九年级数学下册 第二十八章 锐角三角函数自主检测 (新版)新人教版(1)
九年级数学下册 第二十八章 锐角三角函数测试题 (新版)新人教版 (含答案)
第二十八章 锐角三角函数测试题28.1 锐角三角函数1.三角形在正方形风格纸巾中的位置如图2813所示,则sin α的值是( )图2813A.34B.43C.35D.452.如图2814,某商场自动扶梯的长l 为10米,该自动扶梯到达的高度h 为6米,自动扶梯与地面所成的角为θ,则tan θ=( )图2814A.34B.43C.35D.45 3.cos30°=( ) A.12 B.22 C.32D. 3 4.在△ABC 中,∠A =105°,∠B =45°,tan C =( ) A.12 B.33C .1 D. 3 5.若0°<A <90°,且4sin 2A -2=0,则∠A =( )A .30° B.45° C.60° D.75°6.按GZ1206型科学计算器中的白键MODE ,使显示器左边出现DEG 后,求cos9°的值,以下按键顺序正确的是( )A.cos 9B.cos 2ndF 9C.9cosD.92ndF cos7.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c .已知2a =3b ,求∠B 的三角函数值.8.下列结论中正确的有( ) ①sin30°+sin30°=sin60°; ②sin45°=cos45°; ③cos25°=sin65°;④若∠A 为锐角,且sin A =cos28°,则∠A =62°. A .1个 B .2个 C .3个 D .4个9.如图2815,直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与B 点重合,折痕为DE ,则tan ∠CBE =( )图2815A.247B.73C.724D.1310.如图2816,AD 是BC 边上的高,E 为AC 边上的中点,BC =14,AD =12,sin B =45.(1)求线段CD 的长; (2)求tan ∠EDC 的值.图281628.2 解直角三角形及其应用1.在Rt△ABC 中,∠C =90°,cos B =23,则a ∶b ∶c 为( )A .2∶5∶ 3B .2∶5∶3C .2∶3∶13D .1∶2∶32.等腰三角形的底角为30°,底边长为2 3,则腰长为( ) A .4 B .2 3 C .2 D .2 23.如图2829,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AC =6,AB =9,则AD 的长为( )A .6B .5C .4D .3图2829 图282104.轮船航行到C 处时,观测到小岛B 的方向是北偏西65°,那么同时从B 处观测到轮船的方向是( )A .南偏西65° B.东偏西65° C .南偏东65° D.西偏东65°5.如图28210,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么AB =( )A .a sin αB .a tan αC .a cos α D.atan α6.如图28211,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5 m ,AB 为1.5 m(即小颖的眼睛距地面的距离),那么这棵树高是( )图28211A.⎝⎛⎭⎪⎫5 33+32m B.⎝⎛⎭⎪⎫5 3+32m C.5 33 mD .4 m7.在Rt △ABC 中,∠C =90°,a =2,∠B =45°,则①∠A =45°;②b =2;③b =2 2;④c =2;⑤c =2 2. 上述说法正确的是________(请将正确的序号填在横线上).8.一船上午8点位于灯塔A 的北偏东60°方向,在与灯塔A 相距64海里的B 港出发,向正西方向航行,到9时30分恰好在灯塔正北的C 处,则此船的速度为__________.9.如图28212,某校教学楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE ;而当光线与地面夹角是45°时,教学楼顶A 在地面上的影子F 与墙角C 有13米的距离(B ,F ,C 在一条直线上).(1)求教学楼AB 的高度;(2)学校要在A ,E 之间挂一些彩旗,请你求出A ,E 之间的距离(结果保留整数;参考数据:sin22°≈38,cos22°≈1516,tan22°≈25).图2821210.如图28213,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路.现新修一条路AC 到公路l .小明测量出∠ACD =30°,∠ABD =45°,BC =50 m .请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1 m ;参考数据:2≈1.414,3≈1.732).图28213第二十八章 锐角三角函数 28.1 锐角三角函数 【课后巩固提升】1.C 2.A 3.C 4.B 5.B 6.A7.解:由2a =3b ,可得a b =32.设a =3k ,b =2k (k >0),由勾股定理,得 c =a 2+b 2=k 2+k 2=13k .∴sin B =b c =2k 13k =2 1313,cos B =a c =3k 13k=3 1313,tan B =b a =2k 3k =23.8.C9.C 解析:设CE =x ,则AE =8-x ,由折叠性质知,AE =BE =8-x ,在Rt △CBE 中,由勾股定理,得BE 2=CE 2+BC 2,即(8-x )2=x 2+62,解得x =74.∴tan ∠CBE =CE BC =746=724.10.解:(1)在Rt △ABD 中,sin B =AD AB =45,又AD =12,∴AB =15.BD =152-122=9. ∴CD =BC -BD =14-9=5.(2)在Rt △ADC 中,E 为AC 边上的中点,∴DE =CE ,∴∠EDC =∠C .∴tan ∠EDC =tan C =AD CD =125.28.2 解直角三角形及其应用 【课后巩固提升】 1.B 2.C3.C 解析:∵AC =6,AB =9,又∵cos A =AD AC =AC AB ,即AD 6=69,∴AD =4. 4.C 5.B6.A 解析:∵∠CAD =30°,AD =BE =5 m ,∴CD =AD ·tan∠CAD =5tan30°=5 33(m),∴CE =CD +DE =⎝⎛⎭⎪⎫5 33+32m. 7.①②⑤8.64 33海里/时 解析:∵航行的距离BC =AB ·sin∠BAC =64×32=32 3.航行的时间为32小时,∴此船的速度为32 3÷32=64 33(海里/时).9.解:(1)如图D73,过点E 作EM ⊥AB ,垂足为M . 设AB 为x .在Rt △ABF 中,∠AFB =45°, ∴BF =AB =x .∴BC =BF +FC =x +13.在Rt △AEM 中,∠AEM =22°,AM =AB -BM =AB -CE =x -2,∴tan22°=AM ME ·x -2x +13=25,x =12.即教学楼的高12 m.(2)由(1),可得ME =BC =x +13=12+13=25.在Rt △AME 中,cos22°=ME AE .∴AE =ME cos22°≈251516≈27,即A ,E 之间的距离约为27 m.图D7310.解:设小明家到公路的距离AD 的长度为x m. 在Rt △ABD 中,∵∠ABD =45°,∴BD =AD =x . 在Rt △ACD 中,∵∠ACD =30°,∴tan ∠ACD =AD CD, 即tan30°=xx +50,解得x =25(3+1)≈68.3.。
人教版九年级数学下册第28章《锐角三角函数》综合测试卷 (含答案)
人教版数学九年级下册 第28章 锐角三角函数综合测试卷(时间90分钟,满分120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.cos60°的值为( ) A.12 B.22 C.32 D.322.如果∠α是等边三角形的一个内角,那么cosα的值等于( ) A. 12 B. 22C.32D .1 3.如图,延长Rt △ABC 斜边AB 到点D ,使BD =AB ,连结CD.若tan ∠BCD =13,则tan A=( )A.13B.23 C .1 D.324.如图所示,在四边形ABCD 中,AD ∥BC ,AC ⊥AB ,AD =CD ,cos ∠DCA =45,BC =10,则AB 的长是( ) A .3B .6C .8D .95.如图,A ,B ,C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC′B′,则tan B′的值为( ) A.12 B.13C.14D.246. 已知a 为锐角,sina=cos500则a 等于( ) A.200 B.300 C.400 D.5007.如图所示,△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,若BD :AD=1:4,则tan ∠BCD 的值是( )A. 14B. 13C. 12D .28.某铁路路基的横截面为等腰三角形,已知路基高5 m ,坡长10 m ,则坡度为( ) A .1∶2 B .1∶12C .1∶ 3D .1∶339.等腰三角形一腰上的高与腰长之比是1:2,则等腰三角形顶角的度数为( ) A .30°B .50°C .60°或120°D .30°或150°10.如图,已知△ABC 中,∠C =90°,tanA =12,D 是AC 上一点,∠CBD =∠A ,则sin ∠ABD 等于( ) A.35 B.105 C.310 D.31010二.填空题(共8小题,3*8=24) 11.在△ABC 中,若│sinA -1│+(32-cosB )=0,则∠C=_______度.12.如图,一架梯子斜靠在墙上.若梯子底端到墙的距离AC =3 m ,cos ∠BAC =34,则梯子长AB =_______ m.13.如图,正方形ABCD 的边长为4,点M 在边DC 上,M ,N 两点关于对角线AC 所在的直线对称,若DM =1,则tan ∠ADN =________.14. cos 2(50°+α)+cos 2(40°-α)-tan(30°-α)tan(60°+α)= ;15.如图所示,在△ABC 中,∠A=30°,tanB=13,BC=10,则AB 的长为________.16.如图,在高度是21 m 的小山A 处测得建筑物CD 顶部C 处的仰角为30°,底部D 处的俯角为45°,则这个建筑物的高度CD =____________.(结果保留根号)17.为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB =12米,背水坡面CD =123米,∠B =60°,加固后拦水坝的横断面为梯形ABED ,tanE =3133,则CE 的长为________米.18.一次函数的图象经过点(tan 45°,tan 60°)和(-cos 60°,-6tan 30°),则此一次函数的解析式为___________________.三.解答题(共7小题,66分)19.(8分) 已知tanα的值是方程x 2-x -2=0的一个根,求式子3sinα-cosα2cosα+sinα的值.20.(8分) 如图,海面上B ,C 两岛分别位于A 岛的正东和正北方向.一艘船从A 岛出发,以18海里/时的速度向正北方向航行2小时到达C 岛,此时测得B 岛在C 岛的南偏东43°.求A ,B 两岛之间的距离.(结果精确到0.1海里)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)21.(8分) 如图,房屋顶呈人字形(等腰三角形),AC =BC =8 m ,∠A =30°,CD ⊥AB 于点D.(1)求∠ACB 的大小; (2)求AB 的长度.22.(10分)在△ABC中,∠C=90°.(1)已知c=83,∠A=60°,求∠B,a,b;(2)已知a=36,∠A=45°,求∠B,b,c.23.(10分) 如图,在平面直角坐标系中,矩形OABC的顶点坐标为O(0,0),A(23,0),B(23,2),把矩形OABC绕点O按逆时针方向旋转α度,使点B正好落在y轴正半轴上,得到矩形OA1B1C1.(1)求角α的度数;(2)求直线A1B1的函数关系式,并判断直线A1B1是否经过点B,为什么?24.(10分) 如图,为了测量山顶铁塔AE 的高,小明在27 m 高的楼CD 底部D 测得塔顶A 的仰角为45°,在楼顶C 测得塔顶A 的仰角为36°52′.已知山高BE 为56 m ,楼的底部D 与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin 36°52′≈0.60,tan 36°52′≈0.75)25.(12分) 如图,四边形ABCD 为正方形,点E 为BC 上一点.将正方形折叠,使点A 与点E 重合,折痕为MN.若tan ∠AEN =13,DC +CE =10.(1)求△ANE 的面积; (2)求sin ∠ENB 的值.参考答案:1-5 AADBB 6-10CCCDA 11. 60 12. 4 13. 4314. 0 15.3+ 3 16. (73+21)m 17.818. y =23x -3 19. 解:解方程x 2-x -2=0 得x 1=2,x 2=-1. 又∵tanα>0,∴tanα=2, 又∵tanα=sinαcosα,∴原式=3tanα-12+tanα=3×2-12+2=5420. 解:由题意,得AC =18×2=36(海里),∠ACB =43°.在Rt △ABC 中, ∵∠A =90°,∴AB =AC•tan ∠ACB =36×0.93≈33.5(海里). 故A ,B 两岛之间的距离约为33.5海里. 21. 解:(1)∵AC =BC =8 m ,∠A =30°, ∴∠B =∠A =30°,∴∠ACB =120°. (2)∵AB =AC ,CD ⊥AB , ∴AD =BD ,AD =AC·cos30°=8×32=4 3(m),∴AB =2AD =8 3 m. 22. 解:(1)∵∠C =90°,∠A =60°, ∴∠B =30°.∵sin A =a c ,sin B =bc ,∴a =c·sin A =83×32=12. b =c·sin B =83×12=4 3.(2)∵∠C =90°,∠A =45°, ∴∠B =45°. ∴b =a =3 6. ∴c =a 2+b 2=6 3.23. 解:(1)∵OA 1=23,A 1B 1=2,∴tan ∠A 1OB 1=223=33,∴锐角∠A 1OB 1=30°,∴∠α=60°(2)由点A 1(3,3),B 1(0,4)得直线A 1B 1表达式为y =-33x +4, 当x =23时,y =-33×23+4=2, ∴点B(23,2)在直线A 1B 1上24.解:如图,过点C 作CF ⊥AB 于点F.设塔高AE =x m ,由题意得EF =BE -CD =56-27=29(m),AF =AE +EF =(x +29)m. 在Rt △AFC 中,∠ACF =36°52′,AF =(x +29)m , 则CF =AFtan 36°52′≈x +290.75=43x +1163(m),在Rt △ABD 中,∠ADB =45°,AB =(x +56)m , 则BD =AB =(x +56)m , ∵CF =BD ,∴x +56≈43x +1163,解得x≈52.答:该铁塔的高AE 约为52 m.25. 解:(1)∵tan ∠AEN =tan ∠EAN =13,故若设BE =a ,则AB =3a ,CE =2a.∵DC +CE =10,∴3a +2a =10,∴a =2.∴BE =2,AB =6,CE =4. ∵AE =AB 2+BE 2=4+36=2 10,∴AG =10.∵tan ∠EAN =NG AG =13,∴NG =103.∴AN =⎝⎛⎭⎫1032+(10)2=103.∴S △ANE =12AN·BE =12×103×2=103(或S △ANE =12AE·GN =12×2 10×103=103).(2)sin ∠ENB =EB NE =2103=35.。
人教版九年级数学下册28.1 锐角三角函数同步练习(填空题) 含答案
第28章锐角三角函数 同步学习检测(一)一、填空题:注意:填空题的答案请写在下面的横线上, (每小题3分,共96分) 1、 ;2、 ;3、 ;4、 ;5、 ; 6、 ;7、 ;8、 ;9、 ;10、 ; 11、 ;12、 ;13、 ;14、 ;15、 ; 16、 ;17、 ;18、 ;19、 ;20、 、 ;21、 ; 22、 ;23、 ; 24、 ; 25、 ;26、 ;27、 ;28、 ;29、 ;30、 ;31、 ;32、 ;1.(2009年济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .2.(2009年济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 3. (2009仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)4.(2009年安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .5.(2009年桂林市.百色市)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电 线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).6.(2009湖北省荆门市)计算:104cos30sin 60(2)(20092008)-︒︒+---=______. 7.(2009年宁波市)如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0.1米)8.(2009桂林百色)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).9.(2009丽水市)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是 ▲ cm 2(结果 精确到0.1,73.13≈)10.(09湖南怀化)如图,小明从A 地沿北偏东ο30方向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .11.(2009年孝感)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .12.(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 . 13.(2009年南宁市)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔402A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶 的路程AB为 _____________海里(结果保留根号).14.(2009年衡阳市)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为_________.15.2009年鄂州)小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为____________米.16.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A , 则AB 的长是 cm .17.(2009宁夏)10.在Rt ABC △中,903C AB BC ∠===°,,, 则cos A 的值是 .18.(2009年包头)如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π). 