用样本的频率分布估计总体分布

合集下载

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。

在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。

为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。

一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。

一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。

例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。

二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。

频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。

这样可以更好地反映出组与组之间的差异。

三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。

在直方图上,x轴表示不同的组或区间,y轴表示频率。

我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。

通过绘制多个矩形,可以将频率分布更直观地展示出来。

在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。

2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。

3.直方图的矩形之间应该没有间隙,以保证数据的完整性。

四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。

我们可以基于样本数据构建直方图,并计算每个组的频率。

然后,我们可以将样本频率分布与总体的频率分布进行比较。

如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。

当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布



ቤተ መጻሕፍቲ ባይዱ
ii.组距:各组数据左右两各端点之间的距离。 (3)分组:各组数据所在区间取左闭右开区间,最后一个 区间取闭区间。 (4)填表:统计各组数据频数、计算频率,将频数和频率 填在表格相应空格内。 2、例题 (1)讲与练P36 类型一 画样本的频率分布直方图 (例1) (2 )讲与练P36 类型一 画样本的频率分布直方图 (变式训练1)
(2)将茎按由小到大的顺序排成一列,写在左侧或右侧; (3)将共茎的表示叶的数据按由小到大的顺序排成一行写 在茎的左侧。
3、注意 (1)对于重复出现的叶不能省略; (2)若有双叶则应对称,即左边的叶按由小到大的顺序排 列,则右边的叶则应按由大到小的顺序排列。 4、例题 (1)讲与练P37 类型三 茎叶图及其应用 (例3) (2)讲与练P37 类型三 茎叶图及其应用 (变式训练3) 四、课堂作业
三、频率分布直方图
1、概念:用直方图的形式来表示频率分布规律的方图叫频
率分布直方图
2、制作 (1)取一直角标架,将直角标架的横轴连续分成几段; (2)以各段为边做矩形,其中矩形的底表示组距,高表示
频率 组距
(3)在各矩形中的底和高所对应的轴相应位置标注相应数据。 3、意义
频率 (1)各矩形面积为频率与 组距
用样本的频率分布 估计总体的频率分布
一、基本概念
1、频数:将全部数据分成几组后,各组数据的个数叫这组数据的频数。
2、频率:各组数据的频数除以全部数据的商叫这组数据的频率。
二、频率分布表
1、画频率分布表的步骤 (1)求极差(极差是全部数据的最大值与最小值之差) (2)求组距和组数
极差 极差 极差 整数,则 组数 整数 ,则 组数 1 i.若 极差 ,若 组距 组距 组距 组距

用样本的频率分布估计总体的分布

用样本的频率分布估计总体的分布
用样本的频率分布估计总体的分布
影响组数与组距的因素
• 因素1:样本容量的大小; • 因素2:原始数据的精细程度; • 当样本容量不超过100时,常分成5-12组。
这是由统计经验获得的。
用样本的频率分布估计总体的分布
理论迁移
例 某地区为了了解知识分子的年龄结构, 随机抽样50名,其年龄分别如下:
42,38,29,36,41,43,54,43,34,44, 40,59,39,42,44,50,37,44,45,29, 48,45,53,48,37,28,46,50,37,44, 42,39,51,52,62,47,59,46,45,67, 53,49,65,47,54,63,57,43,46,58. (1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计年龄在32~52岁的知识分子所占的比例 约是多少.
组距
连接频率分布直方图中 各小长方形上端的中点,
得到频率分布折线图
0.5 0.4 0.3 0.2 0.1
0.5 1 1.5
月均用 水量/t
2 2.5 3 3.5 4 4.5
用样本的频率分布估计总体的分布
总体密度曲线
当样本容量无限增大,分组的组距无限缩小,那么
频率分布折线图就会无限接近一条光滑曲线——总体密
用样本的频率分布估计总体的分布
用样本的频率分布估计总体的分布
练习:某中学高一(2)班甲,乙两 名同学自高中以来每场数学考试成 绩情况如下:
甲的得分:95,81,75,91,86, 89,71,65,76,88,94
乙的得分:83,86,93,99,88, 96,98,98,79,85,97
画出两人数学成绩茎叶图,请根据 茎叶图对两人的成绩进行比较。

《用样本的频率分布估计总体分布》教学设计 (1)

《用样本的频率分布估计总体分布》教学设计 (1)

《用样本的频率分布估计总体分布》教学设计教学目标:1 知识与能力目标:(1).了解样本的频率分布与总体分布的关系,能用样本的频率分布去估计相应的总体分布。

(2).在表示样本数据的过程中,学会列出频率分布表、画频率分布直方图、频率折线图,体会它们各自的特点。

(3).通过学生应用所学知识解决实际问题,进一步提高学生理论联系实际的能力。

2 情感目标:(1)渗透数形结合思想。

(2)结合教学内容培养学生学习数学的兴趣及“用数学”的意识,激励学生勇于自我创新。

(3)培养学生普遍联系、数学来源于实践又指导实践的辩证唯物主义观点及勇于探索的创新精神。

教学重点:通过实例体会分布的意义和作用,能做出样本的频率分布表、画频率分布直方图和频率折线图。

教学方法:以教师为主导,学生为主体,以能力发展为目标,强化学生的注意力及新旧知识的联系,通过教师讲授、学生尝试练习,调动学生的积极性,发挥学生的主体作用。

教学环节教学内容师生互动设计意图复习统计的基本思想方法是用样本估计总体,即通过从总体中抽取一个样本,根据样本的情况去估计总体。

前面我们学习了哪些抽样方法?问题:抽取样本后怎样用样本来估计总体呢?即用什么方法来处理得到的样本数据,来估计、推测总体的特征、特性?理论证明,可以用样本的频率分布估计总体的分布,用样本数字特征估计总体的数字特征。

