八年级上册数学沪科知识点
八年级上数学知识点沪科
八年级上数学知识点沪科
八年级上数学知识点概述
数学是一门重要的学科,它广泛应用于各个领域。
在初中数学中,掌握数学知识点是学生学习的基础。
本文旨在概述八年级上
数学知识点,帮助学生快速了解数学知识的主要内容。
第一章:代数表达式
代数表达式是数学中的一项重要内容。
在八年级上,代数表达
式包括单项式、多项式、同类项、合并同类项、分解因式等内容。
掌握代数表达式对于学习后续的代数知识具有重要的作用。
第二章:方程
方程是解决问题的一种重要方法。
在八年级上,学生将学习一
元一次方程及其应用,如简单的解题应用、方程的破解、实际应
用问题的解答等。
第三章:几何
几何是数学中一个极为重要的分支,八年级上的几何知识点主要包括图形的分类、角的概念、三角形的性质和应用、相似三角形及其应用、勾股定理等内容。
第四章:概率
概率是一个重要的数学概念,涉及到随机事件的计算和分析。
在八年级上,学生将学习概率相关的定义、公式、实际应用等。
第五章:统计
统计学是数学中的一个分支,涉及到数据的收集、整理、描述和分析。
在八年级上,学生将学习各种数据的表示方式、频数分布表、分组频数分布表、直方图、折线图、带来图等。
第六章:线性函数
线性函数是代数和几何的重要概念。
在八年级上,学生将了解直线的一般式和点斜式,掌握解直线方程和应用直线的知识。
结语
本文概述了八年级上的数学知识点,从代数表达式到线性函数,每个知识点都是数学学习的基础。
学生们应该认真学习,并及时
进行复习和巩固,从而为学习后续课程打下坚实的基础。
八年级数学沪科版知识点归纳总结
八年级数学沪科版知识点归纳总结数学是一门理科学科,也是学生在学习生涯中不可或缺的一门基础学科。
八年级是数学学科中的关键年级,学生们需要掌握更多的数学知识点来应对更高难度的问题。
为了帮助八年级的学生们更好地掌握数学知识,本文将对八年级数学知识点进行归纳总结。
一、代数知识点1. 代数常识与代数符号:代数中的常数、变量、系数等概念的理解与应用。
2. 基本运算:代数中的加减乘除运算规则,包括整数、有理数、根式等运算。
3. 代数方程:一元一次方程的解的求解方法,以及类似于一元一次方程的应用问题解决方法。
4. 代数式:代数式的合并同类项、提取公因式与分拆等运算。
5. 函数基本概念:函数的定义、函数的自变量与因变量、函数的图像等基本概念。
二、几何知识点1. 图形的基本认识:平面图形、立体图形的名称、性质和特点。
2. 三角形与全等定理:三角形的性质,包括三条边、三个角度的关系以及全等三角形的判定标准。
3. 相似与比例:相似三角形的概念、相似性质与比例的运用。
4. 平面直角坐标系:平面直角坐标系的建立与直线方程的表示。
5. 平面与空间几何关系:包括平行、垂直、相交等概念以及应用。
三、数与数量知识点1. 实数的认识与运算:正数、负数、零以及实数的加减乘除运算法则。
2. 分数的认识与运算:分数的定义、基本性质以及分数运算。
3. 百分数:百分数的概念、百分数的变化形式以及百分数的应用。
4. 比例与利率:比例的概念、比例的性质以及利率的计算与应用。
5. 均值与中位数:平均数的概念、中位数的概念以及均值与中位数的运算方法。
四、数据与统计知识点1. 数据的收集:数据的来源与收集方法,包括问卷调查、实地观察等方法。
2. 数据的处理与分析:数据的整理与处理,包括频数表、统计图表的制作与分析。
3. 概率:基本概率的认识与计算,包括事件的排列与组合原理。
五、解决实际问题的数学方法数学不仅仅是一门理论学科,还是解决实际问题的强有力工具。
沪科版八年级数学(上)基础知识总结
沪科版八年级数学(上)基础知识总结基础知识总结第十一章平面直角坐标系一、平面内点的坐标特征1、各象限内点P(a,b)的坐标特征:第一象限:a>0,b>0;第二象限:a0;第三象限:a0,b<02、坐标轴上点P(a,b)的坐标特征:x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=03、两坐标轴夹角平分线上点P(a,b)的坐标特征:一、三象限:a=b;二、四象限:a=-b二、对称点的坐标特征点P(a,b)关于x轴的对称点是(a,-b);关于y轴的对称点是(-a,b);关于原点的对称点是(-a,-b)三、点到坐标轴的距离点P(x,y)到x轴距离为∣y∣,到y轴的距离为∣x∣四、平行于坐标轴的直线1)横坐标相同的两点所在直线垂直于x轴,平行于y轴;(2)纵坐标相同的两点所在直线垂直于y轴,平行于x轴。
五、点的平移坐标变化规律坐标平面内,点P(x,y)向右(或左)平移a个单位后的对应点为(x+a,y)或(x-a,y);点P(x,y)向上(或下)平移b个单位后的对应点为(x,y+b)或(x,y-b)。
第十二章一次函数一、确定函数自变量的取值范围1、自变量以整式形式出现,自变量的取值范围是全体实数;2、自变量以分式形式出现,自变量的取值范围是使分母不为0的数;3、自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于的数;自变量以奇次方根形式出现,自变量的取值范围是全体实数。
4、自变量出现在零次幂或负整数次幂的底数中,自变量的取值范围是使底数不为0的数。
二、一次函数未提供具体内容,无法改写)一般形式为y=kx+b的一次函数中,当b=0时,可以简化为y=kx,此时y是x的正比例函数。
一次函数y=kx+b(k≠0)的图像和性质,当b>0时,直线经过一、二、三象限;当b=0时,直线经过一、三象限及原点;当b<0时,直线经过二、三、四象限。
同时,k的正负决定直线上升或下降的方向。
2024年沪科版八年级数学上册知识点总结
2024年沪科版八年级数学上册知识点总结一、有理数的加减乘除运算1. 有理数的加法运算:同号相加,异号相减。
将分子分母化为最简整数形式,要注意约分。
2. 有理数的减法运算:减去一个数等于加上这个数的相反数。
3. 有理数的乘法运算:同号得正,异号得负。
将分子分母化为最简整数形式,要注意约分。
4. 有理数的除法运算:除以一个数等于乘以这个数的倒数。
5. 有理数的四则运算综合运用。
二、平方根与立方根1. 平方根:给定一个非负实数a,且a≥0,开根号的结果称为a的平方根。
记作√a。
2. 整数的平方根:如果一个整数的平方等于一个非负整数,那么这个非负整数就是该整数的平方根;否则,这个整数没有平方根。