19.(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .ANBM21.(2009年益阳市)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 . 22.(2009白银市)如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B .C ,那么线段AO = cm .23. (2009年金华市) “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tan α的值等于 .24.(2009年温州)如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 25.(2009年深圳市)如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现 绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A 点并与地面形成30º角时,绳子末端D 距A 点还有1米,那么旗杆BC 的高度为 .26.(2009年深圳市)如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD , 若AB=8,BD=5,则CD= .27.(2009年黄石市)计算:1132|20093tan 303-⎛⎫+--+ ⎪⎝⎭°= .28..(2009年中山)计算:19sin 30π+32-0°+()= .29.(2009年遂宁)计算:()3208160cot 33+--o -= .30.(2009年湖州)计算:()02cos602009π9--+°= . 31.(2009年泸州)︒+--+-30sin 29)2009()21(01= . 32.(2009年安徽)计算:|2-|o 2o 12sin30(3)(tan 45)-+--+= . 二、解答题(每小题4分,24分)1.(2009年河北)图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?OEC D2.(2009年新疆乌鲁木齐市)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?3.(2009年哈尔滨)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)BADC北东西南4. (2009山西省太原市)如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.5.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏ABC EF60°30°CDBA 北60°30°西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3≈1.732,2≈1.414)6.(2009河池)如图,为测量某塔AB 的高度,在离该塔底部20米处目测其顶A ,仰角为60o ,目高1.5米,试求该塔的高度(3 1.7)≈.1.5C 60oA1.51.22 2. 16.1 3. 3.5 4. 2(32)- 5. 43 6. 327. 3.5 8. 43 9. 20.3 10. 100 11. 45(或0.8); 12. 33 13.. ()40340+ 14.1:215. 3200 16. 10 17. 53 18. π33-19..532 20. 10,22916n +(或23664n +)21. 3122. 5 23。
精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数综合测评试题(含详细解析)
人教版九年级数学下册第二十八章-锐角三角函数综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在Rt△ABC中,∠C=90°,AC=4,BC=3,则下列选项正确的是()A.sin A=34B.cos A=45C.cos B=34D.tan B=352、在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cos B的值等于()A.34B.43C.45D.353、如图,用一块直径为4的圆桌布平铺在对角线长为4的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为()A1B.2C.1D14、在科学小实验中,一个边长为30cm正方体小木块沿着一个斜面下滑,其轴截面如图所示.初始状态,正方形的一个顶点与斜坡上的点P重合,点P的高度PF=40cm,离斜坡底端的水平距离EF=80cm.正方形下滑后,点B的对应点B'与初始状态的顶点A的高度相同,则正方形下滑的距离(即AA'的长度)是()cmA .40B .60C .305D .4055、如图①,5AB =,射线AM BN ∥,点C 在射线BN 上,将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM 、BN 上,PQ AB ∥.设AP x =,QD y =.若y 关于x 的函数图象(如图②)经过点()9,2E ,则cos B 的值等于( )A .25B .12C .35D .7106、将矩形纸片ABCD 按如图所示的方式折起,使顶点C 落在C ′处,若AB = 4,DE = 8,则sin∠C ′ED 为( )A .2B .12C D7、如图,为测量一幢大楼的高度,在地面上与楼底点O 相距30米的点A 处,测得楼顶B 点的仰角65OAB ︒∠=,则这幢大楼的高度为( )A .30sin 65︒⋅米B .30cos 65︒米 C .30tan 65︒⋅米 D .30tan 65︒米 8、如图,在ABC 中,135ABC ∠=︒,点P 为AC 上一点,且90PBA ∠=︒,12CP PA =,则tan APB ∠的值为( )A .3B .2C .13D 9、在Rt △ABC 中,∠C =90°,AC =5,BC =3,则sin A 的值是( )A B .35C .34D10、如图,过点O 、A (1,0)、B (0作⊙M ,D 为⊙M 上不同于点O 、A 的点,则∠ODA 的度数为( )A .60°B .60°或120°C .30°D .30°或150°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则tan EFC ∠的值为_____.2、助推轮椅可以轻松解决起身困难问题.如图1是简易结构图,该轮椅前⊙O 1和后轮⊙O 2的半径分别为0.6dm 和3dm ,竖直连接处CO 1=1dm ,水平连接处BD 与拉伸装置DE 共线,BD =2dm ,座面GF 平行于地面且GF =DE =4.8dm ,HF 是轮椅靠背,∠ADE 始终保持角度不变.初始状态时,拉伸杆AD 的端点A 在点B 正上方且距地面2.2dm ,则tan∠ADB 的值为 _____.如图2,踩压拉伸杆AD ,装置随之运动,当AD 踩至与BD 重合时,点E ,F ,H 分别运动到点E ',F ',H ',此时座面GF '和靠背F 'H '连成一直线,点H 运动到最高点H ',且H ',F ,O 2三点正好共线,则H 'O 2的长为 _____dm .3、如图所示,草坪边上有互相垂直的小路m,n,垂足为E,草坪内有一个圆形花坛,花坛边缘有A,B,C三棵小树.在不踩踏草坪的前提下测圆形花坛的半径,某同学设计如下方案:若在小路上P,Q,K三点观测,发现均有两树与观测点在同一直线上,从E点沿着小路n往右走,测得∠1=∠2=∠3,EQ=16米,QK=24米;从E点沿着小路m往上走,测得EP=15米,BP⊥m,则该圆的半径长为_______米.4、如图,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得EC,连接AC,AE,则图中阴影部分的面积为________.5、如图所示,河堤的横断面是四边形ABCD,AD∥BC,2AD m,点A到BC的距离为4m,斜坡AB的坡度为1:3,斜坡CD的坡角为45°,则四边形ABCD的面积为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在x轴的负半轴上,点C在y轴的正半轴上,直线BC的解析式为y=kx+12(k≠0),AC⊥BC,线段OA的长是方程x2﹣15x﹣16=0的根.请解答下列问题:(1)求点A、点B的坐标.(2)若直线l经过点A与线段BC交于点D,且tan∠CAD=14,双曲线y=mx(m≠0)的一个分支经过点D,求m的值.(3)在第一象限内,直线CB下方是否存在点P,使以C、A、P为顶点的三角形与△ABC相似.若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.2、如图,四边形ABCD内接于⊙O,AB为直径,连结AC,BD交于点E,弦CF⊥BD于点G,连结AG,且满足∠1=∠2.(1)求证:四边形AGCD为平行四边形.(2)设tan F=x,tan∠3=y,①求y关于x的函数表达式.②已知⊙O的直径为y=34,点H是边CF上一动点,若AF恰好与△DHE的某一边平行时,求CH的长.③连结OG,若OG平分∠DGF,则x的值为.3、如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53︒,观测旗杆底部B 的仰角为45︒,则建筑物BC的高约为多少米?(结果保留小数点后一位).(参考数据sin530.80︒≈,︒≈)cos530.60︒≈,tan53 1.334、如图,O的弦AB与直径CD交于点G,点C是优弧ACB的中点.(1)AG BG=(2)当AB也为O直径时,连接BC,点K是O内AB上方一点,过点K作KR BC⊥于点R,交OC于点M,连接KA,KC,2∠=∠求证:AKC KAB ABC∠-∠=∠KCB KAB(3)在(2)的条件下,过点B作BN AK∥交KR于点N,连接BK并延长交O于点E,2EK=,BR KN=,求O的半径.:10:135、如图,抛物线()()41y a x x =+-的图像与x 轴的交分别为点A 、点B ,与y 轴交于点C ,且tan 2CBA ∠=.(1)求抛物线解析式(2)点D 是对称轴左侧抛物线上一点,过点D 作DE AO ⊥于点E ,交AC 于点P ,32DP =,求点D 的坐标.(3)在(2)的条件下,连接AD 并延长交y 轴于点F ,点G 在AC 的延长线上,点C 关于x 轴的对称点为点H ,连接AH ,GF 、GH ,点K 在AH 上,GH AK AH =+,12KCH CAO ∠=∠,:3:4GF GH =,过点C 作CR GH ⊥,垂足为点R ,延长RC 交抛物线于点Q ,求点Q 坐标.---------参考答案----------- 一、单选题 1、B【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出sin A,cos A,cos B和tan B即可.【详解】解:由勾股定理得:5AB,所以3sin5BCAAB==,4cos5ACAAB==,cos35BCBAB==,4tan3ACBBC==,即只有选项B正确,选项A、选项C、选项D都错误.故选:B.【点睛】本题主要是考查了锐角三角函数的定义以及勾股定理,熟练掌握每个锐角三角函数的定义,是求解该类问题的关键.2、D【分析】根据题意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可.【详解】解:如图,∵在Rt△ABC中,∠C=90°,BC=3,AC=4,∴AB,∴cos B=BCAB=35.故选:D.【点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键.3、B【分析】作出图象,把实际问题转化成数学问题,求出弦心距,再用半径减弦心距即可.【详解】如图,正方形ABCD是圆内接正方形,4BD=,点O是圆心,也是正方形的对角线的交点,作OF BC⊥,垂足为F,∵直径4BD=,∴2OB=,又∵BOC是等腰直角三角形,由垂径定理知点F是BC的中点,∴BOF是等腰直角三角形,∴sin45OF OB=°∴2x EF OE OF==-=故选:B.【点睛】此题考查了垂径定理的应用,等腰直角三角形的判定和性质,正方形的性质,特殊角的三角函数值,解题的关键是根据题意作出图像,把实际问题转化成数学问题.4、B【分析】根据题意可得:A 与B '高度相同,连接AB ',可得AB EF '∥,利用平行线的性质可得:B AA PEF ''∠=∠,根据正切函数的性质计算即可得.【详解】解:根据题意可得:A 与B '高度相同,如图所示,连接AB ',∴AB EF '∥,∴B AA PEF ''∠=∠, ∴1tan tan 2PF B AA PEF EF ''∠=∠==, ∴301tan 2A B B AA AA AA ''''∠==='', ∴60AA '=,故选:B .【点睛】题目主要考查平行线的性质及锐角三角函数解三角形,熟练掌握锐角三角函数的性质是解题关键.5、D【分析】由题意可得四边形ABQP是平行四边形,可得AP=BQ=x,由图象②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,可求BD=7,由折叠的性质可求BC的长,由锐角三角函数可求解.【详解】解:∵AM∥BN,PQ∥AB,∴四边形ABQP是平行四边形,∴AP=BQ=x,由图②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,QD=y=2,如图①所示,∴BD=BQ﹣QD=x﹣y=7,∵将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,∴AC⊥BN,∴BC=CD=12BD=72,∴cos B=BCAB=725=710,故选:D.【点睛】本题考查了平行四边形的判定与性质,折叠的性质,锐角三角函数等知识.理解函数图象上的点的具体含义是解题的关键.6、B【分析】由折叠可知,C′D=CD=4,再根据正弦的定义即可得出答案.【详解】解:∵纸片ABCD是矩形,∴CD=AB,∠C=90°,由翻折变换的性质得,C′D=CD=4,∠C′=∠C=90°,∴41 sin82C DC EDED''∠===.故选:B.【点睛】本题可以考查锐角三角函数的运用:在直角三角形中,锐角的正弦为对边比斜边.7、C【分析】利用在Rt△ABO中,tan∠BAO=OBAO即可解决.【详解】:解:如图,在Rt△ABO中,∵∠AOB =90°,∠A =65°,AO =30m ,∴tan 65°=OB AO, ∴BO =30•tan 65°米.故选:C .【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边.8、A【分析】过点P 作PD∥AB 交BC 于点D ,因为135ABC ∠=︒,且90PBA ∠=︒,则tan∠PBD =tan45°=1,得出PB =PD ,再有12CP PA =,进而得出tan∠APB 的值. 【详解】 解:如图,过点P 作PD AB ∥交BC 于点D ,∴CPD CAB △∽△, ∴AC AB PC PD=,∵135ABC ∠=︒,且90PBA ∠=︒,∴∠PBD =45°,∴tan tan 451PBD ∠=︒=,∴PB PD =,又∵12CP PA =, ∴3AC PC=, ∴tan 3AB AB AC APB PB PD PC∠====. 故选A .【点睛】 本题主要考查了相似三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线进行求解.9、A【分析】先根据银河股定理求出AB ,根据正弦函数是对边比斜边,可得答案.【详解】解:如图,∵∠C =90°,AC =5,BC =3,∴AB ==∴sinBC A AB == 故选:A .【点睛】本题考查了锐角三角函数,利用正弦函数是对边比斜边是解题关键.10、D【分析】连接AB ,先利用正切三角函数可得30OBA ∠=︒,再分点D 在x 轴上方的圆弧上和点D 在x 轴下方的圆弧上两种情况,分别利用圆周角定理、圆内接四边形的性质求解即可得.【详解】解:如图,连接AB ,(1,0),A B ,1,OA OB ∴==90AOB ∠=︒,∴在Rt AOB 中,tanOA OBA OB ∠== 30OBA ∴∠=︒,由题意,分以下两种情况:(1)如图,当点D 在x 轴上方的圆弧上时,由圆周角定理得:30OBAODA∠∠==︒;(2)如图,当点D在x轴下方的圆弧上时,由圆内接四边形的性质得:180150OD BAA O∠=︒-∠=︒;综上,ODA∠的度数为30或150︒,故选:D.【点睛】本题考查了正切、圆周角定理、圆内接四边形的性质等知识点,正确分两种情况讨论是解题关键.二、填空题1、34.【解析】【分析】根据折叠的性质和锐角三角函数的概念来解答即可.【详解】解:根据题意可得:在Rt ABF ∆中,有8AB =,10AF AD ==则在ABF ∆中,6BF =,90AFE D ∠=∠=︒,BAF EFC ∴∠=∠,B C ∠=∠,∴Rt ABF Rt EFC ,EFC BAF ∴∠=∠, 故63tan tan 84EFC BAF ∠=∠==. 故答案是:34.【点睛】本题考查了翻折变换,矩形的性质,锐角三角函数等知识,灵活运用这些性质解决问题是本题的关键.2、 310; 7; 【解析】【分析】根据题意求得A 到BD 的距离h ,进而根据正切的定义可得tan h h ADB BD AD∠==;如图2,过点H '作H K GF '⊥交GF 的延长线于点K ,解直角三角形GKH '即可解决问题 【详解】解:拉伸杆AD 的端点A 在点B 正上方且距地面2.2dm ,BD =2dm ,⊙O 1半径分别为0.6dm ,竖直连接处CO 1=1dm ,设A 到BD 的距离为h ,则()2.20.610.6h =-+=dmtan h h ADB BD AD ∠==0.63210== 如图1,连接2O F ,过点2O 作2O M GF ⊥,24.8,3FG O F ==1 2.42FM FG ∴==2Rt MFO 中2 1.8O M == 2 1.83tan 2.44MFO ∴∠== ∠ADE 始终保持角度不变. ∴ADB E DE '∠=∠GF =DE ,//GF DE∴四边形GFED 是平行四边形 装置运动后,//GF DE ''E DEF GE ''∴∠=∠如图2,过点H '作H K GF '⊥交GF 的延长线于点K ,则23tan tan 4H FK MFO '∠=∠= 设3H K x '=,则4FK x =,5FH x '=, 3tan tan tan 10H GK E DE ADB ''∴∠=∠=∠= 334 4.810x x =+ 解得0.8x =3 2.4,4 3.2KH x FK x '∴==== 54FH x '∴==2347O H OF FH ''∴=+=+= 故答案为:310,7【点睛】本题考查了垂径定理,解直角三角形的应用,两图中有一个角是相等的,找到这个角的并求得它的正切值为310是解题的关键. 