安徽省合肥市2016届高三第一次教学质量检测数学理试题 Word版含答案

合集下载

安徽省合肥市2016届普通高等学校招生统一考试数学(理)试题 含答案

安徽省合肥市2016届普通高等学校招生统一考试数学(理)试题 含答案

理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,。

在每小题给出的四个选项中,只有一项 是符合题目要求的。

1。

已知集合{}02M x R x =∈<<,{}ln 0N x R x =∈>,则MN =()A .[1,2)B .(1,2)C .(0,)+∞D .(0,1)2.复数331i i++在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3。

对于任意一个定义域是R 的函数()f x ,设1()()()2f x f x f x +-=,2()()()2f x f x f x --=,则一定有( )A .1()f x ,2()fx 都是奇函数 B .1()f x ,2()fx 都是偶函数C .1()f x 是奇函数,2()fx 是偶函数 D .1()f x 是偶函数,2()fx 是奇函数4.边长为1的正三角形ABC 中,,D E 分别是,BC AC 的中点,则AD BE •=( ) A .38- B .38C .33D 335.双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线之间的夹角为060,且C 过点(1,1),则a =()A .32B .6 C .23 D 66。

某校校庆期间,大会秘书团计划从包括甲、乙两人在内的七名老师中随机选择4名参加志愿者服务工作,根据工作特点要求甲、乙两人中至少有1人参加,则甲、乙都被选中且列队服务时不相邻的概率为( )A .12B .13C .16D .147。

若函数()sin()f x x ωϕ=+(0,2πωϕ><)的图象过点(1,0),且图象的一条对称轴为2x =,则ω的最小值是( ) A .2π B .π C .2 D .48。

某几何体的三视图如图所示,正(主)视图是一个正方形,俯视图是一个正三角形和半圆,则该几何体的体积为( ) A .33π+B .233π+C .233π+D .2233π+9.二项式26()xx y ++的展开式中72x y 的项的系数为( )A .120B .80C .60D .5010.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等,已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为h ),其中:三棱锥的底面是正三角形(边长为a ),四棱锥的底面是有一个角为060的菱形(边长为b ),圆锥的体积为V ,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积总相等,那么,下列关系式正确的是( ) A.a h =,b h= B.a h =,b h=C.a =b = D.a =b = 11。

2016届高三上学期第一次月考数学(文)试题Word版含答案

2016届高三上学期第一次月考数学(文)试题Word版含答案

2016届高三上学期第一次月考数学(文)试题Word版含答案2016届高三上学期第一次月考数学文试卷考试时间120分钟,满分150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1]D .(0,1)2.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ?B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .﹁p 或q B .p 且q C .﹁p 且﹁qD .﹁p 或﹁q4.设函数f (x )=x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.1395.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .27. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4D .a ≥-48. 函数f (x )=a x -2+1(a >0且a ≠1)的图像必经过点( ) A .(0,1) B .(1,1) C .(2,0)D .(2,2)9. 函数f (x )=lg(|x |-1)的大致图像是( )10. 函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)11. 设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .eC.ln22D .ln212. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ).A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<1}<="" p="">二、填空题:本大题共4小题,每题5分.13. 已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________.14. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 15. 函数y =12x 2-ln x 的单调递减区间为________.16. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(10分) 化简:(1)3131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(12分)已知函数f (x )=1a -1(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间. 21.(12分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; 22.(12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.2016届高三上学期第一次月考数学答题卡一、选择题(共12小题,每小题5分,共60分,每小题有一个正确答案)13、 14、15、 16、三、解答题17.(10分) 化简:(1)131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;21.(13分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.22.(13分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,求m的取值范围.2016届高三上学期第一次月考数学文试卷参考答案1.B2.A3.D4.D5.D6.A7.A8.D9.B10.B11.B12.A13. x -y -2=0 14. {x |-32<1}<="" p="">15. (0,1] 16. (512,34]17. 解 (1)原式=121311113233211212633311233().a b a b abab ab a b+-++----==(2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 18. (1)证明设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数. (2)解∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.易得a =25.19. 解(1)∵f (x )是周期为2的奇函数,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0,f (-1)=0. (2)由题意知,f (0)=0. 当x ∈(-1,0)时,-x ∈(0,1).由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1, 1]上,f (x )=2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.20.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)∵函数f (x )的图像开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=?x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0, 6],单调递减区间是[-6,0].21.解 (1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.) 法二设直线l 的方程为y =kx ,切点为(x 0,y 0),则k=y0-0x0-0=x30+x0-16x0又∵k=f′(x0)=3x20+1,∴x30+x0-16x0=3x2+1,解之得x0=-2,∴y0=(-2) 3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).22.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,< p="">∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图像有三个不同的交点,结合如图所示f(x)的图像可知:实数m的取值范围是(-3,1).</x<a,<>。

2019年5月安徽省合肥市高2016级高三第三次教学质量检测理科数学试题及文科数学试题参考答案汇编合肥三模

2019年5月安徽省合肥市高2016级高三第三次教学质量检测理科数学试题及文科数学试题参考答案汇编合肥三模

∴ Sn 3 2n+1 n2 4n 6 .
…………………………12 分
18.(本小题满分 12 分)
解:(Ⅰ)由题意得:
城镇居民
农村居民
合计
经常阅读
100
24
124
不经常阅读
50
26
76
合计
150
50
200
则K2
200 100 26 50 242
150 50 124 76
9800 1767

a
0
时,由
g
x
0
,得
x
a 2
,函数
y
g
x

0 ,a2
上单调递减,在
a 2

上单调
递增.
函数
y
g
x
的极小值为
g
a 2
a
ln
a 2
,没有极大值.
(Ⅱ)
…………………………6 分
(解法一)依题意,要使得 f x 0 对x 1,e 恒成立,只需 f (x)min 0 即可.
⑴当
a
2
时,由(Ⅰ)可知,
∴GH CD
又∵GH AC H ∴CD 平面GAC .
………………………6 分
(Ⅱ)取 BC 的中点为 E,以 O 为空间坐标原点,分别以OE,OD,OP 的方向为 x 轴、 y 轴、 z 轴
的正方向,建立如图所示的空间直角坐标系O xyz .
设 AD=4,则 P (0,0,2
3 ),A (0,-2,0),C (
gx
2x a x
0
,函数
g x
在 1,e
上单调递增,

安徽省示范高中高三数学第一次联考试题 理(扫描版)

安徽省示范高中高三数学第一次联考试题 理(扫描版)

安徽省示范高中2016届高三数学第一次联考试题理(扫描版)2016届安徽省示范高中高三第一次联考理数参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】因为错误!未找到引用源。

,错误!未找到引用源。

,所以错误!未找到引用源。

.2.A 【解析】错误!未找到引用源。

,因为复数在第一象限,所以错误!未找到引用源。

,解得错误!未找到引用源。

,故选A.3.B 【解析】全称命题的否定,要把量词任意改为存在,且否定结论,故非错误!未找到引用源。

为:存在错误!未找到引用源。

,错误!未找到引用源。

.4. C 【解析】根据题意,三角形F1F2P是以F1F2为斜边的直角三角形,设|F2P|=m,|F1P|=2m,则由双曲线定义可得m=2a,所以错误!未找到引用源。

,即错误!未找到引用源。

,则错误!未找到引用源。

,故一条渐近线方程是错误!未找到引用源。

.5.D 【解析】由题意知错误!未找到引用源。

,所以错误!未找到引用源。

,故选D.6.A 【解析】二项式错误!未找到引用源。

的通项公式为错误!未找到引用源。

,其中错误!未找到引用源。

,所以错误!未找到引用源。

,解得错误!未找到引用源。

.7.B【解析】可行域为错误!未找到引用源。

及其内部,三个顶点分别为错误!未找到引用源。

,当错误!未找到引用源。

过点错误!未找到引用源。

时取得最小值,此时错误!未找到引用源。

.8. C 【解析】由三视图的俯视图、正视图和侧视图可还原的空间几何体一个四棱锥M-ABCD,如图所示,由勾股定理计算CD=5,即知底面是边长为5的正方形ABCD,补形为三棱柱,则所求的几何体的体积:错误!未找到引用源。