3. 立方根:给定一个实数a,开立方根的结果称为a的立方根。
记作3√a。
三、带有根号的计算1. 同底数的相加相减:进行根号运算时,同底数的根号可以相加相减,底数不变。
2. 同底数的乘方:进行根号运算时,同底数的根号可以进行乘方运算,即合并同底数的指数。
3. 分数的根号运算:分子分母同时进行根号运算,然后约分,也可以先约分再进行根号运算。
四、代数式1. 代数式的定义:用字母表示数的式子,包含一个或多个字母和常数、运算符号组成。
2. 代数式的值:为了求代数式的值,需要给字母赋予特定的数值,将字母用数代替,然后进行计算。
3. 代数式的运算:常用的代数式运算有加法、减法、乘法和除法。
五、线性方程与方程的解1. 线性方程:只含有一次幂的方程称为线性方程。
2. 化简与解方程:对于方程要进行化简,恢复原来的形式,再解方程。
3. 解方程的方法:常用的解方程的方法有相加相减法、代入法、等式交换法和系数分离法。
六、百分数1. 百分数的概念:以分号“%”表示,百分数等于百分数的百分之一。
2. 百分数与小数的互相转化:将百分数转化为小数,就是将百分号去掉,除以100;将小数转化为百分数,就是乘以100再加上百分号。
3. 百分数的应用:常用的百分数应用有百分数的简化、比较大小和求百分数。
最新(沪科版)八年级数学上册知识点总结
最新(沪科版)八年级数学上册知识点总结
本文档对最新(沪科版)八年级数学上册的知识点进行了总结,旨在帮助学生回顾和巩固所学的数学知识。
第一章:整数
- 整数的定义和性质
- 整数的加法和减法运算
- 整数的乘法和除法运算
- 整数的应用问题解决
第二章:小数
- 小数的概念和性质
- 小数的加法和减法运算
- 小数的乘法和除法运算
- 小数的应用问题解决
第三章:代数式
- 代数式的概念和性质
- 代数式的加法和减法运算
- 代数式的乘法和除法运算
- 代数式的因式分解和提公因式
- 代数式的应用问题解决
第四章:方程
- 方程的概念和性质
- 一元一次方程的解
- 一元一次方程的应用问题解决
第五章:平面图形
- 点、线、线段、射线、角的概念和性质- 三角形、四边形、多边形的概念和性质- 平行线和平行四边形的性质
- 圆的概念和性质
- 平面图形的应用问题解决
第六章:数的比和相等
- 数的比的概念和性质
- 比例的概念和性质
- 比例的应用问题解决
第七章:百分数
- 百分数的概念和性质
- 百分数的四则运算
- 百分数的应用问题解决
第八章:数据的收集、整理和分析
- 数据的收集和整理方法
- 数据的图表表示和分析
- 数据的应用问题解决
以上是最新(沪科版)八年级数学上册的知识点总结,希望对学生复习和备考有所帮助。
八上数学知识点总结归纳沪科版
八上数学知识点总结归纳沪科版数学,就像一座神秘的城堡,八年级上册的沪科版数学知识,那可是开启城堡深处大门的钥匙!咱们先来说说全等三角形。
全等三角形就像是一对双胞胎,不仅长得一模一样,各个部分的尺寸也完全相同。
要判断两个三角形全等,那可得有一双火眼金睛。
比如“边边边”,三条边都相等,它们就全等啦,这就好比你有三把一样长的尺子,那能做出一模一样的图形不是?还有“边角边”,两边及其夹角相等,这俩三角形也全等。
你想想,要是给你两条同样长的绳子和一个固定的夹角,是不是也只能画出一样的形状?再聊聊一次函数。
这一次函数啊,就像是一辆行驶中的汽车。
k 是斜率,决定了车爬坡的陡峭程度,b 是截距,就像是车出发的起始位置。
当 k 大于 0 时,车是向上爬坡,图像从左到右上升;k 小于 0 呢,车就开始下坡啦,图像从左到右下降。
这不就跟咱们生活中开车的感觉很像吗?整式的乘法与因式分解也很有趣。
乘法就像是盖房子,把一个个小砖块组合在一起,变得越来越大。
而因式分解呢,则是把大房子拆成一个个小砖块。
比如说,(a + b)(a - b) = a² - b²,这不就像是把一个大拼图拆成了两块嘛!还有分式,分式就像是分蛋糕。
分子是你能拿到的那份,分母是整个蛋糕。
要是分母为 0 ,那不就相当于没有蛋糕可分,这可不行!在学习这些知识的时候,可别像小猴子掰玉米,学一个丢一个。
要多做练习题,就像练武要多打拳一样,把知识练得滚瓜烂熟。
遇到难题别退缩,要像勇士一样勇往直前。
每次解决一个难题,都像是登上了一个小山峰,那种成就感,别提多棒啦!总之,八年级上册沪科版的数学知识丰富多彩,只要咱们用心去学,就能在数学的城堡里畅游,发现更多的奇妙之处!。
初中数学知识点总结沪科
初中数学知识点总结沪科初中数学知识点总结(沪科版)一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。
- 有理数的分类:正整数、负整数、正分数、负分数、零。
- 有理数的运算:加法、减法、乘法、除法、乘方、开方。
2. 整数- 整数的性质:奇数与偶数、质数与合数。
- 整数的四则运算:加法交换律、结合律;减法的性质;乘法交换律、结合律、分配律。
3. 分数与小数- 分数的基本性质:等值分数、分数的加减乘除运算。
- 小数的意义和性质:小数点的位置移动引起大小变化的规律、小数的四则运算。
4. 代数表达式- 单项式与多项式:单项式的定义和性质、多项式的定义和性质。
- 代数式的加减运算:合并同类项、分配律。
- 代数式的乘除运算:单项式乘以单项式、多项式乘以单项式、多项式乘以多项式、单项式除以单项式。
5. 一元一次方程与不等式- 方程与方程的解:一元一次方程的解法、解的性质。
- 不等式及其解集:一元一次不等式的解法、解集的表示。
- 用方程或不等式解决实际问题。
6. 二元一次方程组- 代入法解二元一次方程组。
- 加减法解二元一次方程组。
- 方程组的应用:根据实际问题列出方程组并求解。
二、几何1. 平面图形- 点、线、面的基本性质。
- 角的概念:邻角、对顶角、同位角、内错角。
- 三角形的分类:按边分类(等边、等腰、不等边三角形)、按角分类(锐角、直角、钝角三角形)。
- 四边形的分类:平行四边形、矩形、菱形、正方形、梯形。
2. 图形的性质- 三角形的性质:三角形的内角和、外角性质、三角形的中位线定理。
- 四边形的性质:平行四边形的性质、矩形、菱形、正方形的性质。
- 圆的基本性质:圆的定义、圆的直径、弦、弧、切线、圆周角、圆心角。
3. 图形的变换- 平移:图形沿直线移动,保持形状和大小不变。
- 旋转:图形绕一点旋转一定角度,保持形状和大小不变。