3、253##183【解析】【分析】设圆心为O ,过点C 作CF n ⊥,连接OC 交AB 于点D ,//,//BE QA PA n ,根据题意可证明四边形PEFD 是矩形,进而求得PB ,证明ABC QKC ∽,根据tan 2tan 1tan PBE ∠=∠=∠求得DC ,设O 的半径为r ,在Rt OAD 中,222OD DA AO +=,勾股定理即可求解【详解】如图,设圆心为O ,过点C 作CF n ⊥,连接OC 交AB 于点D ,根据题意,m n PB M ⊥⊥//PB n ∴在小路上P ,Q ,K 三点观测,发现均有两树与观测点在同一直线上,且∠1=∠2,//,//BE QA PA n ∴16AB EQ ∴==∠2=∠3,//BA QKA CBA ∴∠=∠CB CA ∴=OC AB ∴⊥182BD AD AB ∴=== ,,O C F ∴三点共线∴四边形PEFD 是矩形2=3,CF QK ∠∠⊥1122QF QK ∴== 161228EF EQ QF ∴=+=+=28820PB PD BD EF BD ∴=-=-=-=//AB QKABC QKC ∴∽AB DC QK CF ∴=162243== 23CF DC ∴= //PB n1=PBE ∴∠∠153tan 2tan 1tan 204PBE ∴∠=∠=∠== 3tan 24CF QF ∴∠== 12QF =9CF ∴=2963DC ∴=⨯= 设O 的半径为r ,在Rt OAD 中,222OD DA AO +=则()22268r r -+= 解得253r =故答案为:253【点睛】本题考查了两点确定一条直线,三角函数,垂径定理,勾股定理,相似三角形的性质与判定,矩形的性质,等边对等角,理清各线段长,并添加辅助线是解题的关键.4、2π【解析】【分析】由正六边形ABCDEF 的边长为2,可得AB =BC =2,∠ABC =∠BAF =120°,进而求出∠BAC =30°,∠CAE =60°,过B 作BH ⊥AC 于H ,由等腰三角形的性质和含30°直角三角形的性质得到AH =CH ,BH =1,在Rt △ABH 中,由勾股定理求得AH AC 的面积【详解】解:∵正六边形ABCDEF 的边长为2,()6218021206AB BC ABC BAF -⨯︒∴==∠=∠==︒, =120°,∵∠ABC +∠BAC +∠BCA =180°,∴∠BAC =12(180°-∠ABC )=12×(180°-120°)=30°,过B 作BH ⊥AC 于H ,∴AH =CH ,BH =12AB=12×2=1,在Rt △ABH 中,AH =∴AC ,同理可证,∠EAF =30°,∴∠CAE =∠BAF -∠BAC -∠EAF =120°-30°-30°=60°,∴(260?2360CAE S ππ==扇形∴图中阴影部分的面积为2π,故答案为:2π.【点睛】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.5、40 m 2【解析】【分析】过A 作AE ⊥BC 于E ,DF ⊥BC 与F ,先证四边形AEFD 为矩形,得出AE =DF =4m ,AD =EF =2m ,根据斜坡AB的坡度为1:3,求出BE =3AE =3×4=12m,根据斜坡CD 的坡角为45°,求出CF =DF =4m ,再求BC =BE +EF +FC =18m ,然后利用梯形面积公式计算即可.【详解】解:过A 作AE ⊥BC 于E ,DF ⊥BC 与F ,∴∠AEF =∠DFE =90°,∵AD ∥BC ,∴∠ADF +∠DFE =180°,∴∠ADF =180°-∠DFE =180°-90°=90°,∴∠AEF =∠DFE =∠ADF =90°,∴四边形AEFD 为矩形,∴AE =DF =4m ,AD =EF =2m ,∵斜坡AB 的坡度为1:3,∴tan∠ABE =13AEBE , ∴BE =3AE =3×4=12m,∵斜坡CD 的坡角为45°,∴tan∠C =1DF CF=, ∴CF =DF =4m ,∴BC =BE +EF +FC =12+2+4=18m ,∴四边形ABCD 的面积为()()211421840m 22AE AD BC +=⨯⨯+=. 故答案为40 m 2.【点睛】本题考查解直角三角形的应用,坡度,坡角,斜坡,锐角正切函数,矩形判定与性质,梯形面积公式,掌握解直角三角形的应用,坡度,坡角,斜坡,锐角正切函数,矩形判定与性质,梯形面积公式,关键是利用辅助线把梯形问题转化为直角三角形和矩形来解.三、解答题1、(1)A(16,0),B(-9,0);(2)-24;(3)存在,(16,12)或(25,12)或(32,643)或(288384,2525)【解析】【分析】(1)解一元二次方程x2﹣15x﹣16=0,对称点A(16,0),根据直线BC的解析式为y=kx+12,求出与y轴交点C为(0,12),利用三角函数求出tan∠BCO= tan∠OAC=3=4OBOC,求出OB=3312944OC=⨯=即可;(2)过点D作DE⊥y轴于E,DF⊥x轴于F,利用勾股定理求出AC20 =,BC=,根据三角函数求出tan∠CAD=1204CD CDAC==,求出12054CD=⨯=,利用三角函数求出DE= CD sin∠BCO=3535⨯=,再利用勾股定理求出点D(-3,8)即可;(3)过点A作AP1与过点C与x轴平行的直线交于P1,先证四边形COAP1为矩形,求出点P1(16,12),再证△P1CA∽△CAB,作P2A⊥AC交CP1延长线于P2,可得∠CAP2=∠BCA=90°,∠P2CA=∠CAB,可证△CAP2∽△ACB,先求三角函数值cos∠CAO=164205COAC==,再利用三角函数值cos∠P2CA= cos∠CAO= 222045ACCP CP==,求出225CP=,得出点P2(25,12)作∠P3CA=∠OCA,在射线CP3截取CP3=CO=12,连结AP3,先证△CP3A≌△COA(SAS)再证△P3CA∽△CAB,设P3(x,y)利用勾股定理列方程()()22222216161212x y y x ⎧-+=⎪⎨-+=⎪⎩,解方程得出点P 3(2883842525,),延长CP 3与延长线交P 4,过P 4作PH ⊥x 轴于H ,先证△CAP 4∽△ACB ,再证△P 4P 3A ≌△P 4HA (ASA ),利用cos∠P 3CA =34123205PC CACA CP ===,求得4510033CA CP ==即可.【详解】解:(1)x 2﹣15x ﹣16=0,因式分解得()()1610x x -+=, 解得12161x x ==-,,点A 在x 轴的正半轴上,OA =16,∴点A (16,0),∵直线BC 的解析式为y =kx +12,与y 轴交点C 为(0,12),∴tan∠OAC =123=164,∠OCA +∠OAC =90°, ∵AC ⊥BC ,∴∠BCO +∠OCA =90°,∴∠BCO =∠OAC ,∴tan∠BCO = tan∠OAC =3=4OB OC , ∴OB =3312944OC =⨯=,∴点B (-9,0);(2)过点D 作DE ⊥y 轴于E ,DF ⊥x 轴于F ,在Rt △AOC 中,AC20==,在Rt △BOC 中,∵tan∠CAD =1204CD CD AC ==, ∴12054CD =⨯=,∵sin∠BCO =93155OB BC ==, ∴DE = CD sin∠BCO =3535⨯=,∴CE 4=,OE =OC -EC =12-4=8, ∴点D (-3,8),∵双曲线y =m x(m ≠0)的一个分支经过点D , ∴3824m xy ==-⨯=-;(3)过点A 作AP 1与过点C 与x 轴平行的直线交于P 1, 则∠CP 1A =∠P 1CO =∠COA =90°,∴四边形COAP 1为矩形,∴点P 1(16,12),当点P 1(16,12)时,CP 1∥OA,∠P 1CA =∠CAB ,∠ACB =∠CP 1A ,∴△P 1CA ∽△CAB ,作P 2A ⊥AC 交CP 1延长线于P 2,∵∠CAP 2=∠BCA =90°,∠P 2CA=∠CAB, ∴△CAP 2∽△ACB ,∴cos∠CAO =164205CO AC ==, ∴cos∠P 2CA = cos∠CAO =222045AC CP CP ==,∴225CP =,∴点P 2的横坐标绝对值=225CP =,纵坐标的绝对值=OC=12, ∴点P 2(25,12),作∠P 3CA =∠OCA ,在射线CP 3截取CP 3=CO =12,连结AP 3, 在△CP 3A 和△COA 中,33CP CO PCA OCA CA CA =⎧⎪∠=∠⎨⎪=⎩, ∴△CP 3A ≌△COA (SAS ),∴AP 3=OA =16, ∴33124164,155205CP P A CB CA ====, ∴3334,905CP P A CP A BCA CB CA ==∠=∠=︒ ∴△P 3CA ∽△CAB ,设P 3(x ,y )()()22222216161212x y y x ⎧-+=⎪⎨-+=⎪⎩, 整理得22223224x y x y x y⎧+=⎨+=⎩, 解得:2882538425x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点P 3(2883842525,), 延长CP 3与延长线交P 4,过P 4作PH ⊥x 轴于H , ∵∠P 4CA =∠CAB ,∠P 4AC =∠BAC =90°, ∴△CAP 4∽△ACB , ∵∠BAC +∠HAP4=∠CAP 3+∠P 3AP 4=90°,∠CAP 3=∠BAC , ∴∠HAP4=∠P 3AP 4, ∠P 4P 3A =180°-∠CP 3A =180°-90°=90°=∠P 4HA , 在△P 4P 3A 和△P 4HA 中, 34444434P AP HAP AP AP P P A P HA ∠=∠⎧⎪=⎨⎪∠=∠⎩, △P 4P 3A ≌△P 4HA (ASA ), ∴AP 3=AH =16,P 3P 4=P 4H ,∵cos∠P 3CA =34123205PC CACA CP ===, ∴4510033CA CP ==,∴43443100641233P H P P CP CP ==-=-=,OH =OA +AH =OA +AP 3=16+16=32, ∴点464323P ⎛⎫ ⎪⎝⎭,, 综合直线CB 下方,使以C 、A 、P 为顶点的三角形与△ABC 相似.点P 的坐标(16,12)或(25,12)或64323⎛⎫ ⎪⎝⎭,或(2883842525,).【点睛】本题考查一元二次方程的解法,直线与y 轴的交点,反比例函数解析式,锐角三角形函数,勾股定理,三角形全等判定与性质,矩形判定与性质,三角形相似,图形与坐标,解方程组,本题难度大,综合性强,涉及知识多,利用动点作出准确图形是解题关键.2、(1)见解析;(2)①y =1x 2.②245或185.③1或2 【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADB =∠DGC =90°,证明AD∥CG ;根据∠1=∠2=∠ACD ,证明AG∥CD ;根据平行四边形的定义判定即可;(2)①如图1,过点A 作AP ⊥CF 于点P ,根据AD ∥CF ,得AF =DC ,四边形APGD 是矩形,△APF≌△DGC,从而得到CG=GP=PF=AD,设CG=GP=PF=AD=a,DE=EG=b,则GF=2a,GD=2b,BG=CG GF GD=2a b ,在Rt△BGC中,tan∠3=y=CGGB,在Rt△APF中,tan F=x=APPF,消去a,b即可;②运用勾股定理,确定a,b的值,显然DE与AF是不平行的,故分DH∥AF和EH∥AF两种情形计算即可.③过点O作OM⊥CF于点M,过点O作ON⊥BD于点N,根据OG平分∠DGF,OM=ON,于是BD=CF,从而确定a,b之间的数量关系,代入计算即可.【详解】(1)∵AB是⊙O的直径,弦CF⊥BD于点G,∴∠ADB=∠DGC=90°,∴AD∥CG;∵∠1=∠2=∠ACD,∴AG∥CD;∴四边形AGCD为平行四边形;(2)①如图1,过点A作AP⊥CF于点P,则四边形ADGP是矩形∵四边形AGCD为平行四边形∴AD∥CF,AD=CG,DE=EG,∠DAC=∠ACF∴AF=DC,AP=DG,∴△APF≌△DGC,∴CG=GP=PF=AD,设CG=GP=PF=AD=a,DE=EG=b,则GF=2a,CF=3a,GD=2b,∵BG GD CG GF⋅=⋅,∴BG=CG GFGD=2ab,在Rt△BGC中,tan∠3=y=CGGB=2baa⨯=ba,在Rt△APF中,tan F=x=APPF=2ba,消去a,b即可;∴x=2y,∴y关于x的函数表达式为y=1x2;②∵tan∠3=y=CGGB=2baa⨯=ba,y=34,∴ba=34,∴b=34 a,∴GD=2b=32 a,∴BG=2ab=43a,∴BD =DG +BG =43a +32a =176a ,∵AB 222AD BD AB +=,∴22217()6a a +=, 解得a =125; 显然DE 与AF 是不平行的,如图2,当DH ∥AF 时,∵AD ∥FH ,∴四边形ADHF 是平行四边形,∴AD =FH =a ,∴CH =2a =245;如图3,当EH ∥AF 时,∵四边形AGCD是平行四边形,∴AE=EC,∴H是CF的中点,∵CF=3a=365,∴CH=185;故CH的长为245或185;③如图4,过点O作OM⊥CF于点M,过点O作ON⊥BD于点N,∵OG平分∠DGF,∴OM=ON,∴BD=CF,∴3a=2b+2ab,整理,得2232a ab b-+=0,解得a=b或a=2b,∵tan F=x=APPF=2ba,当a=b时,x=2ba=2,当a=2b时,x=2ba=1,故答案为:1或2.【点睛】本题考查了圆的基本性质,圆心角,弦,弦心距之间的关系,圆周角的性质,勾股定理,平行四边形的判定和性质,三角形函数,因式分解,熟练掌握圆的基本性质,灵活掌握三角函数的计算,分类思想是解题的关键.3、建筑物BC的高约为24.2米【解析】【分析】先根据等腰直角三角形的判定与性质可得BC CD =,设m BC CD x ==,从而可得(8)m AC x =+,再在Rt ACD △中,利用正切三角函数解直角三角形即可得.【详解】解:由题意得:AC CD ⊥,8m AB =,53ADC ∠=︒,45BDC ∠=︒,Rt BCD ∴是等腰直角三角形,BC CD ∴=,设m BC CD x ==,则(8)m AC x =+,在Rt ACD △中,tan AC ADC CD∠=,即8tan 53 1.33x x +=︒≈, 解得24.2(m)x ≈,经检验,24.2(m)x ≈是所列分式方程的解,且符合题意,∴建筑物BC 的高约为24.2米,答:建筑物BC 的高约为24.2米.【点睛】本题考查了等腰直角三角形的判定与性质、解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键.4、(1)见详解;(2)见详解;(3)OA =【解析】【分析】(1)连结OA 、OB ,根据点C 是优弧ACB 的中点.得出AC BC =,得出圆心角相等,得出∠AOD =180°-∠AOC =180°-∠BOC =∠BOD ,根据等腰三角形性质即可得出AG =BG ;(2)作∠KCB 的平分线交AB 于H ,连结AC ,CK 与AB 交于L ,根据AB ,CH 为直径,AB ⊥CD ,可得AC BC =,∠ACB =90°,得出∠ABC =∠BAC =45°,根据CH 平分∠KCB ,得出∠KCH =∠HCB =11222KCB KAB KAB ∠=⨯∠=∠,可得∠AKL =180°-∠KAL -∠KLA =180°-∠ACH -∠HLC =∠LHC ,利用∠LHC为△HCB 的外角得∠LHC =∠ABC +∠HCB =∠KAB +∠BAC =∠AKC 即可;(3)连结AE ,RK 与AB 交于P ,延长BN 交AC 与Q ,根据CH 平分∠KCB ,得出∠KCS =∠BCS =∠KAB ,根据BN∥AK ,可得∠EKA =∠EBN ,∠KAB =∠ABN ,可证∠BKR =∠SCB ,再证∠KBA =∠NBC ,求出∠EKA =45°,根据等腰三角形性质与勾股定理AE =KE =2,AK=,再证四边形AQNK为平行四边形,可得AK =QN =AQ =KN ,设BR =10m ,KN =13m ,BN =x ,先证△PNB ∽△BNK ,PN BN BN KN =,即213BN BN x PN KN m⋅==,再根据勾股定理Rt △BNR 中,根据勾股定理222+BN NR BR =,求出x =,然后证明△AQB ∽△BNK ,AQ BQ BN KN =即BQ BN AQ KN ⋅=⋅,解得m =△BNR ∽△BQC ,可得1026m BR BQ BC BN ⋅==即可. 【详解】(1)证明:连结OA ,OB∵点C 是优弧ACB 的中点.∴AC BC =,∴∠AOC =∠BOC ,∴∠AOD =180°-∠AOC =180°-∠BOC =∠BOD ,∵OA=OB,∴OG 平分AB ,∴AG =BG ;(2)作∠KCB的平分线交AB于H,连结AC,CK与AB交于L,∵AB,CH为直径,AB⊥CD,∵AC BC=,∠ACB=90°,∴∠ABC=∠BAC=45°,∵CH平分∠KCB,∴∠KCH=∠HCB,∵2KCB KAB∠=∠∴∠KCH=∠HCB=11222KCB KAB KAB∠=⨯∠=∠,∵∠KLA=∠HLC,∴∠AKL=180°-∠KAL-∠KLA=180°-∠ACH-∠HLC=∠LHC,∵∠LHC为△HCB的外角,∴∠LHC=∠ABC+∠HCB=∠KAB+∠BAC=∠AKC,∴∠AKC-∠KAB=∠BAC即AKC KAB ABC∠-∠=∠(3)连结AE,RK与AB交于P,延长BN交AC与Q,∵CH平分∠KCB,∴∠KCS=∠BCS=∠KAB,∵BN∥AK,∴∠EKA=∠EBN,∠KAB=∠ABN,∵∠AKL=∠LHC=∠HBC+∠HCB=∠KAB+∠BAC=∠KAC,∴AC=KC=BC,∵CH平分∠KCB,∴CS⊥BK,BS=KS,∴∠SCB+∠SBC=90°,∵KR⊥BC,∴∠RKB+∠RBK=90°,∵∠CBS=∠KBR,∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°,∴∠BPR=45°=∠RKB+∠ABP=∠ABN+∠NBC,∵∠RKB=∠ABN,∴∠KBA=∠NBC,∴∠EBN=45°,∴∠EKA=45°,∵∠AEK=90°,∴∠EAK=90°-∠EKA=45°∴AE=KE=2,AK=∵KR⊥BC,∠ACB=90°,∴AC∥KR,AK∥BQ,∴四边形AQNK为平行四边形,∴AK=QN=AQ=KN,设BR=10m,KN=13m,BN=x,∴AQ=KN=13m,∵∠PBN=∠BKN,∠PNB=∠BNK,∴△PNB∽△BNK,∴PN BNBN KN=,即213BN BN xPNKN m⋅==,∵PR⊥BC,∠PBR=45°∴NR =PR -PN =10m-213x m, 在Rt △BNR 中,根据勾股定理222+BN NR BR = 即()2222101013x x m m m ⎛⎫=-+ ⎪⎝⎭ ∴2422222010010013169x x x m m m =-++ 整理得4224429338000x m x m -+=,解得22325x m =舍去,22104x m =∴x =∵PN∥AQ,∴∠BNP =∠BQA ,∠BPN =∠BAQ ,∴△PNB ∽△AQB ,∴△AQB ∽△BNK ,AQ BQ BN KN=即BQ BN AQ KN ⋅=⋅∴(2169x x m +=∴22169x m += ∴2x = ∴222104m =解得m =∴NR∥QC ,∴∠BNR =∠BQC ,∠BRN =∠BCQ ,∴△BNR ∽△BQC ,∴BN BR BQ BC =即1026m BR BQ BC BN ⋅===, ∴AB =BC=,∴OA =1122AB =⨯=【点睛】本题考查等腰三角形性质,角平分线定义,三角形外角性质,等腰直角三角形判定与性质,三角形相似判定与性质,直径所对圆周角性质,勾股定理,一元高次方程,锐角三角函数,本题难度大,综合性强,图形复杂,利用辅助线构造准确图形,是中考压轴题,掌握多方面知识是解题关键.5、(1)213222y x x =--+;(2)(3,2)D -;(3)325(,)28Q -【解析】【分析】(1)根据tan 2CBA ∠=求出点C 的坐标,把点C 的坐标代入()()41y a x x =+-即可求出a ,即可得出抛物线解析式;(2)先求直线AC 解析式,设23,2)12(2D m m m -+-,则可表示点P 坐标,y 值相减即可得出答案; (3)作CAO ∠的角平分线为AM ,作MN AC ⊥交于点N ,过点K 作KT y ⊥轴交于点T ,由(2)得点D 坐标,求出直线AD 解析式,令0x =,求出F 点坐标,由对称得出点H 坐标,求出直线AH 的解析式,求出AK 、AH 的值,可得GF 、FG ,FH 满足勾股定理,即FG HG ⊥,求出点G 坐标,得出直线FG 解析式,即可得出直线CR 解析式,与抛物线解析式联立,即可求出点Q 的坐标.