理。
通过学习平面向量,我们可以更好地理解和应用向量的概念,并在几何问题中进行计算和推导。
平面向量知识点归纳总结
平面向量是指在平面上具有大小和方向的量。
下面是平面向量的一些重要知识点的归纳总结:1.平面向量的表示:●使用箭头或小写字母加上一个横线来表示,如a→或AB。
●平面向量通常用两个有序实数(分量)表示,如a = (a₁, a₂)。
2.向量的模/长度:●向量的模/长度表示为|a|,计算公式为|a| = √(a₁²+ a₂²)。
3.向量的方向角:●向量与正x 轴之间的夹角称为方向角。
●方向角可以使用三角函数来表示,如tanθ= a₂/a₁。
4.向量的运算:●向量的加法:a + b = (a₁+ b₁, a₂+ b₂)。
●向量的减法:a - b = (a₁- b₁, a₂- b₂)。
●数乘:k * a = (k * a₁, k * a₂),其中k 为实数。
5.向量的数量积(点积):●向量a 和向量b 的数量积(点积)表示为a ·b。
●计算公式为a ·b = a₁* b₁+ a₂* b₂。
●点积满足交换律:a ·b = b ·a。
●点积的几何意义:a ·b = |a| * |b| * cosθ,其中θ为a 和b 之间的夹角。
6.向量的矢量积(叉积):●向量a 和向量b 的矢量积(叉积)表示为a ×b。
●计算公式为a ×b = (0, 0, a₁* b₂- a₂* b₁),即得到一个垂直于平面的向量。
●矢量积满足反交换律:a ×b = - (b ×a)。
●矢量积的几何意义:|a ×b| = |a| * |b| * sinθ,其中θ为a 和b 之间的夹角。
7.平行向量和共线向量:●平行向量指方向相同或相反的向量。
●共线向量指在同一直线上的向量。
●如果两个向量平行,则它们的叉积为零。
8.向量的投影:●向量a 在向量b 上的投影表示为projₐb。
●计算公式为projₐb = (|a| * |b| * cosθ) * u,其中θ为a 和b 之间的夹角,u 为b 的单位向量。
平面向量知识点总结归纳
平面向量知识点总结归纳在数学中,平面向量是一个有大小和方向的量,常用于解决几何和代数的问题。
平面向量具有许多重要的性质和应用,本文将对平面向量的相关知识点进行总结归纳。
一、基本概念1. 平面向量的表示:平面向量通常用字母加上一个箭头来表示,例如向量a可以写作a→,其中箭头表示向量的方向。
2. 平行向量:两个向量具有相同或相反的方向时,称它们为平行向量。
平行向量的模长相等。
3. 零向量:所有分量都为零的向量称为零向量,用0→表示。
零向量的模长为0。
4. 向量共线:如果两个向量的方向相同或相反,它们被称为共线向量。
二、向量运算1. 向量加法:向量加法是指将两个向量的对应分量相加得到一个新向量。
向量加法满足交换律和结合律。
2. 向量减法:向量减法是指将两个向量的对应分量相减得到一个新向量。
向量减法可以转化为向量加法,即a→ - b→ = a→ + (-b→)。
3. 数乘运算:向量与一个实数相乘,可以改变向量的大小和方向,称为数乘运算。
4. 内积运算:向量的内积又称为点乘运算,表示两个向量之间的夹角关系。
内积的结果是一个实数,可以用向量的模长和夹角的余弦表示。
5. 外积运算:向量的外积又称为叉乘运算,用于求得两个向量所确定的平行四边形的面积和方向。
外积的结果是一个向量。
三、向量的性质1. 平行四边形法则:如果将两个向量的起点放在一起,则另外两个端点形成的四边形为平行四边形。
2. 模长计算:向量的模长是指向量的长度,可以用勾股定理计算。
3. 单位向量:模长为1的向量称为单位向量,可以通过将向量除以它的模长得到。
4. 点积性质:点积具有分配律、交换律和数量积与夹角的余弦值相关等性质。
5. 叉积性质:叉积具有反交换律、分配律和数量积与夹角的正弦值相关等性质。
四、向量的应用1. 几何问题:平面向量可以用于解决几何问题,如线段的平移、直线的垂直和平行判定等。
2. 物理学中的力:力可以用向量表示,通过向量运算可以求得多个力的合力和分力。
平面向量知识点归纳
平面向量知识点归纳一、平面向量的基本概念1、向量的定义既有大小又有方向的量叫做向量。
物理学中又叫做矢量。
2、向量的表示(1)几何表示:用有向线段表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
(2)字母表示:通常在印刷时用黑体小写字母 a、b、c 等来表示向量,手写时可写成带箭头的小写字母。
3、向量的模向量的大小叫做向量的模,记作或。
4、零向量长度为 0 的向量叫做零向量,记作。
零向量的方向是任意的。
5、单位向量长度等于 1 个单位长度的向量叫做单位向量。
6、平行向量(共线向量)方向相同或相反的非零向量叫做平行向量,也叫共线向量。
规定:零向量与任意向量平行。
7、相等向量长度相等且方向相同的向量叫做相等向量。
8、相反向量长度相等且方向相反的向量叫做相反向量。
二、平面向量的线性运算1、向量的加法(1)三角形法则:已知非零向量、,在平面内任取一点 A,作,,则向量叫做与的和,记作,即。
(2)平行四边形法则:已知两个不共线的向量、,作,,以、为邻边作平行四边形 ABCD,则对角线上的向量就是与的和。
(3)运算性质:交换律;结合律。
2、向量的减法(1)三角形法则:已知非零向量、,在平面内任取一点 O,作,,则向量叫做与的差,记作,即。
(2)几何意义:可以表示为从向量的终点指向向量的终点的向量。
3、向量的数乘(1)定义:实数与向量的积是一个向量,记作,它的长度与方向规定如下:①;②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,。
(2)运算律:结合律;分配律,。
三、平面向量的基本定理及坐标表示1、平面向量基本定理如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使。
2、平面向量的坐标表示在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个单位向量、作为基底,对于平面内的一个向量,有且只有一对实数 x、y,使得,则有序数对叫做向量的坐标,记作,其中 x 叫做在 x 轴上的坐标,y 叫做在 y 轴上的坐标。
平面向量知识点归纳
平面向量知识点归纳平面向量是高中数学中的重要内容,也是大学数学中的基础知识,它是向量的一种。
向量是数学中的一个概念,它有方向和大小,用有向线段表示。
平面向量是指在平面中的向量,以下是平面向量的知识点归纳。
一、平面向量的定义平面向量是表示平面上有大小和方向的箭头的数学概念。
平面向量AB用符号→AB表示,它的长度表示向量大小,而方向则由方向角表示。
二、平面向量的加减法1. 平面向量的加法平面向量加法是指将一条平面向量按照另一条向量的方向和大小来平移,并合成为一条新的向量。
记作→AB+→BC=→AC。
向量加法满足交换律、结合律、分配律。
2. 平面向量的减法平面向量减法是将另一向量的方向翻转,依次相加,得到一个新向量。
记作→AB-→AC=→CB。
三、平面向量的数量积平面向量的数量积是指两个向量之间相乘得到的标量。
记作→a⋅→b=a·b·cosθ,其中a、b是两个向量,θ是它们之间的夹角。
四、平面向量的叉积平面向量的叉积是在二维平面内的两个向量所形成的向量垂直于平面,大小等于两个向量所组成的平行四边形的面积。
记作→a×→b,其中a、b是两个向量。
五、平面向量的共线、垂直及夹角1. 平面向量的共线两个向量共线的充要条件是它们的数量积等于它们的模的乘积,即→a//→b,当且仅当a·b=|a||b|。
2. 平面向量的垂直两个向量垂直的充要条件是它们的数量积等于0,即→a⊥→b当且仅当a·b=0。
3. 平面向量的夹角两个向量的夹角是指它们之间的夹角,记作θ,其中θ的范围是0≤θ≤π。
六、平面向量的投影与单位向量1. 平面向量的投影平面向量投影是指一个向量在另一个向量上的投影,也是向量的一个重要应用。
投影的值等于向量的模与夹角的余弦的乘积。