本节我们学习用样本的频率分布估计总体的分布,教师提出问题,铺垫复习,学生思考、积极回答问题教师根据学生的回答、进一步提出问题,导入新课。

学生思考、讨论教学重难点新课前的复习即可加深对学过的知识的理解,又可为学习新知识埋下伏笔。

先设疑、激发学生的求知欲望、提高学生学习教学的兴趣让学生了解本节学生内容和学习的重难点,为学好本节做好知识和心理上的准备。

导入(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量,结果如下(单位:厘米)167 154 159 166 169 159 156 166162 158 159 156 166 160 164 160 157 156 157 161 158 158153 158 164 158 163 158 153157 162 162 159 154 165 166157 151 146 151 158 160 165158 163 163 162 161 154 165162 162 159 157 159 149 164 168 159 153我们希望了解身高在哪个小范围内的学生多,在那个小范围内的学生少?(2)为了考察甲、乙两种小麦的长势,分别从中抽取了10株苗,测得苗高如下(单位:厘米)甲:12 13 14 15 10 16 13 11 15 11乙:11 16 17 14 13 19 6 8 1016问:那种小麦的10株苗高比较整齐?频率分布直方图如果样本容量较大,很难从一个个数字中直接看出样本所包含的信息。

数学高一(北师大)必修3素材 1.3用样本的频率分布直方图估计总体分布的过程与步骤

数学高一(北师大)必修3素材 1.3用样本的频率分布直方图估计总体分布的过程与步骤

用样本的频率分布直方图估计总体分布的过程与步骤一.频率分布的概念是指一个样本数据在各个小范围内所占比例的大小.可以用样本的频率分布估计总体的频率分布.二. 编制频率分布表的步骤1.频率分布表:我们把反映总体频率分布的表格称为频率分布表。

2.编制频率分布表的步骤如下:⑴找到最大最小值,求全距;决定组数,算得组距;⑵分组通常对组内数值所在区间取左闭又开区间,最后一组取闭区间;⑶登记频数,计算频率,列出频率分布表.【注意】:在决定组数以后有可能要适当的调整全距,既如果全距不利于分组(如不能被组数整除),可适当增加全距,(只能加不能减)如在左右两端各增加适当的范围(尽量使两端增加量相同).例1.从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高的样本,数据如下(单位:cm)。

试作出该样本的频率分布表.解:最大值=180,最小值=151,他们相差29,决定分为10组,则需将全距调整为30,组距为3,既每个小区间的长度为3,组距=全距/组数.可取区间[150.5,180.5]三. 作频率分布直方图的步骤我们先以上面的例1举例说明:例2.作出例1中数据的频率分布直方图.解:(1)先制作频率分布表,然后做直角坐标系,以横轴表示身高,纵轴表示频率/组距.(2)在横轴上标上150.5,153.5‥‥‥180.5表示的点(为方便起见,起始点150.5可适当前移).(3)在上面标出的各点中,分别以连接相邻两点的线段为底作矩形,高等于该组的频率/组距.1. 作频率分布直方图的步骤:把横轴分成若干段,每一线段对应一个组的组距,然后以此线段为底作一矩形,它的高等于该组的频率/组距,这样得到一系列的矩形.2.几何意义:每个矩形的面积恰好是该组上的频率.3.频率直方图的优点:更直观,形象地反映了样本的分布规律,如在164附近达到峰值。

(一般取最高矩形的中点).四.例题精析例3.下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm)(1)列出样本频率分布表﹔(2)一画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm的人数占总人数的19%.例4.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.第二小组的频率是多少?样本容量是多少?若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案教案:用样本的频率分布估计总体分布一、教学目标:1.了解频率分布的概念和作用;2.学会使用频率分布来估计总体分布;3.掌握构建频率分布表的方法;4.能够利用频率分布表对总体进行估计。

二、教学内容:1.频率分布的概念和作用2.构建频率分布表的方法3.利用频率分布表对总体进行估计三、教学过程:一、频率分布的概念和作用(10分钟)1.频率分布是指对一组数据中各个数值出现的次数进行统计,从而得到数值的分布情况。