- 轴对称:图形关于某条直线对称,对称轴两侧的图形完全重合。
八年级上册数学知识点泸科
八年级上册数学知识点泸科八年级上册数学知识点概述
泸科
数学对于每一个学生来说都是非常重要的一门科目。
今天,我们要来讲解八年级上册数学的知识点,其中包含了许多重要的知识点,这些知识点是建立在以前学习的知识点之上的。
让我们一起来回顾吧。
1. 有理数
在初中数学中,有理数是比较重要的一部分。
有理数的定义是可以表示为分数形式的数字,它包括了正整数、负整数和分数。
有理数的加减乘除要掌握好,尤其需要注意分数的计算。
2. 代数式
代数式也是八年级上册数学的重点之一。
代数式是由数字、字母和运算符号组成的式子,例如:3x+5。
在计算代数式的过程中需要掌握好各种基本公式,例如:因式分解、配方法等。
3. 方程
方程在初中阶段就开始学习。
方程是由未知数和已知数及其系数以及运算符号组成的等式形式。
解方程需要掌握好方程的基本性质和变形方法。
4. 几何
几何在初中是重要的一部分。
其中,尤其需要掌握好平面图形的性质,例如:三角形、四边形等。
此外,还要注意对方向的判断和细心的观察。
5. 概率
概率也是八年级上册数学的重点之一。
概率是研究事件发生的
可能性的一门学科,需要注意计算概率的方法和概率的基本概念,例如:试验、随机事件和样本空间等。
以上是八年级上册数学的重点知识点,我们需要不断地进行练习,理论与实践相结合才能更好地掌握这些知识点。
祝大家在学
习数学的过程中取得好成绩!。
沪科版八年级数学上册知识要点归纳总结
沪科版八年级数学上册知识要点归纳总结的解析式一次函数的解析式为y=kx+b(k、b为常数,k≠0),其中k称为斜率,b称为截距。
3、斜率的意义斜率k表示函数图象上任意两点的纵坐标之差与横坐标之差的比值,即k=Δy/Δx。
说明:斜率为正表示函数单调递增,斜率为负表示函数单调递减,斜率为0表示函数为常函数,斜率不存在表示函数图象为一条竖直的直线。
)4、截距的意义截距b表示函数图象与y轴的交点纵坐标。
说明:当函数图象经过y轴时,截距存在;当函数图象不经过y轴时,截距不存在。
)5、一次函数图象的性质一次函数图象为一条直线,其斜率决定了直线的方向和倾斜程度,截距决定了直线与y轴的位置关系。
一般形式为y=kx+b(其中k、b为常数,且k≠0),当b=0时,y=kx(k≠0),此时y是x的正比例函数。
一次函数的图像与性质:当b>0时,直线经过一、二、三象限;当b=0时,直线经过一、三象限及原点;当b0时,直线自左向右上升,经过一、二、三象限;当k<0时,直线自左向右下降,经过一、二、四象限。
确定一次函数图像与坐标轴的交点:与x轴交点为(-b/k,0),与y轴交点为(0,b)。
确定一次函数解析式——待定系数法:设函数关系式为y=kx+b,代入x和y的两对对应值,得关于k、b的方程组,解方程组求出k和b。
k和b的意义:∣k∣表示直线的“平陡”,越大越陡;b表示在y轴上的截距。
由一次函数图像确定k、b的符号:直线上升,k>0;直线下降,k0;直线与y轴负半轴相交,b<0.由一次函数图像确定x和y的范围:当x>a(或xb(或y<b)时,求x的范围,直线y=b上方(或下方)图象所对应的x的取值范围;当a<x<b时,求y的范围,直线x=a和x=b之间的图象所对应的y的取值范围;当a<y<b时,求x的范围,直线y=a和y=b之间的图象所对应的x的取值范围。
一次函数图象的平移:设m>0,n>0,左右平移直线y=kx+b向右(或向左)平移m个单位后的解析式为y=k(x-m)+b或y=k(x+m)+b。
八年级上册数学知识点沪科
八年级上册数学知识点沪科(一)运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1、因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2、因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。
原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。
八年级上册数学知识点沪科版
八年级上册数学知识点沪科版【篇一】八年级上册数学知识点沪科版(一)运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b).学好数学的关键就在于要适时适量地进行总结归类,接下来小编就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。
沪科版八年级上册数学知识汇总(最新最全)
八年级上册数学知识汇总(HK)第十一章平面直角坐标系1、定义:在平面内由两条互相垂直且共原点的数轴组成,水平的数轴叫做x轴或横轴,取右为正,竖直的数轴叫做y轴或纵轴,取上为正. y(1)x轴上坐标(x,0); (-,+) (+,+)(2)y轴上坐标(0,y); O x(3)原点坐标(0,0). (-,-) (+,-)2、对称问题: x轴P1 (a,-b)P(a,b)关于 y轴的对称点P2 (-a,b)原点3 (-a,-b)口诀:关于谁对称,谁不变,另一个互反.3.距离问题:(1) P(a,b)到x轴的距离是︱b︱;(2) P(a,b)到y轴的距离是︱a︱;(3) P(a,b)到原点的距离是√a2+b2;(4)A、B中点公式:A(x1,y1)、B(x2,y2) P( x1+x22,y1+y22);(5)A(x1,y1)、B(x2,y2)距离公式:AB=√(x1-x2)2+(y1-y2)2(6)象限角平分线:P(a,a)在一三象限角平分线上,P(a,-a)在二四象限角平分线上.4.平行(或垂直)问题:A(x1,y1)、B(x2,y2)(1)AB∥x轴(或⊥y轴) 1=y2且x1≠x2同时AB=︱x1-x2︱;(2)AB∥y轴(或⊥x轴) 1=x2且y1≠y2同时AB=︱y1-y2︱.第十一章一次函数1.函数的表示方法:列表、图象(列表、描点、平滑线)、解析法.2.函数的定义:设在一个变化过程中有两个变量x,y.如果对于x在它允许取值范围内的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是因变量,y是x的函数.