记作pr→a。
2. 平面向量的单位向量单位向量是模等于1的向量,它表示的方向与原向量相同。
单位向量是向量的一种特殊情况,用符号→e表示。
平面向量知识点整理
平面向量知识点整理平面向量是线性代数中的重要概念,具有广泛的应用。
下面是关于平面向量的知识点整理。
一、平面向量的定义和表示平面向量是指在平面上一个具有大小和方向的量。
平面向量可以表示为箭头,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
平面向量通常表示为有序对(a,b),其中a和b是实数。
二、平面向量的运算1.加法:平面向量的加法运算是指将两个向量相加得到一个新的向量。
加法运算满足交换律和结合律。
2.数乘:将一个向量乘以一个标量得到一个新的向量,标量可以是实数。
数乘的结果是将向量的大小和方向进行相应的调整。
3.减法:将一个向量减去另一个向量等于将第二个向量取相反数后与第一个向量相加。
减法运算可以转化为加法运算。
三、平面向量的性质1.平行向量:两个向量的方向相同或相反,则它们是平行向量。
平行向量的大小可以不同。
2.零向量:大小为零的向量称为零向量,用0表示。
任何向量与零向量相加的结果仍为原向量本身。
3.负向量:一个向量的大小和方向相同但方向相反的向量称为它的负向量。
4.共线向量:两个或更多个向量都平行于同一条直线时,它们是共线向量。
5.非共线向量:不在同一直线上的向量是非共线向量。
6. 数量积:两个非零向量a和b的数量积(也称为点积或内积)是一个标量,定义为a·b= ,a,,b,cosθ,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角。
7. 向量积:两个非零向量a和b的向量积(也称为叉积或外积)是一个向量,定义为 a × b = ,a,,b,sinθ n,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角,n为一个与a和b都垂直的单位向量。
8.向量共线条件:两个向量共线的充要条件是它们的向量积等于零向量。
四、平面向量的应用1.几何问题:平面向量可以用于解决距离、角度等几何问题,如计算点的坐标、计算直线的夹角等。
2.物理问题:平面向量常用于物理学中的力学问题,如计算物体的合力、分解力等。
高中平面向量知识点总结
高中平面向量知识点总结一、平面向量的定义与性质1. 平面向量的定义平面向量是具有大小和方向的几何对象,通常用有向线段来表示,记作AB→,其中A、B 为起点和终点。
2. 平面向量的性质(1)平面向量相等的充分必要条件是它们的大小相等,方向相同。
(2)平面向量相加的几何意义:平面向量A+B的几何意义是以B为起点,在A的方向上作另一有向线段,则A+B的终点是以A、B的起点为起点、终点的有向线段。
(3)平面向量乘以实数的几何意义:实数k是负数时,它对平面向量的作用是对此向量作方向相反或绝对值为|k|倍的拉伸;k为正数时,它对平面向量的作用是对此向量作方向相同或绝对值为k倍的拉伸;k=0时,作用是得到一个零向量。
二、平面向量的基本运算1. 平面向量的加法平面向量A(a1, a2)、B(b1, b2)相加的结果是C(c1, c2),其中c1=a1+b1,c2=a2+b2。
2. 平面向量的减法平面向量A(a1, a2)、B(b1, b2)相减的结果是C(c1, c2),其中c1=a1-b1,c2=a2-b2。
3. 平面向量的数量积平面向量A(a1, a2)、B(b1, b2)的数量积是a1b1+a2b2,它是一个标量(实数)。
4. 平面向量的数量积的性质(1)交换律:A·B = B·A(2)分配律:A·(B+C) = A·B + A·C(3)A·A = |A|^2,其中|A|为向量A的模。
(4)若向量A与向量B夹角为θ,则A·B = |A||B|cosθ5. 平面向量的夹角若向量A、B夹角为θ,则A·B = |A||B|cosθ三、平面向量的应用1. 向量的共线性与共面性两个向量共线的充分必要条件是它们的方向相同或相反;三个向量共面的充分必要条件是它们的线性相关。
2. 向量的投影向量A在向量B上的投影是A在B方向上的长度,记作proj_BA = |A|cosθ,其中θ为A 与B的夹角。
(完整版)平面向量重要基础知识点
平面向量重要知识点1、向量有关概念:(1) 向量的概念:既有大小又有方向的量,向量是可以平移的,(2)零向量:长度为0 的向量叫零向量,记作:0,注意零向量的方向是任意的;uuu单位向量:长度为一个单位长度的向量叫做单位向量 (与AB 共线的单位向量是 相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 平行向量(也叫共线向量):方向相同或相反 的非零向量a 、b 叫做平行向量,记作:a // b ,规定零向量和任何向量平行。
提醒平行向量 无传递性!(因为有0)2.平面向量的基本定理:如果e i 和e 2是同一平面内的两个不共线向量,那么对该平面内的任4、平面向量的数量积: (1)两个向量的夹角:(2) 平面向量的数量积:规定:零向量与任一向量的数量积是 0注意数量积是一个实数,不再是一个向量。
(3) b 在a 上的投影为|b|cos ,它是一个实数,但不一定大于 0。
(4) a ?b 的几何意义:数量积a?b 等于a 的模与b 在a 上的投影的积。
(5)向量数量积的性质:设两个非零向量a ,b ,其夹角为,则:r r rb a?b 0 ;(3) uuuAB ).uuu), |AB|一向量a ,有且只有一对实数12,使 a= 1^ + 2 62。
3、实数与向量的积:实数 与向量a 的积是一个向量,记作 a :当>0时,a 的方向与a 的方向相同,当 <0时,a 的方向与a 的方向相反②当「2 r r 特别地,a a?aa ,b 同向时,a ?b =拧 ;当a 与b 反向时,;当为锐角时,a?b > 0,且a、b不同向,ab 0是为锐角的必要非充分a ? b5、向量的运算:(1)几何运算:掌握三角形发展或者平行四边形法则, (2)坐标运算:设 a (x 1, y 1),b (x 2, y 2),贝U:7、向量平行(共线)的充要条件 8、8.线段的定比分点:(1)定比分点的概念:设点P 是直线P 1P 2上异于P i 、P 2的任意一点,若存在一个实数的定比分点;X L 1(知道怎样推出来的吗)* y 2 19.向量平移平面向量章节复习题r f r r条件;当 为钝角时,a ?b < 0,且a 、b 不反向,r ra b 0是为钝角的必要非充分条件; ③非零向量a , b 夹角的计算公式:cos④ ia?bi |;|£|。
《平面向量》知识点归纳总结
第一章 平面向量2.1向量的基本概念和基本运算16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.2.2平面向量的基本定理及坐标表示21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作baCBAa b C C-=A -AB =B为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
(完整版)高中数学平面向量知识点总结.doc