【详解】(1)由题得:(4,0)A -,(1,0)B ,∴1OB =,∵tan 2CBA ∠=, ∴2OC OB=,即2OC =, ∴(0,2)C ,把(0,2)C 代入()()41y a x x =+-得:12a =-, ∴抛物线解析式为:()()2141213222y x x x x =--=-++-; (2)设直线AC 的解析式为y kx b =+,把(4,0)A -,(0,2)C 代入得:402k b b -+=⎧⎨=⎩, 解得:122k b ⎧=⎪⎨⎪=⎩,∴直线AC 的解析式为122y x =+, 设23,2)12(2D m m m -+-,则1(,2)2P m m +, ∴2213113(2)(2)222222m m m m m --+-+=--=, 解得:3m =-或1m =-, ∵213222y x x =--+的对称轴为直线332122()2x -=-=-⨯-,点D 是对称轴左侧抛物线上一点, ∴3m =-, ∴2132222m m --+=, ∴(3,2)D -;(3)如图,作CAO ∠的角平分线为AM ,作MN AC ⊥交于点N ,过点K 作KT y ⊥轴交于点T ,由(4,0)A -,(3,2)D -得直线AD 解析式为28y x =+,∴AC =()0,8F ,∵H 是点C 的对称点,∴(0,2)H -,由(4,0)A -,(0,2)H -得直线AH 解析式为122y x =--,∴AH AC ==设(0,)M t ,1(,2)2T n n --,则OM MN t ==,2CM t =-,4CN AC AN AC OA =-=-=,2224)(2)t t +=-,解得:8t =, ∵12KCH CAO ∠=∠,∴KCT MAO ∠=∠,∵90CTK AOM ∠=∠=︒,∴CTK AOM ,CT KT AO MO =,即12(2)24n ++=解得:n =,122n --=K , 由题知:HTK HOA ,∴HK KT HA AO =54=,解得:8HK =,∴8)8AK ==-∴88GH AK AH =+=-=,∵:3:4GF GH =,∴6GF =,∵8210FH =+=,∴FGH 是直角三角形, 设1(,2)2G x x +,11681022FGH S x =⨯⨯=⨯, 解得:245x =, 122225x +=, ∴2422(,)55G , 由()0,8F ,2422(,)55G 得直线FG 的解析式为384y x =-+, ∵CR GH ⊥,∴CR FG ∥,∴直线CR 解析式为34y x c =-+,把(0,2)C 代入得:324y x =-+,232413222y x y x x ⎧=-+⎪⎪⎨⎪=--+⎪⎩, 解得:02x y =⎧⎨=⎩或32258x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴325(,)28Q -. 【点睛】本题考查二次函数综合问题,还涉及了解直角三角形以及相似三角形的判定与性质,属于中考压轴题,掌握用待定系数法求解析式是解题的关键.。
人教版初3数学9年级下册 第28章(锐角三角函数)单元检测题 含答案
下学期初中数学人教版九年级 锐角三角函数 单元检测题学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 把△ABC 三边的长度都扩大为原来的2倍,则锐角A 的正弦函数值( ) A.缩小为原来的12 B.不变C.扩大为原来的2倍D.扩大为原来的4倍2. 如图,在菱形ABCD 中,∠ABC =60∘,AC =4,则BD 的长为( )A.83B.43C.23D.83. 如图,在 Rt △ABC ∠C =90∘, AC =4, AB =5, BC =3 sin B 的值是( ) A.23 B. 35C.45D. 344. 在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍C.扩大4倍D.没有变化5. 如图,△ABC 的顶点都在正方形网格的格点上,则tan C 的值为( )A.3510 B.255C.55D.126. 在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,已知小明距假山的水平距离BD 为试卷第2页,总12页12m ,他的眼睛距地面的高度为1.6m ,李明的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60∘刻度线,则假山的高度为( )A.(43+1.6)mB.(123+1.6)mC.(42+1.6)mD.43m7. 已知sin α<cos α,那么锐角α的取值范围是( ) A.30∘<α<45∘ B.0∘<α<45∘C.45∘<α<60∘D.45∘<α<90∘8. 如图,沿AC 的方向开山修路,为了加快速度,要在小山的另一边同时施工,在AC 上取一点B ,使得 ∠ABD =148∘ .已知BD =600米,∠D =58∘ ,点A ,C ,E 在同一条直线上,那么开挖点E 离点D 的距离是( )A.600sin 58∘米B.600cos 58∘米 C.600tan 58∘米 D.600cos 58∘米9. 如图要测量小河两岸相对的两点P 、A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得PC =50米,∠PCA =44∘,则小河宽PA 为( )A.50tan 44∘米B.50sin 44∘米C.50sin 46∘米D.100tan 44∘米10. 如图:在Rt △ABC 中,C =90∘,sin A =35,则tan A 的值等于()A.45 B.35C.34D.5511. 如图,在△ABC 中,∠ACB =90∘,CD ⊥AB ,垂足为D .如果AD =8,BD =4,那么tan A 的值是( )A.12 B.22C.33D.212. 如图,某山坡的坡面AB =200米,坡角∠BAC =30∘,则该山坡的高BC 的长为( )A.50米B.100米C.150米D.1003米13. 在某次海上搜救工作中,A 船发现在它的南偏西30∘方向有一漂浮物,同时在A 船正东10km 处的B 船发现该漂浮物在它的南偏西60∘方向,此时,B 船到该漂浮物的距离是( ) A.53km B.103kmC.10kmD.20km14. 如图,电线杆CD 的高度为ℎ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC 的长度为(A ,D ,B 在同一条直线上)( )试卷第4页,总12页A.ℎsin αB.ℎcos αC.ℎtan αD.ℎ⋅cos α15. 在△ABC 中,∠C 是直角,cos B =23,则sin B =( ) A.253B.53C.55D.25516. 如图,梯形护坡石坝的斜坡AB 的坡度i =1:3,坡度BC 为2m ,则斜坡AB 的长是( )A.25mB.210mC.45mD.6m17. 如图,在 △ABC 中, ∠B =2∠C, AD ⊥BC 于点D ,设 AD =m, BD =n ,则 DC =( )A.m +m 2+n 2B.2n +m 2+n 2C.n +m 2+n 2D.n +2m 2+n 218. 在△ABC 中,∠C =90∘,sin A =35,则sin B 的值是( ) A.23 B.25C.45D.21519. 如图,在菱形ABCD 中,E ,F 分别是BC 和CD 的中点,且AE ⊥BC ,AF ⊥CD ,若AE=,则菱形ABCD 的周长等于( )A. B. C.4 D.820. 已知小芳站在层高为2.5米的六层楼的屋顶上来估计旁边一支烟囱的高度,当小芳以俯角∠COB=45∘向下看时,刚好可以看到烟囱的底部,当小芳以仰角∠AOB=30∘向上看时,刚好可以看到烟囱的顶部,若小芳的身高为1.5米,请你估计烟囱的高度(2=1.414,3=1.732结果保留三个有效数字)()A.22.1米B.26.0米C.27.9米D.32.8米21. 若sin20∘=cos(α+25∘),则tanα=________.22. 若1−tanα=0,则锐角α=________度.23. 用计算器求值:sin23∘5′+cos66∘55′≈________.(精确到0.0001)24. 如图,某校教学楼AC与实验楼BD的水平间距CD=153米,在实验楼顶部B点测得教学楼顶部A点的仰角是30∘,底部C点的俯角是45∘,则教学楼AC的高度是________米(结果保留根号).25. 如果港口A的南偏东52∘方向有一座小岛B,那么从小岛B观察港口A的方向是________.26. 如图,已知△ABC三个顶点的坐标分别为A(−2, −4),B(0, −4),C(1, −1).试卷第6页,总12页(1)请在网格中,画出线段BC 关于原点对称的线段B 1C 1;(2)请在网格中,过点C 画一条直线CD ,将△ABC 分成面积相等的两部分,与线段AB 相交于点D ,写出点D 的坐标;(3)若另有一点P(−3, −3),连接PC ,则tan ∠BCP =________.27. 如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以24海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60∘的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东30∘方向上,如果海轮不改变方向继续前进有没有触礁的危险?28. 计算:6tan 230∘−3sin 60∘−2sin 45∘.29. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,DG ⊥AC 于点G ,交AB 的延长线于点F .(1)求证:直线FG 是⊙O 的切线;(2)若AC =10,cos A =25,求CG 的长.30. 如图,AB ,AC 分别是⊙O 的直径和弦,OD ⊥AC 于点D .过点A 作⊙O 的切线与OD 的延长线交于点P ,PC ,AB 的延长线交于点F.(2)若∠ABC=60∘,AB=10,求线段CF的长.参考答案与试题解析一、选择题(本题共计 20 小题,每题 3 分,共计60分)1.【答案】B2.【答案】B3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】B8.【答案】D9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】试卷第8页,总12页B14.【答案】B15.【答案】B16.【答案】B17.【答案】C18.【答案】C19.【答案】D20.【答案】B二、填空题(本题共计 5 小题,每题 3 分,共计15分)21.【答案】122.【答案】4523.【答案】0.784124.【答案】(15+153)25.【答案】北偏西52∘三、解答题(本题共计 5 小题,每题 10 分,共计50分)26.【答案】解:(1)作出点B1,C1连接即可;试卷第10页,总12页(2)因为直线CD 将△ABC 分成面积相等的两部分,且与线段AB 相交于点D ,故点D 为线段AB 的中点,画出直线CD ,可知点D 坐标为(−1, −4);127.【答案】解:过P 作PD ⊥AB .AB =24×2060=8海里.∵ ∠PAB =30∘,∠PBD =60∘∴ ∠PAB =∠APB∴ AB =BP =8海里.在直角△PBD 中,PD =BP ⋅sin ∠PBD =8×32=43海里.∵ 43>6∴ 海轮不改变方向继续前进没有触礁的危险.28.【答案】解:原式=6×(33)2−3×32−2×22=6×13−32−2=2−32−2=12−229.【答案】(1)证明:如图1,连接OD ,∵ AB =AC ,∴ ∠C =∠ABC .∵ OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD // AC,∴∠ODG=∠DGC.∵DG⊥AC,∴∠DGC=90∘,∴∠ODG=90∘,∴OD⊥FG.∵OD是⊙O的半径,∴直线FG是⊙O的切线.(2)解:如图2,∵AB=AC=10,AB是⊙O的直径,∴OA=OD=10÷2=5.由(1)可得OD⊥FG,OD // AC,∴∠ODF=90∘,∠DOF=∠A.在△ODF和△AGF中,∠DOF=∠A,∠F=∠F, ∴△ODF∼△AGF,∴ODAG =OFAF.∵cos A=25,∴cos∠DOF=25,∴OF=ODcos∠DOF =525=252,∴AF=AO+OF=5+252=352,∴5AG =252352,解得AG=7,∴CG=AC−AG=10−7=3,即CG的长是3.30.【答案】(1)证明:如图,连接OC,试卷第12页,总12页∵ OD ⊥AC ,OD 经过圆心O ,∴ AD =CD ,∴ PA =PC ,在△OAP 和△OCP 中,∵ OA =OC,PA =PC,OP =OP, ∴ △OAP≅△OCP(SSS),∴ ∠OCP =∠OAP ,∵ PA 是⊙O 的切线,∴ ∠OAP =90∘,∴ ∠OCP =90∘,即OC ⊥PC ,∴ PC 是⊙O 的切线.(2)解:∵ OB =OC ,∠OBC =60∘,∴ △OBC 是等边三角形,∴ ∠COB =60∘,∵ AB =10,∴ OC =5,由(1)可知,∠OCF =90∘,∴ CF =OC ⋅tan ∠COB =53.。
秋九年级数学下册 第二十八章 锐角三角函数练习 (新版)新人教版-(新版)新人教版初中九年级下册数学
第二十八章 锐角三角函数28.1 锐角三角函数第1课时 正弦01基础题知识点1 已知直角三角形的边长求锐角的正弦值如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A =∠A 的对边斜边=ac.1.(某某中考)在Rt △ABC 中,∠C=90°,AC =12,BC =5,则sin A 的值为(D )A.512B.125 C.1213D.5132.已知△ABC 中,AC =4,BC =3,AB =5,则sin A =(A )A.35B.45C.53D.343.如图,在平面直角坐标系中,点A 的坐标为(4,3),那么sin α的值是(A )A.35B.45C.34D.43第3题图 第4题图4. 如图,网格中的每一个正方形的边长都是1,△ABC 的每一个顶点都在网格的交点处,则sin A =35.5.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sin B 的值是34.6.根据图中数据,求sin C 和sin B 的值.解:在Rt△ABC 中,BC =AB 2+AC 2=34, ∴sinC =AB BC =53434,sinB =AC BC =33434.7.如图所示,在Rt △ABC 中,∠ACB=90°,a∶c=2∶3,求sin A 和sin B 的值.解:在Rt△ABC 中,∠ACB =90°,a∶c =2∶3,设a =2k ,c =3k.(k>0)∴b =c 2-a 2=5k. ∴sinA =a c =2k 3k =23,sinB =b c =5k 3k =53.知识点2 已知锐角的正弦值,求直角三角形的边长8.(来宾中考)在△ABC 中,∠C=90°,BC =6,sin A =23,则AB 边的长是9.9.(某某中考)在△ABC 中,AB =AC =5,sin ∠ABC=0.8,则BC =6.易错点 对正弦的概念理解不清10.把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值(A )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定02中档题11.已知Rt △ABC∽Rt △A′B′C′,∠C=∠C′=90°,且AB =2A′B′,则sin A 与sin A′的关系为(B )A .sin A =2sin A ′ B.sin A =sin A ′ C .2sin A =sin A ′ D.不确定12.如图,在Rt △ABC 中,∠C=90°,AB =2BC ,则sin B 的值为(C )A.12B.22C.32D .1 13.在△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为a ,b ,c ,c =3a ,则sin A 的值是(A )A.13B.233 C .3 D .以上都不对14.如图,在Rt △ABC 中,∠ACB=90°,CD⊥AB,垂足为点 D.若AC =5,BC =2,则sin ∠ACD 的值为(A )A.53 B.255 C.52 D.23第14题图 第16题图15.已知锐角A 的正弦sin A 是一元二次方程2x 2-7x +3=0的根,则sin A =12.16.(某某中考)如图,⊙O 的直径CD =10 cm ,且AB⊥CD,垂足为P ,AB =8 cm ,则sin ∠OAP=35.17.如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧OC 上一点,求∠OBC 的正弦值.解:连接OA 并延长交⊙A 于点D ,连接CD.∴∠OBC =∠ODC, ∠OCD =90°.∴sin∠OBC =sin∠ODC =OC OD =510=12.03综合题18.(某某中考)如图,根据图中数据完成填空,再按要求答题:sin 2A 1+sin 2B 1=1;sin 2A 2+sin 2B 2=1;sin 2A 3+sin 2B 3=1.(1)观察上述等式,猜想:在Rt△ABC 中,∠C =90°,都有sin 2A +sin 2B =1;(2)如图4,在Rt△ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,利用三角函数的定义和勾股定理,证明你的猜想;(3)已知:∠A +∠B =90°,且sin A =513,求sin B .解:(2)∵在Rt△ABC 中,∠C =90°,sinA =a c ,sinB =b c ,∴sin 2A +sin 2B =a 2+b 2c2.∵∠C =90°, ∴a 2+b 2=c 2. ∴sin 2A +sin 2B =1.(3)∵sinA =513,sin 2A +sin 2B =1,且sinB >0,∴sinB =1-(513)2=1213.第2课时 锐角三角函数01基础题 知识点1 余弦如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cos A =∠A 的邻边斜边=bc.1.(某某中考)如图,在Rt △ABC 中,∠C=90°,AB =5,BC =3,则cos B 的值是(A )A.35B.45C.34D.432.在Rt △ABC 中,∠C=90°,cos A =35,AC =6 cm ,那么BC 等于(A )A .8 cm B.245 cmC.185 cm D.65cm 3.在△ABC 中,∠C=90°,AC =2,BC =1,求cos A 和cos B 的值.解:∵∠C =90°,AC =2,BC =1,∴AB =AC 2+BC 2=22+12= 5.cosA =AC AB =25=255,cosB =BC AB =15=55.知识点2 正切如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tan A =∠A 的对边∠A 的邻边=a b.4.(某某中考)在Rt △ABC 中,∠C=90°,AB =5,BC =3,则tan A 的值是(A )A.34B.43C.35D.455.在4×4的正方形的网格中画出了如图所示的格点△ABC,则tan ∠ABC 的值为(D )A.31313 B.21313 C.32 D.23第5题图 第6题图6.