(1)x,y为代表,其它字母均可;(2)每一个x有唯一的y与之对应,但一个y可能有多个x与之对应;y y ···x , x1x n(3)函数图象的判定:若移动y轴时,与图象始终有唯一的交点,则图象为函数图象.3.函数自变量(x)的取值范围:(1)整式型,x∈R;(2)分式型(或负指数),分母不为零(非字母);(3)二次根式型,被开方数≥0(非字母);(4)复合型,列不等式求解集;(5)实际问题型,符合客观解.4.常见函数的图象:(1)一次函数y=kx+b:直线;(2)二次函数y=a x2+bx+c:抛物线;5.一次函数的定义:形如y=kx+b(k≠0)的函数,当b=0时,y=kx叫做正比例函数.(1)k、b的几何意义:斜率k决定直线倾斜方向与程度;截距b:直线与y轴交点的y坐标;(2)正比例函数图象与性质:y yx xk>0 k<0性质:①图象经过(0,0)与(1,k);②当k>0时,经过一、三象限,直线增而增(或减而减),当k<0时,经过二、四象限,直线增而减(或减而增);③︱k︱越大,直线越陡(靠近y轴);(3)一次函数图象与性质:y y y yx x x x①②③④①k>0,b>0 二三②k>0,b<0 一三四③k<0,b>0 二四④k<0,b<0 二三四(4)一次函数的移动:上下移动直接改变b,左右移动要数学结合(或用点截式截解析式);6.待定系数法:一设二代三求四写,具体如下:(1)两点式;(2)点斜式;(3)点截式;(4)斜截式;(5)求k公式:k=△y△x =y1-y2x1-x2=y2-y1x2-x1(6)2.5坐标策略(斜率法).7.分段函数:先求每个x取值范围的分函数,后合并.(1)一般步骤:求分函数合成画图(或求自变量)给x求y 给y求x;(2)拐点的作用:作图时,承上启下;代指时,对应范围求值.8.优化方案:(1)先求y1与y2;(2)在利用数形结合或作差法选择方案.8.一次函数与一元一次方程、一元一次不等式的关系(数形结合)锁定形而求形的范围:x轴上方:kx+b>0;x轴相交:kx+b=0;x轴下方:kx+b<0.9.一次函数与二元一次方程(组)的关系(1)二元一次方程的解可转化为有序实数对,取两点可得对应直线.l1: y1=k1x+b1①k1≠k2有唯一交点(k1·k2=-1)(2)k与b的作用:②k1﹦k2, b1﹦b2重合l2: y2=k2x+b2③k1﹦k2, b1≠b2平行第十三章三角形的边角关系、命题与证明1.三角形的定义、元素、表示、分类(边角都是两类)、性质等.2.边的性质:两角之和大于第三边,两角之差小于第三边.(1)三角形的存在:a小+a中>a大;(2)给定a,b求第三边x的范围:∣a-b∣<x<∣a+b∣(3)等腰三角形:2腰>底3.等腰三角形(以底或以角)易产生双解,几何体不给图也易产生双解.4.角的性质:三角形的内角和为180°,外角和为360°(性质定理).(1)RT△的两锐角互余(性质定理);(2)两锐角互余的三角形是RT△(判定定理);(3)三角形的一个外角等于与它不相邻的两个内角(性质定理);5.直角三角形的判定方法:(1)求出最大角为90°;(2)两角之和等于第三个角(可以是比例);(3)两角之差等于第三个角(可以是比例);6.三角形特殊线段三角形特殊线段项目结论类别图形条数交点作用特殊角角平分线三内内部(内心I) 角平分线三段论1.二分角(1)ɑ內内=90°+∠A2(1)ɑ內外=∠A2(1)ɑ外外=90°-∠A2中线三内内部(重心G)1.中线三段论2.等面积3.等积变换高线锐角三角形三内内部(垂心H)1.直角(90°)2.高3.等积变换直角三角形两边一内直角顶点 2.高平角ɑ高平=∣∠B-∠C∣2钝角三角形两外一内外部(靠钝)3.高高角ɑ高高=180°-∠A7.命题的定义:(1)分类:公理(基本事实)、定理、推理、(习题的结论);(2)元素:条件(p)与结论(q);(3)互逆.第十四章全等三角形1.定义:能够重合的两个三角形;2.记作:△ABC≌△A1B1C1;3.对应元素:对应顶点、对应角、对应边;4.性质:(1)对应角相等,(2)对应边相等,(3)对应周长、面积相等,(4)对应角平分线、中线、高线相等;5.判定定理:① AAA 假反例:一大一小的等边三角形;② ASA 真公理尺规作图(1)一般三角形的判定③ AAS 真定理由②推理④ SAS 真公理尺规作图 A(A 1)⑤ ASS 假反例: B(B 1)⑥ SSS 真公理尺规作图 C 1 C(2)直角三角形的判定(4+1):HL(尺规作图).6.三角形全等的证明思路(求角与边,可能联想证明;求高时可能使用等积变换公式):①找夹角:S A S三 (1)已知两边对应相等②找一边:SS S角③找直角:HL形 (2)已知一边一角对应相等①找一角:A A S或AS A全②找一边:SA S等 (3)已知两角对应相等①找夹边:A S A②找一边:AA S7.证明的格式(易:一次证明;较难:两次证明):(1)准备:根据策略找足条件···(2)正文:在△ABC与△A1B1C1中···(3)结论与应用:△ABC≌△A1B1C1···第十五章轴对称图形与等腰三角形1.轴对称与轴对称图形的异同点:(1)构成:两个图象关于对称轴(2+1)是对称的(adj), 轴对称图形(1)是n;(2)图象:A l A1 AB C 1 B1 B C△ABC与△A1B1C1关于直线l是对称的等腰三角形ABC是一个轴对称图形(常见的有角、线段、长方形等)2.线段的垂直平分线(中垂线)的定义:(1)画法(尺规作图,理由:先SSS后SAS);(2)性质定理:线段垂直平分线的点到线段两端的距离相等(理由:先SSS后SAS);(3)判定定理:到线段两端距离相等的点在线段的垂直平分线上(理由:先SSS后SAS).3.等腰三角形:有条边相等的三角形(即AB=AC 等腰三角形ABC).(1)性质:①两底角相等;②两腰相等;③轴对称图形;④顶角三线合一;(2)判定:①有两边相等的三角形是等腰三角形;②有两边相等的三角形是等腰三角形;4.等边三角形:三边都相等的三角形(即AB=BC=CA ABC).(1)性质:①三边相等;②三角相等;③轴对称图形(有3条对称轴);(2)判定:①三边相等;②三角相等;③有一个角为60°的等腰三角形;(3)(直角三角形的一个)定理:在直角三角形中,30°所对的直角边等于斜边的一半;5.角的平分线:(1)画法(尺规作图,理由:SSS);(2)性质性质:角平分线上的点到角的两边距离相等(理由:AAS);(3)判定定理:角的内部到角两边距离相等的点在角的平分线上(理由:HL).6.过已知点作已知直线的垂线(尺规作图):(1)点在线外;(2)点在线上.。