高中数学必修 4 之平面向量知识点归纳一 .向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0 的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为 1 个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设uuur r uuur r r uuur uuur uuur AB a, BC b ,则a+ b = AB BC =AC( 1)0 a a 0 a ;(2)向量加法满足交换律与结合律;uuur uuur uuurL uuur uuur uuurAB BC CD PQ QR AR ,但这时必须“首尾相连”.3、向量的减法:① 相反向量:与 a 长度相等、方向相反的向量,叫做 a 的相反向量②向量减法:向量a加上b的相反向量叫做 a 与b的差,③作图法: a b 可以表示为从 b 的终点指向a的终点的向量( a 、b有共同起点)4、实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0 时,λ a 的方向与 a 的方向相同;当0 时,λ a 的方向与 a 的方向相反;当0 时, a 0 ,方向是任意的5、两个向量共线定理:向量 b 与非零向量 a 共线有且只有一个实数,使得b = a 6、平面向量的基本定理:如果e1, e2是一个平面内的两个不共线向量,那么对这一平面内的任一向量 a ,有且只有一对实数1, 2使: a1 e1 2e2,其中不共线的向量 e1 , e2叫做表示这一平面内所有向量的一组基底二 .平面向量的坐标表示1 平面向量的坐标表示:平面内的任一向量r r r ra 可表示成 a xi yj ,记作ra=(x,y)。
2平面向量的坐标运算:(1)rx1 , y1rx2 , y2r rx1 x2 , y1 y2若 a ,b ,则 a buuur(2) 若 A x1 , y1 , B x2 , y2,则AB x2 x1, y2 y1(3)r=(x,y),则rx, y)若 a a =((4)rx1 , y1rx2 , y2r rx1 y2 x2 y1 0若 a ,b ,则 a // b(5)rx1 , y1rx2 , y2r rx1 x2 y1 y2若 a ,b ,则a br ry1 y2 0若 a b ,则 x1 x2三.平面向量的数量积1两个向量的数量积:r r r r r r已知两个非零向量 a 与b,它们的夹角为,则 a ·b=︱ a ︱·︱b︱cos r r r r叫做 a 与b的数量积(或内积)规定 0 arrrr r︱ cosa b2 向量的投影:︱b = r ∈ R,称为向量b 在 a 方向上的投影投影的绝对值| a |称为射影3 数量积的几何意义:r r r r ra ·b 等于a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系: r rr 2 r 2 a aa | a |5 乘法公式成立:r r r r r 2 r 2 r 2r 2 a b a b a b ab ;r r 2 r 2rrr 2 r 2rrr 2a b a2a b b a2a b b6 平面向量数量积的运算律:rrr r ①交换律成立: a bb a②对实数的结合律成立:r r r r r r Ra b a b a br r rr r r r r r r(第1题)③分配律成立:a b c a c b c c a b特别注意:( 1)结合律不成立: r r rrrr ;a b ca b cr r r r r r( 2)消去律不成立 a b a c 不能得到 b crr不能得到 r r r r( 3) a b =0 a =0 或 b = 07 两个向量的数量积的坐标运算:r rr ry 1 y 2已知两个向量 a(x 1, y 1 ), b (x 2 , y 2 ),则a ·b = x 1x 2 8 向量的夹角:已知两个非零向量r r uuur r uuur ra 与b ,作 OA = a , OB = b ,则∠ AOB=( 0 0180 0)叫做向量 r ra 与b 的夹角rrr ? r x x y yb 2 1 2a1 cos = cos a,br r = 2 2 x 2 22 a ? b x 1 y 1y 2r r同方向时,θr r当且仅当两个非零向量 a 与 b =00 ,当且仅当 a 与 b 反方向时θ=1800,r同时 0 与其它任何非零向量之间不谈夹角这一问题r r 0r r r r 9 垂直:如果 a 与 b 的夹角为 90 则称 a 与 b 垂直,记作 a ⊥ b10 两个非零向量垂直的充要条件 :a ⊥ ba ·b = Ox 1 x 2 y 1 y 20 平面向量数量积的性质一、选择题1.在△ ABC 中, AB = AC ,D , E 分别是 AB , AC 的中点,则 () .A .AB 与AC 共线 B .DE 与CB 共线 C .AD 与AE 相等 D .AD 与BD 相等2.下列命题正确的是 () .A .向量 AB 与 BA 是两平行向量B .若 a , b 都是单位向量,则a = bC .若 AB = DC ,则 A , B ,C ,D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中, O 为坐标原点,已知两点 A( 3, 1) ,B( - 1,3) ,若点 C满足OC =OA + OB ,其中 , ∈ R ,且 + = 1,则点 C 的轨迹方程为 () .A . 3x + 2y -11= 0B .( x - 1) 2+ ( y -1) 2= 5 C . 2x - y =0D . x +2y - 5= 04.已知 a 、 b 是非零向量且满足( a -2b) ⊥ a ,( b -2a) ⊥ b ,则 a 与 b 的夹角是A .B .25C .D .63365.已知四边形 ABCD 是菱形, 点 P 在对角线 AC 上 ( 不包括端点 A ,C) ,则 AP = A . λ( AB + AD ) , λ∈ ( 0, 1)B . λ( AB + BC ) , λ∈ ( 0, 2 )2 C . λ( AB - AD ) , λ∈ ( 0,1)D . λ( AB - BC ) , λ∈ ( 0,2 )26.△ ABC 中, D , E , F 分别是 AB , BC , AC 的中点,则 DF = () .A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量 a 与 b 的夹角为60°, | b| = 4, ( a+ 2b) · ( a- 3b) =- 72,则向量 a 的模为 () .A.2B.4C. 6D. 128.点 O 是三角形 ABC 所在平面内的一点,满足 OA ·OB = OB ·OC = OC ·OA ,则点 O 是△ABC的() .A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中, AB = a+ 2b, BC =- 4a- b , CD =- 5a- 3b,其中 a,b 不共线,则四边形ABCD为 ( ) .A.平行四边形B.矩形C.梯形D.菱形10 .如图,梯形 ABCD中,| AD | = | BC | ,EF ∥ AB ∥ CD 则相等向量是 ( ) .A.AD与BC B.OA与OBC.AC与BD D. EO与 OF二、填空题(第 10题)11 .已知向量 OA = ( k,12) , OB = ( 4, 5) , OC = ( - k,10) ,且 A, B, C 三点共线,则 k=.12 .已知向量 a =( x+ 3, x2-3x- 4) 与 MN 相等,其中 M( - 1, 3) ,N( 1, 3) ,则 x=.+BC·CA+CA·AB的值等于.14.给定两个向量a= ( 3, 4) , b=( 2,- 1) ,且 ( a+ mb) ⊥( a-b) ,则实数m 等于.15.已知 A, B, C 三点不共线, O 是△ ABC 内的一点,若OA + OB + OC = 0,则 O是△ABC的.16.设平面内有四边形ABCD和点 O, OA = a, OB = b, OC = c, OD =d ,若a+ c= b+ d,则四边形ABCD的形状是.三、解答题17.已知点A( 2,3) , B( 5, 4) , C( 7, 10) ,若点 P 满足 AP = AB +λAC ( λ∈R) ,试求λ为何值时,点P 在第三象限内?13.已知平面上三点A,B,C 满足 | AB | = 3,| BC | = 4,| CA | = 5,则 AB ·BC18.