2.频率分布的作用是可以帮助我们了解数据的分布规律,从而对总体进行估计。

二、构建频率分布表的方法(30分钟)1.确定数据的分组区间:首先需要确定分组的宽度,即把数据分为若干个区间。

常用的方法有等宽分组和等频分组。

2.计算各个分组的频数:统计每个区间内数据的个数。

3.计算各个分组的频率:将各个分组的频数除以总样本数量,得到各个分组的频率。

4.制作频率分布表:将各个分组的上界、下界、频数和频率列成表格。

三、利用频率分布表对总体进行估计(40分钟)1.利用频率分布表进行估计的方法有两种:直接估计和间接估计。

2.直接估计是通过频率分布表直接读取各个分组的频率来估计总体分布。

3.间接估计是通过频率分布表的图形化表示来估计总体分布,常用的图形有直方图和折线图。

4.对于直方图,可以通过观察分布的形状和峰值来估计总体的分布情况。

5.对于折线图,可以通过观察分布曲线的形状来估计总体的分布情况。

四、练习和小结(20分钟)1.让学生根据给定的数据,完成频率分布表的构建。

2.让学生根据给定的频率分布表,进行总体分布的估计。

3.对学生进行小结和概念回顾,检查他们对于频率分布和总体估计的理解程度。

四、教学反思:通过本节课的教学,学生能够了解频率分布的概念和作用,掌握构建频率分布表的方法,以及利用频率分布表对总体进行估计的方法。

在教学过程中,可以利用实际案例和练习来加深学生对于频率分布和总体估计的理解。

用样本的频率分布估计总体分布 课件

用样本的频率分布估计总体分布     课件
频率 (3)在 xOy 坐标平面内画频率分布直方图时,x=样本数据,y=组距,
频率 这样每一组的频率可以用该组的组距为底、组距为高的小矩形的 面积来表示.其中,矩形的高=频组率距=组距×样1 本容量×频数;
(4)同样一组数据,如果组距不同,横轴、纵轴单位不同,得到的 频率分布直方图的形状也会不同; (5)同一个总体,由于抽样的随机性,如果随机抽取另外一个容量 为100的样本,所形成的样本频率分布直方图一般会与前一个样本 频率分布直方图有所不同,但它们都可以近似地看做总体的分布.
【探究1】 一个容量为n的样本,分成若干组,已知某组的频数 和频率分别为40,0.125,则n的值为________. 解析 由题意得4n0=0.125,解得 n=320.
答案 320
【探究2】 在画频率分布直方图时,某组的频数为10,样本容量
为50,总体容量为600,则该组小矩形的面积是______.
解析 该组小矩形的面积即是数据落在该组的频率:1500=15.
答案
1 5
【探究3】 从某小区抽取100户居民进行月用电量调查,发现其 用电量都在50至350度之间,频率分布直方图如图所示.直方图中 x的值为________.
解析 ∵(0.002 4+0.003 6+0.006 0+x+0.002 4+0.001 2)×50 =1,∴x=0.004 4. 答案 0.004 4
用样本的频率分布估计总体分布
知识点1 频率分布直方图 1.频率分布直方图的画法
最大值与最小值
不小于k的最小
左闭右开
分组 频数累计 频数
频率
合计
样本容量
1
频率/组距 各小长方形的面积
1
2.频率分布折线图与总体密度曲线

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布
2019/4/10
总体密度曲线
反映了总体在各个范围内取值的百分比,精确地 反映了总体的分布规律。是研究总体分布的工具. 用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
定额管理,即确定一个居民月用水量标准a, 用水量不超过a的部分按平价收费,超出a的 部分按议价收费.那么①标准a定为多少比较合 理呢? ②为了较合理地确定这个标准,你认 为需要做哪些工作?
通过抽样,我们获得了100位居民某年的月平均 用 水量(单位: t) ,如下表:
思考:由上表,大家可以得到什么信息?
2019/4/10
二、画频率分布直方图的步骤
1.求极差(即一组数据中最大值与最小值的差)
4.3 - 0.2 = 4.1
极差 4.1 2.决定组距与组数: = 组距= = 0.5 8 组数
当数据在100个以内时,常分8-12组.
3.将数据分组
[0,0.5 ),[0.5,1 ),…,[4,4.5]
4.列频率分布表
月均用水量 /t 4.5
归纳: 作频率分布直方图的方法为:
把横轴分成若干段,每一段对应一个组 的组距,以此线段为底作矩形,高等于 该组的频率/组距, 这样得到一系列矩形, 每一个矩形的面积恰好是该组上的频率, 这些矩形构成了频率分布直方图.
三、频率分布直方图再认识 1、小长方形
频率
的面积总和=?
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
2019/4/10
当总体中的个体数很多时(如抽样调查全国城市 居民月均用水量) ,随着样本容量的增加,作图时 所分的组数增多,组距减少,你能想象出相应的 频率分布折线图会发生什么变化吗?

用样本的频率分布估计总体的分布

用样本的频率分布估计总体的分布

频率分布表和频率分布直方图频率分布表和频率分布直方图教学目标:1、知识与技能目标①使学生会列出频率分布表,画出频率分布直方图,理解频率分布表和频率分布直方图及其特点。

用频率分布直方图解决简单实际问题。

②能根据样本频率分布表和频率分布直方图估计总体分布,了解样本频率分布表和频率分布直方图的随机性和规律性。

2、过程与方法目标通过绘制频率分布直方图体会利用频率分布直方图研究样本数据的方法。

经历用频率分布表和频率分布直方图估计总体分布情况的过程。

3、情感、态度与价值观目标在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解样本分布与总体分布的关系,初步体会样本频率分布的随机性。