八年级上沪科版数学知识点
八年级上沪科版数学知识点八年级上学期数学课程是学生初步接触高中数学概念的阶段,因此学生需要在学习过程中认真掌握各种数学知识点,为高中数学的学习打下坚实的基础。
下面是八年级上学期沪科版数学课程的知识点总结:
一、正数、负数与小数
1、正数、负数及其互补数的概念及性质。
2、小数的基本概念和读写方法,小数的四则运算及应用。
3、数字大小的比较。
二、代数式的基本概念
1、代数式的基本概念和形式,字母的含义。
2、代数式的分类和性质,化简代数式的方法。
三、一次方程组
1、一次方程组的概念和解法。
2、应用实际问题中的一次方程组解法。
四、平面图形的认识
1、图形的基本概念和分类。
2、直角三角形和等腰三角形的特征及性质。
3、圆的基本概念及其性质,圆内角的度数和定理。
五、大数的运算
1、大数的认识和四则运算。
2、用科学计数法表示大数及其运算法则。
六、倍数和因数
1、倍数和因数的概念及其简单的应用。
2、正整数的整除与素数的概念及应用。
七、比例和比例度量
1、比例的概念、性质及其应用。
2、比例度量的概念、方法及其分析解决实际问题的能力。
八、平面直角坐标系
1、平面直角坐标系的概念及其坐标的定义。
2、平面图形及其位置关系的表示及分析。
以上是八年级上学期沪科版数学的主要知识点,每个知识点都是学生在数学课程中必须掌握的基础。
在学习过程中,学生需要理解重要的数学概念,掌握数学应用的方法,总结数学思维,培养自己的逻辑思维和分析解决问题的能力,从而在高中数学的学习过程中更加游刃有余。
沪科版数学八年级上册重点知识点汇总
沪科版数学八年级上册重点知识点汇总第十一章平面直角坐标系知识导图重点知识点要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系平面内两条互相垂直的数轴构成平面直角坐标系,简称直角坐标系.水平的数轴称为x 轴或横轴,向右为正方向;铅直方向的数轴称为y轴或纵轴,向上为正方向,两轴的交点O 是原点.如下图:要点诠释:(1)两条坐标轴将平面分成4个区域:第一象限、第二象限、第三象限、第四象限,x轴与y 轴上的点(包括原点)不属于任何一个象限.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:①x 轴上的点纵坐标为零;y 轴上的点横坐标为零.②平行于x 轴直线上的点横坐标不相等,纵坐标相等;平行于y 轴直线上的点横坐标相等,纵坐标不相等.③关于x 轴对称的点横坐标相等,纵坐标互为相反数;关于y 轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x 轴的距离为|y|,到y 轴的距离为|x|.②x 轴上两点A(x 1,0)、B(x 2,0)的距离为AB=|x 1-x 2|;y 轴上两点C(0,y 1)、D(0,y 2)的距离为CD=|y 1-y 2|.③平行于x 轴的直线上两点A(x 1,y)、B(x 2,y)的距离为AB=|x 1-x 2|;平行于y 轴的直线上两点C(x,y 1)、D(x,y 2)的距离为CD=|y 1-y 2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积常用方法:切割、拼补.要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x 轴、y 轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a 个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b 个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.第十二章一次函数知识导图重点知识点要点一、函数的相关概念一般地,在一个变化过程中.如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.函数的表示方法有三种:解析式法,列表法,图象法.要点二、一次函数的相关概念一次函数的一般形式为y kx b =+,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y kx b =+即y kx =(k ≠0),是正比例函数.要点三、一次函数的图象及性质1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:直线y kx b =+可以看作由直线y kx =平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).说明通过平移,函数y kx b =+与函数y kx =的图象之间可以相互转化.变化的世界函数建立数学模型应用概念选择方案概念再认识表示方法图象性质一次函数(正比例函数)一元一次方程一元一次不等式二元一次方程组与数学问题的综合与实际问题的综合列表法解析法图象法2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解k 、b 对一次函数y kx b =+的图象和性质的影响:(1)k 决定直线y kx b =+从左向右的趋势(及倾斜角α的大小——倾斜程度),b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.(2)两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:12k k ≠⇔1l 与2l 相交;12k k =,且12b b ≠⇔1l 与2l 平行;12k k =,且12b b =⇔1l 与2l 重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线x a =、直线y b =不是一次函数的图象.要点四、用函数的观点看方程、方程组、不等式方程(组)、不等式问题函数问题从“数”的角度看从“形”的角度看求关于x 、y的一元一次方程ax b +=0(a ≠0)的解x 为何值时,函数y ax b =+的值为0?