(某某中考)如图,在△ABC 中,∠C=90°,AC =2,BC =1,则tan A 的值是12.7.已知等腰三角形的腰长为6 cm ,底边长为10 cm ,则底角的正切值为115.知识点3 锐角三角函数∠A 的正弦、余弦、正切都是∠A 的锐角三角函数.8.(某某中考)如图,在Rt △ABC 中,∠C=90°,BC =15,tan A =158,则AB =17.第8题图 第9题图9.(崇左中考)如图,在Rt △ABC 中,∠C=90°,AB =13,BC =12,则下列三角函数表示正确的是(A )A .sin A =1213B .cos A =1213C .tan A =512D .tan B =12510.在Rt △ABC 中,∠C=90°,AC =7,BC =24.(1)求AB 的长;(2)求sin A ,cos A ,tan A 的值. 解:(1)由勾股定理,得AB =AC 2+BC 2=72+242=25.(2)sinA =BC AB =2425,cosA =AC AB =725,tanA =BC AC =247.02中档题11.在△ABC 中,若三边BC ,CA ,AB 满足BC∶CA∶AB=5∶12∶13,则cos B =(C )A.512 B.125C.513 D.121312.(某某中考)在Rt △ABC 中,∠C=90°,若sin A =35,则cos B 的值是(B )A.45B.35C.34D.4313.将△AOB 按如图所示放置,然后绕点O 逆时针旋转90°至△A′OB′的位置,点A 的坐标为(2,1),则tan ∠A′OB′的值为(A )A.12B .2 C.55 D.255第13题图 第14题图14.(某某中考)如图,在Rt △ABC 中,∠ACB=90°,AC =8,BC =6,CD⊥AB ,垂足为D ,则tan ∠BCD 的值是34.15.(某某中考)如图,在半径为3的⊙O 中,直径AB 与弦CD 交于点E ,连接AC ,B D.若AC =2,则cos D =13.16.(某某中考)如图,在△ABC 中,CD⊥AB,垂足为D.若AB =12,CD =6,tan A =32,求sin B +cos B 的值.解:在Rt△ACD 中,CD =6,tanA =32,∴CD AD =6AD =32,即AD =4. 又AB =12,∴BD =AB -AD =8.在Rt△BCD 中,BC =CD 2+BD 2=10.∴sinB =CD BC =610=35,cosB =BD BC =810=45.∴sinB +cosB =35+45=75.17.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB BC =23,求tan ∠DCF 的值.解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°. ∵AB BC =23,且由折叠知CF =BC , ∴CD CF =23.设CD =2x ,CF =3x (x>0),∴DF =CF 2-CD 2=5x. ∴tan∠DCF =DF CD =5x 2x =52.03综合题18.如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作c tan α,即c tan α=角α的邻边角α的对边=ACBC,根据上述角的余切定义,解下列问题:(1)c tan 30°=3;(2)如图,已知tan A =34,其中∠A 为锐角,试求c tan A 的值.解:∵tanA =34,且tanA =BC AC,∴设BC =3x ,AC =4x. ∴ctanA =AC BC =4x 3x =43.第3课时 特殊角的三角函数值01基础题知识点1 特殊角的三角函数值填写下表:30° 45° 60° sin α 12 22 32 cosα 32 22 12 tanα33131.已知∠A=30°,下列判断正确的是(A )A .sin A =12B .cos A =12C .tan A =12D .cot A =122.计算:cos 230°=(D )A.12B.14C.32D.34 3.(某某中考)计算:cos 245°+sin 245°=(B )A.12B .1 C.14 D.224.计算:tan 45°+2cos 45°=2. 5.计算:(1)sin 30°+cos 45°; 解:原式=12+22=1+22.(2)cos30°·tan30°-tan 245°; 解:原式=32×33-12=12-1=-12. (3)22sin45°+sin60°·cos45°. 解:原式=22×22+32×22=2+64.知识点2 由三角函数值求特殊角6.(某某中考)在△ABC 中,若|sin A -12|+(cos B -12)2=0,则∠C 的度数是(D )A .30° B.45° C.60° D.90° 7.如果在△ABC 中,sin A =cosB =22,那么下列最确切的结论是(C ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形 D .△ABC 是锐角三角形8.已知α为锐角,且cos (90°-α)=12,则α=30°.9.在△ABC 中,∠C=90°,AC =2,BC =23,则∠A=60°.知识点3 用计算器计算三角函数值10.用计算器计算cos 44°的结果(精确到0.01)是(B )A .0.90B .0.72C .0.6911.如图,在△ABC 中,∠ACB=90°,∠ABC=26°,BC =5.若用科学计算器求边AC 的长,则下列按键顺序正确的是(D )A .5÷tan26°=B .5÷sin26°=C .5×cos26°=D .5×tan26°=12.利用计算器求∠A =18°36′的三个锐角三角函数值.解:sinA =sin18°36′≈0.319 0,cosA =cos18°36′≈0.947 8, tanA =tan18°36′≈0.336 5.13.已知下列正(余)弦值,用计算器求对应的锐角(精确到0.1°).(1)sin α=0.822 1; 解:α≈55.3°.(2)cos β=0.843 4. 解:β≈32.5°.02中档题14.点M(-sin 60°,cos 60°)关于x 轴对称的点的坐标是(B )A.(32,12) B.(-32,-12)C.(-32,12) D.(-12,-32)15.李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是(D)A.40° B.30° C.20° D.10°16.如图,以O为圆心,任意长为半径画弧,与射线OA交于点B,再以B为圆心,BO长为半径画弧,两弧交于点C,画射线OC,则sin∠AOC的值为(D)A.12B.33C.22D.3217.菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=2,则点B的坐标为(C) A.(2,1) B.(1,2)C.(2+1,1) D.(1,2+1)第17题图第18题图18.(某某中考)如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接C B.若⊙O的半径为2,∠ABC=60°,则BC=8.19.计算:(1)(某某中考改编)2 0180+(-1)2-2tan45°+4;解:原式=1+1-2×1+2=2.(2)(-1)-2+|2-3|+(π-3.14)0-tan60°+8.解:原式=1+(3-2)+1-3+2 2=2+ 2.20.若tan A 的值是方程x 2-(1+3)x +3=0的一个根,求锐角A 的度数.解:解方程x 2-(1+3)x +3=0, 得x 1=1,x 2= 3.由题意知tanA =1或tanA = 3.∴∠A =45°或60°.21.(原创题)如图,在等腰△ABC 中,AB =AC =1.(1)若BC =2,求△ABC 三个内角的度数; (2)若BC =3,求△ABC 三个内角的度数.解:(1)∵AB =AC =1,BC =2,∴AB 2+AC 2=BC 2.∴∠BAC =90°,∠B =∠C =45°.(2)过点A 作AD⊥BC,垂足为D.∵AB =AC =1,AD⊥BC, ∴BD =12BC =32.∴cosB =BD AB =321=32.∴∠B =30°.∴∠C =30°,∠BAC =120°.03综合题22.(某某中考)一般地,当α,β为任意角时,sin (α+β)与sin (α-β)的值可以用下面的公式求得:sin (α+β)=sin α·cos β+cos α·sin β;sin (α-β)=sin α·cos β-cos α·sin β.例如:sin 90°=sin (60°+30°)=sin 60°·cos 30°+cos 60°·sin 30°=32×32+12×12=1.类似地,可以求得sin 15°的值是6-24. 解直角三角形及其应用 28. 解直角三角形01基础题知识点1 已知两边解直角三角形如图,已知两边:(1)已知a ,b ,则c =a 2+b 2,sin A =cos B =a c,sin B =cos A =bc ,tan A =a b ,tan B =b a;(2)已知a ,c ,则b =c 2-a 2,sin A =cos B =a c ,sin B =cos A =b c ,tan A =a b ,tan B =b a. 1.在△ABC 中,∠C=90°,AC =3,AB =4,欲求∠A 的值,最适宜的做法是(C )A .计算tan A 的值求出B .计算sin A 的值求出C .计算cos A 的值求出D .先根据sin B 求出∠B ,再利用90°-∠B 求出2.在Rt △ABC 中,∠C=90°,a =4,b =3,则cos A 的值是(A )A.35B.45C.43D.543.在Rt △ABC 中,∠C=90°,a =20,c =202,则∠A=45°,∠B =45°,b =20. 4.如图,在Rt △ABC 中,∠C=90°,已知BC =26,AC =62,解此直角三角形.解:∵tanA =BC AC =2662=33,∴∠A =30°.∴∠B =90°-∠A =90°-30°=60°,AB =2BC =4 6.知识点2 已知一边一锐角解直角三角形如图,已知一边一角:(1)已知a ,∠A ,则∠B =90°-∠A ,c =a sinA ,b =a tanA; (2)已知c ,∠A ,则∠B =90°-∠A ,a =c·sinA .5.(某某中考)如图,在Rt △ABC 中,∠C=90°,∠B=30°,AB =8,则BC 的长是(D )A.433B .4C .8 3D .4 36.在Rt △ABC 中,∠C=90°,tan A =43,BC =8,则△ABC 的面积为(C )A .12B .18C .24D .487.(某某中考)如图,在Rt △ABC 中,∠C=90°,∠B=37°,BC =32,则AC =24.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)8.(教材9下P 73例2变式)如图,在Rt △ABC 中,∠C=90°,∠B=55°,AC =4,解此直角三角形.(结果保留小数点后一位)解:根据题意,∠A =90°-∠B =90°-55°=35°. 根据正弦定义,sinB =AC AB,则AB =AC sinB =4sin55°≈4.9.根据正切的定义,tanB =AC BC,则BC =AC tanB =4sin55°≈2.8.所以△ABC 的另一个锐角度数为35°,另一条直角边长为2.8,斜边长为4.9. 易错点 忽视钝角三角形而致错9.在△ABC 中,AB =23,AC =2,∠B=30°,则BC 的长为2或4.02中档题10. 如图,在△AB C 中,∠C=90°,AC =8 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若cos ∠BDC=35,则BC的长是(A )A .4 cmB .6 cmC .8 cmD .10 cm11.(某某中考)在△ABC 中,AB =122,AC =13,cos B =22,则BC 边长为(D )A .7B .8C .8或17D .7或1712.(某某中考)如图,在△ABC 中,AC =6,BC =5,sin A =23,则tan B =43.第12题图 第13题图13.(某某中考)如图,在菱形ABCD 中,DE⊥AB 于点E ,cos A =35,BE =4,则tan ∠DBE 的值是2.14.(某某中考)如图,在△ABC 中,BD⊥AC,AB =6,AC =53,∠A=30°.(1)求BD 和AD 的长; (2)求tan C 的值.解:(1)∵BD⊥AC,∴∠ADB =∠BDC =90°.在Rt△ADB 中,AB =6,∠A =30°,∴BD =12AB =3.∴AD =3BD =3 3.(2)CD =AC -AD =53-33=23, 在Rt△BDC 中,tanC =BD CD =323=32.15.(某某中考)如图,在四边形ABCD 中,∠ABC=90°,∠ADC=90°,AB =6,CD =4,BC 的延长线与AD 的延长线交于点E.(1)若∠A=60°,求BC 的长; (2)若sin A =45,求AD 的长.解:(1)∵在Rt△ABE 中,∠ABE =90°,∠A =60°,AB =6,tanA =BE AB,∴BE =6·tan60°=6 3.∵在Rt△CDE 中,∠CDE =90°,∠E =90°-60°=30°, CD =4, ∴CE =2CD =8.∴BC =BE -CE =63-8.(2) ∵在Rt△ABE 中,∠ABE =90°,sinA =45,∴BE AE =45. 设BE =4x ,则AE =5x (x >0).∵AE 2-BE 2=AB 2,∴(5x )2-(4x )2=62.∴x =2. ∴BE =8,AE =10.∵在Rt△CDE 中,∠CDE =90°,CD =4,tanE =CD ED ,而在Rt△ABE 中,tanE =AB BE =68=34,∴CD ED =34. ∴ED =43CD =163.∴AD =AE -ED =143.03综合题16. 如图,在△ABC 中,CD 是边AB 上的中线,∠B 是锐角,且sin B =22,tan A =12,AC =3 5. (1)求∠B 的度数与AB 的长; (2)求tan ∠CDB 的值.解:(1)作CE⊥AB 于E ,设CE =x , 在Rt△ACE 中,∵tanA =CE AE =12,∴AE =2x.∴AC =x 2+(2x )2=5x. ∴5x =35,解得x =3. ∴CE =3,AE =6.在Rt△BCE 中,∵sinB =22, ∴∠B =45°.∴△BCE 为等腰直角三角形. ∴BE =CE =3. ∴AB =AE +BE =9.(2)∵CD 是边AB 上的中线,∴BD =12AB =4.5.∴DE =BD -BE =-3=1.5. ∴tan∠CDE =CEDE=错误!=2,即tan∠CDB 的值为2.28.2.2 应用举例第1课时 与视角有关的解直角三角形应用题01基础题知识点1 利用解直角三角形解决简单问题1. 如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC =10米,∠B=36°,则中柱AD(D 为底边中点)的长是(C )A .5sin36°米B .5cos36°米C .5tan36°米D .10tan36°米第1题图 第2题图2.(教材9下P 74例3变式)如图,某航天飞船在地球表面P 点的正上方A 处,从A 处观测到地球上的最远点Q.若∠QAP=α,地球半径为R ,则航天飞船距离地球表面最近距离AP =Rsinα-R. 3.(某某中考)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).如图,在测量时,选定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB =30°,沿河岸AB 前行30米后到达B 处,在B 处测得∠CBA=60°.请你根据以上测量数据求出河的宽度.(参考数据:2≈1.41,3≈1.73;结果保留整数)解:过点C 作CD⊥AB,垂足为D.∵∠CAB =30°, ∴AD =3CD. ∵∠CBA =60°,∴DB =33CD. ∵AB =AD +DB =30,∴3CD +33CD =30. ∴CD =1523=152×1.73≈13(米).答:河的宽度约为13米.知识点2 解与视角有关的实际问题4.(教材9下P 75例4变式)(某某中考)如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球A 处与楼的水平距离为120 m ,则这栋楼的高度为(A )A .160 3 mB .120 3 mC .300 mD .160 2 m5.(某某中考)如图,两幢建筑物AB 和CD ,AB⊥BD,CD⊥BD,AB =15 m ,CD =20 m ,AB 和CD 之间有一景观池,小南在A 点测得池中喷泉处E 点的俯角为42°,在C 点测得E 点的俯角为45°(点B ,E ,D 在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1 m ,参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)解:由题意,得∠AEB =42°,∠DEC =45°.∵AB⊥BD,CD⊥BD,∴在Rt△ABE 中,∠ABE =90°. ∵AB =15,∠AEB =42°, tan∠AEB =ABBE ,∴BE =15tan42°=503.在Rt△DEC 中,∠CDE =90°,∠DEC =45°,CD =20.∴ED =CD =20.∴BD =BE +ED =503+(m ).答:两幢建筑物之间的距离BD 约为36.7 m.易错点 混淆三点函数的数量关系而导致错误6.(某某中考)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为(C )A.30tanα米 B .30sinα米 C .30tanα米 D .30cosα米 02中档题7. (某某中考)某某市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=CE AE ,∴CE=AE·tan60°=153米.在Rt△ABE中,tan∠BAE=BEAE=17+15315,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.8.(某某中考)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量:无人机在A处正上方97 m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1 m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)解:(1)由题意知∠ABP=30°,AP=97,∴AB=APtan∠ABP =97tan30°=9733=973≈168.答:主桥AB的长度约为168 m.(2)∵∠ABP=30°,AP=97,∴PB=2PA=194.又∵∠DBC=∠DBA=90°,∠PB A=30°,∴∠DBP=∠DPB=60°.∴△PBD是等边三角形.∴DB=PB=194.在Rt△BCD中,∵∠C=80°36′,∴BC=DBtanC =194tan80°36′≈32.答:引桥BC的长约为32 m.03综合题9.(六盘水中考)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动.如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得数据如下:①小明的身高DC=1.5米;②小明的影长CE=1.7米;③小明的脚到旗杆底部的距离BC=9米;④旗杆的影长BF=7.6米;⑤从D点看A点的仰角为30°.请你选择需要的数据,求出旗杆的高度.