土地利用与土地覆被变化翻译
土地利用和覆被变化(LUCC)过程及效应
土地利用和覆被变化(LUCC)过程及效应
土地利用和覆被变化(LUCC)过程及效应"是2001年度国土资源部土地领域的技专项项目,旨在揭示我国土地利用和土地覆被变化的规律,加强对我国土地利用变化的时空规律的实证研究,预测土地利用和土地覆被变化及其对我国未来自然、社会、经济的影响,为合理利用和保护土地资源提供基础依据,以保障我国的食物安全、资源安全和生态安全。
LUCC科技专项下设4个重点课题:
(1)构建土地利用和覆被变化数据库及服务体系;
(2)土地利用和覆被变化驱动力及驱动机制;
(3)土地利用和覆被变化的资源、环境效应;
(4)土地资源优化配置决策支持系统与土地资源优化配置方案。
目前,已经完成LUCC对我国耕地资源影响的土地要素数据、图件的计算机输入工作。
正在进行80年代中期和90年代末期耕地资源的时空变化特征分析,以及评价由此而引起的耕地质量的变化及其区域差异。
通过收集到的全国土地利用数据、社会经济数据和土地要素数据,进行全国土地资源利用综合分区的指标和方法的确定,提出分区的初步方案。
土地资源优化配置进行全国尺度上的人口数据库,社会经济数据库,土地资源数据库与决策支持系统的链接;开展典型地区土地资源优化配置的决策运行,提出典型地区不同情景下土地资源优化配置的方案;结合目前收集的土地资源数据,评价不同土地利用方案可能对区域国民经济和资源环境的影响。
土地利用覆被变化名词解释
土地利用覆被变化名词解释
土地利用覆被变化是指特定地区土地利用类型及其空间分布在一段时间内发生的变化。
它描述了土地利用类型的转变、演变和变化过程。
土地利用覆被变化是人类活动、自然因素以及宏观经济发展等多种因素综合作用的结果。
土地利用覆被变化通常包括以下几个方面的变化:
1. 农用地变化,指农业用地(包括耕地、园地、牧草地等)的转变,如农田的扩张、缩减或转为其他用途。
2. 城市化变化,指城市建设用地的增加和城市扩张,包括城市用地的转变、城市建设用地的新增以及城市边界的扩展等。
3. 森林变化,指森林覆盖面积的变化,包括森林的砍伐、森林退化、森林恢复等。
4. 水域变化,指水体的变化,包括河流的改道、湖泊的扩大或缩小、沿海地区的海岸线变动等。
5. 草地变化,指草地覆盖面积的变化,包括草地的退化、草地的恢复、草地的转变为其他土地利用类型等。
6. 工业用地变化,指工业用地的变化,包括工业用地的增加、减少、转变为其他用途等。
7. 自然保护区变化,指自然保护区范围的变化,包括自然保护区的扩大、缩小、撤销等。
土地利用覆被变化对环境、生态系统和社会经济发展都具有重要影响。
它可以反映出人类活动对自然资源的利用程度、土地利用结构的合理性以及生态环境的变化趋势。
因此,对土地利用覆被变化进行监测和研究,有助于制定合理的土地利用政策、推动可持续发展,并提供科学依据用于环境保护和资源管理。
土地利用与覆被变化(LUCC)的主要表现形式及驱动力
一、土地利用/土地覆被的主要表现形式土地利用是人类根据土地的特点,按一定的经济与社会目的,采取一系列生物和技术手段,对土地进行的长期性或周期性的经营活动;主要表现为土地用途转移和土地利用集约度的变化,侧重于土地的经济属性。
人类的土地利用方式多种多样,包括各种方式的耕作、放牧、伐木、聚落与城市、基础设施、自然保护、旅游休闲、军事等。
土地覆被是指自然营造物和人工建筑物所覆盖的地表诸要素的综合体,包括地表植被、土壤、冰川、湖泊、沼泽、湿地及各种建筑物(如道路等)。
主要表现为土地质量与类型的变化和土地属性的转变,侧重于土地的自然属性。
土地覆被变化现象也是形形色色的,可归纳为三种:(1)是土地覆被的退化,即某种覆被类型虽未改变,但其质量已经降低,例如由于过度放牧引起草地退化,伐木引起森林覆被密度降低;(2)是土地覆被的转换,即某种覆被类型完全改变成另一种类型,例如耕地被城市或工业建设占用,林地被全部砍伐并开垦为牧草地或耕地;(3)是土地覆被的改良,指某种覆被得到维护、修复、更新,例如土壤改良、耕地梯化、草地改良、森林抚育、灌溉系统的建立与完善。
三种土地覆被变化中,转换和改良比较容易引起人们的重视,也比较容易监测;而退化却较难观测,因而其记录最不完备。
土地利用是土地覆被变化最重要的影响因素,土地覆被的变化反过来又作用于土地利用。
人类通过各种活动如土地利用、工业生产等有意无意地导致土地覆被的变化,但土地覆被状况及变化不完全受控于人类,人类活动只是导致土地覆被变化的许多因素之一。
土地利用/土地覆被变化的表现极为复杂,其动因与广泛的人类活动及自然变化相关,其结果将影响全部人类的生存和发展,其研究涉及从自然科学到社会科学的众多学科。
二、土地利用/土地覆被的驱动力以往的驱动力研究中,常用的分析方法有定性分析法和定量分析法。
前者是对区域自然条件、经济发展状况、政策等难以量化的因素进行了定性描述,它是土地利用驱动力研究的基础;后者主要是基于统计学理论,通过建立社会经济因素与区域土地利用变化之间的数学函数关系进行定量化分析的方法。
Land-use and land-cover change
Land-use and land-cover changeErle Ellis;Robert Pontius1 Introduction1.1 Land-change science2 Causes and Consequences2.1 Biodiversity loss2.2 Climate Change2.3 Pollution2.4 Other impacts3 Methods3.1 Remote sensing3.2 Geospatial analysis3.3 Driving forces3.4 Modeling4 Sustainable land management5 Further ReadingIntroductionLand-use and land-cover change (LULCC); also known as land change) is a general term for the human modification of Earth's terrestrial surface. Though humans have been modifying land to obtain food and other essentials for thousands of years, current rates, extents and intensities of LULCC are far greater than ever in history, driving unprecedented changes in ecosystems and environmental processes at local, regional and global scales. These changes encompass the greatest environmental concerns of human populations today, including climate change, biodiversity loss and the pollution of water, soils and air. Monitoring and mediating the negative consequences of LULCC while sustaining the production of essential resources has therefore