如图,已知△ABC,A( 7, 8) , B( 3, 5) , C( 4,3) , M ,N, D 分别是AB,AC, BC的中点,且MN 与 AD 交于 F,求 DF .(第 18 题)19.如图,在正方形ABCD中, E, F 分别为 AB, BC 的中点,求证:A F⊥ DE( 利用向量证明 ) .(第 19题) 20.已知向量a= ( cos θ, sin θ) ,向量 b= (3 ,-1),则| 2a-b|的最大值.一、选择题 1. B解析:如图, AB 与 AC , AD 与 AE 不平行, AD 与 BD 共线反向.2. A(第1题)解析:两个单位向量可能方向不同,故 B 不对.若 AB = DC ,可能 A , B ,C ,D 四点共线,故 C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3. D解析:提示:设 OC =( x , y) , OA = ( 3,1) , OB =( - 1, 3) , OA =(3 ,),OB =(- ,3 ),又 OA + OB =(3 - ,+3 ),∴ ( x , y) = ( 3 - , + 3 ) ,∴x =3-,又 + = 1,由此得到答案为y =+3D .4. B解析:∵ ( a - 2b) ⊥ a , ( b -2a) ⊥b ,∴ ( a -2b) ·a = a 2- 2a · b = 0, ( b -2a) · b = b 2- 2a · b = 0,∴ a 2= b 2,即 | a| = | b| .∴ | a| 2=2| a|| b| cos θ= 2| a| 2cos θ.解得 cos θ= 1 .2∴ a 与 b 的夹角是π.35. A解析:由平行四边形法则,AB + AD = AC ,又 AB + BC = AC ,由 λ的范围和向量数乘的长度, λ∈ ( 0, 1) .6. D解析:如图,∵ AF =DE ,∴ DF =DE +EF =EF +AF .7. C解析:由 ( a + 2b) · ( a -3b) =- 72,得 a 2- a · b - 6b 2=- 72.而| b| =4, a · b = | a|| b| cos 60 °= 2| a| , ∴ | a| 2 -2| a| -96=- 72,解得 | a| =6.8. D解析:由 OA ·OB =OB ·OC =OC ·OA ,得 OA ·OB =OC ·OA,即OA ·( OC -OB )=0,故 BC ·OA =0, BC ⊥OA ,同理可证AC ⊥OB ,∴ O 是△ ABC 的三条高的交点.9. C解析:∵ AD = AB + BC + CD =- 8a - 2b = 2 BC ,∴ AD ∥ BC 且 | AD | ≠|BC|.∴ 四边形 ABCD 为梯形. 10.D解析: AD 与 BC , AC 与 BD , OA 与 OB 方向都不相同,不是相等向量.二、填空题11.-2.3解析: A, B, C 三点共线等价于AB , BC 共线,AB = OB - OA = ( 4, 5) - ( k, 12) = ( 4-k,- 7) ,BC = OC - OB = ( - k, 10) - ( 4, 5) = ( - k- 4, 5) ,又 A, B,C 三点共线,∴ 5( 4- k) =- 7( - k-4) ,∴k=-2.312.- 1.解析:∵ M( -1,3) ,N( 1,3) ,∴ MN =( 2, 0) ,又 a =MN,x+3=2 x=-1∴解得2 或x=4x -3x-4=0 x=-1∴ x=- 1.13.- 25.解析:思路1:∵AB =3, BC = 4, CA =5,D(第 13 题)=-( CA )22=- CA=- 25.思路 2:∵AB = 3, BC = 4, CA = 5,∴∠ ABC= 90°,∴cos∠ CAB=AB=3, cos∠ BCA=BC=4.CA5CA 5根据数积定义,结合图(右图)知 AB·BC=0,4BC · CA = BC · CA cos∠ ACE= 4× 5× ( -) =- 16,3CA · AB = CA · AB cos∠ BAD= 3× 5× ( -) =- 9.∴AB · BC + BC · CA + CA · AB =0―16―9=- 25.14.23.3解析: a+ mb = ( 3+ 2m,4- m) , a -b= ( 1, 5) .∵( a +mb) ⊥ ( a- b) ,∴( a +mb) · ( a- b) =( 3+ 2m) × 1+ ( 4-∴ △ ABC为直角三角形且∠ABC=90°,即 AB ⊥ BC ,∴ AB · BC = 0,∴AB·BC+BC·CA+CA· AB=BC·CA+CA· AB=CA·( BC+ AB)m) × 5= 0 m=23.315.答案:重心.(第 15 题) 解析:如图,以 OA , OC 为邻边作□AOCF交 AC于点 E,则 OF = OA + OC ,又OA+OC =- OB ,∴ OF =2 OE =- OB . O 是△ ABC 的重心.16.答案:平行四边形.解析:∵ a + c = b + d ,∴ a - b = d - c ,∴ BA = CD .∴ 四边形 ABCD 为平行四边形.三、解答题17. λ<- 1.解析:设点 P 的坐标为 ( x , y) ,则 AP = ( x , y) - ( 2, 3) = ( x - 2,y -3) .AB + λAC = ( 5,4) - ( 2, 3) +λ[ ( 7, 10) - ( 2, 3) ]= ( 3,1 ) + λ(5, 7)= ( 3+5λ,1+ 7λ).∵ AP = AB + λAC ,∴ ( x - 2,y - 3) = ( 3+5λ,1+ 7λ).∴x 2 3 5 x 5 5 y3 1 7即4 7y(第 18 题)要使点 P 在第三象限内,只需5 5 0 解得 λ<- 1.4 718. DF =(7,2).4解析:∵ A( 7,8) ,B( 3,5) , C( 4,3) , AB =( -4,- 3) , AC =( -3,- 5) . ∴ AD = 1 ( AB + AC )= 1(-4-3,-3-5)2 2= 1 (-7,-8)=(- 7,-4). 2 2又 M ,N 分别是 AB , AC 的中点,∴ F 是 AD 的中点,∴ DF =- FD =- 1 AD =- 1 (-7 ,-4)=( 7,2).22 2419.证明:设 AB = a , AD = b ,则 AF = a +1 b , ED = b - 1a .2 2∴ AF · ED = ( a + 1 b) · ( b - 1 a) = 1b 2- 1a 2+ 3a ·b .2 2 2 2 4又 AB ⊥ AD ,且 AB = AD ,∴ a 2= b 2, a · b = 0.∴ AF ·ED =0,∴ AF ⊥ED .本题也可以建平面直角坐标系后进行证明.(第 19题)20.分析:思路 1: 2a - b = ( 2cos θ- 3 ,2sin θ+ 1) ,∴ | 2a - b| 2= ( 2cos θ- 3 ) 2 +( 2sin θ+ 1) 2=8+ 4sin θ- 4 3 cos θ.π π θ-π 8,又 4sin θ- 4 3 cos θ= 8( sin θcos - cos θsin) = 8sin() ,最大值为333∴ | 2a - b| 2 的最大值为 16,∴ | 2a - b| 的最大值为 4.思路 2:将向量 2a , b 平移,使它们的起点与原点重合,则| 2a - b| 表示 2a , b终点间的距离. | 2a| =2,所以 2a 的终点是以原点为圆心, 2 为半径的圆上的动点 P , b 的终点是该圆上的一个定点Q ,由圆的知识可知, | PQ| 的最大值为直径的长为4.又 D 是 BC 的中点,。
平面向量知识点总结(精华)
平面向量知识点总结(精华)一、平面向量的基本概念1. 向量的定义向量是具有大小和方向的量,通常用箭头表示,如\(\vec{a}\)。