(计算结果精确到0.1米,参考数据:2≈1.414,3≈1.732)情况一:选用①,②,④.∵AB⊥FC,CD⊥FC,∴∠ABF=∠DCE=90°.又∵AF∥DE,∴∠AFB=∠DEC.则△ABF∽△DCE.∴ABDC=FBEC.又∵DC =1.5 m ,FB =7.6 m ,EC =1.7 m ,∴AB≈6.7 m.即旗杆高度约为6.7 m. 情况二: 选用①,③,⑤. 过D 点作DG⊥AB 于G 点, ∵AB⊥FC,DC⊥FC,∴四边形BCDG 为矩形. ∴CD =BG =1.5 m ,DG =BC =9 m.在Rt△AGD 中,∠ADG =30°,tan30°=AG DG,∴AG =3 3 m.又AB =AG +GB ,∴AB =33+(m).∴旗杆高度约为6.7 m.第2课时 与方位角、棱角有关的解直角三角形应用问题01基础题知识点1 解与方位角有关的实际问题1.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是(A )A .250米B .2503米 C.50033米 D .5002米第1题图 第2题图2.如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.则船继续航行50海里与钓鱼岛A的距离最近.3.(某某中考)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米?(精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)解:过P作PC⊥AB于C,在Rt△APC中,AP = 200 m,∠ACP =90°,∠PAC =60°.∴PC= 200×sin60°=200 ×32=1003(m).∵在Rt△PBC中,sin37°=PCPB ,∴PB=PCsin37°=错误!≈288(m).答:小亮与妈妈相距约288米.知识点2解与坡角有关的实际问题4.(聊城中考)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1∶3,则AB的长为(A) A.12米 B.43米C.53米 D.63米第4题图第5题图5.如图,在坡度为1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是35米.6.(教材9下P77练习T2变式)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:2≈1.414,3≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形.由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1∶2.5,在Rt△ABE中,BEAE=错误!,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF=3CF=203米.∴AD=AE+EF+FD=50+6+203(米).答:坝底AD的长度约为米.02中档题7.(某某中考)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.已知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(3≈1.732)解:该轮船不改变航向继续前行,没有触礁危险.理由如下:由题意,得∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD.∴BC =AC =200海里.在Rt△ACD 中,设CD =x ,则AC =2x ,AD =AC 2-CD 2=(2x )2-x 2=3x. 在Rt△ABD 中,AB =2AD =23x ,BD =AB 2-AD 2=(23x )2-(3x )2=3x.又∵BD =BC +CD ,∴3x =200+x ,解得x =100.∴AD =3x =1003≈173.2.海里>170海里,且D 处距离A 处最近,∴轮船不改变航向继续向前行驶,轮船无触礁的危险.8.(某某中考)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B 点先乘坐缆车到达观景平台DE 观景,然后再沿着坡角为29°的斜坡由E 点步行到达“蘑菇石”A 点,“蘑菇石”A 点到水平面BC 的垂直距离为1 790 m .如图,DE∥BC,BD =1 700 m ,∠DBC=80°,求斜坡AE 的长度.(结果精确到0.1 m )解:过点D 作DF⊥BC 于点F ,延长DE 交AC 于点M. 由题意,得EM ⊥AC,DF =CM ,∠AEM =29°, 在Rt△DFB 中,sin80°=DFBD,∴DF =BDsin80°.AM =AC -CM =1 790-1 700sin80°.在Rt△AME 中,sin29°=AM AE,∴AE =AM sin29°=1 790-1 700sin80°sin29°(m ),答:斜坡的长度约为238.9 m. 03综合题9.(黔东南中考)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学测量学校附近一电线杆的高,如图,已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为30°,在C 处测得电线杆顶端A 的仰角为45°,斜坡与地面成60°角,CD =4 m ,请你根据这些数据求电线杆的高(AB).(结果精确到1 m ,参考数据:2≈1.4,3≈1.7)解:延长AD交BC的延长线于点G,过点D作DH⊥BG,垂足为点H,则∠G=30°.∵在Rt△DHC中,∠DCH=60°,CD=4,∴C H=CD·cos∠DCH=4×cos60°=2.DH=CD·sin∠DCH=4×sin60°=2 3.又∵DH⊥BG,∠G=30°,∴HG=DHtanG =23tan30°=6.∴CG=CH+HG=2+6=8.设AB=x m.又∵AB⊥BG,∠G=30°,∠BCA=45°,∴BC=x.∴BG=ABtanG =xtan30°=3x.∵BG-BC=CG,∴3x-x=8.解得x≈11 m.答:电线杆的高(AB)约为11 m.小专题17解直角三角形的实际应用1.(某某月考)如图,在一次测量活动中,小华站在离旗杆底部(B)处6 m的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5 m.试帮助小华求出旗杆AB的高度.(结果精确到0.1 m,3≈1.732)解:过点E作EC⊥AB于C.∵CE=BD=6 m,∠AEC=60°,∴AC=CE·tan60°=6×3=63(m).∴AB=AC+DE=+=(m).答:旗杆AB的高度约为11.9 m.2.钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我国海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).解:(1)如图.(2)AB=30×=15(海里).在Rt△ABC中,tan∠BAC=BC AB ,∴BC=AB·tan∠BAC=AB·tan30° =15×33=53(海里).答:钓鱼岛C 到B 处距离为53海里.3.(某某中考)为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道A B.如图,在山外一点C 测得BC 距离为200 m ,∠CAB =54°,∠CBA =30°,求隧道AB 的长.(参考数据: sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,结果精确到个位)解:过点C 作CD⊥AB 于D ,在Rt△BCD 中,∵∠B =30°,BC =200,∴CD =12BC =100,BD =1003≈173.在Rt△ACD 中,∵tan∠CAB =CD AD ,∴AD =100tan54°≈72.∴AB =AD +BD≈245.答:隧道AB 的长约为245米.4.(黔东南中考)如图,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,2,3≈1.73,4≈2.24)解:假设点D 移到D′的位置时,恰好∠α=39°,过点D 作DE⊥AC 于点E ,作D′E′⊥AC 于点E′,∵CD =12米,∠DCE =60°, ∴DE =CD·sin60°=12×32=63(米), CE =CD·cos60°=12×12=6(米).易知:四边形DEE′D′是矩形.∴DE =D′E′=63米. ∵∠D′CE′=39°,∴CE′=D′E′tan39°≈错误!≈12.8,∴EE′=CE′-CE =-6=(米). ∴DD′=EE′=米.答:学校至少要把坡顶D 向后水平移动米才能保证教学楼的安全.5.(某某中考)如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC =4米,AB =6米,中间平台宽度DE =1米,EN ,DM ,CB 为三根垂直于AB 的支柱,垂足分别为N ,M ,B ,∠EAB=31°,DF⊥BC 于F ,∠CDF=45°.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1米,参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)解:设BM =x 米.∵∠CDF =45°,∠CFD =90°, ∴CF =DF =x 米.∴BF =BC -CF =(4-x )米. ∴EN =DM =BF =(4-x )米.∵AB =6米,DE =MN =1米,BM =x 米, ∴AN =AB -MN -BM =(5-x )米.在△AEN 中,∠ANE =90°,∠EAN =31°,∴EN =AN·tan31°,即4-x =(5-x ). ∴x =2.5.答:DM 和BC 的水平距离BM 的长度约为米.6.(某某中考)某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB 的长为3 m ,静止时,踏板到地面距离BD 的长为0.6 m (踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为h m ,成人的“安全高度”为2 m .(计算结果精确到0.1 m ,参考数据:2≈1.41,sin 55°≈0.82,cos 55°≈0.57,tan 55°≈1.43)(1)当摆绳OA 与OB 成45°夹角时,恰为儿童的安全高度,则h =m ; (2)某成人在玩秋千时,摆绳OC 与OB 的最大夹角为55°,问此人是否安全?解:过C 点作CM⊥DF,CE⊥OD,垂足分别为M ,E ,∵在Rt△CEO 中,∠CEO =90°, ∠COE =55°, ∴cos∠COE =OEOC.∴OE =OC·cos∠COE =3·cos55°≈1.7 m. ∴ED =3+-=(m ).∴CM =ED =1.9 m <2 m.∴此人是安全的.章末复习(八) 锐角三角函数01分点突破知识点1 求锐角三角函数值1.如图,在Rt △ABC 中,∠BAC=90°,AD⊥BC 于点D ,则下列结论不正确的是(C )A .sinB =AD AB B .sin B =AC BC C .sin B =AD ACD .sin B =CD AC第1题图第3题图2.在Rt △ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tan B 的值是(D )A.13B .3 C.24D .2 2 3.如图,在△ABC 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE =9,BC =12,则cos C =23.知识点2 特殊角的三角函数值(某某2016T19、2015T19、2014T19) 4.在△ABC 中,若(3tan A -3)2+|2cos B -3|=0,则△ABC 为(A )A .直角三角形B .含60°角的任意三角形C .等边三角形D .顶角为钝角的等腰三角形5.(某某中考改编)计算:(π-2 016)0+|1-2|+2-1-2sin 45°=12.知识点3 解直角三角形及其应用(某某2017T22、2016T21、2015T21、2014T21、2013T21) 6.在△ABC 中,∠C =90°,AB =2,BC =3,则tan A 2=33.7.如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B 处安置高为1.5米的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长.(结果保留小数点后一位,参考数据:2≈1.41,3≈1.73)解:过点A 作AH⊥CD,垂足为H. 则AB =DH =米,BD =AH =6米.在Rt△ACH 中,∵∠CAH =30°,tan∠CAH =CH AH,∴CH =AH·tan∠CAH =6·tan30°=23(米). ∴CD =CH +HD =(23+)米.在Rt△CDE 中,∵∠CED =60°,sin∠CED =CD CE,∴CE =CDsin60°=4+3(米).答:拉线CE 的长约为米.02中考题型演练8.(某某中考)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是(A )A .5米B .6米C .6.5米D .12米第8题图 第9题图9.(某某中考) △ABC 在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC 于D ,下列四个选项中,错误的是(C )A .sin α=cos αB .tanC =2 C .sin β=cos βD .tan α=110.(某某中考)如图,⊙O 是边长为2的等边△ABC 的内切圆,则⊙O 的半径为33.第10题图 第12题图11.(某某中考) △ABC 中,AB =12,AC =39,∠B=30°,则△ABC 的面积是213或153.12.(某某中考)如图,某城市的电视塔AB 坐落在湖边,数学老师带领学生隔湖测量电视塔AB 的高度,在点M 处测得塔尖点A 的仰角∠AMB 为22.5°,沿射线MB 方向前进200米到达湖边点N 处,测得塔尖点A 在湖中的倒影A′的俯角∠A′NB 为45°,则电视塔AB 的高度为1002米.(结果保留根号)13.(某某中考)如图,一楼房AB 后有一座假山,其坡度为i =1∶3,山坡坡面上E 点处有一休息亭,测得假山坡脚C 与楼房水平距离BC =25米,与亭子距离CE =20米,小丽从楼房顶测得E 点的俯角为45°,求楼房AB 的高.(注:坡度i 是指坡面的铅直高度与水平宽度的比)解:过点E 作EF⊥BC 的延长线于点F ,EH⊥AB 于点H , 在Rt△CEF 中,∵i =EFCF=13=tan∠ECF, ∴∠ECF =30°.∴EF =12CE =10米,CF =103米.∴BH =EF =10米,HE =BF =BC +CF =(25+103)米.在Rt△AHE 中,∵∠HAE =45°,∴AH =HE =(25+103)米. ∴AB =AH +HB =(35+103)米.答:楼房AB 的高为(35+103)米.14.(某某中考)今年,我国海关总署严厉打击“洋垃圾”某某行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为752海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)解:(1)过点B作BH⊥CA,交CA的延长线于点H.∵∠MBC=60°.∴∠CBA=30°.∵∠NAD=30°,∴∠BAC=120°.∴∠C=180°-∠BAC-∠CBA=30°.∴BH=BC·sin∠BCA=150×12=75海里.答:B点到直线CA的距离是75海里.(2)∵在Rt△BDH中,BD=752海里,BH=75海里,∴DH=BD2-BH2=75海里,∵∠BAH=180°-∠BAC=60°,在Rt△ABH中,tan∠BAH=BHAH=3,∴AH=253海里.∴AD=DH-AH=(75-253)海里.答:执法船从A到D航行了(75-253)海里.。
精品解析:人教版九年级下册数学第28章锐角三角函数单元检测卷(解析版).docx
人教版九年级下册数学第28章锐角三角函数单元检测卷->选择题(每小题3分;共33分)1. 计算5sin30o+2cos245°-tan260°的值是()厂 1 1A. &B. -C.-—D.1v 2 2【答案】B【解析】试题分析:根据特殊角的锐角三角函数值计算即可得到结果.5sin30°+2cos245°-tan260°一丄十2x(2^':一"岳:-l-b2xl-3 -丄■ ■ ■ ■ ■故选B.考点:特殊角的锐角三角函数值点评:计算能力是学生必须具备的基本能力,中考中各种题型中均会涉及到计算问题,因而学生应该努力提升白己的计算能力.2. 如图,河堤横断面迎水坡AB的坡比是1:不,堤高BC=10m,则坡面AB的长度是()BA. 15mB. 20^3mC. 20mD. logm【答案】C【解析】试题分析:RtZ\ABC中,BC=10m, tanA=l:^3;AC=BC-rta nA=10^/3 m, ・・.AB二Jio' + UO 间2 = 20m. 故选:C 考点:解直角三角形 3.在RtAABC中,ZC=90°,当已知ZA和a时,求c,应选择的关系式是() a a aA. c = -------B. c = ----------------------------C. ata nAD. c = -------------------sinA cosA tanA【答案】A【解析】在RtAABC中,ZC=90°,. aAsinA=-,a/• c ——sinA故选A.【点睛】本题主要考查解三角形,解题的关键是熟练运用三角函数的定义求解.4. 在RtAABC 中,ZC=90^, c=5, a=4,则sinA 的值为( )3 4 3 4A. —B.—C. —D. -5 5 4 3【答案】BQ 4【解析】由锐角三角函数的定义,sin/! = - = -,所以选B学壬科¥网…学¥科¥网…学¥科¥网…学¥科c 5¥网…学¥科¥网…学¥科¥网…学¥科¥网…学¥科¥网…5. 在RtAABC 中,ZC=90°,下列等式:(1) sin A=sin B; (2) a=c sin B; (3) sin A=tan A cos A; (4) sin2A+cos2A =1.其中一定能成立的有( )A. 1个B. 2个C. 3个D. 4个【答案】B・・A計• n P人打 4 A甜• sinA= —, sinB= — , cosA= — , tanA二一, <•r r h.•.sinAHsinB,所以(1)错误;a=c-sinA,所以(2)错误;VtanA-cosA= —• — =sinA,所以(3)正确;h rsin2A+cos2A= ( — ) 2+ ( — ) 2= =1,所以(4)正确.故选B.6.如图,在边长为1的小正方形组成的网格中,点A、B、0为格点,贝ij tanZAOB=( )【答案】A【解析】过点A 作AD 丄0B 垂足为D, 如图,在直角AABD 屮,AD=1, 0D=2,则 tanZAOB —=-, OD 27.如图,在RtAABC 中,ZC=90°, AM 是BC 边上的中线,sinZCAM=-,则tanB 的值为(4 D. 3【答案】B设 CM=3x,则 AM=5x,根据勾股定理得:AC=^AM 2-CM 2^4x,又M 为BC 的中点,/. BC=2CM=6x,z z |AC 4x 2在 RtAABC 中,tanB=——=—=一,BC 6x 3 故选B.8.如图,一艘轮船在B 处观测灯塔A 位于南偏东50。
数学新人教版九年级下册第二十八章锐角三角函数单元达标检测试题及其答案