体会统计思维与确定性思维的差异。

初步形成对数据与数据处理过程的评价意识。

教学重点:列频率分布表,画频率分布直方图,用样本估计总体的思想,用样本的频率分布估计总体的分布。

教学难点:样本频率分布表、频率分布直方图的具体绘制方法;对总体分布的理解;统计思维的建立。

教学方法:以教师为主导,学生为主体,以能力发展为目标,从学生的认识规律出发,进行启发、诱导、探索,让学生充分阅读、练习、讨论,教师适时讲授,充分调动学生的学习积极性,层层设疑,发挥学生的主体作用,引导学生在自主学习与分组讨论过程中体会知识的价值,感受知识的无穷魅力。

教学准备:1、教学课件2、学案教学流程图:教学过程:一、复习回顾,引入新课1、什么是频数?什么是频率?2、什么是极差?极差与组数、组距的关系如何?3、随机抽样的原则是什么?抽取方法有哪些?4、我们抽样的目的是什么?如引例中的样本,从这些数据中你可以获得什么信息?学生思考回答。

教师总结:1、频数:在某个范围内数据出现的次数。

2、频率:某一数据在某个范围出现频率计算方法是频数除以数据的总数(即样本容量)。

3、极差=最大值-最小值,极差又称为全距。

组数=组距极差4、抽样是为了从样本中获取信息,来估计总体的一些性质和特点,但是面对杂乱无章的数据,我们无法直接看出原始数据包含的更多信息。

人教版高中数学必修3A版用样本的频率分布估计总体分布课件

人教版高中数学必修3A版用样本的频率分布估计总体分布课件
2.2.1用样本的频率分布估计总体分布(2)
复习:一、画频率分布直方图的步骤:
1、求极差(即一组数据中最大值与最小值的差) 它 反映一组数据的变化范围。 2、决定组距与组数(将数据分组) ①组距与组数的确定没有固定的标准,需要尝试与选择。 ②组数与样本容量有关,一般样本容量越大,所分组数越 极差 多。当样本容量在100个以内时,常分5-12组。 组数= 组距 注意区间的开闭(先闭后开) 3、 将数据分组: 4、列出频率分布表.(频数:落在各小组内的数据的个 数,频率:每小组的频数与数据总数的比值) 第几组频数 第几组频率 样本容量 5、画出频率分布直方图。
我们可以画出茎叶图,也就是中间的数表示十位数, 旁边的数表示两个人得分的个位数,就象一棵树的茎 与叶子一样,能更直观地看出这两个人的得分情况。
1、某赛季甲、乙两名篮球运动员每场比赛得分的原始记录 如下: (1)甲运动员得分:13,51,23,8,26,38,16,33,14,28,39 (2)乙运动员得分: 49,24,12,31,50,31,44,36,15,37,25,36,39
茎叶图

8 4ห้องสมุดไป่ตู้6 3 3 6 8 0 1 2 5 5 4

2
3
3 8 9
1 6 1 6 7 9
4 9
4 1
5
0
1、某赛季甲、乙两名篮球运动员每场比赛得分的原始记录 如下: (1)甲运动员得分:13,51,23,8,26,38,16,33,14,28,39 (2)乙运动员得分: 49,24,12,31,50,31,44,36,15,37,25,36,39 甲 12, 15, 24, 25, 31, 31, 36, 36, 37, 39, 44, 49, 50.

2.2.1 用样本的频率分布估计总体分布 课件(人教A版必修3) (1)

2.2.1 用样本的频率分布估计总体分布 课件(人教A版必修3) (1)

)
【做一做 2-2】 在画频率分布直方图时, 某组的频数为 10, 样本容量为 50, 总体容量为 600, 则该组的频率是( A.
1 5
) C.
1 10
B.

1 6 10 1
D.不确定
解析: 该组的频率是50 = 5. 答案: A
3.频率分布折线图和总体密度曲线 ( 1) 类似于频数分布折线图, 连接频率分布直方图中各个小长方形上端的中 点, 就得到频率分布折线图. 一般地, 当总体中的个体数较多时, 抽样时样本容量就不能太小.例如, 如果 要抽样调查一个省乃至全国的居民的月均用水量, 那么样本容量就应比调查一 个城市的时候大.可以想像, 随着样本容量的增加, 作图时所分的组数增加, 组距 减小, 相应的频率折线图会越来越接近于一条光滑曲线, 统计中称这条光滑曲线 为总体密度曲线.
频率分布折线图反映了数据的变化趋势.总体密度曲线反映了总体在各个范围 内取值的百分比, 它能给我们提供更加精细的信息.
( 2) 估计方法: 实际上, 尽管有些总体密度曲线是客观存在的, 但是在实际应 用中我们并不知道它的具体表达形式, 需要用样本来估计.由于样本是随机的, 不同的样本得到的频率分布折线图不同; 即使对于同一个样本, 不同的分组情况 得到的频率分布折线图也不同.频率分布折线图是随样本容量和分组情况的变 化而变化的, 因此不能用样本的频率分布折线图得到准确的总体密度曲线.
2.2
用样本估计总体
2.2.1
用样本的频率分布估计总体分布
1.了解分析数据的方法,知道估计总体频率分布的方法. 2.了解频率分布折线图和总体密度曲线,会画频率分布直方图和茎叶图. 3.理解频率分布直方图和茎叶图及其应用.
1.分析数据的方法 ( 1) 借助于图形. 用图将各个数据画出来, 作图可以达到两个目的, 一是从数据中提取信息; 二是利用图形传递信息. ( 2) 借助于表格. 用紧凑的表格改变数据的构成方式, 为我们提供解释数据的新方式.