向量的大小称为模,记为 \(|\vec{a}|\) 或\(\vec{a}\) 的长度;向量的方向是从起点指向终点的方向。
2. 向量的表示向量可以用坐标表示,设向量 \(\vec{a}\) 的起点为 \(O\),终点为 \(A\),则 \(\vec{a}\) 可以表示为 \(\vec{OA}\)。
在平面直角坐标系中,向量 \(\vec{a}\) 可以表示为 \(\vec{a} = (x, y)\),其中 \(x\) 和 \(y\) 分别是向量在 \(x\) 轴和 \(y\) 轴上的分量。
3. 向量的运算(1)向量的加法:两个向量相加,是将它们的坐标分别相加。
即 \(\vec{a} + \vec{b} = (x_1 + x_2, y_1 + y_2)\)。
(2)向量的减法:两个向量相减,是将它们的坐标分别相减。
即 \(\vec{a} \vec{b} = (x_1 x_2, y_1 y_2)\)。
(3)向量的数乘:一个向量乘以一个实数,是将向量的坐标分别乘以这个实数。
即 \(k\vec{a} = (kx_1, ky_1)\)。
(4)向量的点乘:两个向量的点乘,是将它们的坐标分别相乘后求和。
即 \(\vec{a} \cdot \vec{b} = x_1x_2 +y_1y_2\)。
(5)向量的叉乘:两个向量的叉乘,是将它们的坐标分别相乘后求差。
即 \(\vec{a} \times \vec{b} = x_1y_2x_2y_1\)。
二、平面向量的数量积1. 数量积的定义数量积又称点积,是两个向量的乘积,其结果是一个实数。
数量积的定义为:\(\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \theta\),其中 \(\theta\) 是两个向量的夹角。
平面向量知识点总结(精华)(汇编)
必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示.注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.举例1 已知(1,2)A ,(4,2)B ,则把向量AB 按向量(1,3)a =-平移后得到的向量是_____. 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:0,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0); ④三点A B C 、、共线 AB AC ⇔、共线. 6.相反向量:长度相等方向相反的向量叫做相反向量.a 的相反向量记作a -.举例2 如下列命题:(1)若||||a b =,则a b =.(2)两个向量相等的充要条件是它们的起点相同,终点相同. (3)若AB DC =,则ABCD 是平行四边形. (4)若ABCD 是平行四边形,则AB DC =. (5)若a b =,b c =,则a c =.(6)若//a b ,//b c 则//a c .其中正确的是 . 结果:(4)(5) 二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2.符号表示:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,i j 为基底,则平面内的任一向量a 可表示为(,)a xi yj x y =+=,称(,)x y 为向量a 的坐标,(,)a x y =叫做向量a 的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.三、平面向量的基本定理定理 设12,e e 同一平面内的一组基底向量,a 是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+.(1)定理核心:1122a λe λe =+;(2)从左向右看,是对向量a 的分解,且表达式唯一;反之,是对向量a 的合成.(3)向量的正交分解:当12,e e 时,就说1122a λe λe =+为对向量a 的正交分解.举例3 (1)若(1,1)a =,(1,1)b =-,(1,2)c =-,则c = . 结果:1322a b -. (2)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e =,2(1,2)e =- B.1(1,2)e =-,2(5,7)e = C.1(3,5)e =,2(6,10)e =D.1(2,3)e =-,213,24e ⎛⎫=- ⎪⎝⎭(3)已知,AD BE 分别是ABC △的边BC ,AC 上的中线,且AD a =,BE b =,则BC可用向量,a b 表示为 . 结果:2433a b +. (4)已知ABC △中,点D 在BC 边上,且2CD DB =,CD rAB sAC =+,则r s +=的值是 . 结果:0. 四、实数与向量的积实数λ与向量a 的积是一个向量,记作a λ,它的长度和方向规定如下:(1)模:||||||a a λλ=⋅;(2)方向:当0λ>时,a λ的方向与a 的方向相同,当0λ<时,a λ的方向与a 的方向相反,当0λ=时,0a λ=,注意:0a λ≠.五、平面向量的数量积1.两个向量的夹角:对于非零向量a ,b ,作OA a =,OB b =,则把(0)AOB θθπ∠=≤≤称为向量a ,b 的夹角.当0θ=时,a ,b 同向;当θπ=时,a ,b 反向;当2πθ=时,a ,b 垂直.2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:a b ⋅,即||||cos a b a b θ⋅=⋅.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB =,||4AC =,||5BC =,则A B B C ⋅=_________. 结果:9-.(2)已知11,2a ⎛⎫= ⎪⎝⎭,10,2b ⎛⎫=- ⎪⎝⎭,c a kb =+,d a b =-,c 与d 的夹角为4π,则k = ____. 结果:1.(3)已知||2a =,||5b =,3a b ⋅=-,则||a b +=____. (4)已知,a b 是两个非零向量,且||||||a b a b ==-,则a 与a b +的夹角为____. 结果:30.3.向量b 在向量a 上的投影:||cos b θ,它是一个实数,但不一定大于0.举例 5 已知||3a =,||5b =,且12a b ⋅=,则向量a 在向量b 上的投影为______. 结果:125. 4.a b ⋅的几何意义:数量积a b ⋅等于a 的模||a 与b 在a 上的投影的积.5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: (1)0a b a b ⊥⇔⋅=;(2)当a 、b 同向时,||||a b a b ⋅=⋅,特别地,222||||a a a a a a =⋅=⇔=; ||||a b a b ⋅=⋅是a 、b 同向的充要分条件;当a 、b 反向时,||||a b a b ⋅=-⋅,||||a b a b ⋅=-⋅是a 、b 反向的充要分条件;当θ为锐角时,0a b ⋅>,且a 、b 不同向,0a b ⋅>是θ为锐角的必要不充分条件;当θ为钝角时,0a b ⋅<,且a 、b 不反向;0a b ⋅<是θ为钝角的必要不充分条件.(3)非零向量a ,b 夹角θ的计算公式:cos ||||a b a b θ⋅=;④||||a b a b ⋅≤.举例6 (1)已知(,2)a λλ=,(3,2)b λ=,如果a 与b 的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠; (2)已知OFQ △的面积为S ,且1OF FQ ⋅=,若12S <,则OF ,FQ 夹角θ的取值范围是_________. 