确定直线y ax b =+与x 轴(即直线y =0)交点的横坐标求关于x 、y 的二元一次方程组1122=+⎧⎨=+⎩,.y a x b y a x b 的解.x 为何值时,函数11y a x b =+与函数22y a x b =+的值相等?确定直线11y a x b =+与直线22y a x b =+的交点的坐标求关于x 的一元一次不等式ax b +>0(a ≠0)的解集x 为何值时,函数y ax b =+的值大于0?确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围第十三章三角形中的边角关系、命题与证明知识导图重点知识点要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题.要点诠释:(1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)正确的命题称为真命题,不正确的命题称为假命题.(3)公认的真命题叫做公理.(4)经过证明的真命题称为定理.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明.要点诠释:(1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论.(2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180°.推论:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.要点诠释:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.第十四章全等三角形知识导图重点知识点要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.第十五章轴对称图形与等腰三角形知识导图重点知识点要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.3.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.4.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).要点二、线段、角的轴对称性1.线段的轴对称性(1)线段是轴对称图形,线段的垂直平分线是它的对称轴.(2)线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;(3)线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线2.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点三、等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.。
八年级数学沪教版知识点
八年级数学沪教版知识点数学是一门基础科学,也是一门实用性很强的学科,其重要性不言而喻。
而在八年级数学沪教版中,也有着很多重要的知识点,下面我们就来一一了解。
一、有理数与整式有理数是数轴上的有理点,是整数和分数的集合。
它包括正有理数、负有理数和零。
而整式则是指由有理数和自变量乘幂乘积、常数乘积、常数连乘积的和组成的式子,其本质上就是代数式。
二、图形的认识与计算在八年级数学沪教版中,图形的认识与计算是非常重要的知识点。
这里我们需要了解各种图形的性质、特点以及计算其面积和周长的方法,比如长方形、正方形、圆、等腰三角形、梯形等等。
这些图形的认识和运算能力是后续学习的基础。
三、不等式不等式在数学中也是非常常见的知识点之一,同时也是十分重要的概念。
在八年级数学沪教版中,我们需要掌握不等式的表示方法、比较大小的方法、解不等式的方法以及运用不等式进行问题的求解等等。
四、二次根式二次根式是一个广泛的数学分支,也是八年级数学沪教版知识点之一。
它是指形如√a、a√b、a+b√c这样的代数式子。
我们需要掌握化简、比较大小、加减乘除等操作方法以及应用方法等。
五、线性方程组线性方程组也是八年级数学沪教版中的一个重要知识点,它由多个方程组成,包含多个未知数,并且方程中的每一个未知数的指数都是1。
我们需要掌握解线性方程组的方法,包括代入法、消元法等等,能够快速、准确地解答问题。
六、等差数列等差数列是数学中的一个常见概念,也是八年级数学沪教版的一个重要知识点。
它指的是数列中后一项与前一项之差等于一个常数d,即an-an-1=d。
我们需要掌握等差数列的定义、性质、通项公式等知识,同时也需要能够应用等差数列解答问题。
七、概率在数学中,概率是一个重要的知识点,它是指事件发生的可能性大小,是一个介于0和1之间的实数。
在八年级数学沪教版中,我们需要掌握概率的表示方法、概率的运算方法、概率的性质以及混合事件、重复试验等概率相关问题的解法。
以上便是八年级数学沪教版的七个重要知识点,每一个都非常值得我们进行深入研究。
沪科版八年级数学知识点汇总
沪科版八年级数学知识点汇总一、代数学1.1 一元一次方程和一元一次不等式一元一次方程和一元一次不等式的概念及其解法、图示法,应用于实际问题。
1.2 二元一次方程组二元一次方程组的概念及其解法,应用于实际问题。
1.3 指数指数的概念及其运算法则,科学计数法及其计算方法,应用于实际问题。
1.4 根式根式的概念及其运算法则,有理数根式的化简,应用于实际问题。
1.5 平面直角坐标系平面直角坐标系及其运用,直线方程、直线间距离公式的推导及应用。
二、数与量2.1 角度角度的概念及其单位,弧度制和角度制的互换,三角函数的概念及其几何意义。
2.2 分式分数的概念及其运算法则,分式方程的解法,应用于实际问题。
2.3 百分数百分数的概念及其运算法则,百分数与实数、比例以及百分数利率的概念及其运用。
2.4 数据的收集和处理数据的表示方式及其统计分析方法,应用于实际问题。
2.5 概率概率的基本概念及其计算方法,应用于实际问题。
三、几何学3.1 同余同余的概念及其判定法则,全等图形及其性质,应用于实际问题。
3.2 相似相似的概念及其判定法则,相似三角形的性质及其应用,比例及其应用于实际问题。
3.3 三角形及其应用三角形的基本概念、分类及其性质,三角形中位线定理、重心定理、欧拉定理及其应用。