×3×4×5-错误!未找到引用源。

=20.9.C 【解析】由流程图可知,错误!未找到引用源。

,只要错误!未找到引用源。

,就再一次进入循环体循环,直到首次出现错误!未找到引用源。

安徽省江南十校联考2016届高三上学期期末数学试卷(理科)Word版含解析

安徽省江南十校联考2016届高三上学期期末数学试卷(理科)Word版含解析

2015-2016学年安徽省江南十校联考高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={y|y=x},B={y|y=()x,x>1},则A∩B=()A.(0,)B.()C.(0,1)D.∅2.已知复数z满足z•(1+i2015)=i2016(i是虚数单位),则复数z在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列命题中,真命题的是()A.∀x>0,2x>x2B.∃x0∈R,e≤0C.“a>b“是“ac2>bc2”的充要条件D.“ab>1”是“a>1,b>1”的必要条件4.截至11月27日,国内某球员在2015﹣2016赛季CBA联赛的前10轮比赛中,各场得分x i(i=1,2,3,…,10)的茎叶图如图①所示,图②是该运动员某项成绩指标分析的程序框图,则输出的结果是()A.8 B.7 C.6 D.55.将函数y=cos2x的图象向右平移φ个单位得到函数y=cos2x﹣sin2x的图象,则φ的一个可能取值为()A.B.C. D.6.某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为()A.B.C.D.7.已知实数x,y满足,且目标函数z=y﹣x取得最小值﹣4,则k等于()A.B.C.﹣D.﹣8.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,且a2=b2+c2﹣bc,则△ABC的面积S的最大值为()A.B.C.D.9.已知△ABC的边BC上一动点D满足=n(n∈N*),=x+y,则数列{(n+1)x}的前n项和为()A. B. C.D.10.若抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,则双曲线C2的方程为()A.﹣y2=1 B.x2﹣=1 C.﹣=1 D.﹣=111.一个三棱锥的三视图如图所示,则它的体积为()A .B .1C .D .212.函数f (x )=1+x ﹣+﹣+…+﹣在区间[﹣2,2]上的零点个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置13.已知(+)5的展开式中的常数项为80,则65x 的系数为______.14.已知正数x ,y 满足2x +y=1,则4x 2+y 2+的最小值为______.15.若对于任意实数t ,圆C 1:(x +4)2+y 2=1与圆C 2:(x ﹣t )2+(y ﹣at +2)2=1都没有公共点,则实数a 的取值范围是______.16.已知函数f (x )=sin (ωx +φ)(ω>0,﹣≤φ≤)的图象如图所示,若函数g (x )=3[f (x )]3﹣4f (x )+m 在x 上有4个不同的零点,则实数m 的取值范围是______.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡的指定区域17.已知在各项均为正数的等比数列{a n }中,a 1=2,且2a 1,a 3,3a 2成等差数列. (Ⅰ)求等比数列{a n }的通项公式;(Ⅱ)若c n =a n •(),n=1,2,3,…,且数列{c n }为单调递减数列,求λ的取值范围.18.从某企业的一种产品中抽取40件产品,测量其某项质量指标,测量结果的频率分布直方图如图所示.(Ⅰ)求这40件样本该项质量指标的平均数;(Ⅱ)从180(含180)以上的样本中随机抽取2件,记质量指标在[185,190]的件数为X ,求X 的分布列及数学期望.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,AB=2,AD=,PA=PD=CD=CB=1,E总是线段PB上的动点.(Ⅰ)当E点在什么位置时,CE∥平面PAD?证明你的结论.(Ⅱ)对于(Ⅰ)中的点E,求AE与底面ABCD所成角的正弦值;(Ⅲ)求二面角A﹣PD﹣C的正弦值.20.已知椭圆C的左、右焦点F1,F2在x轴上,左顶点为A,离心率e=,过原点O的直线(与x轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点,△PF1F2的周长为8+4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求的值;(Ⅲ)求四边形MF1NF2面积的最小值.21.已知函数f(x)=e﹣ax2(其中e是自然对数的底数).(Ⅰ)判断函数f(x)的奇偶性;(Ⅱ)若f(x)≤0在定义域内恒成立,求实数a的取值范围;(Ⅲ)若a=0,当x>0时,求证:对任意的正整数n都有f()<n!x﹣n.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清楚.选修4-1:几何证明选讲22.已知AB是圆O的一条弦,过点A、B分别作AE⊥AB,BF⊥AB,交弧AB上任意一点T的切线于点E、F,OT交AB于点C,求证:(Ⅰ)∠CBT=∠CFT;(Ⅱ)CT2=AE•BF.选修4-4:坐标系与参数方程23.已知曲线C的参数方程为(θ为参数).(Ⅰ)求曲线C的普通方程;(Ⅱ)若倾斜角为45°的直线l经过点P(1,2)且与直线C相交于点A、B,求线段AB的长度.选修4-5:不等式选讲24.设f(x)=|x+3|﹣a|2x﹣1|(Ⅰ)当a=1时,求f(x)>3的解集;(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,求实数a的取值范围.2015-2016学年安徽省江南十校联考高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={y|y=x},B={y|y=()x,x>1},则A∩B=()A.(0,)B.()C.(0,1)D.∅【考点】指数函数的定义、解析式、定义域和值域;交集及其运算.【分析】利用函数的单调性可得:A=[0,+∞),B=,即可得出A∩B.【解答】解:A={y|y=x}=[0,+∞),B={y|y=()x,x>1}=,则A∩B=,故选:A.2.已知复数z满足z•(1+i2015)=i2016(i是虚数单位),则复数z在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的混合运算;复数的代数表示法及其几何意义.【分析】利用复数单位的幂运算,然后利用复数的乘法的运算法则化简求解即可.【解答】解:复数z满足z•(1+i2015)=i2016,可得z(1﹣i)=1,可得z===.对应点的坐标().故选:A.3.下列命题中,真命题的是()A.∀x>0,2x>x2B.∃x0∈R,e≤0C.“a>b“是“ac2>bc2”的充要条件D.“ab>1”是“a>1,b>1”的必要条件【考点】特称命题;全称命题.【分析】根据含有量词的命题的定义进行判断即可.【解答】解:A.若x=3,则23=8,32=9,此时2x>x2不成立,故A错误,B.∵∀x∈R,e x>0,∴∃x0∈R,e≤0不成立,故B错误,C.当c=0,当a>b时,“ac2>bc2”不成立,即“a>b“是“ac2>bc2”的充要条件错误,故C错误,D.当a>1,b>1时,ab>1成立,即“ab>1”是“a>1,b>1”的必要条件成立,故D正确,故选:D4.截至11月27日,国内某球员在2015﹣2016赛季CBA联赛的前10轮比赛中,各场得分x i(i=1,2,3,…,10)的茎叶图如图①所示,图②是该运动员某项成绩指标分析的程序框图,则输出的结果是()A.8 B.7 C.6 D.5【考点】程序框图.【分析】模拟执行程序框图,得到程序的功能,由茎叶图写出所有的数据,计算得分超过20分(不包括20分)的场数即可得解.【解答】解:模拟执行程序框图,可得其功能是计算得分超过20分(不包括20分)的场数,有茎叶图知,各场得分的数据为:14,17,27,21,28,20,26,26,31,44,∴根据茎叶图可知得分超过20分(不包括20分)的场数有7场.故选:B.5.将函数y=cos2x的图象向右平移φ个单位得到函数y=cos2x﹣sin2x的图象,则φ的一个可能取值为()A.B.C. D.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由和差角的公式化简可得y=2cos2(x ﹣),由三角函数图象变换的规则可得.【解答】解:∵y=cos2x ﹣sin2x=2cos (2x +)=2cos (2x ﹣)=2cos2(x ﹣),∴φ的一个可能取值为.故选:D .6.某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为( )A .B .C .D .【考点】古典概型及其概率计算公式.【分析】求出所有的分配方案和符合条件的分配方案,代入概率计算公式计算.【解答】解:将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每所高校至少有一个班级去,则共有24﹣2=14种分配方案.恰有一个文科班和一个理科班分配到上海交通大学的方案共有2×2=4种,∴P==.故选:B .7.已知实数x ,y 满足,且目标函数z=y ﹣x 取得最小值﹣4,则k 等于( )A .B .C .﹣D .﹣【考点】简单线性规划.【分析】由约束条件作出可行域,由题意可知,直线y=x +z 经过可行域,且在y 轴上的截距的最小值为﹣4时,直线kx ﹣y +2过点(4,0),由此求得k 的值.【解答】解:如图,由题意可知,直线y=x +z 经过可行域,且在y 轴上的截距的最小值为﹣4.∴直线kx ﹣y +2过点(4,0),从而可得k=.故选:D .8.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,且a2=b2+c2﹣bc,则△ABC的面积S的最大值为()A.B.C.D.【考点】余弦定理.【分析】由已知及余弦定理可得cosA=,解得A=,由余弦定理可得:b2+c2=3+bc,利用基本不等式可求bc≤3,根据三角形面积公式即可得解.【解答】解:∵a2=b2+c2﹣bc,∴由余弦定理可得:cosA==,A为三角形内角,解得A=,∵a=,∴3=b2+c2﹣bc,可得:b2+c2=3+bc,∵b2+c2≥2bc(当且仅当b=c时,等号成立),∴2bc≤3+bc,解得bc≤3,∴S△ABC=bcsinA=bc≤.故选:C.9.已知△ABC的边BC上一动点D满足=n(n∈N*),=x+y,则数列{(n+1)x}的前n项和为()A. B. C.D.【考点】数列的求和;向量的共线定理.【分析】通过=n(n∈N*)可知=+,与=x+y比较可得x=,进而计算可得结论.【解答】解:∵=n(n∈N*),∴=+,又∵=x+y,∴x=,∴数列{(n+1)x}是首项、公差均为1的等差数列,∴则数列{(n+1)x}的前n项和为,故选:C.10.若抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,则双曲线C2的方程为()A.﹣y2=1 B.x2﹣=1 C.﹣=1 D.﹣=1【考点】圆锥曲线的综合.【分析】确定抛物线的焦点坐标,双曲线的渐近线方程,利用抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,可得=,再利用抛物线的定义,结合抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,可得c2+1=5,从而可求双曲线的几何量,可得结论.【解答】解:抛物线C1:y=x2的焦点F(0,1),双曲线C2:﹣=1(a>0,b>0)的一条渐近线方程为bx﹣ay=0,∵抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,∴=,∵直线y=﹣1是抛物线的准线,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,∴根据抛物线的定义可知,当P,F及双曲线C2的一个焦点三点共线时最小,∴c2+1=5,∴c=2,∵c2=a2+b2,∴b=,a=1,∴双曲线的方程为x2﹣=1.故选:B.11.一个三棱锥的三视图如图所示,则它的体积为( )A .B .1C .D .2【考点】由三视图求面积、体积.【分析】由三视图可知该三棱锥为棱长为2的正方体切割得到的,作出图形,结合图形代入体积公式计算.【解答】解:由三视图可知该三棱锥为棱长为2的正方体切割得到的.即三棱锥A 1﹣MCD .∴V=××2×2×2=. 故选C .12.函数f (x )=1+x ﹣+﹣+…+﹣在区间[﹣2,2]上的零点个数为( )A .1B .2C .3D .4【考点】根的存在性及根的个数判断.【分析】求导f ′(x )=1﹣x +x 2﹣x 3+…+x 2014﹣x 2015,分类讨论以确定f (x )的单调性,从而确定函数的极值的正负,从而利用函数的零点判定定理判断即可. 【解答】解:∵f (x )=1+x ﹣+﹣+…+﹣,∴f ′(x )=1﹣x +x 2﹣x 3+…+x 2014﹣x 2015, 当x=﹣1时,f ′(x )=2016>0,当x ≠﹣1时,f ′(x )=,故当﹣2<x <﹣1或﹣1<x <1时,f ′(x )>0; 当1<x <2时,f ′(x )<0;故f (x )在[﹣2,1]上单调递增,在(1,2]上单调递减, 又∵f (﹣2)<0,f (1)>0,f (2)<0,∴f (x )在(﹣2,1)和(1,2)内各有一个零点, 故选:B .二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置13.已知(+)5的展开式中的常数项为80,则65x 的系数为 40 .【考点】二项式定理.【分析】在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项,再根据常数项等于80求得实数a 的值,从而求得65x 的系数.【解答】解:∵(+)5的展开式中的通项公式为 T r+1=•a r •,令=0,求得r=3,即常数项为•a 3=80,求得a=2.故展开式中的通项公式为 T r+1=•2r•,令r=2,可得则65x 的系数为40,故答案为:40.14.已知正数x ,y 满足2x +y=1,则4x 2+y 2+的最小值为 .【考点】基本不等式在最值问题中的应用.【分析】由基本不等式可得0<xy ≤,令t=xy ,0<t ≤,由4t ﹣在0<t ≤递增,可得最小值.【解答】解:正数x ,y 满足2x +y=1, 可得2x +y ≥2, 即有0<xy ≤,则4x 2+y 2+=(2x +y )2﹣4xy +=1﹣(4xy ﹣),令t=xy ,0<t ≤,由4t ﹣在0<t ≤递增,可得t=时,4t ﹣取得最大值,且为﹣,则4x2+y2+在xy=时,取得最小值,且为1+=.故答案为:.15.若对于任意实数t,圆C1:(x+4)2+y2=1与圆C2:(x﹣t)2+(y﹣at+2)2=1都没有公共点,则实数a的取值范围是a<﹣或a>0.【考点】圆与圆的位置关系及其判定.【分析】通过两个圆的方程求出两个圆的圆心与半径,利用圆心距与半径和与差的关系即可求解.【解答】解:圆C2:(x﹣t)2+(y﹣at+2)2=1的圆心在直线y=ax﹣2上,∴要使圆C1:(x+4)2+y2=1与圆C2:(x﹣t)2+(y﹣at+2)2=1没有公共点,必须使圆心C1(﹣4,0)到直线y=ax﹣2的距离大于两圆半径之和,即d=>2,∴a<﹣或a>0.故答案为:a<﹣或a>0.16.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ≤)的图象如图所示,若函数g(x)=3[f(x)]3﹣4f(x)+m在x上有4个不同的零点,则实数m的取值范围是[,).【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数的零点与方程根的关系.【分析】利用由y=Asin(ωx+φ)的部分图象可求得A,T,从而可得ω,又曲线经过(,0),|φ|<,可得φ的值,从而可求函数f(x)的解析式,将函数进行换元,转化为一元二次函数问题,由导数求出单调区间,结合函数f(x)的图象,即可确定m的取值范围.【解答】解:由图知T=4(﹣)=2π,∴ω=1,∴f(x)=sin(x+φ),∵f()=0,∴+φ=kπ,k∈Z.∴φ=kπ﹣,k∈Z.又|φ|≤,∴φ=,∴函数f(x)的解析式为:f(x)=sin(x+).由f(x)的图象可知,对于f(x)∈[,1)上的每一个值,对应着[﹣,]上的两个x值,又g(x)=3[f(x)]3﹣4f(x)+m=0,⇔m=﹣3[f(x)]3+4f(x)有4个不同的零点,令f(x)=t,则m=﹣3t3+4t.∵m′=﹣9t2+4=﹣9(t+)(t﹣),∴m=﹣3t3+4t在[,]上单调递增,在[,1]上单调递减,而当t=时,m=;当t=时,m=;当t=1时,m=1,结合图象可知,对于m∈[,)上的每一个值,对应着t=f(x)∈[,1)上的两个值,进而对应着[﹣,]上的4个x值.故答案为:[,).三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡的指定区域17.已知在各项均为正数的等比数列{a n}中,a1=2,且2a1,a3,3a2成等差数列.(Ⅰ)求等比数列{a n}的通项公式;(Ⅱ)若c n=a n•(),n=1,2,3,…,且数列{c n}为单调递减数列,求λ的取值范围.【考点】等差数列与等比数列的综合.【分析】(Ⅰ)设等比数列的公比为q(q>0),由等差数列的中项性质和等比数列的通项公式,解方程可得q=2,进而得到所求通项;(Ⅱ)把数列{a n}的通项公式a n代入c n=2n•(﹣λ),由c n+1﹣c n分离λ后,求出﹣的最大值得答案.【解答】解:(Ⅰ)设等比数列的公比为q(q>0),由2a1,a3,3a2成等差数列,可得2a 3=2a 1+3a 2,即为2a 1q 2=2a 1+3a 1q ,可得2q 2﹣3q ﹣2=0,解得q=2(﹣舍去), 则a n =a 1q n ﹣1=2n ;(Ⅱ)c n =a n •()=2n •(),由数列{c n }为单调递减数列,可得则c n+1﹣c n =2n+1•(﹣λ)﹣2n •()=2n •(﹣﹣λ)<0对一切n ∈N *恒成立,即﹣﹣λ<0,即λ>﹣==,当n=1或2时,n +取得最小值,且为3,则﹣的最大值为=,即有λ>.即λ的取值范围是(,+∞).18.从某企业的一种产品中抽取40件产品,测量其某项质量指标,测量结果的频率分布直方图如图所示.(Ⅰ)求这40件样本该项质量指标的平均数;(Ⅱ)从180(含180)以上的样本中随机抽取2件,记质量指标在[185,190]的件数为X ,求X 的分布列及数学期望.【考点】离散型随机变量的期望与方差. 【分析】(Ⅰ)根据频率分布直方图,计算数据的平均值是各小矩形底边中点与对应的频率乘积的和;(Ⅱ)首先分别求质量指标在[180,185]的件数:0.020×5×40=4,质量指标在[185,190]的件数有:0.010×5×40=2,然后求出X=0、1、2时的概率,进而求出X 的分布列及数学期望即可.【解答】解:(Ⅰ)由频率分布直方图可知,这40件样本该项质量指标的平均数=162.5×0.05+167.5×0.125+172.5×0.35+177.5×0.325+182.5×0.1+187.5×0.05=174.75cm ;(Ⅱ)由频率分布直方图可知,质量指标在[180,185]的件数:0.020×5×40=4,质量指标在[185,190]的件数有:0.010×5×40=2,∴X的可能值为:0,1,2;P(X=0)==,P(X=1)==,P(X=2)==,数学期望E(X)=0×+1×+2×=.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,AB=2,AD=,PA=PD=CD=CB=1,E总是线段PB上的动点.(Ⅰ)当E点在什么位置时,CE∥平面PAD?证明你的结论.(Ⅱ)对于(Ⅰ)中的点E,求AE与底面ABCD所成角的正弦值;(Ⅲ)求二面角A﹣PD﹣C的正弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的性质;二面角的平面角及求法.【分析】(Ⅰ)取PA的中点F,连接DF,EF,由已知结合三角形中位线定理可得四边形DFEC是平行四边形,从而得到CE∥DF.再由线面平行的判定得答案;(Ⅱ)由题意证明OA,OG,OP两两互相垂直,故以OA,OG,OP所在直线分别为x,y,z轴建立如图所示空间直角坐标系Oxyz.求出所用点的坐标,求得的坐标,再求出底面ABCD的一个法向量,则AE与底面ABCD所成角的正弦值可求;(Ⅲ)分别求出平面APD与平面PCD的一个法向量,求出两法向量所成角的余弦值,则二面角A﹣PD﹣C的正弦值可求.【解答】解:(Ⅰ)当E为PB的中点时,CE∥平面PAD.证明如下:取PA的中点F,连接DF,EF,则EF∥,.由已知CD,CD=,则EF∥CD,EF=CD.∴四边形DFEC是平行四边形,∴CE∥DF.又CE⊄平面PAD,DF⊂平面PAD,∴CE∥平面PAD;(Ⅱ)取AD中点O,AB的中点G,连接OP,OG,∵PA=PD,∴PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥平面ABCD.由已知可得AD2+BD2=AB2,∴BD⊥AD,又OG∥BD,∴OG⊥AD,∴OA,OG,OP两两互相垂直,故以OA,OG,OP所在直线分别为x,y,z轴建立如图所示空间直角坐标系Oxyz.A(),P(0,0,),B(),E(),D(),C(,,0).∴,是平面ABCD的一个法向量,设AE与底面ABCD所成角为θ,则sinθ=|cos|==;(Ⅲ)平面APD的一个法向量为,,=(,,﹣).再设平面PCD的一个法向量为,由,得,取z=1,则x=﹣1,y=﹣1,∴.∴二面角A﹣PD﹣C的余弦值的绝对值为=.∴二面角A﹣PD﹣C的正弦值为.20.已知椭圆C的左、右焦点F1,F2在x轴上,左顶点为A,离心率e=,过原点O的直线(与x轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点,△PF1F2的周长为8+4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求的值;(Ⅲ)求四边形MF1NF2面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)根据e=,2a+2c=8+4,求解即可;(Ⅱ)设P(x0,y0),则Q(﹣x0,﹣y0),求出的坐标,然后求的值即可;(Ⅲ)先把四边形MF1NF2面积表示出来,然后求其最小值即可.【解答】解:(Ⅰ)∵e=,2a+2c=8+4,∴a=4,c=2,∴b=2,故椭圆的方程为:(Ⅱ)设P(x0,y0),则Q(﹣x0,﹣y0),且,即,∵A(﹣4,0),∴直线PA的方程为y=,∴M(0,).同理,直线QA的方程为,∴N(0,),又F 1(﹣2,0),∴,,∴=12+(Ⅲ)|MN |=||=||=||=|,∴四边形MF 1NF 2的面积S==,∵|y 0|∈(0,2],∴当y 0=±2时,S 有最小值8.21.已知函数f (x )=e﹣ax 2(其中e 是自然对数的底数).(Ⅰ)判断函数f (x )的奇偶性;(Ⅱ)若f (x )≤0在定义域内恒成立,求实数a 的取值范围;(Ⅲ)若a=0,当x >0时,求证:对任意的正整数n 都有f ()<n!x ﹣n .【考点】函数恒成立问题. 【分析】(Ⅰ)利用定义判断,先判断定义域关于原点对称,再判断f (﹣x )=f (x );(Ⅱ)不等式可整理为a ≥恒成立,只需求出右式的最大值即可,利用构造函数令g(x )=,求出导函数g'(x )=﹣(2x +1),得出函数的单调性,求出最大值;(Ⅲ)若a=0,f (x )=,得出x n <n!e x ,利用数学归纳法证明不等式对一切n ∈N *都成立即可. 【解答】解:(Ⅰ)函数定义域为(﹣∞,0)∪(0,+∞)关于原点对称, ∵f (﹣x )=f (x ),∴函数f (x )为偶函数;(Ⅱ)由偶函数性质可知,只需求当x ∈(﹣∞,0)时, f (x )=﹣ax 2≤0恒成立,∴a ≥恒成立,令g (x )=,g'(x )=﹣(2x +1),当x ∈(﹣∞,)时,g'(x )>0,g (x )递增,当x ∈(,0)时,g'(x )<0,g (x )递减,∴g(x)的最大值为g(﹣)=4e﹣2,∴a≥4e﹣2,(Ⅲ)若a=0,f(x)=e,当x>0时,f(x)=,f()=e﹣x<n!x﹣n.∴x n<n!e x,(i)当n=1时,设g(x)=e x﹣x,(x>0),∵x>0时,g'(x)=e x﹣1>0,∴g(x)是增函数,故g(x)>g(0)=1>0,即e x>x,(x>0)所以,当n=1时,不等式成立(ii)假设n=k(k∈N*)时,不等式成立,即x k<k!•e x当n=k+1时设h(x)=(k+1)!•e x﹣x k+1,(x>0)有h'(x)=(k+1)!•e x﹣(k+1)x k=(k+1)(k!•e x﹣x k)>0故h(x)=(k+1)!•e x﹣x k+1,(x>0)为增函数,所以,h(x)>h(0)=(k+1)!>0,即x k+1<(k+1)!•e x,这说明当n=k+1时不等式也成立,根据(i)(ii)可知不等式对一切n∈N*都成立,故原不等式对一切n∈N*都成立.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清楚.选修4-1:几何证明选讲22.已知AB是圆O的一条弦,过点A、B分别作AE⊥AB,BF⊥AB,交弧AB上任意一点T的切线于点E、F,OT交AB于点C,求证:(Ⅰ)∠CBT=∠CFT;(Ⅱ)CT2=AE•BF.【考点】与圆有关的比例线段.【分析】(Ⅰ)证明B,C,T,F四点共圆,可得∠CBT=∠CFT;(Ⅱ)延长EF与ABM交于P,利用△PBF∽△PTC,△PAE∽△PTC,结合切割线定理,即可证明CT2=AE•BF.【解答】证明:(Ⅰ)∵OT⊥EF,BF⊥AB,∠CTF=∠CBF=90°,∴∠CTF+∠CBF=180°,∴B,C,T,F四点共圆,∴∠CBT=∠CFT;(Ⅱ)延长EF与ABM交于P,则△PBF∽△PTC,∴=①,△PAE∽△PTC,∴=②①×②=由切割线定理可得PT2=PA•PB,∴CT2=AE•BF.选修4-4:坐标系与参数方程23.已知曲线C的参数方程为(θ为参数).(Ⅰ)求曲线C的普通方程;(Ⅱ)若倾斜角为45°的直线l经过点P(1,2)且与直线C相交于点A、B,求线段AB的长度.【考点】参数方程化成普通方程.【分析】(I)用x,y表示出cosθ,sinθ,根据正余弦的平方和等于1消参数得到普通方程;(II)写出直线l的参数方程,代入曲线的普通方程得到关于参数t的一元二次方程,根据参数的几何意义解出AB.【解答】解:(1)∵(θ为参数),∴cosθ=,sinθ=,∴.∴曲线C的普通方程为.(II)直线l的参数方程为(t为参数).将l的参数方程代入得7t2+22t+14=0,设A,B两点对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=2.∴t1,t2符号相同.∴|AB|=|t1﹣t2|===.选修4-5:不等式选讲24.设f(x)=|x+3|﹣a|2x﹣1|(Ⅰ)当a=1时,求f(x)>3的解集;(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,求实数a的取值范围.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(Ⅰ)当a=1时,对x分类讨论,去绝对值,分别求出f(x)>3,得解集为(,1);(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,对x分类讨论:当x=时,a∈R;当x≠时,||≥a对[﹣1,)∪(,1]恒成立,只需求出左式的最小值即可.利用分离常数法得出=+∈(﹣∞,﹣)∪(4,+∞),进而求出最小值.【解答】解:(Ⅰ)当a=1时,当x<﹣3时,f(x)=x﹣4,f(x)>3,∴无解当﹣3≤x≤时,f(x)=3x+2,f(x)>3,∴<x,当x>时,f(x)=4﹣x,f(x)>3,∴x<1,∴解集为(,1);(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,∴|x+3|≥a|2x﹣1|恒成立,当x=时,a∈R,当x≠时,∴||≥a对[﹣1,)∪(,1]恒成立,∵=+∈(﹣∞,﹣)∪(4,+∞),∴||的最小值为,∴a≤.2016年9月14日。