数学新人教版九年级下册第二十八章锐角三角函数单元达标检测试题一.单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.如图,为测得电视塔的高度AB ,在D 处用高为1米的测角仪CD ,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米到达F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB (单位:米)为( )A .B .51C .1D .1011题图 2题图 4题图 5题图 6题图2.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm 长的绑绳EF ,tan α=5/2,则“人字梯”的顶端离地面的高度AD 是( )A.144cmB.180cmC.240cmD.360cm3.在△ABC 中,AB=12,AC=13,cos ∠B=,则BC 边长为 ( )A .7B .8C .8或17D .7或174.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =1/2,则AB 的长是 ( )A. 4B. 2C. 8D. 45.如图,⊙O 是正五边形ABCDE 的外接圆,这个正五边形的边长为a ,半径为R ,边心距为r ,则下列关系式错误的是( )A.R 2﹣r 2=a 2B.a=2Rsin36°C.a=2rtan36°D.r=Rcos36°6.如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为︒55,路基高度为5.8米,则路基下底宽为(精确到0.1米) ( )A. 18.1米B.18.2米C.18.3米D.18.4米7.计算6tan45°-2cos60°的结果是 ( )A .4 3B .4C .5D .5 38.在△ABC 中,(tan A -3)2+⎪⎪⎪⎪⎪⎪22-cos B =0,则∠C 的度数为 ( ) A .30° B.45° C.60° D.75° 9.在Rt △ABC 中,∠C =90°,若sin A =513,则cos A 的值为 ( ) A.512 B.813 C.23 D.121310.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是 ( )A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b二.填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.如图,从直径是2米的圆形铁皮上剪出一个圆心角是90°的扇形ABC(A、B、C三点在⊙O上),将剪下来的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径是米.11题图13题图12.已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=.13.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.14.如图,AB和⊙O切于点B,AB=5,OB=3,则tanA=.15.如图,圆O的直径AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,则∠MBA的余弦值为.15题图 16题图 17题图16. 如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°,若旗杆与教学楼的距离为9m,则旗杆AB的高度是 m(结果保留根号)17.如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB 与AC相交于点E.则∠OCA的度数为18.湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为米(保留整数)18题图19题图19.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B 两岛的视角∠ACB=________.20.若方程x2-4x+3=0的两根分别是Rt△ABC的两条边,若△ABC最小的角为A,那么tan A =______.三、解答题(每小题10分,共90分)21.如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)22.如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h.经过0.1h,轮船甲行驶至B处,轮船乙行驶至D位,测得∠DBO=58°,此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)23.如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)24.“东方之星”客船失事之后,本着“关爱生命,救人第一”的宗旨.搜救部门紧急派遣直升机到失事地点进行搜救,搜救过程中,假设直升机飞到A处时,发现前方江面上B处有一漂浮物,从A测得B处的俯角为30°,已知该直升机一直保持在距江面100米高度飞行搜索,飞行速度为10米每秒,求该直升机沿直线方向朝漂浮物飞行多少秒可到达漂浮物的正上方?(结果精确到0.1,≈1.73)25.如图,一艘轮船航行到B 处时,测得小岛A 在船的北偏东60°的方向,轮船从B 处继 续向正东方向航行200海里到达C 处时,测得小岛A 在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)26.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量 ,眼睛与地面 的距离(AB )是1.7米,看旗杆顶部E 的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD ) 是0.7米,看旗杆顶部E 的仰角为45°. 两人相距5米且位于旗杆同侧(点B 、D 、F 在同一 直线上).(1)求小敏到旗杆的距离DF .(结果保留根号)(2)求旗杆EF 的高度.(结果保留整数.参考数据:4.12≈,7.13≈)27.如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A 处观测到灯塔C 在北偏西60°方向上,航行1小时到达B 处,此时观察到灯塔C 在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)28.如图所示,体育场内一看台与地面所成夹角为30°,看台最低点A到最高点B的距离为10,A,B两点正前方有垂直于地面的旗杆DE.在A,B两点处用仪器测量旗杆顶端E 的仰角分别为60°和15°(仰角即视线与水平线的夹角)(1)求AE的长;(2)已知旗杆上有一面旗在离地1米的F点处,这面旗以0.5米/秒的速度匀速上升,求这面旗到达旗杆顶端需要多少秒?29.如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据≈1.4,≈1.7)2016年中考数学人教版九年级下册第二十八章锐角三角函数单元达标检测试题答案一.单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.C2.B3.D4.C5.A6.A7.C8.D9.D10.A二.填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11. 12.75° 13. 60° 14. 3/5 15.1/216. ° 18.45 19. 90°20.2 4三、解答题(每小题10分,共90分)21.两根较粗钢管AD和BC的长分别为58.2cm、90.3cm.22. 13.5km23.AC=AB+BC=AB+DE=70+35=105cm24.该直升机沿直线方向朝漂浮物飞行17.3秒可到达漂浮物的正上方25.解:该轮船不改变航向继续前行,没有触礁危险理由如下:如图所示.则有∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=200海里.在Rt△ACD中,设CD=x海里,则AC=2x,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=200+x,∴x=100.∴AD=x=100≈173.2,∵173.2海里>170海里,∴轮船不改变航向继续向前行使,轮船无触礁的危险.3(米) (2)EF=9.8≈10(米)26.(1)DF= 4+327. 17(海里)28.解:(1)AE的长为10米.(2)旗子到达旗杆顶端需要28秒29.点E离地面的高度EF是100米。
九年级数学下册 28 锐角三角函数检测题 新人教版(2021年整理)
九年级数学下册28 锐角三角函数检测题(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册28 锐角三角函数检测题(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册28 锐角三角函数检测题(新版)新人教版的全部内容。
(第6题图)α(第2题图)(第7题图)第28章一、选择题1.cos60︒ 的值等于( ).A .12 B .33 C .32 D 32.三角形在正方形网格纸中的位置如图所示,则sin α的值是﹙ ﹚.A .34B .43C .35D .453. 在Rt △ABC 中,各边都扩大5倍,则角A 的三角函数值( ).A .不变B .扩大5倍C .缩小5倍D .不能确定4.在Rt △ABC 中,∠C =90°,若sin A =513则cos A 的值是( ). A . 512 B . 813 C . 23 D . 12135.已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( ).A .sin 40mB .cos 40mC .tan 40mD .tan 40m︒是13,堤高6.如图所示,河堤横断面迎水坡AB 的坡比(坡度)BC =5m ,则坡面AB 的长度是( )。
A .10mB .3mC .15mD .3m 7.如图,小强和小明去测量一座古塔的高度,他们在离古塔60m 的A 处,•用测角仪测得古塔顶的仰角为30°, 已知测角仪高AD =1.5m ,则古塔BE 的高为( ).A .3 1.5)mB .(3。
5)mC .31.5mD .28.5m 8.如图是以△ABC 的边AB 为直径的半圆O ,点C恰在半圆上,过C 作则AC 的长CD ⊥AB 交AB 与D ,已知cos ∠ACD =35,BC =4,(第14题图)ACD BO · (第13题图)为( ). A .1 B . 203 C .3 D .163二、填空题 9。
九年级数学下册第28章锐角三角函数检测卷新版新人教版147
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师 大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和 检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应 内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
第二十八章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分) 1.c os60°的值等于( ) A.12 B.22 C.32 D.322.如图,已知Rt△ABC 中,∠C =90°,AC =8,BC =15,则tan A 的值为( ) A.817 B.1517 C.815 D.1583.如图,在地面上的点A 处测得树顶B 的仰角为α度,AC =7,则树高BC 为(用含α的代数式表示)( )A .7sin αB .7cos αC .7tan α D.7tan α第2题图第3题图4.已知在Rt△ABC 中,∠C =90°,sin A =35,则tan B 的值为( )A.43B.45C.54D.345.已知α为锐角,且2cos(α-10°)=1,则α等于( ) A .50° B.60° C.70° D.80°6.将如图所示三角板的直角顶点放置在直线AB 上的点O 处,使斜边CD ∥AB ,则∠α的正弦值为( )A.12B.32C.22D .1第6题图7.在等腰△ABC 中,AB =AC =10cm ,BC =12cm ,则cos A2的值是( )A.35B.45C.34D.548.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则sin∠ABC 的值为( )A.35B.34C.105D .1 9.已知∠A 是锐角,且sin A =35,那么锐角A 的取值范围是( )A .0°<∠A <30° B.30°<∠A <45° C .45°<∠A <60° D.60°<∠A <90°10.如图,小岛在港口P 的北偏西60°方向,距港口56海里的A 处,货船从港口P 出发,沿北偏东45°方向匀速驶离港口P ,4小时后货船在小岛的正东方向,则货船的航行速度是( )A .72海里/时B .73海里/时C .76海里/时D .282海里/时第10题图第11题图第12题图11.如图,已知∠α的一边在x 轴上,另一边经过点A (2,4),顶点为B (-1,0),则sin α的值是( )A.25B.55C.35D.4512.如图,在▱ABCD 中,AE ⊥BC ,垂足为E ,如果AB =5,BC =8,sin B =45,那么tan∠CDE的值为( )A.12B.33C.22D.2-1 二、填空题(本大题共6小题,每小题4分,共24分) 13.tan60°= .14.在△ABC 中,∠C =90°,AB =13,BC =5,则tan B = . 15.在△ABC 中,∠A 、∠B 都是锐角,若sin A =32,cos B =12,则∠C = . 16.菱形的两条对角线长分别为16和12,较长的对角线与菱形的一边的夹角为θ,则cos θ= .17.如图,在半径为5的⊙O 中,弦AB =6,点C 是优弧AB ︵上的一点(不与A 、B 重合),则sin C 的值为 .第17题图第18题图18.如图,△ABC 中,∠ACB =90°,∠B =30°,AC =1,过点C 作CD 1⊥AB 于D 1,过点D 1作D 1D 2⊥BC 于D 2,过点D 2作D 2D 3⊥AB 于D 3,则D 2D 3= ,这样继续作下去,线段D n D n +1= .三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)计算:(1)3tan30°+cos 245°-2sin60°;(2)tan 260°-2sin45°+cos60°.20.(10分)如图,在△ABC中,∠ACB=90°,BC=3,AC=4,CD⊥AB,垂足为D,求sin∠ACD和tan∠BCD的值.21.(10分)根据下列条件解直角三角形:(1)在Rt△ABC中,∠C=90°,c=83,∠A=60°;(2)在Rt△ABC中,∠C=90°,a=36,b=9 2.22.(10分)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°(参考数据:sin50°≈0.8,tan50°≈1.2).(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.23.(12分)已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪⎪⎪sin B -32=0. (1)试判断△ABC 的形状;(2)求(1+sin A )2-2cos B -(3+tan C )0的值.24.(12分)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测队在地面A ,B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB =4米,求该生命迹象所在位置C 的深度(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,3≈1.7).25.(12分)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC.若CD=3,BD=26,sin∠DBC=33,求对角线AC的长.26.(14分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C 的求救信号.已知A、B两船相距100(3+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出船A与船C、观测点D之间的距离AC和AD(如果运算结果有根号,请保留根号);(2)已知距观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC航行去营救船C,在去营救的途中有无触暗礁危险(参考数据:2≈1.41,3≈1.73)?答案1.A 2.D 3.C 4.A 5.C 6.B 7.B 8.A 9.B 10.A 11.D 12.A13. 3 14.125 15.60° 16.45 17.3518.338 ⎝ ⎛⎭⎪⎫32n +1 解析:在△ABC 中,∠ACB =90°,∠B =30°,则CD 1=32;进而在△CD 1D 2中,有D 1D 2=32CD 1=⎝ ⎛⎭⎪⎫322,同理可得D 2D 3=⎝ ⎛⎭⎪⎫323=338,…,则线段D n D n +1=⎝ ⎛⎭⎪⎫32n +1. 19.解:(1)原式=3×33+⎝ ⎛⎭⎪⎫222-2×32=3+12-3=12;(5分)(2)原式=(3)2-2×22+12=3-2+12=72- 2.(10分) 20.解:∵∠ACB =90°,BC =3,AC =4,∴AB =5.(2分)∵CD ⊥AB ,∴∠ADC =∠BDC=90°,∴∠B +∠BCD =90°,∠A +∠ACD =90°.又∵∠BCD +∠ACD =90°,∴∠ACD =∠B ,∠BCD =∠A ,(6分)∴sin∠ACD =sin B =AC AB =45,tan∠BCD =tan A =BC AC =34.(10分)21.解:(1)∠B =30°,a =12,b =43;(5分)(2)∠A =30°,∠B =60°,c =6 6.(10分)22.解:(1)在Rt△BCD 中,∵∠BDC =45°,∴BC =CD =20米.(3分)答:建筑物BC 的高度为20米;(4分)(2)设CD =BC =x 米,∴AC =(x +5)米.(5分)在Rt△ACD 中,tan∠ADC =AC CD=5+xx≈1.2,解得x ≈25,经检验x ≈25符合题意.(9分) 答:建筑物BC 的高度约为25米.(10分)23.解:(1)∵(1-tan A )2+⎪⎪⎪⎪⎪⎪sin B -32=0,∴tan A =1,sin B =32,(2分)∴∠A =45°,∠B =60°,∴∠C =180°-45°-60°=75°,(5分)∴△ABC 是锐角三角形;(6分)(2)∵∠A =45°,∠B =60°,∠C =75°,∴原式=⎝⎛⎭⎪⎫1+222-212-1=12.(12分)24.解:如图,过点C 作CD ⊥AB 交AB 的延长线于点D .设CD =x 米.(2分)在Rt△ADC 中,∠DAC =25°,tan∠DAC =CD AD ,所以AD =CD tan25°≈x0.5=2x (米).(5分)在Rt△BDC 中,∠DBC =60°,tan∠DBC =CD BD ,即tan60°=x 2x -4=3,解得x =4323-1≈3.(11分)答:该生命迹象所在位置C的深度约为3米.(12分)25.解:如图,过点D作DE⊥BC交BC的延长线于点E,则∠E=90°.(1分)∵sin∠DBC=33,BD=26,∴DE=BD·sin∠DBC=22,∴BE=BD2-DE2=4.∵CD=3,∴CE=CD2-DE2=1,∴BC=BE-CE=3,∴BC=CD,∴∠CBD=∠CDB.(6分)∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠CDB,∴AB∥CD.同理AD∥BC,∴四边形ABCD是平行四边形.又∵AB=AD,∴四边形ABCD是菱形.(9分)连接AC交BD于O,则AC⊥BD,AO=CO,BO=DO =6,(10分)∴OC=BC2-BO2=3,∴AC=2 3.(12分)26.解:(1)如图,过点C作CE⊥AB与点E,设AE=x海里.(1分)在Rt△AEC中,∠CAE=60°,∴CE=AE·tan60°=3x海里,AC=AEcos60°=2x海里.(2分)在Rt△BCE中,∠CBE=45°,∴BE=CE=3x海里.∵AB=AE+BE=100(3+1)海里,∴x+3x=100(3+1),解得x=100.∴AC=200海里.(5分)在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F.设AF=y海里,则AD=AFcos60°=2y海里,CF=DF=AF·tan60°=3y海里.(7分)∵AC=AF+CF=200海里,∴y+3y=200,解得y=100(3-1),∴AD=2y=200(3-1)海里.(9分)答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(3-1)海里;(10分)(2)由(1)可知DF=3AF=3×100(3-1)≈126(海里).(12分)∵126海里>100海里,∴巡逻船A沿直线AC航行去营救船C,在去营救的途中没有触暗礁危险.(14分)教学反思1 、要主动学习、虚心请教,不得偷懒。