结果:,43ππ⎛⎫⎪⎝⎭; (3)已知(cos ,sin )a x x =,(cos ,sin )b y y =,且满足||3||ka b a kb +=-(其中0k >).①用k 表示a b ⋅;②求a b ⋅的最小值,并求此时a 与b 的夹角θ的大小.结果:①21(0)4k a b k k +⋅=>;②最小值为12,60θ=. 六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若AB a =,BC b =,则向量AC 叫做a 与b 的和,即a b A B B C A C +=+=;作图:略.注:平行四边形法则只适用于不共线的向量. (2)向量的减法运算法则:三角形法则.运算形式:若AB a =,AC b =,则a b AB AC CA -=-=,即由减向量的终点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:①AB BC CD ++= ;②AB AD DC --= ;③()()AB CD AC BD ---= . 结果:①AD ;②CB ;③0;(2)若正方形ABCD 的边长为1,AB a =,BC b =,AC c =,则||a b c ++= . 结果:(3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC △的形状为. 结果:直角三角形;(4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为 . 结果:2; (5)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的内角C 为 .结果:120.2.坐标运算:设11(,)a x y =,22(,)b x y =,则(1)向量的加减法运算:1212(,)a b x x y y +=++,1212(,)a b x x y y -=--.举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R ,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12; (2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =,,(,)22x y ππ∈-,则x y += .结果:6π或2π-; (3)已知作用在点(1,1)A 的三个力1(3,4)F =,2(2,5)F =-,3(3,1)F =,则合力123F F F F =++的终点坐标是 . 结果:(9,1).(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==.(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13AC AB =,3AD AB =,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-. (4)平面向量数量积:1212a b x x y y ⋅=+.举例10 已知向量(sin ,cos )a x x =,(sin ,sin )b x x =,(1,0)c =-. (1)若3x π=,求向量a 、c 的夹角; (2)若3[,]84x ππ∈-,函数()f x a b λ=⋅的最大值为12,求λ的值.结果:(1)150;(2)12或1.(5)向量的模:222222||||a a x y a x y ==+⇔=+.举例11 已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +== . 结果:(6)两点间的距离:若11(,)A x y ,22(,)B x y ,则||AB =举例12 如图,在平面斜坐标系xOy 中,xOy ∠=P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+,其中12,e e y 轴同方向的单位向量,则P 点斜坐标为(,)x y .(1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=. 七、向量的运算律1.交换律:a b b a +=+,()()a a λμλμ=,a b b a ⋅=⋅;2.结合律:()a b c a b c ++=++,()a b c a b c --=-+,()()()a b a b a b λλλ=⋅=⋅;3.分配律:()a a a λμλμ+=+,()a b a b λλλ+=+,()a b c a c b c +⋅=⋅+⋅.举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅;② ()()a b c a b c ⋅⋅=⋅⋅;③ 222()||2||||||a b a a b b -=-+;④ 若0a b ⋅=,则0a =或0b =;⑤若a b c b ⋅=⋅则a c =;⑥22||a a =;⑦2a b b a a⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+.其中正确的是 . 结果:①⑥⑨. 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅,为什么? 八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=.举例14 (1)若向量(,1)a x =,(4,)b x =,当x =_____时,a 与b 共线且方向相同. 结果:2.(2)已知(1,1)a =,(4,)b x =,2u a b =+,2v a b =+,且//u v ,则x = . 结果:4.(3)设(,12)PA k =,(4,5)PB =,(10,)PC k =,则k = _____时,,,A B C 共线. 结果:2-或11.九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=.特别地||||||||ABAC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭. 举例15 (1)已知(1,2)OA =-,(3,)OB m =,若O A O B ⊥,则m = .结果:32m =; (2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1));(3)已知(,)n a b =向量n m ⊥,且||||n m =,则m =的坐标是 .结果:(,)b a -或(,)b a -.十、线段的定比分点1.定义:设点P 是直线12PP 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=,则实数λ叫做点P 分有向线段12P P 所成的比λ,P 点叫做有向线段12P P 的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系 (1)P 内分线段12P P ,即点P 在线段12PP 上0λ⇔>;(2)P 外分线段12P P 时,①点P 在线段12PP 的延长线上1λ⇔<-,②点P 在线段12PP 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12PP 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ.举例16 若点P 分AB 所成的比为34,则A 分BP 所成的比为 . 结果:73-. 3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P 所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩. 