2016年高考理科数学全国1卷Word版(含详细答案)

2016年高考理科数学全国1卷Word版(含详细答案)
(1)设集合 , ,则
(A) (B) (C) (D)
(2)设 ,其中 是实数,则
(A) (B) (C) (D)
(3)已知等差数列 前 项的和为 , ,则
(A) (B) (C) (D)
(4)某公司的班车在 , , 发车,小明在 至 之间到达发车站乘
坐班车,且到达发车站的时候是随机的,则他等车时间不超过10分钟的概率是
(21)(本小题满分12分)
已知函数 有两个零点.
(Ⅰ)求 的取值范围;
(Ⅱ)设 是 的两个零点,证明: .
请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题计分.
(22)(本小题满分10分)选修4-1:几何证明选讲
如图, 是等腰三角形, .以 为圆心,
为半径作圆.
(Ⅰ)证明:直线 与⊙ 相切;
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。晖军頷损铖榄煬种撵摈賠宽櫬皱鳏趨飩黌埡蕭弳龉鶘鈉縝飆徠賻繭蓟閏贐錳寿袄帐鲍農亏厩壙届线鱿舊赞龅诨銨续呓恽习餓圇权匭姍鋇顓员贺頻轨稅個燜够镍鏽鐘闔鹌兹約侣蜆况脹鍔飯裝饱匮繼谗贱馍党漸啭锴泺媯黄繞橫钫。
(11)平面 过正方体 的顶点 , 平面 , 平面
, 平面 ,则 所成角的正弦值为
(A) (B) (C) (D)
(12)已知函数 , 为 的零点, 为
图像的对称轴,且 在 单调,则 的最大值为
(A)11(B)9(C)7(D)5
第II卷
本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题为选考题,考生根据要求作答。懾圇贄疗锈鎳沒蚀棧屨惭綻釗滄脓玑鲚窑濘盡湊鏇鷥錠閾胆竞繪锖缨肾糁勱萤哝鹩灤詎資纪緱赢诽麩讥鹰鋪鏑竖囂饨斷壇钶钟睾嬷韫薈殮禄阏铈鉻質铪稱悫惨茔俦牵鈣頃赢痙悫鹤担隱遞訟兴踬讽栈涣瀏锣辫闡綢務盜儉謁骄隊。

安徽省合肥市2016届高三上学期第一次教学质量检测物理试题 Word版含答案[ 高考]

安徽省合肥市2016届高三上学期第一次教学质量检测物理试题 Word版含答案[ 高考]

合肥市2016年高三第一次教学质量检测物理试题(考试时间:90分钟 满分:100分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

3.答第Ⅱ卷时,必须使0.5毫米的黑色墨水签字笔在答题卷上....书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卷...规定位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号指定的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸......................上答题无效。

......4.考试结束后,务必将答题卡、答题卷一并上交。

第Ⅰ卷 (满分40分)一、选择题(本题共10小题,每小题4分,共40分。

1—6题在每小题给出的四个选项中,只有一项是正确的,7-10题有多个选项是正确的。

全部选对的得4分,选对但不全的得2分,有错选或不答的得0分)1.如图所示,在教室里某同学站在体重计上研究超重与失重。

她由稳定的站姿变化到稳定的蹲姿称为“下蹲”过程;由稳定的蹲姿变化到稳定的站姿称为“起立”过程。

关于她的实验现象,下列说法中正确的是( )A .只有“起立”过程,才能出现失重的现象B .只有“下蹲”过程,才能出现超重的现象C .“下蹲”的过程,先出现超重现象后出现失重现象D .“起立”、“下蹲”的过程,都能出现超重和失重的现象2.在长约一米的一端封闭的玻璃管中注满清水,水中放一个适当的圆柱形的红蜡块,玻璃管的开口端用胶塞塞紧,将其迅速竖直倒置,红蜡块就沿玻璃管由管口匀速上升到管底。

现将此玻璃管倒置安装在置于粗糙桌面上的小车上,小车从A 位置以初速度v 0开始运动,同时红蜡块沿玻璃管匀速上升。

经过一段时间后,小车运动到虚线表示的B 位置。

按照图甲建立的坐标系,在这一过程中红蜡块实际运动的轨迹可能是图乙中的( )3.如图所示,有一半圆,其直径水平且与另一圆的底部相切于O 点,O 点恰好是下半圆的圆心,现在有三条光滑轨道AB 、CD 、EF ,它们的上下端分别位于上下两圆的圆周上,三轨道都经过切点O ,轨道与竖直线的夹角关系为α>β>θ,现在让一物块先后从三轨道顶端A Bxy图甲图乙 y O x A O y x B O y x C O y xD由静止下滑至底端,则物块在每一条倾斜轨道上滑动时所经历的时间关系为()A.t AB=t CD=t EF B.t AB>t CD>t EF C.t AB<t CD<t EF D.t AB=t CD<t EF4.如图所示,墙上有两个钉子a和b,它们的连线与水平方向的夹角为37°,两者的高度差为L.一条不可伸长的轻质细绳一端固定于a点,另一端跨过光滑钉子b悬挂一质量为m1的重物.在绳ab段中点c有一固定细绳套.若细绳套上悬挂质量为m2的钩码,平衡后绳的ac段正好水平,则重物和钩码的质量比m1 /m2为()A.B.2 C.D.5.四个等量异种电荷,分别放在正方形的四个顶点处,A、B、C、D为正方形四个边的中点,O为正方形的中心,下列说法中正确的是()A.O点电场强度不为零B.A、B、C、D四个点的电场强度相同C.将一带负电的试探电荷从B点匀速移动到D点,电场力做功为零D.将一带负电的试探电荷从A点匀速移动到C点,其电势能减小.6.在竖直平面内有一方向斜向上且与水平方向成α=30°角的匀强电场,电场中有一质量为m,电量为q的带电小球,用长为L的不可伸长的绝缘细线悬挂于O点,如图所示。

【真题】2016年高考数学(理科)课标卷Ⅰ(Word版含答案解析)

【真题】2016年高考数学(理科)课标卷Ⅰ(Word版含答案解析)