3.4 四边形及其应用四边形的基本概念、分类及其性质,应用于实际问题。
3.5 圆圆的基本概念、性质及其应用,弦长公式、切线、切点等概念及其应用。
四、数学思想方法与数学文化4.1 数学思想方法有效运用数学语言、符号、模型、算法以及信息技术,提高数学思维能力,培养数学兴趣和创新精神。
4.2 数学文化认识数学在自然科学、技术科学和社会科学中的地位和作用,了解数学史、数学名人及重大数学成果和学科交叉的应用。
八年级上数学沪科版知识点
八年级上数学沪科版知识点八年级上数学沪科版包括一些重要知识点,这些知识点为学生提供了坚实的数学基础,使他们更好地理解高中数学知识。
本文将介绍八年级上数学沪科版的主要知识点。
一、有理数的扩展与应用1.正数、负数及其相反数2.有理数3.实数4.有理数的加减乘除运算5.应用:温度、海拔、深度等二、代数式的运算与应用1.代数式2.代数式的加减乘法3.代数式的因式分解4.应用:速度、比例、面积等三、方程式的解法与应用1.方程式2.方程式的解法3.一次方程式的应用4.应用:比例、金额、时速等四、直线图形的认识和应用1.点、直线、射线、线段等2.角、余角3.平行线及其性质4.垂直线及其性质5.应用:三角形、梯形、矩形等五、几何运动的认识和应用1.几何运动2.对称3.平移4.旋转5.应用:等腰三角形、正方形、菱形等六、数列的基本概念与应用1.数列2.公差3.等差数列的求和公式4.等差数列的应用5.应用:年龄、身高、渐进等七、图形的相似性及其应用1.相似形2.比例3.相似形的性质4.应用:纪念邮票、地图等八、比例、百分数和倍数的运算1.比例2.相似比例3.百分数4.百分数与比例5.倍数6.应用:打折、利率、几何放大等结论这是八年级上数学沪科版的主要知识点,它们提供了基本的数学概念,可以帮助学生在进阶的数学中获得成功。
这些概念是数学知识的重要基础,学生们必须熟练掌握,才能更好地应对高中数学。
沪科版八年级上册数学知识提纲
沪科版八年级上册数学知识提纲想提高初中的数学成果首先我们须要谨慎学习,且谨慎完成教师每节课布置的作业,这样子才能跟上学习进度。
下面我给大家共享一些沪科版八年级上册数学提纲,盼望能够协助大家,欢送阅读!沪科版八年级上册数学学问提纲1、全等三角形的对应边、对应角相等2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5、边边边公理(SSS)有三边对应相等的两个三角形全等6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7、定理1在角的平分线上的点到这个角的两边的距离相等8、定理2到一个角的两边的距离一样的点,在这个角的平分线上9、角的平分线是到角的两边距离相等的全部点的集合10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边12、等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合13、推论3等边三角形的各角都相等,并且每一个角都等于60°14、等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15、推论1三个角都相等的三角形是等边三角形16、推论2有一个角等于60°的等腰三角形是等边三角形17、在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半18、直角三角形斜边上的中线等于斜边上的一半19、定理线段垂直平分线上的点和这条线段两个端点的距离相等20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上21、线段的垂直平分线可看作和线段两端点距离相等的全部点的集合22、定理1关于某条直线对称的两个图形是全等形23、定理2假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24、定理3两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上25、逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^227、勾股定理的逆定理假如三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形28、定理四边形的内角和等于360°29、四边形的外角和等于360°30、多边形内角和定理n边形的内角的和等于(n-2)×180°31、推论随意多边的外角和等于360°32、平行四边形性质定理1平行四边形的对角相等33、平行四边形性质定理2平行四边形的对边相等34、推论夹在两条平行线间的平行线段相等35、平行四边形性质定理3平行四边形的对角线相互平分36、平行四边形判定定理1两组对角分别相等的四边形是平行四边形37、平行四边形判定定理2两组对边分别相等的四边形是平行四边形38、平行四边形判定定理3对角线相互平分的四边形是平行四边形39、平行四边形判定定理4一组对边平行相等的四边形是平行四边形40、矩形性质定理1矩形的四个角都是直角提高数学成果的方法重视构建学问网络要学会构建学问网络,数学概念是构建学问网络的启程点,也是数学中考考察的重点。
初二数学沪科版上册知识点梳理
初⼆数学沪科版上册知识点梳理学习需要制定详细的计划,计划本⾝对⼤家有较强的约束和督促作⽤,计划对学习既有指导作⽤,⼜有推动作⽤。
制定好的学习计划,是提⾼⼯作效率的重要⼿段。
下⾯是⼩编给⼤家整理的⼀些初⼆数学的知识点,希望对⼤家有所帮助。
初⼆数学知识点位置与坐标1、确定位置在平⾯内,确定⼀个物体的位置⼀般需要两个数据。
2、平⾯直⾓坐标系①含义:在平⾯内,两条互相垂直且有公共原点的数轴组成平⾯直⾓坐标系。
②通常地,两条数轴分别置于⽔平位置与竖直位置,取向右与向上的⽅向分别为两条数轴的正⽅向。
⽔平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,⼆者统称为坐标轴,它们的公共原点o被称为直⾓坐标系的原点。
③建⽴了平⾯直⾓坐标系,平⾯内的点就可以⽤⼀组有序实数对来表⽰。
④在平⾯直⾓坐标系中,两条坐标轴将坐标平⾯分成了四部分,右上⽅的部分叫第⼀象限,其他三部分按逆时针⽅向叫做第⼆象限,第三象限,第四象限,坐标轴上的点不在任何⼀个象限。