特别地,当1λ=时,就得到线段12PP 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ.举例17 (1)若(3,2)M --,(6,1)N -,且13M P M N =-,则点P 的坐标为 . 结果:7(6,)3--; (2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M ,且2AM MB =,则a =. 结果:2或4-. 十一、平移公式如果点(,)P x y 按向量(,)a h k =平移至(,)P x y '',则,.x xh y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k =平移得曲线(,)0f x h y k --=. 说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量a 把(2,3)-平移到(1,2)-,则按向量a 把点(7,2)-平移到点______. 结果:(8,3)-;(2)函数s i n 2y x =的图象按向量a 平移后,所得函数的解析式是cos21y x =+,则a =________. 结果:(,1)4π-.十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+.(1)右边等号成立条件: a b 、同向或 a b 、中有0||||||a b a b ⇔+=+; (2)左边等号成立条件: a b 、反向或 a b 、中有0||||||a b a b ⇔-=+;(3)当 a b 、不共线||||||||||a b a b a b ⇔-<+<+.3.三角形重心公式在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++.举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭.5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔为△ABC 的重心,特别地0PA PB PC G++=⇔为△ABC 的重心.(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔为△ABC 的内心;向量(0)||||ABAC AB AC λλ⎛⎫+≠ ⎪⎪⎝⎭所在直线过△ABC 的内心.6.点P 分有向线段12P P 所成的比λ向量形式设点P 分有向线段12P P 所成的比为λ,若M 为平面内的任一点,则121MP MP MP λλ+=+,特别地P 为有向线段12P P 的中点122MP MP MP +⇔=.7. 向量,,PA PB PC 中三终点,,A B C 共线⇔存在实数,αβ,使得P A P B P C αβ=+且1αβ+=. 举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 . 结果:直线AB .。
中职数学平面向量知识点归纳
中职数学平面向量知识点归纳
平面向量是中职数学中的一个重要概念,以下是关于平面向量知识点的归纳:
1. 向量的基本概念:向量是一个既有大小又有方向的量。
向量的大小称为向量的模。
向量可以用箭头表示,起点在原点,终点为坐标点的有向线段。
2. 向量的运算:
向量加法:向量加法满足三角形法则和平行四边形法则。
三角形法则的特点是首尾相连,平行四边形法则的特点是共起点。
向量数乘:一个实数与一个向量的乘积是一个向量,其模为该实数与原向量模的乘积,方向与原向量相同或相反。
向量的模:向量的大小称为向量的模,记作a。
3. 向量的数量积:两个向量的数量积是一个标量,记作a·b。
数量积的模等于两向量的模的乘积与它们夹角的余弦值的乘积。
4. 向量的向量积:两个向量的向量积是一个向量,记作a×b。
向量积的模
等于两向量的模的乘积与它们夹角的正弦值的乘积。
5. 向量的混合积:三个向量的混合积是一个标量,记作a·b×c。
混合积的模等于三向量的模的乘积与它们夹角的余弦值的乘积。
6. 向量的应用:向量可以用于描述现实生活中的各种物理现象,如力、速度、加速度等。
同时,向量也在数学、物理、工程等领域有广泛的应用。
以上是关于平面向量知识点的归纳,掌握这些知识点有助于更好地理解向量的概念和运算,并能够在数学和实际问题中灵活运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示.注意:不能说向量就是有向线段,为什么?提示:向量可以平移.举例1已知A(1,2),B(4,2),则把向量AB按向量a二_1,3)平移后得到的向量是_____ . 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:0,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是导);|AB|4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;.5.平行向量(也叫共线向量):方向相同或相反的非零向量a、b叫做平行向量,记作:a // b,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有© ;④三点A、B、C共线uTBTC共线.6.相反向量:长度相等方向相反的向量叫做相反向量.a的相反向量记作4-a .举例2 如下列命题:(1)若|a |±b|,则a=b.(2)两个向量相等的充要条件是它们的起点相同,终点相同.(3)若右品,则ABCD是平行四边形.(4)若(5)若al , b 二,则 a 二.(6)若a〃b, b//C则a//C.其中正确的是结果:(4)( 5)二、向量的表示方法_1 .几何表示:用带箭头的有向线段表示,如AB,注意起点在前,终点在后;H2.符号表示:用一个小写的英文字母来表示,如a, b, c等;3.坐标表示:在平面内建立直角坐标系,以与X轴、y轴方向相同的两个单位向量^, j为基底,则平面内的任一向量a可表示为a=x「;=(x,y),称(x,y) 为向量a的坐标,a=(x,y)叫做向量a的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.三、平面向量的基本定理定理设e,g同一平面内的一组基底向量,a是该平面内任一向量,则存在唯一实数对(“2),使•息.(1)定理核心:a品•冕;(2)从左向右看,是对向量a的分解,且表达式唯一;反之,是对向量a的合成.(3)向量的正交分解:当霏时,就说a品屋为对向量a的正交分解. 举例3 (1)若(2)下列向量组中,能作为平面内所有向量基底的是 BA. ei =(0,0), &2=<1,-2)B. W =u,2), e? =(5,7)C. ^=(3,5), ^=(6,10)Di 3• 6±2, J3) , e2=2,之(3)已知AD,BE分别是△ ABC的边BC , AC上的中线,且益」,TU,则氐可用向量a,b表示为结果:勺」b.3 3(4)已知△ ABC中,点D在BC边上,且CD/DB, CD/B.S AC ,贝S r.s=的值是____ . 结果:0.四、实数与向量的积实数,与向量a的积是一个向量,记作.a,它的长度和方向规定如下:(1)模:I小■ |靑| ;(2)方向:当「0时,-a的方向与a的方向相同,当,0时,-a的方向与1 的方向相反,当•二。