新人教版九年级下第二十八章锐角三角函数自主检测试卷及答案
第二十八章自主检测(满分:120分 时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.计算6tan45°-2cos60°的结果是( )A .4 3B .4C .5D .5 32.如图28-1,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是( )A .sin A =32B .tan A =12C .cos B =32D .tan B = 3 3.测得某坡面垂直高度为2 m ,水平宽度为4 m ,则坡度为( )A .1∶52B .1∶ 5C .2∶1D .1∶2图28-1 图28-24.如图28-2,AC 是电杆AB 的一根拉线,测得BC =6米,∠ACB =52°,则拉线AC 的长为( )A.6sin52°米B.6tan52°米 C .6cos52°米 D.6cos52°米 5.在△ABC 中,(tan A -3)2+⎪⎪⎪⎪22-cos B =0,则∠C 的度数为( ) A .30° B .45° C .60° D .75°6.如图28-3,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( ) A.23 B.32 C.2 1313 D.3 1313图28-3 图28-47.在Rt △ABC 中,∠C =90°,若sin A =513,则cos A 的值为( ) A.512 B.813 C.23 D.12138.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( )A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b9.如图28-4,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若AC =2 3,AB =4 2,则tan ∠BCD 的值为( )A. 2B.153C.155D.3310.如图28-5,小敏同学想测量一棵大树的高度.她站在B 处仰望树顶,测得仰角为30°,再往大树的方向前进4 m ,测得仰角为60°,已知小敏同学身高(AB )为1.6 m ,则这棵树的高度为( )(结果精确到0.1m ,3≈1.73).图28-5 A .3.5 m B .3.6 mC .4.3 mD .5.1 m二、填空题(本大题共6小题,每小题4分,共24分)11.已知在Rt △ABC 中,∠C =90°,tan A =3,则cos B =________.12.计算:12+2sin60°=________.13.在Rt △ABC 中,∠C =90°,a =5 2,b =5 6,则∠A =________.14.如图28-6,已知Rt △ABC 中,斜边BC 上的高AD =4,cos B =45,则AC =________.图28-6 图28-715.如图28-7,C 岛在A 岛的北偏东50°方向,C 岛在B 岛的北偏西40°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.16.若方程x 2-4x +3=0的两根分别是Rt △ABC 的两条边,若△ABC 最小的角为A ,那么tan A =______.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:4+⎝⎛⎭⎫12-1-2cos60°+(2-π)0.18.如图28-8,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且tan∠BAE =125,求河堤的高BE .图28-819.如图28-9,在△ABC 中,AD ⊥BC ,tan B =cos ∠CAD .求证:AC =BD .图28-9四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图28-10,在鱼塘两侧有两棵树A,B,小华要测量此两树之间的距离,他在距A 树30 m的C处测得∠ACB=30°,又在B处测得∠ABC=120°.求A,B两树之间的距离(结果精确到0.1 m,参考数据:2≈1.414,3≈1.732).图28-1021.如图28-11,小明在公园放风筝,拿风筝线的手B离地面高度AB为1.5米,风筝飞到C处时的线长BC为30米,这时测得∠CBD=60°,求此时风筝离地面的高度(结果精确到0.1米;参考数据:3≈1.73).图28-1122.图28-12是一座堤坝的横断面,求BC的长(精确到0.1 m;参考数据:2≈1.414,3≈1.732).图28-12五、解答题(三)(本大题共3小题,每小题9分,共27分)23.地震发生后,一支专业搜救队驱车前往灾区救援,如图28-13,汽车在一条南北走向的公路上向北行驶,当汽车在A处时,车载GPS(全球卫星定位系统)显示村庄C在北偏西26°方向,汽车以35 km/h的速度前行2 h到达B处,GPS显示村庄C在北偏西52°方向.(1)求B处到村庄C的距离;(2)求村庄C到该公路的距离(结果精确到0.1 km;参考数据:sin26°≈0.438 4,cos26°≈0.898 8,sin52°≈0.788 0,cos52°≈0.615 7).图28-1324.如图28-14,已知一个等腰三角形ABC的底边长为10,面积为25.求:(1)△ABC的三个内角;(2)△ABC的周长.图28-1425.如图28-15,在直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.图28-15第二十八章自主检测1.C 2.D 3.D 4.D 5.D 6.B 7.D 8.A9.B 解析:在Rt △ABC 中,BC =AB 2-AC 2=(4 2)2-(2 3)2=2 5,又因为∠BCD =∠A ,所以tan ∠BCD =tan A =BC AC =2 52 3=153. 10.D11.32 12.3 3 13.30° 14.5 15.90° 16.2417.解:原式=2+2-1+1=4.18.解:在Rt △ABE 中,tan ∠BAE =BE AE =125,设BE =12x ,AE =5x ,由勾股定理,得132=(12x )2+(5x )2,解得x =1,则BE =12米.19.证明:在Rt △ABD 中,tan B =AD BD, 在Rt △ACD 中,cos ∠CAD =AD AC, ∵tan B =cos ∠CAD ,∴AD BD =AD AC.∴AC =BD . 20.解:作BD ⊥AC ,垂足为点D .∵∠C =30°,∠ABC =120°,∴∠A =30°.∵∠A =∠C .∴AB =AC .∴AD =CD =12AC =15. 在Rt △ABD 中,AB =AD cos30°=1532=10 3≈17.3. 答:A ,B 两树之间的距离为17.3 m.21.解:∵BC =30,∠CBD =60°,sin ∠CBD =CD BC, ∴CD =BC ·sin ∠CBD =30×32=15 3≈26.0. ∴CE =CD +DE =CD +AB =26.0+1.5=27.5.答:此时风筝离地面的高度约为27.5米.22.解:如图D102,过点A ,D 分别作BC 的垂线AE ,DF ,分别交BC 于点E ,F ,则EF =AD =6.∵∠ABE =45°,∠DCF =30°,∴DF =7=AE =BE ,且FC =CD ·cos ∠DCF =7 3≈7×1.732≈12.1(m).∴BC =7+6+12.1=25.1(m).图D102 图D10323.解:过点C 作CD ⊥AB 交AN 于点D ,如图D103.(1)∵∠CBD =52°,∠A =26°,∴∠BCA =26°.∴BC =AB =35×2=70 (km).即B 处到村庄C 的距离为70 km.(2)在Rt △CBD 中,CD =BC ·sin52°≈70×0.788 0≈55.2(km).即村庄C 到该公路的距离约为55.2 km.24.解:过点A 作底边上的高,交BC 于点D ,∴AD 垂直平分BC ,即BD =CD =12BC =5.(1)∵等腰三角形ABC 的底边长为10,面积为25,∴AD =25×210=5.∴tan B =AD BD=1,即∠B =45°. ∴∠C =∠B =45°,∠BAC =180°-∠B -∠C =90°.(2)∵△ABD 为直角三角形,AD =BD =5,∴AB =AD 2+BD 2=52+52=5 2.∴AC =AB =5 2.故△ABC 的周长为5 2+5 2+10=10 2+10.25.解:(1)∵BF =CF ,∠C =30°,∴∠FBC =30°. 又由折叠性质知:∠DBF =∠FBC =30°. ∴∠BDF =∠BDC =180°-∠DBC -∠C=180°-2×30°-30°=90°.(2)在Rt △BDF 中,∵∠DBF =30°,BF =8,∴BD =4 3. ∵AD ∥BC ,∠A =90°,∴∠ABC =90°.又∵∠FBC =∠DBF =30°,∴∠ABD =30°.在Rt △BDA 中,∵∠ABD =30°,BD =4 3,∴AB =6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十八章 锐角三角函数自主检测(满分:120分 时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分) 1.计算6tan45°-2cos60°的结果是( ) A .4 3 B .4 C .5 D .5 3 2.如图281,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是( )A .sin A =32B .tan A =12C .cos B =32D .tan B = 3 3.测得某坡面垂直高度为2 m ,水平宽度为4 m ,则坡度为( )A .1∶52 B .1∶ 5 C .2∶1 D .1∶2图281 图2824.如图282,AC 是电杆AB 的一根拉线,测得BC =6米,∠ACB =52°,则拉线AC 的长为( )A.6sin52°米B.6tan52°米 C .6cos52°米 D.6cos52°米 5.在△ABC 中,(tan A -3)2+⎪⎪⎪⎪⎪⎪22-cos B =0,则∠C 的度数为( ) A .30° B.45° C.60° D.75°6.如图283,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( ) A.23 B.32 C.2 1313 D.3 1313图283 图2847.在Rt △ABC 中,∠C =90°,若sin A =513,则cos A 的值为( )A.512B.813C.23D.12138.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( )A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b9.如图284,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若AC =2 3,AB =4 2,则tan ∠BCD 的值为( )A. 2B.153C.155D.3310.如图285,小敏同学想测量一棵大树的高度.她站在B 处仰望树顶,测得仰角为30°,再往大树的方向前进4 m ,测得仰角为60°,已知小敏同学身高(AB )为1.6 m ,则这棵树的高度为( )(结果精确到0.1m ,3≈1.73).图285A .3.5 mB .3.6 mC .4.3 mD .5.1 m二、填空题(本大题共6小题,每小题4分,共24分)11.已知在Rt △ABC 中,∠C =90°,tan A =3,则cos B =________. 12.计算:12+2sin60°=________.13.在Rt △ABC 中,∠C =90°,a =5 2,b =5 6,则∠A =________.14.如图286,已知Rt △ABC 中,斜边BC 上的高AD =4,cos B =45,则AC =________.图286 图28715.如图287,C 岛在A 岛的北偏东50°方向,C 岛在B 岛的北偏西40°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.16.若方程x 2-4x +3=0的两根分别是Rt △ABC 的两条边,若△ABC 最小的角为A ,那么tan A =______.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:4+⎝ ⎛⎭⎪⎫12-1-2cos60°+(2-π)0.18.如图288,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且tan ∠BAE =125,求河堤的高BE .图28819.如图289,在△ABC 中,AD ⊥BC ,tan B =cos ∠CAD .求证:AC =BD .图289四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图2810,在鱼塘两侧有两棵树A,B,小华要测量此两树之间的距离,他在距A 树30 m的C处测得∠ACB=30°,又在B处测得∠ABC=120°.求A,B两树之间的距离(结果精确到0.1 m,参考数据:2≈1.414,3≈1.732).图281021.如图2811,小明在公园放风筝,拿风筝线的手B离地面高度AB为1.5米,风筝飞到C处时的线长BC为30米,这时测得∠CBD=60°,求此时风筝离地面的高度(结果精确到0.1米;参考数据:3≈1.73).图281122.图2812是一座堤坝的横断面,求BC的长(精确到0.1 m;参考数据:2≈1.414,3≈1.732).图2812五、解答题(三)(本大题共3小题,每小题9分,共27分)23.地震发生后,一支专业搜救队驱车前往灾区救援,如图2813,汽车在一条南北走向的公路上向北行驶,当汽车在A处时,车载GPS(全球卫星定位系统)显示村庄C在北偏西26°方向,汽车以35 km/h的速度前行2 h到达B处,GPS显示村庄C在北偏西52°方向.(1)求B处到村庄C的距离;(2)求村庄C到该公路的距离(结果精确到0.1 km;参考数据:sin26°≈0.438 4,cos26°≈0.898 8,sin52°≈0.788 0,cos52°≈0.615 7).图281324.如图2814,已知一个等腰三角形ABC的底边长为10,面积为25.求:(1)△ABC的三个内角;(2)△ABC的周长.图281425.如图2815,在直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.图2815第二十八章自主检测1.C 2.D 3.D 4.D 5.D 6.B 7.D 8.A 9.B 解析:在Rt△ABC中,BC=AB2-AC2= 4 22- 2 32=2 5,又因为∠BCD=∠A,所以tan∠BCD=tan A=BCAC=2 52 3=153.10.D11.3212.3 3 13.30°14.5 15.90°16.2417.解:原式=2+2-1+1=4.18.解:在Rt△ABE中,tan∠BAE=BEAE=125,设BE=12x,AE=5x,由勾股定理,得132=(12x)2+(5x)2,解得x=1,则BE=12米.19.证明:在Rt△ABD中,tan B=ADBD,在Rt△ACD中,cos∠CAD=ADAC,∵tan B=cos∠CAD,∴ADBD=ADAC.∴AC=BD.20.解:作BD⊥AC,垂足为点D.∵∠C=30°,∠ABC=120°,∴∠A=30°.∵∠A=∠C.∴AB=AC.∴AD=CD=12AC=15.在Rt△ABD中,AB=ADcos30°=1532=10 3≈17.3.答:A,B两树之间的距离为17.3 m.21.解:∵BC=30,∠CBD=60°,sin∠CBD=CDBC,∴CD=BC·sin∠CBD=30×32=15 3≈26.0.∴CE=CD+DE=CD+AB=26.0+1.5=27.5.答:此时风筝离地面的高度约为27.5米.22.解:如图D102,过点A,D分别作BC的垂线AE,DF,分别交BC于点E,F,则EF =AD=6.∵∠ABE=45°,∠DCF=30°,∴DF=7=AE=BE,且FC=CD·cos∠DCF=7 3≈7×1.732≈12.1(m).∴BC=7+6+12.1=25.1(m).图D102 图D103 23.解:过点C作CD⊥AB交AN于点D,如图D103.(1)∵∠CBD=52°,∠A=26°,∴∠BCA =26°.∴BC =AB =35×2=70 (km). 即B 处到村庄C 的距离为70 km. (2)在Rt △CBD 中,CD =BC ·sin52°≈70×0.788 0≈55.2(km). 即村庄C 到该公路的距离约为55.2 km.24.解:过点A 作底边上的高,交BC 于点D ,∴AD 垂直平分BC ,即BD =CD =12BC =5.(1)∵等腰三角形ABC 的底边长为10,面积为25,∴AD =25×210=5.∴tan B =AD BD=1,即∠B =45°.∴∠C =∠B =45°,∠BAC =180°-∠B -∠C =90°. (2)∵△ABD 为直角三角形,AD =BD =5,∴AB =AD 2+BD 2=52+52=5 2. ∴AC =AB =5 2.故△ABC 的周长为5 2+5 2+10=10 2+10. 25.解:(1)∵BF =CF ,∠C =30°,∴∠FBC =30°. 又由折叠性质知:∠DBF =∠FBC =30°. ∴∠BDF =∠BDC =180°-∠DBC -∠C =180°-2×30°-30°=90°.(2)在Rt △BDF 中,∵∠DBF =30°,BF =8,∴BD =4 3. ∵AD ∥BC ,∠A =90°,∴∠ABC =90°. 又∵∠FBC =∠DBF =30°,∴∠ABD =30°.在Rt △BDA 中,∵∠ABD =30°,BD =4 3,∴AB =6.。