2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=( )A. B. C. D.2.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=( )A.1B.C.D.23.已知等差数列{a n}前9项的和为27,a10=8,则a100=( )A.100B.99C.98D.974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A. B. C. D.5.已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )A.(-1,3)B.(-1,)C.(0,3)D.(0,)6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π7.函数y=2x2-e|x|在[-2,2]的图象大致为( )8.若a>b>1,0<c<1,则( )A.a c<b cB.ab c<ba cC.alog b c<blog a cD.log a c<log b c9.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足( )A.y=2xB.y=3xC.y=4xD.y=5x10.以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为( )A.2B.4C.6D.811.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A. B. C. D.12.已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在单调,则ω的最大值为( )A.11B.9C.7D.5第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= .14.(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(本小题满分12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(Ⅰ)证明:平面ABEF⊥平面EFDC;(Ⅱ)求二面角E-BC-A的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数. (Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(本小题满分12分)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q 两点,求四边形MPNQ面积的取值范围.21.(本小题满分12分)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与☉O相切;(Ⅱ)点C,D在☉O上,且A,B,C,D四点共圆,证明:AB∥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+1|-|2x-3|.(Ⅰ)画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.D 易知A=(1,3),B=,∴A∩B=.故选D.方法总结集合的运算问题通常是先化简后运算,也可借助数轴或韦恩图解决.2.B ∵x,y∈R,(1+i)x=1+yi,∴x+xi=1+yi,∴∴|x+yi|=|1+i|==.故选B.3.C 设{a n}的公差为d,由等差数列前n项和公式及通项公式,得解得a n=a1+(n-1)d=n-2,∴a100=100-2=98.故选C.方法总结已知条件中有具体的a n、S n的值时,通常用基本元素法处理,即在a1、d、n、a n、S n这5个量中知三求二.4.B 解法一:7:30的班车小明显然是坐不到了.当小明在8:00前到达,或者8:20之后到达,他等车的时间将不超过10分钟,故所求概率为=.故选B.解法二:当小明到达车站的时刻超过8:00,但又不到8:20时,等车时间将超过10分钟,其他时刻到达车站时,等车时间将不超过10分钟,故等车时间不超过10分钟的概率为1-=.5.A ∵原方程表示双曲线,且焦距为4,∴①或②由①得m2=1,n∈(-1,3).②无解.故选A.解后反思对于方程mx2+ny2=1,若表示椭圆,则m、n均为正数且m≠n;若表示双曲线,则m·n<0.6.A 由三视图可知,该几何体是一个球被截去后剩下的部分,设球的半径为R,则该几何体的体积为×πR3,即π=×πR3,解得R=2.故其表面积为×4π×22+3××π×22=17π.选A.7.D 当x∈(0,2]时,y=f(x)=2x2-e x, f '(x)=4x-e x. f '(x)在(0,2)上只有一个零点x0,且当0<x<x0时, f '(x)<0;当x0<x≤2时, f '(x)>0.故f(x)在(0,2]上先减后增,又f(2)-1=7-e2<0,所以f(2)<1.故选D.8.C 解法一:由a>b>1,0<c<1,知a c>b c,A错;∵0<c<1,∴-1<c-1<0,∴y=x c-1在x∈(0,+∞)上是减函数,∴b c-1>a c-1,又ab>0,∴ab·b c-1>ab·a c-1,即ab c>ba c,B错;易知y=log c x是减函数,∴0>log c b>log c a,∴log b c<log a c,D错;由log b c<log a c<0,得-log b c>-log a c>0,又a>b>1>0,∴-alog b c>-blog a c>0,∴alog b c<blog a c,故C正确.解法二:依题意,不妨取a=10,b=2,c=.易验证A、B、D均是错误的,只有C正确.9.C x=0,y=1,n=1,x=0,y=1,n=2;x=,y=2,n=3;x=,y=6,此时x2+y2>36,输出x=,y=6,满足y=4x.故选C.10.B 不妨设C:y2=2px(p>0),A(x1,2),则x1==,由题意可知|OA|=|OD|,得+8=+5,解得p=4.故选B.11.A 如图,延长B1A1至A2,使A2A1=B1A1,延长D1A1至A3,使A3A1=D1A1,连结AA2,AA3,A2A3,A1B,A1D.易证AA2∥A1B∥D1C,AA3∥A1D∥B1C.∴平面AA2A3∥平面CB1D1,即平面AA2A3为平面α.于是m∥A2A3,直线AA2即为直线n.显然有AA2=AA3=A2A3,于是m、n所成的角为60°,其正弦值为.选A.疑难突破本题的难点是明确直线m、n的具体位置或它们相对正方体中的棱、对角线的相对位置关系.为此适当扩形是常用策略.向右、向前扩展(补形)两个全等的正方体,则m、n 或其平行线就展现出来了.12.B 依题意,有(m、n∈Z),∴又|φ|≤,∴m+n=0或m+n=-1.当m+n=0时,ω=4n+1,φ=,由f(x)在上单调,得≥-,∴ω≤12,取n=2,得ω=9, f(x)=sin符合题意.当m+n=-1时,φ=-,ω=4n+3,取n=2,得ω=11, f(x)=sin,此时,当x∈时,11x-∈, f(x)不单调,不合题意.故选B.解后反思本题要求ω的最大值,正面入手运算量偏大,不妨对ω取特殊值进行检验.二、填空题13.答案-2解析由|a+b|2=|a|2+|b|2,知a⊥b,∴a·b=m+2=0,∴m=-2.14.答案10解析T r+1=(2x)5-r·()r=25-r·,令5-=3,得r=4,∴T5=10x3,∴x3的系数为10.15.答案64解析设{a n}的公比为q,于是a1(1+q2)=10,①a1(q+q3)=5,②联立①②得a1=8,q=,∴a n=24-n,∴a1a2…a n=23+2+1+…+(4-n)==≤26=64.∴a1a2…a n的最大值为64.16.答案216 000解析设生产产品A x件,产品B y件,依题意,得设生产产品A,产品B的利润之和为E元,则E=2 100x+900y.画出可行域(图略),易知最优解为此时E max=216 000.三、解答题17.解析(Ⅰ)由已知及正弦定理得,2cos C(sin Acos B+sin Bcos A)=sin C,(2分)2cos Csin(A+B)=sin C.故2sin Ccos C=sin C.(4分)可得cos C=,所以C=.(6分)(Ⅱ)由已知,得absin C=.又C=,所以ab=6.(8分)由已知及余弦定理得,a2+b2-2abcos C=7.故a2+b2=13,从而(a+b)2=25.(10分)所以△ABC的周长为5+.(12分)解后反思本题属解三角形问题中的常见题型,要先利用正弦、余弦定理,将已知中的“边”或“角”的关系式,转化为只有“边”或只有“角”的方程形式,进而通过三角函数或代数知识求解方程.解题中要注意三角形的一些性质应用,例如:sin(A+B)=sin C,S△ABC=absin C.18.解析(Ⅰ)由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.(2分)又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(3分)(Ⅱ)过D作DG⊥EF,垂足为G,由(Ⅰ)知DG⊥平面ABEF.以G为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系G-xyz.(6分)由(Ⅰ)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则|DF|=2,|DG|=,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,).由已知得,AB∥EF,所以AB∥平面EFDC.(8分)又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE-F的平面角,∠CEF=60°.从而可得C(-2,0,).所以=(1,0,),=(0,4,0),=(-3,-4,),=(-4,0,0).(10分)设n=(x,y,z)是平面BCE的法向量,则即所以可取n=(3,0,-).设m是平面ABCD的法向量,则同理可取m=(0,,4).则cos <n,m>==-.故二面角E-BC-A的余弦值为-.(12分)方法总结对于立体几何问题的求解,首先要熟练掌握平行与垂直的判定与性质,尤其是面面垂直的证明,寻找平面的垂线往往是几何证明的关键.19.解析(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.(4分)所以X的分布列为X 16 17 18 19 20 21 22P 0.04 0.16 0.24 0.24 0.2 0.08 0.04 (6分)(Ⅱ)由(Ⅰ)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(8分)(Ⅲ)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.(10分)当n=20时,EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.(12分)解后反思本题重点考查相互独立事件的概率、简单随机变量的分布列及期望.求解本题的关键在于认真分析题干中的事件,确定事件间的相互关系,根据分析内容,找到解题的突破口.20.解析(Ⅰ)因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.(2分)由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为+=1(y≠0).(4分) (Ⅱ)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2).由得(4k2+3)x2-8k2x+4k2-12=0.则x1+x2=,x1x2=.所以|MN|=|x1-x2|=.(6分)过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,所以|PQ|=2=4.故四边形MPNQ的面积S=|MN||PQ|=12.(10分)可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为[12,8).(12分)解后反思本题重点考查圆锥曲线的几何性质,以及直线与椭圆、圆的位置关系,尤其是对“弦长”问题的考查,更是本题考查的重点.解决此类问题,除了要熟知圆锥曲线的几何性质之外,对计算能力的要求也非常高.21.解析(Ⅰ)f '(x)=(x-1)e+2a(x-1)=(x-1)(e+2a).(2分)(i)设a=0,则f(x)=(x-2)e x, f(x)只有一个零点.(3分)(ii)设a>0,则当x∈(-∞,1)时, f '(x)<0;当x∈(1,+∞)时, f '(x)>0.所以f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e, f(2)=a,取b满足b<0且b<ln ,则f(b)>(b-2)+a(b-1)2=a>0,故f(x)存在两个零点.(4分)(iii)设a<0,由f '(x)=0得x=1或x=ln(-2a).若a≥-,则ln(-2a)≤1,故当x∈(1,+∞)时, f '(x)>0,因此f(x)在(1,+∞)单调递增.又当x≤1时f(x)<0,所以f(x)不存在两个零点.(6分)若a<-,则ln(-2a)>1,故当x∈(1,ln(-2a))时, f '(x)<0;当x∈(ln(-2a),+∞)时, f '(x)>0.因此f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增.又当x≤1时f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(8分)(Ⅱ)不妨设x1<x2.由(Ⅰ)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x 2)=-x2+a(x2-1)2,而f(x2)=(x2-2)+a(x2-1)2=0,所以f(2-x 2)=-x2-(x2-2).(10分)设g(x)=-xe2-x-(x-2)e x,则g '(x)=(x-1)(e2-x-e x).所以当x>1时, g '(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.(12分)22.证明(Ⅰ)设E是AB的中点,连结OE.因为OA=OB,∠AOB=120°,所以OE⊥AB,∠AOE=60°.(2分)在Rt△AOE中,OE=AO,即O到直线AB的距离等于☉O的半径,所以直线AB与☉O相切.(5分)(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设O'是A,B,C,D四点所在圆的圆心,作直线OO'.由已知得O在线段AB的垂直平分线上,又O'在线段AB的垂直平分线上,所以OO'⊥AB.(9分) 同理可证,OO'⊥CD,所以AB∥CD.(10分)23.解析(Ⅰ)消去参数t得到C 1的普通方程x2+(y-1)2=a2.C1是以(0,1)为圆心,a为半径的圆.(3分)将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.(5分)(Ⅱ)曲线C1,C2的公共点的极坐标满足方程组(6分)若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,由tan θ=2,可得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=-1(舍去),或a=1.(8分)a=1时,极点也为C1,C2的公共点,在C3上.(9分)所以a=1.(10分)24.解析(Ⅰ)f(x)=(3分)y=f(x)的图象如图所示.(5分)(Ⅱ)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;(6分)当f(x)=-1时,可得x=或x=5,(7分)故f(x)>1的解集为{x|1<x<3};f(x)<-1的解集为.(9分)所以|f(x)|>1的解集为.(10分)。