⑤在直⾓坐标系中,对于平⾯上任意⼀点,都有的⼀个有序实数对(即点的坐标)与它对应;反过来,对于任意⼀个有序实数对,都有平⾯上的⼀点与它对应。
3、轴对称与坐标变化关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
⼋年级上册数学复习资料【⼀次函数】20.1⼀次函数的概念1.⼀般地,解析式形如ykxb(kb是常数,k0)的函数叫做⼀次函数;⼀次函数的定义域是⼀切实数2.⼀般地,我们把函数yc(c为常数)叫做常值函数20.2⼀次函数的图像1.列表、描点、连线2.⼀条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距3.⼀般地,直线ykxb(kb是常数,k0)与y轴的交点坐标是(0,b),直线的截距是b4.⼀次函数ykxb(b≠0)的图像可以由正⽐例函数ykx的图像平移得到当b>0时,向上平移b个单位,当b<0时,向下平移b的绝对值个单位5.⼀元⼀次不等式与⼀次函数之间的关系(看图)20.3⼀次函数的性质1.⼀次函数ykxb(kb是常数,k?0)具有以下性质:当k>0时,函数值y随⾃变量x的值增⼤⽽增⼤当k<0时,函数值y随⾃变量x的值增⼤⽽减⼩①如图所⽰,当k>0,b>0时,直线经过第⼀、⼆、三象限(直线不经过第四象限);②如图所⽰,当k>0,b﹥O时,直线经过第⼀、三、四象限(直线不经过第⼆象限);③如图所⽰,当k﹤O,b>0时,直线经过第⼀、⼆、四象限(直线不经过第三象限);④如图所⽰,当k﹤O,b﹤O时,直线经过第⼆、三、四象限(直线不经过第⼀象限).20.4⼀次函数的应⽤1.利⽤⼀次函数及图像解决实际问题初⼆数学复习⽅法按部就班数学是环环相扣的⼀门学科,哪⼀个环节脱节都会影响整个学习的进程。
初二数学沪科版上册知识点梳理
初二数学沪科版上册知识点梳理学习需要制定详细的计划,计划本身对大家有较强的约束和督促作用,计划对学习既有指导作用,又有推动作用。
制定好的学习计划,是提高工作效率的重要手段。
下面是小编给大家整理的一些初二数学的知识点,希望对大家有所帮助。
初二数学知识点位置与坐标1、确定位置在平面内,确定一个物体的位置一般需要两个数据。
2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。
③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。
④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。
⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。
3、轴对称与坐标变化关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
八年级上册数学复习资料【一次函数】20.1一次函数的概念1.一般地,解析式形如ykxb(kb是常数,k0)的函数叫做一次函数;一次函数的定义域是一切实数2.一般地,我们把函数yc(c为常数)叫做常值函数20.2一次函数的图像1.列表、描点、连线2.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距3.一般地,直线ykxb(kb是常数,k0)与y轴的交点坐标是(0,b),直线的截距是b4.一次函数ykxb(b≠0)的图像可以由正比例函数ykx的图像平移得到当b>0时,向上平移b个单位,当b<0时,向下平移b的绝对值个单位5.一元一次不等式与一次函数之间的关系(看图)20.3一次函数的性质1.一次函数ykxb(kb是常数,k?0)具有以下性质:当k>0时,函数值y随自变量x的值增大而增大当k<0时,函数值y随自变量x的值增大而减小①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).20.4一次函数的应用1.利用一次函数及图像解决实际问题初二数学复习方法按部就班数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学沪科知识点沪科知识点是指上海地区学生需要学习的相关知识。
对于八年级上册的数学学科,这里介绍一些沪科知识点,希望能够对学生们的学习有所帮助。
1. 三角形面积公式
在初中数学中,我们会学习到关于三角形面积的计算公式。
对于任意一个三角形,若其三条边分别为a、b、c,则其面积为:
S = 1/2 * a * b * sinC
其中,C为b和c之间的夹角。
这个公式可以帮助我们计算任意一个三角形的面积,而且其计算过程相对简单。
2. 平行四边形的性质
平行四边形是初中数学中一个非常重要的图形,因为其可以应用到众多的数学问题中。
对于平行四边形,其有以下性质:
①两对相对边平行;
②两对相对边相等;
③对角线互相平分;
④对角线互相垂直。
掌握了这些性质之后,我们可以更加灵活地应用平行四边形到数学问题中,例如在解决平面向量问题时,平行四边形就是一个非常实用的工具。
3. 多边形内角和公式
多边形是指由多条线段所围成的图形,在初中数学中我们往往需要计算多边形内部的所有角度之和。
这里提供一个计算公式:
(n-2)*180°
其中n为多边形的边数。
这个公式可以帮助我们快速计算任意
一个多边形内部的所有角度之和,而且其应用范围非常广泛。
4. 数列的定义及性质
在数学中,数列是由一系列有序的数字组合在一起形成的结果,其有以下性质:
①数列中每一个数字称为项;
②数列中相邻两项的差称为公差,记作d;
③数列中相邻两项的比称为公比,记作q。
掌握数列的性质对于接下来的学习非常重要,例如我们在学习
等差数列和等比数列时,都需要运用数列的定义及性质。
5. 平面图形的相似
对于平面图形的相似,其本质上是指图形之间的形状相同,但是大小可以不同。
对于两个相似的平面图形,其有以下性质:
①对应角度相等;
②对应边线成比例。
掌握平面图形的相似可以帮助我们更好地理解数学问题,例如在解决面积问题中,我们经常需要将一个复杂的图形分解为相似的小图形。
总结
以上所述就是八年级上册数学沪科知识点的相关内容,包括三角形面积公式、平行四边形的性质、多边形内角和公式、数列的定义及性质以及平面图形的相似性质等。
希望这些知识点对于学生们的学习有所帮助,同时也希望大家能够通过练习更好地掌握这些知识点。