9.5 用样本的频率分布估计总体分布课件-2023届广东省高职高考数学第一轮复习第九章概率与统计初步

9.5 用样本的频率分布估计总体分布课件-2023届广东省高职高考数学第一轮复习第九章概率与统计初步

A.甲
B.乙
C.丙
D.丁
【解析】 因为丙的平均数最大,方差最小,故选 C.
8.在学校组织的一次技能竞赛中,某班学生
成绩的频率分布直方图如图所示,若低于 60
分的有 12 人,则该班学生的人数为( B )
A.35
B.40
C.45
D.50
第 8 题图
【解析】 如图所知:低于 60 分的频率为 20×(0.005+0.010)=0.3, 设该班有学生 n 人,则1n2=0.3,解得 n=40,故选 B.
=0.4×40=16,故选 D.
4.某同学进行技能训练,录得近五次的训练成绩分别为:88,84,86,
85,87,则这组数据的方差为( A )
A.2
B.3
C.4
D.9
【解析】 因为x-=x1+x2+x53+x4+x5=86,所以,方差 s2=n1[(x1-x-)2

(x2


x
)2



(xn


二、填 空 题
9.将一个容量为 m 的样本分成 3 组,已知第 1 组的频数为 8,第 2 和第 3 组的频率为 0.15 和 0.45,则 m=___2_0__. 【解析】 由题意得,第一组的频率为m8 ,则m8 +0.15+0.45=1,解得 m=20.
10.容量为 100 的样本数据,按从小到大的顺序分为 8 组,如下表: 组号 1 2 3 4 5 6 7 8 频数 10 13 14 14 15 13 12 9
9.5 用样本的频率分布估计总体分布
知识点1 知识点2
1.用样本的频率分布估计总体 (1)频数与频率 将一组数据按要求分成若干个组,各组内数据的个数叫做该组的频 数,每组的频数除以全体数据的个数的商叫做该组的频率,频率反 映数据在每组中所占比例的大小.

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布

新课导入前面研究学习了三种抽样收集数据,数据收集后,必须从中寻找包含的信息,以使我们能追求样本的估计总体,但是由于数据多而杂,所以需要通过一定的方法去分析.可以通过表、图、计算方法来分析.1. 通过实例体会分布的意义和作用;2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图;3. 通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.知识与技能教学目标过程与方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.情感态度与价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.重点会列频率分布表,画频率分布直方图、频率折线图和茎叶图.能通过样本的频率分布估计总体的分布. 难点教学重难点我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?实际问题为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.假设我们通过抽样,得到100为居民月用水量,如下:100位居民的月均用水量(单位:t)3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.64.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2观察?上面的数字能告诉我们什么呢很容易发现的是一个居民月均用水量的最小值是0.2t,最大值是4.3t.其他值在0.2—4.3t之间.除此之外,很难从随意记录下来的数据中直接看出规律.为此,我们需要对统计数据进行整理和分析.知识要点频率分布直方图频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.方法画频率分布直方图的一般步骤为:(1)计算一组数据中最大值与最小值的差,即求极差;(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.(1)求极差 因为用水最小值为0.2t ,最大值为4.3t 所以:4.3-0.2=4.1 说明样本数据的变化范围是4.1t.将上述抽样的100户居民月用水量,画出频率分布直方图.解:(2)决定组距与组数数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.当样本容量不超过100时,按照数据的多少,常分成5—12组.为了方便起见,组距的选择应力求“取整”.在本问题中,如果取组距为0.5(t),那么组数=极差/组距=4.1/0.5=8.2因此可将数据分成9组,这个组数是较合适的,于是去组距为0.5.组数为9.(3)将数据分组以组距为0.5将数据分组时,可以分成以下9组:[0,0.5),[0.5,1),…,[4,4.5).(4)列频率分布表按照组距为0.5将数据分组,分成以下9组:[0,0.5),[0.5,1),…,[4,4.5). 图如下:100位居民月均用水量的频率分布表分组频数频率[0,0.5)40.04[0.5,1)80.08[1,1.5)150.15[1.5,2)220.22 [2,2.5)250.25 [2.5,3)140.14 [3,3.5)60.06 [3.5,4)40.04 [4,4.5)20.02合计1001频数等于样本数,频率恒为1(5)画频率分布直方图 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/to 0.100.200.300.400.50频率/组距特征频率分布直方图的特征:从频率分布直方图可以清楚的看出数据分布的总体趋势.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.知识要点频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.总体密度曲线的定义在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.茎叶图数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.特征茎叶图的特征:1. 用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.2. 茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.课堂小结1.频率分布直方图的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.2.频率分布折线图的概念连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.高考链接1(2009四川)设矩形的长为a ,宽为b ,其比满足 51b :a 0.6182-=≈这种矩形给人以美感,称为黄金矩形,黄金矩形常应用用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样品来估计两个批次的总体平均数,与标准值0.618比较,正确结论是()AA.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值跟接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定解析:本题考查平均数的求法,用样本估计总体,经计算甲、乙批次的总体平均数0.6170.613甲乙,x x ==知甲批次的总体平均数与标准值0.618更接近.2(2009湖北)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数据落在[6,10]内的频数为_______,数据落在[2,10)内的概率约为_____. 64 0.4解析:本题考查频率分布直方图,样本数据落在[6,10)内的频数为0.08×(10-6)×200=64.样本数据落在[2,10)内的概率约为(0.02+0.08)×4=0.4.区间界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)人数5810223320区间界限[146,150)[150,154)[154,158)人数11651.下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位c m)(1)列出样本频率分布表﹔ (2)一画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.随堂练习分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158)50.04合计1201解:(1)样本频率分布表如下:前面的过程省略!122 126 130 134 138 142 146 150 158 154 身高(cm )o 0.010.020.030.040.050.060.07频率/组距(2)其频率分布直方图如下:0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为:2.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.90 100 110 120 130 140 150 次数o 0.0040.0080.0120.0160.0200.0240.028频率/组距0.0320.036解:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1. (1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.0824171593=+++++121500.08===第二小组频数样本容量第二小组频率又因为频率=频数/ 样本容量所以 (2)由图可估计该学校高一学生的达标率约为 171593100%88%24171593+++⨯=+++++(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.。