2019年1月安徽省合肥市2019年高三第一次教学质量检测高2019届高2016级合肥一模理科文科数学试题及答案汇编

2019年1月安徽省合肥市2019年高三第一次教学质量检测高2019届高2016级合肥一模理科文科数学试题及答案汇编

高三数学试题(理科)答案 第1 页(共4页)合肥市2019年高三第一次教学质量检测数学试题(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分.二、填空题:本大题共4小题,每小题5分.13.()1 6-, 14.1 15.⎭ 16.222433n n ⎛⎫-⋅+ ⎪⎝⎭ 三、解答题:17.(本小题满分12分)(I)∵()11cos 22cos 22cos 2sin 2226f x x x x x x x π⎛⎫=-=+=+ ⎪⎝⎭, ∴函数()f x 的最小正周期为T π=. …………………………5分(II)由()13f α= 可得1sin 263πα⎛⎫+= ⎪⎝⎭. ∵0,2πα⎛⎫∈ ⎪⎝⎭, ∴ 72 666πππα⎛⎫+∈ ⎪⎝⎭,. 又∵110sin(2, 632πα<+=<∴ 2+,,62ππαπ⎛⎫∈ ⎪⎝⎭ ∴ cos 263πα⎛⎫+=- ⎪⎝⎭, ∴ cos 2cos 2cos 2cos sin 2sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. ………………………12分18.(本小题满分12分)(I)取CD 的中点M ,连结EM ,BM .由已知得BCD ∆为等边三角形,∴BM CD ⊥.∵2,AD AB BD ===,∴30,ADB ABD ∠=∠=︒∴90,ADC ∠=︒∴//BM AD .又∵BM ⊄平面PAD ,AD ⊂平面PAD ,∴BM ∥平面PAD .∵E 为PC 的中点,M 为CD 中点,∴EM ∥PD .又∵EM ⊄平面PAD ,PD ⊂平面PAD .∴EM ∥平面PAD .∵EM BM M = ,∴平面BEM ∥平面PAD ,题号 1 2 3 4 5 6 7 8 9 10 11 12答案D C C D A D D D C C B A高三数学试题(理科)答案 第2 页(共4页)∵BE ⊂平面BEM ,∴BE ∥平面PAD . …………………………5分(II)连结AC ,交BD 于点O ,连结PO . 由对称性知,O 为BD 中点,且AC BD ⊥,BD PO ⊥ 平面PBD ⊥平面ABCD ,PO BD ⊥, ∴PO ⊥平面ABCD ,1PO AO ==,3CO =.以O 为坐标原点,的方向为x 轴正方向,建立空间直角坐标系O xyz -.则D (0,,0),C (3,0,0),P (0,0,1).易知平面PBD 的一个法向量为()11,0,0n = .设平面PCD 的法向量为()2n x y z = ,,, 则n ⊥2,n ⊥2,∴ ⎪⎩⎪⎨⎧=⋅=⋅0022n n . ∵)0,3,3(=,)1,3,0(=,∴⎩⎨⎧=+=+03033z y y x . 令3=y ,得3,1-=-=z x ,∴ )3,3,1(2--=n∴1313131-=-==n n 设二面角B PD C --的大小为θ,则cos 13θ=. ………………………12分19.(本小题满分12分) (I)0.06340.18380.20420.28460.16500.10540.025844.7245x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=≈; …………………………5分 (II)由题意知,39.2 50.8μσμσ-≈+≈,,()39.250.80.6826P t <<=, 所以估计该人群中一周睡眠时间在区间()39.2 50.8,的人数约为100000.68266826⨯=(人); …………………………12分20.(本小题满分12分)(I)设椭圆的半焦距为c ,由椭圆的离心率为2知,b c a ==,,则椭圆方程为222212x y b b +=.易求得)0A,则点在椭圆上,所以222212b b +=, 解得2263a b ⎧=⎨=⎩,所以椭圆方程为22163x y +=. …………………………5分 (II)当过点P 且与圆O相切的切线斜率不存在时,不妨设切线方程为x =1)知,M N ,,0OM ON OM ON ==⋅= ,,,∴ OM ON ⊥. 当过点P 且与圆O 相切的切线斜率存在时,可设切线方程为y kx m =+,高三数学试题(理科)答案 第3 页(共4页)()()1122M x y N x y ,,,,=,即()2221m k =+. 联立直线和椭圆的方程得()2226x kx m ++=,∴ ()222124260k x kmx m +++-=,得122212204212621km x x k m x x k ⎧⎪∆>⎪⎪+=-⎨+⎪⎪-=⎪+⎩. ∵()()1122 OM x y ON x y == ,,,, ∴()()12121212OM ON x x y y x x kx m kx m ⋅=+=+++()()()22222121222264112121m km k x x km x x m k km m k k --=++++=+⋅+⋅+++ ()()()()2222222222222126421322663660212121k m k m m k k k m k k k k +--+++----====+++, ∴ OM ON ⊥.综上所述,圆O 上任意点P 处的切线交椭圆C 于点M N ,,都有OM ON ⊥.在Rt OMN ∆中,由OMP ∆与NOP ∆相似,可得22OP PM PN =⋅=为定值.…………………………12分21.(本小题满分12分)(I)易知1x >-,且()11x f x e x '=-+. 令()11x h x e x =-+, 则()()2101x h x e x '=+>+,∴ 函数()11x h x e x =-+在()1x ∈-+∞,上单调递增,且()()000h f '==.可知,当()1 0x ∈-,时,()()0h x f x '=<,()()ln 1x f x e x =-+单调递减;当()0x ∈+∞,时,()()0h x f x '=>,()()ln 1x f x e x =-+单调递增. ∴函数()f x 的单调递减区间是()1 0-,,单调递增区间是()0+∞,. ……………………5分 (II)∵()()()ln 1x g x f x ax e x ax =-=-+-,∴()()g x f x a ''=-.由(I)知,()g x '在()1x ∈-+∞,上单调递增, 当1x →-时,()g x '→-∞;当x →+∞时,()g x '→+∞,则()0g x '=有唯一解0x .可知,当()01x x ∈-,时,()0g x '<,()()ln 1x g x e x ax =-+-单调递减;当()0x x ∈+∞,时,()0g x '>,()()ln 1x g x e x ax =-+-单调递增,∴ 函数()g x 在0x x =处取得极小值()()0000ln 1x g x e x ax =-+-,且0x 满足0011x e a x -=+. ∴ ()()()0000011ln 111x g x x e x x =--++-+.高三数学试题(理科)答案 第4 页(共4页)max 2S =2312πθ=令()()()11ln 111xx x e x x ϕ=--++-+,则()()211x x x e x ϕ⎡⎤'=-+⎢⎥+⎢⎥⎣⎦. 可知,当()1 0x ∈-,时,()0x ϕ'>,()x ϕ单调递增; 当()0x ∈+∞,时,()0x ϕ'<,()x ϕ单调递减, ∴ ()()max 01x ϕϕ==. ∴ 函数()g x 极小值的最大值为1. …………………………12分22.(本小题满分10分)(I)221:1C x y +=,2:=2cos C ρθ,则2=2cos ρρθ,∴ 222x y x +=.联立方程组得222212x y x y x ⎧+=⎪⎨+=⎪⎩,解得111 22x y ⎧=⎪⎪⎨⎪=⎪⎩,221 22x y ⎧=⎪⎪⎨⎪=⎪⎩,∴ 所求交点的坐标为12⎛ ⎝⎭,1 2⎛ ⎝⎭,. ………………………5分 (II)设()B ρθ,,则=2cos ρθ,∴AOB ∆的面积11sin 4sin 4cos sin 2233S OA OB AOB ππρθθθ⎛⎫⎛⎫=⋅⋅⋅∠=⋅-=- ⎪ ⎪⎝⎭⎝⎭2cos 26πθ⎛⎫=+ ⎪⎝⎭, ∴ 当 时, ………………………10分23.(本小题满分10分)(I)()22f x x +>,即1>22x x +-⇔10101>221>22x x x x x x+≥+<⎧⎧⎨⎨+----⎩⎩或13x ⇔> ∴ 实数x 的取值范围是1 3⎛⎫+∞ ⎪⎝⎭. ………………………5分 (II) ∵ 1a >,∴ 11a -<-,()()()(1)211(1)1112a x x g x a x x a a x x a ⎧⎪-+-∈-∞⎪⎪⎡⎤=-∈--⎨⎢⎥⎣⎦⎪⎪⎛⎫++∈-+∞⎪ ⎪⎝⎭⎩, ,-, ,, ,, 易知函数()g x 在1x a ⎛⎫∈-∞- ⎪⎝⎭,时单调递减,在1x a ⎛⎫∈-+∞ ⎪⎝⎭,时单调递增,则()min 111g x g a a ⎛⎫=-=- ⎪⎝⎭. ∴ 1112a -=,解得2a =. …………………………10分高三数学试题(文科)答案 第1 页(共4页)合肥市2019年高三第一次教学质量检测数学试题(文科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分.二、填空题:本大题共4小题,每小题5分.13.[-1,6] 14.916 15.()41n n + 三、解答题:17.(本小题满分12分)(I)由已知可得()sin 23g x x π⎛⎫=+ ⎪⎝⎭,则()sin 2sin 2sin 233h x x x x ππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭. 令222232k x k k Z πππππ-+≤-≤+∈,,解得51212k x k k Z ππππ-+≤≤+∈,. ∴函数()h x 的单调递增区间为()5 1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,. …………………………5分(II)由163g πα⎛⎫+= ⎪⎝⎭得21sin 2sin 26333πππαα⎡⎤⎛⎫⎛⎫++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴1sin 233πα⎛⎫-=- ⎪⎝⎭,即()13h α=-. …………………………12分18.(本小题满分12分)(I)取CD 的中点为M ,连结EM ,BM .∵BCD ∆为等边三角形,∴BM CD ⊥.∵∠BAD =120°, AD = AB ,∴∠ADB =30°∴AD CD ⊥,∴//BM AD .又∵BM ⊄平面PAD ,AD ⊂平面PAD ,∴BM ∥平面PAD .∵E 为PC 的中点,M 为CD 中点,∴EM ∥PD .又∵EM ⊄平面PAD ,PD ⊂平面PAD ,∴EM ∥平面PAD .∵EM BM M = ,∴平面BEM ∥平面PAD .又∵BE ⊂平面BEM ,∴BE ∥平面PAD . …………………………5分 (II)连结AC 交BD 于O ,连结PO .∵CB CD AB AD ==,,∴AC BD ⊥且 O 为BD 的中点.又∵∠BAD =120°,BD =PBD ∆≌ABD ∆. ∴1AO PO ==.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B A C D D D C B C A A高三数学试题(文科)答案 第2 页(共4页)又∵PA =222PA PO OA =+,∴PO OA ⊥.又∵PO BD ⊥,∴PO ⊥平面ABD ,即四棱锥P ABCD -的高为=1PO ,∴四棱锥P ABCD -的体积(2111132V ⎫=⨯+⨯⨯=⎪⎪⎝⎭. ……………………12分19.(本小题满分12分) (I)甲班:71404920⨯=(人),乙班71404920⨯=(人),丙班61404220⨯=(人). …………5分 (II)34x =.设事件A =“3名学生睡眠时间既有多于x 、又有少于x 的学生”.丙班睡眠时间少于x 的有4人,设为1234A A A A ,,,,多于x 的有2人,设为12B B ,.从这6名学生中随机选取3人的基本事件共有20种,而不满足条件的基本事件(3人睡眠时间都低于x )有432431421321,,,A A A A A A A A A A A A 共4种情况,所以满足条件的基本事件数为16种,542016)(==A P ,即在丙班被抽取的6名学生中,再随机地选取3人作进一步地调查,选取的3人睡眠时间既有多于x 、又有少于x 学生的概率为54.……………………12分20.(本小题满分12分)(I)由题意知,4a a ==.又∵e =,∴c =,b =, ∴椭圆E 的方程为22163x y +=. …………………………5分 (II)易知,当直线AB CD 、的斜率不存在时,由椭圆的对称性知,中点M N ,在x 轴上,O M N ,,三点共线;当直线AB CD ,的斜率存在时,设其斜率为k ,且设()()()112200A x y B x y M x y ,,,,,. 联立方程得22112222163163x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩相减得2222112206363x y x y ⎛⎫+-+= ⎪⎝⎭, ∴()()()()22221212121212126363x x x x y y y y x x y y -+-+--=-=-, ∴1212121236y y y y x x x x -+⋅=--+,01212036y y y x x x -⋅=--,即12OM k k ⋅=-, ∴12OM k k=-. 同理可得12ON k k =-,∴OM ON k k =,∴O M N ,,三点共线. ………………………12分高三数学试题(文科)答案 第3 页(共4页)max 2S =2312πθ=21.(本小题满分12分)(I)()()()110x g x f x e a x x -'==+->,()121x g x e x-'=-. 令()()()()11231200x x x g x e x x e x xϕϕ--''==->=+>,, ∴()g x '在()0+∞,上为增函数,()10g '=.∵当()01x ∈,时,()0g x '<;当()1x ∈+∞,时,()0g x '>, ∴()g x 的单调递增区间为()1+∞,,单调递减区间为(0,1) , ∴()=(1)2g x g a =-极小.…… ……………5分 (II)由(I)知,()f x '在()1+∞,上单调递增,在(0,1)上单调递减, ∴()()12f x f a ''≥=-.当2a ≤时,()0f x '≥,()f x 在[)1+∞,上单调递增,()()11f x f ≥=,满足条件; 当2a >时,()120f a '=-<.又∵()ln 11ln 10ln 1ln 1a f a e a a a '+=-+=>++,∴()01ln 1x a ∃∈+,,使得()00f x '=, 此时,()01x x ∈,,()0f x '<;()0ln 1x x a ∈+,,()0f x '> ∴()f x 在()01x ,上单调递减,()01x x ∈,,都有()()11f x f <=,不符合题意. 综上所述,实数a 的取值范围为(]2-∞,. ………………………12分22.(本小题满分10分)(I)221:1C x y +=,2:=2cos C ρθ,则2=2cos ρρθ,∴ 222x y x +=.联立方程组得222212x y x y x ⎧+=⎪⎨+=⎪⎩,解得111 22x y ⎧=⎪⎪⎨⎪=⎪⎩,221 22x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴ 所求交点的坐标为1 22⎛ ⎝⎭,,1 22⎛⎫- ⎪ ⎪⎝⎭,. ………………………5分 (II)设()B ρθ,,则=2cos ρθ,∴AOB ∆的面积11sin 4sin 4cos sin 2233S OA OB AOB ππρθθθ⎛⎫⎛⎫=⋅⋅⋅∠=⋅-=- ⎪ ⎪⎝⎭⎝⎭2cos 26πθ⎛⎫=+ ⎪⎝⎭, ∴ 当 时, ………………………10分23.(本小题满分10分)(I)()22f x x +>,即1>22x x +-⇔10101>221>22x x x x x x+≥+<⎧⎧⎨⎨+----⎩⎩或13x ⇔> ∴ 实数x 的取值范围是1 3⎛⎫+∞ ⎪⎝⎭. ………………………5分高三数学试题(文科)答案 第4 页(共4页) (II) ∵ 1a >,∴ 11a -<-,()()()(1)211(1)1112a x x g x a x x a a x x a ⎧⎪-+-∈-∞⎪⎪⎡⎤=-∈--⎨⎢⎥⎣⎦⎪⎪⎛⎫++∈-+∞⎪ ⎪⎝⎭⎩, ,-, ,, ,, 易知函数()g x 在1x a ⎛⎫∈-∞- ⎪⎝⎭,时单调递减,在1x a ⎛⎫∈-+∞ ⎪⎝⎭,时单调递增,则()min 111g x g a a ⎛⎫=-=- ⎪⎝⎭. ∴ 1112a -=,解得2a =. …………………………10分。

安徽省合肥市高三数学第一次教学质量检测(理)

安徽省合肥市高三数学第一次教学质量检测(理)

安徽省合肥市2008年高三年级第一次教学质量检测数学(理)一、选择题:本大题共11小题,每小题5分,共55分。

1.复数21i=+ A .1i - B .1i + C .i - D .i2.如图,已知,,3AB a AC b BD DC ===,用,a b 表示AD ,则AD =A .34a b +B .1344a b +C .1144a b + D .3144a b + 3.已知角α在第一象限且3cos 5α=,则1)4sin()2παπα+-=+ A .25 B .75 C .145D .25-4.把直线20x y λ-+=按向量(2,0)a =平移后恰与224220x y y x +-+-=相切,则实数λ的值为AB.C- D.5.等比数列{}n a 中,“13a a <”是“57a a <”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 6.已知lg lg 0a b +=,函数()xf x a =与函数()log b g x x =-的图象可能是7.已知双曲线2222:1x y C a b-=满足彖件:(1)焦点为12(5,0),(5,0)F F -;(2)离心率为53,求得双曲线C 的方程为(,)0f x y =。

若去掉条件(2),另加一个条件求得双曲线C 的方程仍为(,)0f x y =,则下列四个条件中,符合添加的条件共有①双曲线2222:1x y C a b-=上的任意点P 都满足12||||||6PF PF -=;②双曲线2222:1x y C a b-=的—条准线为253x =③双曲线2222:1x y C a b-=上的点P 到左焦点的距离与到右准线的距离比为53④双曲线2222:1x y C a b-=的渐近线方程为430x y ±=A .1个B .2个C .3个D .4个8.设偶函数()log ||a f x x b =-在(0,)+∞上单调递增,则(2)f b -与(1)f a +的大小关系是A .(2)(1)f b f a -=+B .(2)(1)f b f a ->+C .(2)(1)f b f a -<+D .不能确定 9.有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是A .18B .26C .29D .5810.若二面角l αβ--为56π,直线m α⊥,直线n β⊂,则直线m 与n 所成的角取值范围是 A .(0,)2πB .[,]62ππC .[,]32ππD .[,]63ππ11.集合{(,)||1|}A x y y x =≥-,集合{(,)|5}B x y y x =≤-+。

安徽省合肥市高三数学第一次教学质量检测(理科)

安徽省合肥市高三数学第一次教学质量检测(理科)

安徽省合肥市2009年高三第一次教学质量检测数学(理科)试题(考试时间:120分钟,满分150分)一.选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只 有一项是符合题目要求的,) 1.不等式21x <的解集为A .{|11}x x -<<B .{|1}x x <C .{|1}x x >-D .{|11}x x x <->或2.复数21iz i=+的共轭复数z = A .1i +B .1i --C .1i -+D .1i -3.曲线2242110x y x y +---=上到直线3450x y ++=距离等于1的点的个数为A .1B .2C .3D .44.已知sin 2cos x x =,则2sin 1x +=A .65 B .95 C .43D .535.已知n S 是等差数列{}n a 的前n 项和,100S >并且110S =,若n k S S ≤对n N *∈恒成立,则正整数k 构成集合为A .{5}B .{6}C .{5,6}D .{7}6.将A .B .C .D .E排成一列,要求A .B .C 在排列中顺序为“A .B .C ”或“C .B .A ”(可以不相邻),这样的排列数有( )种。

A .12B .20C .40D .607.已知命题:“若120k a k b +=则120k k ==”是真命题,则下面对,a b 的判断正确的是A .a 与b 一定共线B .a 与b 一定不共线C .a 与b 一定垂直D .a 与b8.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是A.3B .52C .2D .32正视图侧视图俯视图19.平面上有一组平行线,且相邻平行线间的距离为3cm ,把一枚半径为1cm 的硬币任意平掷在这个平面,则硬币不与任何一条平行线相碰的概率是A .14 B .13 C .12D .2310.曲线1y x =与直线14x x ==、及x 轴所围成的区域的面积是A .34B .ln 2C .2ln 2D .ln 21-11.如图,该程序运行后输出的结果为A .14B .16C .18D .6412.函数221,0()(1),0axax x f x a e x ⎧+≥⎪=⎨-<⎪⎩在(,)-∞+∞上单调,则a 的取值范围是 A.(,(1,2]-∞B.[1)[2,)-+∞C .D .)+∞二.填空题:(本大题共4个小题,每小题4分,共16分,把答案填在题中的横线上)13.18(x 展开式中的常数项为___________. 14.写出命题:“对任意实数m ,关于x 的方程x 2+x+m = 0有实根”的否定为:___________________15.以等腰直角△ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为________. 16.观察下表的第一列,填空三.解答题(本大题共6个小题,共74分。