时,a=0,、卜、,F、、八.注意:—0.五、平面向量的数量积_H1.两个向量的夹角:对于非零向量a, b,作oA=a, ,则把• AOB r(0 )称为向量a , b的夹角.当卄o时,a, b同向;当卄二时,a, b反向;当v-2时,a, b垂直.2.平面向量的数量积:如果两个非零向量a, b,它们的夹角为比我们把数量|:||b|cosr叫做a与b的数量积(或内积或点积),记作:a b,即4 4 4 扌a b =| a | | b | cos V.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 ( 1 ) △ ABC 中,|AB^3 , | ACH4 , |£ 曰,则AB BC = ________________________ . 结果:-9.(2)已知a=(1 \,b=f‘W ,c, d^ -b , c与d的夹角为¥,则k= ______________________________________ .结果:1.(3)_____________________________ 已知荷二,用曰,ab*,则倩帛| .结果:殛.(4) ___________________________________________________ 已知.a,b是两个非零向量,且禺0丄a_bi,则a与自品的夹角为____________结果:30 .3.向量b在向量a上的投影:|b|cosr,它是一个实数,但不一定大于0.举例5已知向=3,间仝,且ab」2,则向量a在向量b上的投影为_________ . 结果:152.54.a b的几何意义:数量积a b等于a的模ia |与b在a上的投影的积.5.向量数量积的性质:设两个非零向量a,b,其夹角为厂贝y:(1) a b =o ;(2)当a、b 同向时,a b a | |b |,特别地,a^a a =| a |2:= |a |=鳥2;ab/i ibi是a、b同向的充要分条件;当a、b反向时,a b | a | | b | , a b |S| -|b|是a、b反向的充要分条件;当为锐角时,ab o,且a、b不同向,ab o是二为锐角的必要不充分条件;当,为钝角时,a b :::o,且a、b不反向;a b :::o是二为钝角的必要不充分条件.(3)非零向量a, b夹角二的计算公式:cos 寓:④a b ^5||b|.|a||b |举例6 (1)已知口.,2), b",2),如果a与b的夹角为锐角,则•的取值范围是______ .结果 :A<-^-或且扎专;(2)已知△ OFQ的面积为S,且OF窝丄,若[s掳,则OF , 7Q夹角汕勺取值范围是结果:皆]:4 3(3)已知 a 二cosx,sin x) , b #os y,sin y), 且满足|ka4?日3活品(其中k¥ ). ①用k表示.ab :②求ab的最小值,并求此时a与I的夹角二的大小结果:①a b o):②最小值为2, ■■ _6o.六、向量的运算1.几何运算(1)向量加法运算法则:①平行四边形法则;②三角形法则.* 运算形式:若叫做a与b的和,即4 彳 T —* Ta b =AB BC =AC :作图:略.注:平行四边形法则只适用于不共线的向量.(2)向量的减法运算法则:三角形法则. ______运算形式:若AB=a, 7C=b,则a_b=AB—AC=CA,即由减向量的终点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:① 后昴鬲= ______ :②T B JADJD C= ______ :③(启昂)」忌员=. 结果:①丽:②击:③叱(2)若正方形ABCD的边长为1,方」,灵』,尼」,贝S惜品品」. 结果:2 2 ;(3)若O是厶ABC所在平面内一点,且满足O B _OC =OB ■ OC _2OA,则UBC的形状为• 结果:直角三角形;(4)若D为厶ABC的边BC的中点,△ ABC所在平面内有一点P,满足PA覇后』,设甞严,贝心的值为——结果:2;(5)若点O是厶ABC的外心,且OA^OB親」,贝U △ ABC的内角C为. 结果:120:.2.坐标运算:设才=(为』),1=(X2, y2),则(1 )向量的加减法运算:a - b (x i ■ X2,y i - y2), ;—b = (x i ―血,y i —y?).举例8 ( 1)已知点A(2,3) , B(5,4) , C(7,10),若齐显十嗣解R),则当?匸___ 时,点P在第一、三象限的角平分线上. 结果:2 ;(2)已知A(2,3) , B(1,4),且丄AB«inx,cosy) , x,y (』匚),则x・y= . 结果:匸或2 7 2 2 丁 6 二;_2 ;(3)已知作用在点A(1,1)的三个力W=(3,4), €=(2』,Wm3,1),则合力¥空总辰的终点坐标是. 结果:(9’1).(2)实数与向量的积:洛= h(x,y1)=仏x,M).(3)若A(x,yJ , B(X2,y2),贝S AB =(X2—为,y2—yj , 即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设A(2,3) , B(丄5),且忌丄爲,,则C,D的坐标分别是结果:(1,£),( 79).(4)平面向量数量积:;;=淞2°〃2.举例10已知向量 a zz(sinx,cosx) , b “sin x,sinx) , 2m」,0).(1)若x-,求向量a、c的夹角;(2)若x弓再,函数心)=珀的最大值为舟,求沖勺值.结果:(1) 150 ; (2)•2或-2」(5)向量的模:a2 =|;|2= 乂2+y2 u | a |=J x2+y2.举例11已知a,b均为单位向量,它们的夹角为60,那么诂+3;匕=_. 结果:用.(6)两点间的距离:若A(x,yJ , BXi),则| AB|= .(X2 -xj2 5 -%)2•举例12如图,在平面斜坐标系xOy中,.xOyd,平面上任一点P关于斜坐标系'的斜坐标是这样定义的:若曲2,其中為分别为与X轴、y轴同方向的单~T "位向量,则P点斜坐标为(x,y).(1 )若点P 的斜坐标为(2, J),求P 到O 的距离|PO| ;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 当果:(1) 2;( 2) x 2-y 2-xy J=0 .举例13 给出下列命题:① a (b _c )」b _a c ;②a (b c )=(a 6)c:③(a J^)2 T 22|a||b| -|b|2;④ 若ab 1』,则a 』或b 』;⑤若则7 :⑥苛』‘⑦尊』;⑧b)2*;⑨(才丄)2磐国b 总.其中正确的是. 结果:①⑥⑨.说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等 式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以 一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向 量不能相除(相约);(2)向量的“乘法”不满足结合律,即 a (b C) ..<a b) -c ,为什么?八、 向量平行(共线)的充要条件2 2a//b u a ・b = (a b) (| a ||b |) xy=0 .举例14 (1)若向量—,i),匚仆),当x= 时,a 与b 共线且方向相同. 结果:2.(2) 已知 a 二1,1), b 二4,x), u 4 -2b , v ^2a b ,且 u //v ,则 x =. 结 果: 4.(3) _______________________________ 设祝7 , PB ^4,5), T?710,k),则 k_______________________________________________________________________________________________ 时,A,B,C 共线. 结果:2 或 11. 九、 向量垂直的充要条件4 彳呻444呻a 丄b = a b = 0 = | a +b 冃 a' _b = %x 2 + % y 2 = 0 .特别地'亘+牛〕上牟「A* '."AB | | AC | 丿"AB | | AC | 丿举例 15 (1)已知 OA=(J ,2), OB =(3,m),若 O^_OB ,则 m = 结果:m=3 ; (2) 以原点O和A(4,2)为两个顶点作等腰直角三角形OAB,△仝0。