用样本频率分布估计总体分布 课件

用样本频率分布估计总体分布   课件

题型三 频率分布直方图的应用
例3 为了了解高一学生的体能情况, 某 校抽取部分学生进行一分钟跳绳次数测 试, 将所得数据整理后, 画出频率分布直方 图(如图所示), 图中从左到右各小长方形面 积之比为2∶4∶17∶15∶9∶3, 第二小组频 数为12.
(1)第二小组的频率是多少?样本容量是多 少? (2)若次数在110次以上(含110次)为达标, 试估计该校全体高一学生的达标率是多少?
如果把这些数据形成频率分布表或频率分 布直方图, 就可以比较清楚地看出样本数 据的特征, 从而估计总体的分布情况. (2)频率分布直方图 在频率分布直方图中, 纵轴表示 ___频__率_/_组__距____, 数据落在各小组内的频 率用各_小__长__方_形__的__面__积______表示, 各小长 方形面积的总和等1于________.
题型一 频率分布表、频率分布直 方图及折线图
例1 (本题满分12分)美国历届总统中, 就任时年纪最小的是罗斯福, 他于1901年 就任, 当时年仅42岁; 就任时年纪最大的是 里根, 他于1981年就任, 当时69岁.
下面按时间顺序(从1789年的华盛顿到 2009年的奥巴马, 共44任)给出了历届美国 总统就任时的年龄: 57,61,57,57,58,57,61,54,68,51,49,64,50, 48, 65,52,56,46,54,49,51,47,55,55,54,42,51, 56, 55,51,54,51,60,62,43,55,56,61,52,69,64, 46, 54,48
【名师点评】 频率分布直方图也反映了 各个范围内取值的可能性, 利用样本在这 一范围内的频率, 可近似估计总体在这一 范围内的可能性.
互动探究 3. 在本例中, 一分钟跳绳次数在120以下 (含120次)的人数是多少?

用样本频率分布估计总体分布

用样本频率分布估计总体分布

25.295 25.355
产品尺寸
离散型随机变量,指变量的取值是有限个 或 离散型随机变量 指变量的取值是有限个,或 指变量的取值是有限个 者无限可列个.有限个 比如你身边有10个朋 有限个,比如你身边有 者无限可列个 有限个 比如你身边有 个朋 那么你要得到他们的身高,他们身高作为 友,那么你要得到他们的身高 他们身高作为 那么你要得到他们的身高 一个变量的时候只能有10个取值 个取值,这十个值 一个变量的时候只能有 个取值 这十个值 就是离散的,你可以把它们一一写出来 你可以把它们一一写出来;对于 就是离散的 你可以把它们一一写出来 对于 无限可列个,比如有个随机变量 比如有个随机变量x,x可以取得 无限可列个 比如有个随机变量 可以取得 值是自然数,也就是说 可以取到1,2,3,..,n,..., 也就是说x可以取到 值是自然数 也就是说 可以取到 虽然有无穷多,但是你可以把它们按照某种 虽然有无穷多 但是你可以把它们按照某种 规律列出来,或者说 存在这样的两个x取值 或者说,存在这样的两个 取值, 规律列出来 或者说 存在这样的两个 取值 按照某种规律排定之后,它们之间不允许再 按照某种规律排定之后 它们之间不允许再 存在x其它取值 那么x也是离散的 如果x的 其它取值,那么 也是离散的.如果 存在 其它取值 那么 也是离散的 如果 的 取值是实数的话,那么就是不可列的 那么就是不可列的,x就变 取值是实数的话 那么就是不可列的 就变 成了连续性变量. 成了连续性变量
频率
0
1
试验结果
注意点: ①各直方长条的宽度要相同, 宽窄与频率无关; ②相邻长条之间的间隔要适当;
频率
③条形图的高度就是频率;
0.5
试验结果 正面向上 反面向上
0