2016年安徽省合肥市高考数学一模试卷(文科)含答案解析

2016年安徽省合肥市高考数学一模试卷(文科)含答案解析

2016年安徽省合肥市高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,l,3},B={x|x2﹣3x=0},则A∩B=()A.{0}B.{0,1}C.{0,3}D.{0,1,3}2.已知z=(i为虚数单位),则复数z=()A.﹣1 B.l C.i D.﹣i3.sin18°•sin78°﹣cos162°•cos78°等于()A.B. C.D.4.“x>2“是“x2+2x﹣8>0“成立的()A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件5.已知直线x﹣my﹣1﹣m=0与圆x2+y2=1相切,则实数m的值为()A.l或0 B.0 C.﹣1或0 D.l或﹣16.执行如图所示的程序框图,如果输出的k的值为3,则输入的a的值可以是()A.20 B.21 C.22 D.237.△ABC的角A,B,C的对边分别为a,b,c,若cosA=,c﹣a=2,b=3,则a=()A.2 B.C.3 D.8.在一圆柱中挖去一圆锥所得的机械部件的三视图如图所示,则此机械部件的表面积为()A.(7+)πB.(8+)πC.D.(1+)π+69.若双曲线C1:=1与C2:=1(a>0,b>0)的渐近线相同,且双曲线C2的焦距为4,则b=()A.2 B.4 C.6 D.810.函数y=sin(ωx+)在x=2处取得最大值,则正数ω的最小值为()A.B.C.D.11.已知等边△ABC的边长为2,若=3,=,则•等于()A.﹣2 B.﹣C.2 D.12.直线x=t分别与函数f(x)=e x+1的图象及g(x)=2x﹣1的图象相交于点A和点B,则|AB|的最小值为()A.2 B.3 C.4﹣2ln2 D.3﹣2ln2二、填空题:本大题共4小题,每小题5分,共25分,把答案填在答题卡的相应位置上.13.函数f(x)=的定义域为.14.已知实数x,y满足,则目标函数z=x﹣y的最大值是.15.将2红2白共4个球随机排成一排,则同色球均相邻的概率为.16.已知函数f(x)=,则关于x的不等式f[f(x)]≤3的解集为.三、解答题:本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17.已知等差数列{a n}的前n项和为S n,S3=﹣15,且a1+1,a2+1,a4+1成等比数列,公比不为1.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.18.某校拟在高一年级开设英语口语选修课,该年级男生600人,女生480人.按性别分层抽样,抽取90名同学做意向调查.(I)求抽取的90名同学中的男生人数;(Ⅱ)将下列2×2列联表补充完整,并判断能否在犯错误的概率不超过0.025的前提下认附:,其中n=a+b+c+d.四棱锥﹣中,∥,,AB⊥AD,平面EAD⊥平面ABCD,点F为DE的中点.(Ⅰ)求证:CF∥平面EAB;(Ⅱ)若CF⊥AD,求四棱锥E﹣ABCD的体积.20.已知抛物线x2=2py(p>0),O是坐标原点,点A,B为抛物线C1上异于O点的两点,以OA为直径的圆C2过点B.(I)若A(﹣2,1),求p的值以及圆C2的方程;(Ⅱ)求圆C2的面积S的最小值(用p表示)21.已知函数f(x)=ex﹣xlnx,g(x)=e x﹣tx2+x,t∈R,其中e是自然对数的底数.(Ⅰ)求函数f(x)在点(1,f(1))处切线方程;(Ⅱ)若g(x)≥f(x)对任意x∈(0,+∞)恒成立,求t的取值范围.请考生在第22题,23题,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-1:几何证明选讲]22.已知AB是圆O的直径,点C在圆O上(异于点A,B),连接BC并延长至点D,使得BC=CD,连接DA交圆O于点E,过点C作圆O的切线交AD于点F.(Ⅰ)若∠DBA=60°,求证:点E为AD的中点;(Ⅱ)若CF=R,其中R为圆C的半径,求∠DBA.[选修4-4:坐标系与参数方程]23.已知直线l:为参数),以坐标原点为极点,x轴的非负半轴为极轴且两坐标系中具有相同的长度单位,建立极坐标系,曲线C的极坐标方程为ρ2﹣2ρsinθ=a (a>﹣3)(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)若曲线C与直线l有唯一公共点,求实数a的值.[选修4-5:不等式选讲]24.已知a>0,b>0,记A=+,B=a+b.(1)求A﹣B的最大值;(2)若ab=4,是否存在a,b,使得A+B=6?并说明理由.2016年安徽省合肥市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,l,3},B={x|x2﹣3x=0},则A∩B=()A.{0}B.{0,1}C.{0,3}D.{0,1,3}【考点】交集及其运算.【分析】求出B中方程的解确定出B,找出A与B的交集即可.【解答】解:由B中方程变形得:x(x﹣3)=0,解得:x=0或x=3,即B={0,3},∵A={0,1,3},∴A∩B={0,3},故选:C.2.已知z=(i为虚数单位),则复数z=()A.﹣1 B.l C.i D.﹣i【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:z==.故选:C.3.sin18°•sin78°﹣cos162°•cos78°等于()A.B. C.D.【考点】两角和与差的正弦函数.【分析】利用两角和的正弦函数公式化简后即可得答案.【解答】解:sin18°•sin78°﹣cos162°•cos78°=sin18°•cos12°+cos18°•sin12°=sin30°=,故选:D.4.“x>2“是“x2+2x﹣8>0“成立的()A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由x2+2x﹣8>0解得x>2,或x<﹣4.即可判断出结论.【解答】解:由x2+2x﹣8>0解得x>2,或x<﹣4.∴“x>2“是“x2+2x﹣8>0“成立的充分不必要条件.故选:B.5.已知直线x﹣my﹣1﹣m=0与圆x2+y2=1相切,则实数m的值为()A.l或0 B.0 C.﹣1或0 D.l或﹣1【考点】直线与圆的位置关系.【分析】先求出圆x2+y2=1的圆心和半径,由直线x﹣my﹣1﹣m=0与圆x2+y2=1相切,得圆心C(0,0)到直线x﹣my﹣1﹣m=0的距离等于半径,由此能求出m.【解答】解:∵圆x2+y2=1的圆心(0,0),半径r=1,直线x﹣my﹣1﹣m=0与圆x2+y2=1相切,∴圆心C(0,0)到直线x﹣my﹣1﹣m=0的距离d==1,m=0.故选:B.6.执行如图所示的程序框图,如果输出的k的值为3,则输入的a的值可以是()A.20 B.21 C.22 D.23【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的k,S的值,由题意,当S=21时,应该不满足条件S≤a,退出循环输出k的值为3,从而结合选项可得输入的a的值.【解答】解:由题意,模拟执行程序,可得k=0,S=0,满足条件S≤a,S=2×0+3=3,k=0+1=1满足条件S≤a,S=2×3+3=9,k=1+1=2满足条件S≤a,S=2×9+3=21,k=2+1=3由题意,此时,应该不满足条件21≤a,退出循环,输出k的值为3,从而结合选项可得输入的a的值为20.故选:A.7.△ABC的角A,B,C的对边分别为a,b,c,若cosA=,c﹣a=2,b=3,则a=()A.2 B.C.3 D.【考点】余弦定理.【分析】由已知条件和余弦定理可得a的方程,解方程可得.【解答】解:由题意可得c=a+2,b=3,cosA=,∴由余弦定理可得cosA=•,代入数据可得=,解方程可得a=2故选:A8.在一圆柱中挖去一圆锥所得的机械部件的三视图如图所示,则此机械部件的表面积为()A.(7+)πB.(8+)πC.D.(1+)π+6【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是由一个圆柱截一个倒圆锥,圆锥的上底面与圆柱的上底面重合.【解答】解:由三视图可知:该几何体是由一个圆柱截一个倒圆锥,圆锥的上底面与圆柱的上底面重合.∴此机械部件的表面积=π×12+2π×1×3+×=7π+.故选:A.9.若双曲线C1:=1与C2:=1(a>0,b>0)的渐近线相同,且双曲线C2的焦距为4,则b=()A.2 B.4 C.6 D.8【考点】双曲线的简单性质.【分析】求出双曲线C1的渐近线方程,可得b=2a,再由焦距,可得c=2,即有a2+b2=20,解方程,可得b=4.【解答】解:双曲线C1:=1的渐近线方程为y=±2x,由题意可得C2:=1(a>0,b>0)的渐近线方程为y=±x,即有b=2a,又2c=4,即c=2,即有a2+b2=20,解得a=2,b=4,故选:B.10.函数y=sin(ωx+)在x=2处取得最大值,则正数ω的最小值为()A.B.C.D.【考点】三角函数的最值.【分析】由条件利用正弦函数的最值,求得正数ω的最小值.【解答】解:∵函数y=sin(ωx+)在x=2处取得最大值,故2ω+=2kπ+,k∈Z,故正数ω的最小正值为,故选:D.11.已知等边△ABC的边长为2,若=3,=,则•等于()A.﹣2 B.﹣C.2 D.【考点】平面向量数量积的运算.【分析】根据题意得出=(+),=﹣,运用数量积求解即可.【解答】解:等边△ABC的边长为2,=3,=,∴=(+),=﹣,∴•=(﹣﹣),=×(×4﹣4﹣×2×2×),=﹣2.故选A12.直线x=t分别与函数f(x)=e x+1的图象及g(x)=2x﹣1的图象相交于点A和点B,则|AB|的最小值为()A.2 B.3 C.4﹣2ln2 D.3﹣2ln2【考点】两点间距离公式的应用.【分析】设函数y=f(x)﹣g(x),利用导数y′判定函数的单调性与最小值,即可求出|AB|的最小值.【解答】解:设函数y=f(x)﹣g(x)=e x+1﹣(2x﹣1),则y′=e x﹣2,由y′>0,得x>ln2,由y′<0,得x<ln2,∴当x=ln2时,y=f(x)﹣g(x)e x+1﹣(2x﹣1)取得最小值,为e ln2+1﹣(2ln2﹣1)=4﹣2ln2;∴|AB|的最小值为4﹣2ln2.故选:C.二、填空题:本大题共4小题,每小题5分,共25分,把答案填在答题卡的相应位置上.13.函数f(x)=的定义域为{x|x}.【考点】函数的定义域及其求法.【分析】利用被开方数非负,得到不等式,求解即可得到函数的定义域.【解答】解:要使函数有意义,则:1﹣2x≥0,解得:x.函数的定义域为:{x|x}.故答案为::{x|x}.14.已知实数x,y满足,则目标函数z=x﹣y的最大值是4.【考点】简单线性规划.【分析】作平面区域,化简目标函数z=x﹣y为y=x﹣z,从而求最大值.【解答】解:作平面区域如下,化简目标函数z=x﹣y为y=x﹣z,故当过点(2,﹣2)时,z=x﹣y有最大值为2﹣(﹣2)=4,故答案为:4.15.将2红2白共4个球随机排成一排,则同色球均相邻的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】一一列举出所有的基本事件,找到满足条件的基本事件,根据概率公式计算即可.【解答】解:将2红2白共4个球随机排成一排,由红红白白,红白红白,红白白红,白红红白,白红白红,白白红红共6种,其中同色球均相邻的有2种,故同色球均相邻的概率为=,故答案为:16.已知函数f(x)=,则关于x的不等式f[f(x)]≤3的解集为(﹣∞,2] .【考点】分段函数的应用.【分析】令t=f(x),即有f(t)≤3,讨论t的范围,解得t≥﹣2,即f(x)≥﹣2,讨论x 的范围,解不等式即可得到所求范围.【解答】解:令t=f(x),即有f(t)≤3,可得或,即为﹣2≤t≤0或t>0,即有t≥﹣2,即f(x)≥﹣2,即为或,解得x≤0或0<x≤2,即为x≤2.故答案为:(﹣∞,2].三、解答题:本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17.已知等差数列{a n}的前n项和为S n,S3=﹣15,且a1+1,a2+1,a4+1成等比数列,公比不为1.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.【考点】数列的求和.【分析】(1)设等差数列{a n}的公差为d,根据a1+1,a2+1,a4+1成等比数列,可得=(a1+1)(a4+1),又S3=﹣15,可得=3a2=﹣15,解得a2,进而得到d.即可得出a n.(2)由(1)可得:S n=﹣n2﹣2n.可得b n==﹣=﹣,利用“裂项求和”即可得出.【解答】解:(1)设等差数列{a n}的公差为d,∵a1+1,a2+1,a4+1成等比数列,∴=(a1+1)(a4+1),又S3=﹣15,∴=﹣15,∴a2=﹣5.∴(﹣5+1)2=(﹣5﹣d+1)(﹣5+2d+1),解得d=0或d=﹣2.d=0时,公比为1,舍去.∴d=﹣2.∴a n=a2﹣2(n﹣2)=﹣5﹣2(n﹣2)=﹣2n﹣1.(2)由(1)可得:S n==﹣n2﹣2n.∴b n==﹣=﹣,∴数列{b n}的前n项和T n=+++…++=﹣=﹣+.18.某校拟在高一年级开设英语口语选修课,该年级男生600人,女生480人.按性别分层抽样,抽取90名同学做意向调查.(I)求抽取的90名同学中的男生人数;(Ⅱ)将下列2×2列联表补充完整,并判断能否在犯错误的概率不超过0.025的前提下认附:,其中n=a+b+c+d【分析】(I)根据分层抽样原理,求出男生应抽取的人数是多少;(Ⅱ)填写2×2列联表,计算观测值K2,对照数表即可得出结论.【解答】解:(I)该校高一年级的男、女生比为600:480=5:4,所以,按分层抽样,男生应抽取的人数是90×=50(名);22则K2==≈5.844>5.024,所以,在犯错误的概率不超过0.025的前提下认为“该校高一学生是否愿意选修英语口语课程与性别有关”.19.四棱锥E﹣ABCD中,AD∥BC,AD=AE=2BC=2AB=2,AB⊥AD,平面EAD⊥平面ABCD,点F为DE的中点.(Ⅰ)求证:CF∥平面EAB;(Ⅱ)若CF⊥AD,求四棱锥E﹣ABCD的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)取AE中点G,连接GF,GB,则EF,故四边形BCFG是平行四边形,于是CF∥BG,得出CF∥平面EAB;(2)由CF⊥AD得出BG⊥AD,又AB⊥AD,故AD⊥平面EAB,于是AD⊥EA,由面面垂直的性质得出EA⊥平面ABCD,即EA棱锥E﹣ABCD的高.【解答】证明:(I)取AE中点G,连接GF,GB,∵F是ED的中点,∴GF AD,有∵BC AD,∴GF,∴四边形BCFG是平行四边形,∴GB∥CF,又BG⊂平面EAB,CF⊄平面EAB,∴CF∥平面EAB,(2)∵CF⊥AD,CF∥BG,∴BG⊥AD,又AB⊥AD,BG⊂平面EAB,AB⊂平面EAB,BG∩AB=B,∴AD⊥平面EAB,∵EA⊂平面AEB,∴AD⊥EA,又平面EAD⊥平面ABCD,平面EAD∩平面ABCD=AD,EA⊂平面EAD,∴EA⊥平面ABCD,===1.∴V E﹣ABCD20.已知抛物线x2=2py(p>0),O是坐标原点,点A,B为抛物线C1上异于O点的两点,以OA为直径的圆C2过点B.(I)若A(﹣2,1),求p的值以及圆C2的方程;(Ⅱ)求圆C2的面积S的最小值(用p表示)【考点】抛物线的简单性质.【分析】(I)把A代入抛物线方程即可求出p,计算OA的中点及|OA|得出圆的圆心和半径,从而得出圆的方程;(II)设A(x1,),B(x2,),根据=0得出x1,x2的关系,利用基本不等式求出|OA|2的最小值,从而得出圆C2的最小面积.【解答】解:(I)∵A(﹣2,1)在抛物线x2=2py上,∴4=2p,即p=2.∴圆C2的圆心为(﹣1,),半径r==.∴圆C2的方程为(x+1)2+(y﹣)2=.(II)设A(x1,),B(x2,),则=(x2,),=(x2﹣x1,).∵OA是圆C2的直径,∴=0,即x2(x2﹣x1)+=0,∵x2≠0,x1≠x2,∴x22+x1x2=﹣4p2.∴x1=﹣(x2+).∴x12=x22++8p2≥16p2.当且仅当x22=即x22=4p2时取等号.∴|OA|2=x12+≥16p2+=80p2.∴圆C2的面积S=π•≥20πp2.21.已知函数f(x)=ex﹣xlnx,g(x)=e x﹣tx2+x,t∈R,其中e是自然对数的底数.(Ⅰ)求函数f(x)在点(1,f(1))处切线方程;(Ⅱ)若g(x)≥f(x)对任意x∈(0,+∞)恒成立,求t的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出原函数的导函数,得到f′(1)再求出f(1),代入直线方程的点斜式得答案;(Ⅱ)由g(x)≥f(x)对任意x∈(0,+∞)恒成立,可得e x﹣tx2+x﹣ex+xlnx≥0对任意x∈(0,+∞)恒成立.分离参数t,可得即t≤对任意x∈(0,+∞)恒成立.令F(x)=.两次求导可得x∈(0,1)时,F′(x)<0,x∈(1,+∞)时,F′(x)>0,得到F(x)在(0,1)上单调递减,F(x)在(1,+∞)上单调递增.从而得到F(x)≥F(1)=1.由此可得t的取值范围.【解答】解:(Ⅰ)由f(x)=ex﹣xlnx,得f′(x)=e﹣lnx﹣1,则f′(1)=e﹣1.而f(1)=e,∴所求切线方程为y﹣e=(e﹣1)(x﹣1),即y=(e﹣1)x+1;(Ⅱ)∵f(x)=ex﹣xlnx,g(x)=e x﹣tx2+x,t∈R,∴g(x)≥f(x)对任意x∈(0,+∞)恒成立.⇔e x﹣tx2+x﹣ex+xlnx≥0对任意x∈(0,+∞)恒成立.即t≤对任意x∈(0,+∞)恒成立.令F(x)=.则F′(x)=,设G(x)=,则G′(x)=对任意x∈(0,+∞)恒成立.∴G(x)=在(0,+∞)单调递增,且G(1)=0.∴x∈(0,1)时,G(x)<0,x∈(1,+∞)时,G(x)>0,即x∈(0,1)时,F′(x)<0,x∈(1,+∞)时,F′(x)>0,∴F(x)在(0,1)上单调递减,F(x)在(1,+∞)上单调递增.∴F(x)≥F(1)=1.∴t≤1,即t的取值范围是(﹣∞,1].请考生在第22题,23题,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-1:几何证明选讲]22.已知AB是圆O的直径,点C在圆O上(异于点A,B),连接BC并延长至点D,使得BC=CD,连接DA交圆O于点E,过点C作圆O的切线交AD于点F.(Ⅰ)若∠DBA=60°,求证:点E为AD的中点;(Ⅱ)若CF=R,其中R为圆C的半径,求∠DBA.【考点】与圆有关的比例线段.【分析】(1)先证明出△ABD为等边三角形,再连BE,根据三线合一定理证明出点E为AD的中点;(2)连CO,运用中位线定理证明出BE∥CF,继而证出BE=R,最后求出∠DAB.【解答】解:(Ⅰ)证明:∵AB为圆O的直径,∴AC⊥BD,而BC=CD.∴AB=AD,而∠DBA=60°,∴△ABD为等边三角形,连BE,由AB为圆的直径,∴AD⊥BE,∴E为AD中点.(Ⅱ)连CO,易知CO∥AD,∵CF为圆O的切线,∴CF⊥CO,∴CF⊥AD,又BE⊥AD,∴BE∥CF,且CF=BE,由CF=知BE=R,∴∠DAB=30°.[选修4-4:坐标系与参数方程]23.已知直线l:为参数),以坐标原点为极点,x轴的非负半轴为极轴且两坐标系中具有相同的长度单位,建立极坐标系,曲线C的极坐标方程为ρ2﹣2ρsinθ=a (a>﹣3)(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)若曲线C与直线l有唯一公共点,求实数a的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)曲线C的极坐标方程为ρ2﹣2ρsinθ=a(a>﹣3),把ρ2=x2+y2,y=ρsinθ代入化为直角坐标方程.(II)直线l:为参数),消去参数t,化为普通方程.利用直线与圆相切的充要条件即可得出.【解答】解:(I)曲线C的极坐标方程为ρ2﹣2ρsinθ=a(a>﹣3),化为直角坐标方程:x2+y2﹣2y=a,配方为:x2+=3+a>0.(II)直线l:为参数),消去参数t,化为普通方程:﹣y=0.∵曲线C与直线l有唯一公共点,∴圆心到直线l的距离d==3+a,解得a=﹣3.[选修4-5:不等式选讲]24.已知a>0,b>0,记A=+,B=a+b.(1)求A﹣B的最大值;(2)若ab=4,是否存在a,b,使得A+B=6?并说明理由.【考点】有理数指数幂的化简求值.【分析】(1)代入配方利用二次函数的单调性即可得出最大值;(2)假设存在a,b,使得A+B=6,则,令=x>0,=y>0,化为,令x+y=t>0,化为t2+t﹣10=0,判断此方程是否有实数根即可得出.【解答】解:(1)A﹣B=+﹣a﹣b=﹣﹣+1≤1,当且仅当a=b=时取等号.∴A﹣B的最大值是1.(2)假设存在a,b,使得A+B=6,则,令=x>0,=y>0,化为,令x+y=t>0,化为t2+t﹣10=0,∵△=1+40=41>0,且t1t2=﹣10<0.∴上述方程有正实数根,因此存在a,b,使得A+B=6,ab=4同时成立.2016年9月4日。