2.2.1用样本的频率分布估计总体分布课件人教新课标

2.2.1用样本的频率分布估计总体分布课件人教新课标

4. 茎叶图的概念 茎是指 中间的一列数 ,叶就是从茎的旁边生长出 来的数.茎叶图可用来分析单组数据,也可以对两组数 据进行比较.茎叶图不仅能够保留原始数据,而且能够 展示数据的散布情况.
【常考题型】
列频率散布表、画频率散布直方图 [例 1] 考察某校高二年级男生的身高,随机抽取 40 名 高二男生,实测身高数据(单位:cm)如下: 171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 160 168 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161 (1)作出频率分布表; (2)画出频率分布直方图和频率分布折线图.
(2)频率分布直方图和频率分布折线图如图所示:
(3)样本数据不足 0 的频率为: 0.035+0.055+0.075+0.2=0.365.
频率散布直方图的应用
[例 2] (1)某班 50 名学生在一次百米跑 测试中,成绩全部介于 13 s 与 19 s 之间,将 测试结果按如下方式分成六组:第一组,成 绩大于等于 13 s 且小于 14 s;第二组,成绩 大于等于 14 s 且小于 15 s;…;第六组,成 绩大于等于 18 s 且小于等于 19 s,如图所示是按上述分组方法 得到的频率分布直方图.设成绩小于 17 s 的学生人数占全班 总人数的百分比为 x,成绩大于等于 15 s 且小于 17 s 的学生人 数为 y,则从频率分布直方图(如图所示)中分析出 x 和 y 分别 为( )
3.如图是一个班的语文成绩的茎叶图(单位:分),则优秀率(90 分以上)是________,最低分是________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1 用样本的频率分布 估计总体分布(2)
画一组数据的频率分布直方图,可以按以 下的步骤进行:
一、求极差,即数据中最大值与最小值的差
二、决定组距与组数 :组距=极差/组数 三、分组,通常对组内数值所在区间, 取左闭右开区间 , 最后一组取闭区间 四、登记频数,计算频率,列出频率分布表 五、画出频率分布直方图(纵轴表示:频率/组距)
人数/人 550 450 350 250
是 否 输出s 结束 输入A1,A2,…,An a=0 i= 4
i i 1
150
50
145 155 165 175 185 195
s s Ai
身高/cm
【作业】世界卫生组织指出青少 年的身体健康状况是一个应该
引起大家足够重视的问题,某
校为了了解小学生的体能情况, 抽取了一个年级的部分学生进 行一分钟跳绳次数测试.将所得数据整理后,画出频率分 布直方图,如图所示.已知图中从左到右前三个小组的频
0.04 0.02 O 13 14 15 16 17 1819 秒
5.为了解某校高三学生的视力情况,随机地抽 查了该校 100 名高三学生的视力情况, 得到频率 分布直方图,如右,由于不慎将部分数据丢失, 但知道前 4 组的频数成等比数列, 后 6 组的频数 成等差数列,设最大频率为 a,视力在 4.6 到 5.0 之间的学生数为 b,则 a,b 的值分别为( )
的人数应为 ______.
8.将容量为n的样本中的数据分成6组,绘制频 率分布直方图.若第一组至第六组数据的频率之 比为2∶3∶4∶6∶4∶1,且前三组数据的频数 之和等于27,则n等于 ______.
9.某班50名学生在一次百米测试中,成绩全部介于13 秒与19秒之间,将测试结果按如下方式分成六组:第 一组,成绩大于等于13秒且小于14秒;第二组,成绩 大于等于14秒且小于15秒;…… 频率/组距 第六组,成绩大于等于18秒且小 于等于19秒.右图是按上述分组 0.36 0.34 方法得到的频率分布直方图.设 成绩小于17秒的学生人数占全班 总人数的百分比为x,成绩大于等 于15秒且小于17秒的学生人数为y,0.18 则从频率分布直方图中可分析出x 和y分别为( ) 0.06 A.0.9,35 C.0.1,35 B.0.9,45 D.0.1,45
甲 乙
0 2 5 1 5 4 2 1 6 1 6 7 9 3 4 9 4 0 1 5 你能理解这个图是如何记录这些数据的吗? 你能通过该图说明哪个运动员的发挥更稳定 吗?
8 4 6 3 3 6 8 3 8 9
一般地,画出一组样本数据的茎叶图的步骤如 何? 第一步,将每个数据分为“茎”(高位)和 “叶”(低位)两部分; 第二步,将最小的茎和最大的茎之间的数按大 小次序排成一列; 第三步,将各个数据的叶按大小次序写在茎 右(左)侧.
注意
第几组频数 (1)第几组频率 样本容量
频率 (2)纵坐标= 组距
(3)频率分布直方图的各小组的 频率之和=1
频率分布折线图
频率
组距
连接频率分布直方图 中各小长方形上端的 中点,得到频率分布折 线图
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
0.5
1 1.5 2 2.5 3
如图所示,则新生婴儿体重(2700,3000)的频
率为:
y