2016届安徽省合肥市第一中学高三段三考试试题数学(理)卷

2016届安徽省合肥市第一中学高三段三考试试题数学(理)卷

合肥一中2015-2016学年第一学期高三年级段三考试数学(理科)试卷分值 150 分 时长 120分一、选择题(本大题共12个小题,每小题5分,共60分.)1.已知函数()f x =的定义域为M ,()()ln 2g x x =+的定义域为N ,则()R M N =U ð( )A.{}22x x -≤<B. {}2x x ≥C. ∅D. {}2x x <2.在ABC ∆中,下列命题错误..的是( ) A.A B ∠>∠的充要条件是sin sin A B > B.A B ∠>∠的充要条件是cos cos A B < C.A B ∠>∠的充要条件是tan tan A B > D.A B ∠>∠的充要条件是cos cos sin sin A BA B<3.已知数列{}n a 是等比数列,37,a a 是方程2540x x -+=的两根,则5a =( ) A. 2B. 2-C. 2±D. 4 4. 设D 为ABC ∆所在平面内的一点,且满足2BC CD =u u u r u u u r,则( ) A. 1322AD AB AC =+u u u r u u u r u u u rB. 1322AD AB AC =-+u u u r u u ur u u u rC. 3122AD AB AC =-+u u u r u u ur u u u rD. 3122AD AB AC =-u u u r u u u r u u u r5.函数()()2sin ln 1f x x x =⋅+A. B. C.D.6.已知()()sin cos 0f x x x ωωω=+>,若()02y f x πθθ⎛⎫=+<< ⎪⎝⎭是周期为π的偶函数,则θ的值是( )A.8π B.6π C.4π D.3π 7.已知函数()lg f x x =,若方程()f x k =有两个不等的实根,αβ,则11αβ+的取值范围是( )A. ()1,+∞B. [)1,+∞C. ()2,+∞D. [)2,+∞8.若变量,x y 满足约束条件32122120,0x y x y x y x y -≥-⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩,则34z x y =+的最大值是( )A.12B.26C.28D.33 9. 已知sin 23sin 2αβ=,则()()tan tan αβαβ-=+( )A.2B.34C.32D.1210.设()()312f x x x =-++,{}n a 是公差为12的等差数列,且()()()()1234f a f a f a f a +++()5f a +()618f a +=,则1a =( ) A.14-B. 74-C. 54-D. 34-11.已知数列{}n a 满足()*123N n n a a n ++=∈,且14a =,其前n 项和为n S ,则满足不等式1230n S n --<的最小整数n 是( ) A.5 B.6 C.7D.812. 设()()()ln 01f x ax a =<<,过点(),0P a 且平行于y 轴的直线与曲线():C y f x =的交点为Q ,曲线C 在点Q 处的切线交x 轴于点R ,则PQR ∆的面积的最大值是( ) A.1B.24e C.12D.28e 二、填空题(本大题共4个小题,每小题5分,共20分.) 13.若函数()()x x f x x e ae -=+是偶函数,则a =________.14.已知向量,a b r r 的夹角为56π,且2a =r,b =r 23c a b =+r r r ,则c =r ________.15.设数列{}n a 满足1412n n n a a a +-=+,则首项1a =________时,此数列只有10项.16.定义函数()f x x x =<⋅<>>,其中x <>表示不小于x 的最小整数,如 1.32<>=, 2.12<->=-,当(]()*0,N x n n ∈∈时,函数()f x 的值域为n A ,记集合n A 中的元素的个数为n a ,则122015111a a a +++=L ________.三、解答题(解答应写出必要的文字说明、证明及演算步骤.) 17.(本小题满分12分)数列{}n a 满足:122a a ==,2122n n n a a a ++=-+. (Ⅰ)设1n n n b a a +=-,证明{}n b 是等差数列; (Ⅱ)求数列{}n a 的通项公式.18.(本小题满分12分)已知ABC ∆三个角,,A B C 所对的边分别为,,a b c ,且,,a b c 成等比数列. (Ⅰ)求角B 的取值范围;(Ⅱ)设()3sin 4cos f x x x =+,求()f B 的最大值及()f B 取得最大值时tan B 的值.19.(本小题满分12分)已知()ln f x x x =,()32g x x ax =+. (Ⅰ)讨论函数()g x 的极值点的个数;(Ⅱ)若不等式()()2f x g x '≤在()0,x ∈+∞上恒成立,求实数a 的取值范围.20.(本小题满分12分)设n S 是数列{}n a 的前n 项和,且11a =,0n a ≠,()222*12,Nn n n S n a S n n -=+≥∈. (Ⅰ)证明()*22N n n a a n +-=∈;(Ⅱ)若3log n n a b =,求数列{}n n a b ⋅的前n 项和n T .21.(本小题满分12分) 设()()1x f x a x e =--.(Ⅰ)当0x >时,()0f x <,求实数a 的最大值;(Ⅱ)设()1x e g x x -=,11x =,()()1*N n x n e g x n +=∈,证明()*11N 2n n n x x n +>>∈.请考生在22-24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目的题号涂黑.把答案填在答题卡上. 22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 是O e 的直径,弦,BD CA 的延长线相交于点E ,EF 垂直BA 的延长线于点F ,求证:(Ⅰ)DEA DFA ∠=∠;(Ⅱ)2AB BE BD AE AC =⋅-⋅.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1C 的参数方程为12x ty t =+⎧⎨=+⎩(t 为参数),以该直角坐标系的原点O 为极点,x 轴的非负半轴为极轴的极坐标系下,圆2C的方程为2cos ρθθ=-+. (Ⅰ)求直线1C 的普通方程和圆2C 的圆心的极坐标; (Ⅱ)设直线1C 和圆2C 的交点为,A B ,求弦AB 的长. 24.(本小题满分10分)选修4-5:不等式选讲已知函数()()2R f x m x m =--∈,且()20f x +≥的解集为[]1,1-. (Ⅰ)求实数m 的值; (Ⅱ)若,,a b c 为正实数,且11123m a b c++=,求证239a b c ++≥.ABO•DCEF合肥一中2015-2016学年第一学期高三年级段三考试数学(理科)试卷参考答案二、填空题13.1-;15.710;16.20151008. 三、解答题17.(1)11212,0n n b b b a a +-==-=,所以数列{}n b 是以为0首项,2为公差的等差数列.(2)由(1)可知2(1)n b n =-,累加可得234n a n n =-+18.(1)由条件可知2b ac =所以222221cos 222a c b a c ac B ac ac +-+-==≥,所以03B π<≤. (2)()5sin()f x x ϕ=+,其中43sin ,cos 55ϕϕ== 所以()5sin()f B B ϕ=+,32ππϕ<<,50336B B ππϕπ<≤∴<+≤Q 可知当2B πϕ+=时,max ()5f B =.此时cos 3tan sin 4B ϕϕ== 19.(1)2()3210g x x ax '=++=的判别式2412a ∆=-.①当a ≤≤24120a ∆=-≤,()0g x '≥,所以()yg x =在R 单调递增,无极值,无极值点.②当a <a >0∆>所以2()3210g x xax '=++=有两个不等的实根12,x x ,则12x x =<=列表:根据表格可知此时函数()x g 有两个极值点,极大值点1x ,极小值点2x .(2)即:123ln 22++≤ax x x x 对()+∞∈,0x 上恒成立可得x x x a 2123ln --≥对()+∞∈,0x 上恒成立 设()xx x x h 2123ln --=, 则()()()22'213121231x x x x x x h +--=+-=令()0'=x h ,得31,1-==x x (舍)当10<<x 时,()0'>x h ;当1>x 时, ()0'<x h∴当1=x 时,()x h 取得最大值, ()x h max =-2,2-≥∴a .a ∴的取值范围是[)+∞-,2.20.(1).当2n ≥时,由已知得2221nn n S S n a --= 因为10n n n a S S -=-≠,所以21n n S S n -+=. …………………………①于是21(1)n nS S n ++=+. …………………………………………………②由②-①得:121n n a a n ++=+.……………………………………………③于是2123n n a a n +++=+.……………………………………………………④由④-③得:22(2)n n a a n +-=≥.………………………………………⑤由①有214S S +=,所以22a =.由③有235a a +=,所以33a =,311a a ∴-=所以:*22()n n a a n N +-=∈(2)由(1)可知:数列21{}k a -和2{}k a 分别是以1,2为首项,2为公差的等差数列. 所以22(1)22ka k k =+-⨯=,211(1)221k a k k -=+-⨯=-*()n a n n N ∴=∈,3,3n n n n n b a b n ∴=⋅=⋅由错位相减法可得到:1(21)334n n n T +-⋅+=21.(1)()(1)e x f x a x '=--,令()0f x '=得:1x a =- 当10a -≤时,'()0f x ≤在0>x 时恒成立,所以()yf x =在上(0,)+∞单调递减;()(0)10f x f a ∴<=-≤ 即当0>x 时,0<)(x f 成立当10a ->时,()yf x =在(0,1)a -上单调递减增,在(1,)a -+∞单调递减;0010,()(0)10x a f x f a ∴∃=->>=->与0>x 时,0<)(x f 矛盾,以实数a 的最大值为1.23.(Ⅰ)由1C 的参数方程消去参数t 得普通方程为10x y -+=圆2C 的直角坐标方程22(1)(3)4x y ++=,所以圆心的直角坐标为(3)-,因此圆心的一个极坐标为2(2,)3π.(答案不唯一,只要符合要求就给分) (Ⅱ)由(Ⅰ)知圆心(3)-到直线10x y -+=的距离13162d --+==所以AB ==. 24.解:(1) ∵ f(x +2)=m -|x|≥0,∴ |x|≤m , ∴ m≥0,-m≤x≤m ,∴ f(x +2)≥0的解集是[-1,1],故m =1.(2)由(1)知1a +12b +13c=1,a 、b 、c ∈R+,由柯西不等式得a +2b +3c =(a +2b +3c)⎝⎛⎭⎫1a +12b +13c ≥(a·1a +2b·12b +3c·13c)2=9. 另解:1112332()(23)3()()()9232323a b a c c b a b c a b c b a c a b c ++++=++++++≥当且仅当"23"a b c ==时,取等号.。

安徽省合肥市高三第一次教学质量检测——数学(理)数学

安徽省合肥市高三第一次教学质量检测——数学(理)数学

安徽省合肥市2015届高三第一次教学质量检测数学(理)试题一、选择题(本大题10小题,每小题5分,共50分) 1、复数为虚数单位)的虚部为A 、2B 、C 、1D 、2、已知集合2{|12},{|10}A x x B x x =≤≤=-≤,则 A 、 B 、 C 、 D 、3、函数()sin()(0,0)f x A x A ωϕω=+>>的部分图像如图所示,则的解析式可以为A 、B 、C 、13()3sin()24f x x π=-D 、13()3sin()24f x x π=+4、圆上到直线的距离为的点的个数为 A 、1 B 、2 C 、3 D 、45、已知一个底面为正六边形,侧棱长都相等的六棱锥的正视图与俯视图如图所示, 若该几何体的底面边长为2,侧棱长为,则该几何体的侧视图可能是6、的展开式中的系数是A 、B 、3C 、D 、47、实数满足,使取得最大值的最优解有两个,则的最小值为 A 、0 B 、 C 、1 D 、8、已知椭圆为右焦点,A 为长轴的左端点,P 点为该椭圆上的动点,则能够使的P 点的个数为 A 、4 B 、3 C 、2 D 、1 9、“”是“函数在上是单调函数”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 10、已知平行四边形ABCD ,点,…,和,…, 分别将线段BC 和DC 等分(,如图, …112n AM AN AN -++++…,则A 、29B 、30C 、31D 、32二、填空题(本大题共5小题,每小题5分,共25分)11、某校高一、高二、高三年级的学生人数之比为10:8:7,按分层抽样从中抽取200名学生作为样本,若每人被抽到的概率是0.2, 则该校高三年级的总人数为_________12、已知函数1()(0)()2(4)0)xx f x f x x ⎧≤⎪=⎨⎪->⎩(,则______13、右边的程序框图,输出的结果为__________ 14、在中,角A 、B 、C 所对的边分别为, 若,则_____15、已知8个非零实数,…,,向量,234356478(,),(,),(,)OA a a OA a a OA a a ===,对于下列命题:①,…,为等差数列,则存在,(1,8,,,)i j i j i j i j N *≤≤≠∈,使与向量共线;②若,…,为公差不为0的等差数列, (,,,1,8)i j i j N i j *≠∈≤≤,(1,1),{|}q M y y n q ===∙,则集合M 中元素有13个;③若,…,为等比数列,则对任意,(14,,)i j i j i j N *≤<≤∈,都有;④若,…,为等比数列,则存在,(14,,)i j i j i j N *≤<≤∈,使;⑤若,(14,,)i j i j i j N *≤<≤∈,则的值中至少有一个不小于0,上述命题正确的是______(填上所有正确命题的序号) 三、解答题(本大题共6小题,共75分) 16、已知函数1()sin()cos()(01)362f x x x ππωωω=+--<<的图像关于直线对称 (1)求的值; (2)若12(),(,)633f ππαα=∈-,求的值 17、一家医药研究所,从中草药中提取并合成了甲、乙两种抗“H 病毒”的药物,经试验,服用甲、乙两种药物痊愈的概率分别为,现已进入药物临床试用阶段,每个试用组由4位该病毒的感染者组成,其中2人试用甲种抗病毒药物,2人试用乙种抗病毒药物,如果试用组中,甲种抗病毒药物治愈人数人数超过乙种抗病毒药物的治愈人数,则称该组为“甲类组”, (1)求一个试用组为“甲类组”的概率;(2)观察3个试用组,用表示这3个试用组中“甲类组”的个数,求的分布列和数学期望。

安徽省合肥市2016届高三下学期第三次教学质量检测数学(理)试题 含答案

安徽省合肥市2016届高三下学期第三次教学质量检测数学(理)试题 含答案

数学试题(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合{}042<-∈=x xR x M ,集合{}4,0=N ,则=N M ( )A .[0,4]B .[0,4)C .(0,4]D .(0,4) 2。

设i 为虚数单位,复数ii z -=3,则z 的共轭复数=z ( )A .—1—3iB .1-3iC .—1+3iD .1+3i 3.在正项等比数列{}na 中,100110091008=⋅a a,则=+⋅⋅⋅++201621lg lg lg a aa ( )A .2015B .2016C .—2015D .—20164。

已知双曲线12222=-by a x 的焦距为10,一条渐近线的斜率为2,则双曲线的标准方程是( )A .120522=-y xB .152022=-y xC .1802022=-y xD .1208022=-y x5.直线01)1(:2=+-+y ax m ,直线01)22(:=--+y a x n ,则“a=—3”是“直线m 、n 关于原点对称"的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.执行如图所示的程序框图,若输入的m ,n 分别为204,85,则输出的m=( )A .2B .17C .34D .857。

若等差数列{}n a 的公差d ≠0,前n 项和为n S ,若*∈∀N n ,都有10S Sn≤,则( )A .*∈∀N n ,1+≤n na aB .0109>⋅a aC .172S S> D .019≥S8.设不等式组⎪⎩⎪⎨⎧≥-+≤--≥+-02,084,0632y x y x y x 表示的平面区域为Ω,则当直线y=k(x-1)与区域Ω有公共点时,k 的取值范围是( )A .),2[+∞-B .]0,(-∞C .]0,2[-D .),0[]2,(+∞--∞ 9.52)2)(21(x x+-的展开式中,x 项的系数是( )A .58B .62C .238D .24210。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合肥市2016年高三第一次教学质量检测
数学试题(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟,祝各位考生考试顺利!
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数
1
2i
+(其中i 是虚数单位,满足21)i =-对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.sin18sin 78cos162cos78⋅-⋅ 等于
A.2-
B.12-
C.2
D.12
3.一次数学考试后,某老师从自己带的两个班级中各抽取5人,记录他们的考试成绩,
得到如右图所示的茎叶图,已知甲班5名同学成绩的平均数为81,乙班5名同学的中位数为73,则x y -的值为
A.2
B.2-
C.3
D.3- 4.“1x ≥”是“1
2x x
+
≥”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件
5.执行如下程序框图,则输出结果为
A.2
B.3
C.4
D.5 6.已知,,l m n 为三条不同直线,,,αβγ为三个不同平面,则下列判断正确的是
A .若//,//m n αα,则//m n B.若,//,m n αβαβ⊥⊥,则m n ⊥ C.若,//,//l m m αβαβ= ,则//m l D.若,,,m n l m l n αβαγ==⊥⊥ ,则
l α⊥
7.ABC ∆的三内角,,A B C 所对的边分别是,,a b c ,若7
cos ,2,3,8
A c a b =
-==则a 等于 A.2 B.52 C .3 D.7
2
8.若双曲线221:
128x y C -=与双曲线22
222:1(0,0)x y C a b a b
-=>>的渐近线相同,
且双曲线2C 的焦距为则b 等于
A .2 B.4 C.6 D.8 9.某几何体的三视图如图所示,则该几何体的体积为
A.
476 B.152 C.233
D.8 10.某企业的4名职工参加职业技能考核,每名职工均可从4个备选考核项目中任意抽取一个参加考核,则恰有一个项目未被抽中的概率为 A.
916 B.2764 C.81256
D.716 11.在
1
(1)
n
k
k x =+∑的展开式中含2x 项系数与含10x 项系数相等,则正整数n 的取值为
A.12
B.13
C.14
D.15
12.函数22()3,()2x f x x x a g x x =-++=-,若[()]0f g x ≥对[0,1]x ∈恒成立,则实数a 的取值范围是
A.[,)e -+∞
B.[ln 2,)-+∞
C.[2,)-+∞
D.1(,0]2
-
第Ⅱ卷(非选择题 共90分)
本卷包括必考题和选考题两部分,第13题至第21题为必考题,每个考生都必须作答,第22题至第24题为选考题,考生根据要求作答.
二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置上. 13.已知集合2{0,1,3},{|30}A B x x x ==-=,则A B =
14.已知实数,x y 满足26002x y x y x -+≥⎧⎪
+≥⎨⎪≤⎩
,则目标函数z x y =-的最大值是
15.已知等边ABC ∆的边长为2,若3,BC BE AD DC == ,则BD AE ⋅=
16.存在实数ϕ,使得圆面224x y +≤恰好覆盖函数sin()y x k
π
ϕ=+图象的最高点或最低
点共三个,则正数k 的取值范围是
三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17(本小题满分12分) 在数列{}n a 中,*1111,,.22n n n a a a n N n
++==∈ (Ⅰ)求证:数列n a n ⎧⎫

⎬⎩⎭
为等比数列; (Ⅱ)求数列{}n a 的前n 项和.
18(本小题满分12分)
某医院对治疗支气管肺炎的两种方案,A B 进行比较研究,将志愿者分为两组,分别采用方案
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?
附:2
2
()n ad bc K -=,其中n a b c d =+++
四棱锥E ABCD -中,//,222,AD BC AD AE BC AB AB AD ====⊥,平面EAD ⊥平面
ABCD ,点F 为DE 的中点.
(Ⅰ)求证://CF 平面EAB ;
(Ⅱ)若CF AD ⊥,求二面角D CF B --的余弦值.
20(本小题满分12分)
设,A B 为抛物线2y x =上相异两点,其纵坐标分别为1,2-,分别以,A B 为切点作抛物线的切线12,l l ,设12,l l 相交于点P . (Ⅰ)求点P 的坐标;
(Ⅱ)M 为,A B 间抛物线段上任意一点,设PM PA PB λμ=+
,是否为定值,
如果为定值,求出该定值,如果不是定值,请说明理由.
21(本小题满分12分)
已知函数2
()4
x x
f x e =-
,其中 2.71828e = 是自然对数的底数. (Ⅰ)设()(1)'()g x x f x =+(其中'()f x 为()f x 的导函数),判断()g x 在(1,)-+∞上的单调
性;
(Ⅱ)若()ln(1)()4F x x af x =+-+无零点,试确定正数a 的取值范围.
请考生在第22题,23题,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.
22(本小题满分10分)选修4-1:几何证明选讲
已知AB 是圆O 的直径,点C 在圆O 上(异于点,)A B ,连接BC 并延长至点
D ,使得BC CD =,连接DA 交圆O 于点
E ,过点C 作圆O 的切线交AD 于点
F .
(Ⅰ)若60DBA ∠=
,求证:点E 为AD 的中点;
(Ⅱ)若1
2
CF R =,其中R 为圆C 的半径,求DBA ∠
23(本小题满分10分)选修4-4:坐标系与参数方程
已知直线112:(x t l t y ⎧=+⎪⎪

⎪=⎪⎩为参数),以坐标原点为极点,x 轴的非负半轴为极轴且两坐标系中具有相同的长度单位,建立极坐标系,曲线C 的极坐标方程
为2sin (3)a a ρθ-=>-
(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程; (Ⅱ)若曲线C 与直线l 有唯一公共点,求实数a 的值.
24(本小题满分10分)选修4-5:不等式选讲
已知0,0a b >>,记A B a b ==+.
(Ⅰ)B -的最大值;
(Ⅱ)若4,ab =是否存在,a b ,使得6?A B +=并说明理由.。

相关文档
最新文档