0.001
2400 2700 3000 3300 3600 3900
X
体重
某中学为了解学生 数学课程的学习情况,
在3 000名学生中随
机抽取200名,并统计这200名学生的某次数学考试成绩, 得到了样本的频率分布直方图(如图).根据频率分布直方 图推测,这3 000名学生在该次数学考试中成绩小于60分的 学生数是________.
为了了解某校今年准备报考飞行员的学生的体重情
况,将所得的数据整理后,画出了频率分布直方图
(如图),已知图中从左到右的前3个小组的频率之比
为1∶2∶3,第2小组的频数为12,则报考飞行员的
学生人数是________.
5.为了了解某地区高三学生的身体发育情况,抽 查了该地区100名年龄为17.5岁-18岁的男生体重 (kg) ,得到频率分布直方图如下:
数如茎叶图所示,统计员在去掉一个最高分和一个最低分后, 算得平均分为91,复核员在复核时,发现有一个数字(茎叶图 中的x)无法看清,若统计员计算无误,则数字x应该是 ( D )
A.5
B.4
C.3
D.2
解析 去掉最低分87,去掉最高分94(假设x≤4),则7×91 =80×2+9+8+90×5+2+3+2+1+x,
画出频率分布直方图(如图所示),图中从左到右
各小长方形面积比为2∶4∶17∶15∶9∶3,第二小
组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110次以上(含110次)为达标,试估
计该校全体高一学生的达标率是多少.
6.(全国卷II)一个社会调查机构就某地居民 的月收入调查了10 000人,并根据所得数据画了样 本的频率分布直方图(如下图).为了分析居民的收入 与年龄、学历、职业等方面的关系,要从这10 000 人中再用分层抽样方法抽出100人作进一步调查, 则在[2500,3000](元)月收入段应抽出_______人.
率分别为0.1,0.3,0.4,第一个小组的频数为5. (1)求第四小组的频率;
(2)求参加这次测试的学生人数是多少? (3)若在75次以上(含75次)为达标,试估计 该年级学生跳绳测试的达标率是多少?
【问题】 某赛季甲、乙两名篮球运动员每场 比赛的得分情况如下: 甲运动员得分:13,51,23,8,26,38,16, 33,14,28,39; 乙运动员得分:49,24,12,31,50,31,44, 36,15,37,25,36,39.
A.甲运动员的成绩好于乙运动员 B.乙运动员的成绩好于甲运动员 C.甲、乙两名运动员的成绩没有明显的差异 D.甲运动员的最低得分为0分
解析 从茎叶图上看,由于甲运动员的成绩多数集中在31以上, 而乙运动员的成绩集中在12到29之间,所以甲运动员成绩较好.
2.数据123,127,131,151,157,135,
频率/组距 0.0005 0.0004 0.0003 0.0002 0.0001
月收入(元)
1000 1500 2000 2500 3000 3500 4000
7. 从某小学随机抽取100名同学,将他们的身高(单位:
厘米)数据绘制成频率分布直方图(如图).由图中数值
可知a= ______.若要从身高在[120,130),[130, 140),[140,150]三组内的学生中,用分层抽样的方 法选取18人参加一项 活动,则从身高 在[140,150]内 的学生中选取
频率/组距
0.07
0.05 0.03
体重(kg)
54.5 58.5 62.5 66.5 70.5 74.5
根据上图可得这100名学生中体重在[56.5,64.5] 的学生人数是( ) A. 20 B. 30 C. 40 D. 50
2.为了了解高一学生的体能情况,某校抽取部分学
生进行一分钟跳绳次数测试,将所得数据整理后,
∴x=2,符合题意.
同理可验证x>4不合题意.
小结
1.总体分布指的是总体取值的频率分布规律,
由于总体分布不易知道,因此我们往往用样本
ቤተ መጻሕፍቲ ባይዱ
的频率分布去估计总体的分布。
2.总体的分布分两种情况:当总体中的个体取
值很少时,用茎叶图估计总体的分布;当总体
中的个体取值较多时,将样本数据恰当分组, 用各组的频率分布描述总体的分布,方法是用 频率分布表或频率分布直方图。


8
4 6 3 3 6 8 3 8 9
0
1 2 3 4 2 5 1 4 5 4 6 1 6 7 9 9
1
5
0
注:中间的数字表示得分的十位数字。 旁边的数字分别表示两个人得分的 个位数。
甲运动员得分:13,51,23,8,26,38,16, 33,14,28,39; 乙运动员得分:49,24,12,31,50,31,44, 36,15,37,25,36,39.
规律,即越精确地反映了总体在各个范围内取值
百分比。
2、一个容量为20的样本数据.分组后.组距 与频数如下:(0,20] 2;(20,30] 3, (30,40] 4; (40,50] 5; (50,60] 4; (60,70] 2。则样本在(-∞,50]上的频率 为: ,
3、观察新生婴儿的体重,其频率分布直方图
甲、乙两位同学在高三的 5 次月考中数学成绩统计如茎叶图 所示,若甲、乙两人的平均成绩分别是 x 甲,x 乙,则下列正 确的是 ( )
A.
x 甲 >x 乙;乙比甲成绩稳定
B.x 甲 >x 乙;甲比乙成绩稳定 C. x 甲 <x 乙;乙比甲成绩稳定 D. x 甲 <x 乙;甲比乙成绩稳定
跟踪训练1 下面是甲、乙两名运动员某赛季一些场次得分 的茎叶图,据下图可知 ( A )
129,138,147,152,134,121,142, 143的茎叶图中,茎应取 ______.
3.甲、乙两个班级各随机选出15名同学进行测验,
成绩的茎叶图如图所示.则甲、乙两班的最高成
绩分别是 ______, ______.从图中看 ______班
的平均成绩较高.
跟踪训练2
某校举行演讲比赛,9位评委给选手A打出的分
3.5 4
利用样本频分布对总体分布进行相应估计
(1)上例的样本容量为100,如果增至1000, 其频率分布直方图的情况会有什么变化?假如增
至10000呢?
(2)样本容量越大,这种估计越精确。
相关文档
最新文档