become a major priority of researchers and policymakers around the world.Land-change scienceSatellite image of deforestation in the Amazon region, taken from the Brazilian state of Para on July 15, 1986. The dark areas are forest, the white is deforested areas, and the gray is re-growth. The pattern of deforestation spreading along roads is obvious in the lower half of the image. Scattered larger clearings can be seen near the center of the image. (Source: NASA)Land cover refers to the physical and biological cover over the surface of land, including water, vegetation, bare soil, and/or artificial structures. Land use is a more complicated term. Natural scientists define land use in terms of syndromes of human activities such as agriculture, forestry and building construction that alter land surface processes including biogeochemistry, hydrology and biodiversity. Social scientists and land managers define land use more broadly to include the social and economic purposes and contexts for and within which lands are managed (or left unmanaged), such as subsistence versus commercial agriculture, rented vs. owned, or private vs. public land. While land cover may be observed directly in the field or by remote sensing, observations of land use and its changes generally require the integration of natural and social scientific methods (expert knowledge, interviews with land managers) to determine which human activities are occurring in different parts of the landscape, even when land cover appears to be the same. For example, areas covered by woody vegetation may represent an undisturbed natural shrubland, a forest preserve recovering from a fire (use = conservation), regrowth following tree harvest (forestry), a plantation of immature rubber trees (plantation agriculture), swidden agriculture plots that are in between periods of clearing for annual crop production, or an irrigated tea plantation. As a result, scientific investigation of the causes and consequences of LULCC requires an interdisciplinary approach integrating both natural and social scientific methods, which has emerged as the new discipline of land-change science.Causes and ConsequencesChanges in land use and land cover date to prehistory and are the direct and indirect consequence of human actions to secure essential resources. This may first have occurred with the burning of areas to enhance the availability of wild game and accelerated dramatically with the birth of agriculture, resulting in the extensive clearing (deforestation) and manag ement of Earth’s terrestrial surface that continues today. More recently, industrialization has encouraged the concentration of human populations within urban areas (urbanization) and the depopulation of rural areas, accompanied by the intensification of agriculture in the most productive lands and the abandonment of marginal lands. All of these causes and their consequences are observable simultaneously around the world today.Biodiversity lossBiodiversity is often reduced dramatically by LULCC. When land is transformed from a primary forest to a farm, the loss of forest species within deforested areas is immediate and complete. Even when unaccompanied by apparent changes in land cover, similar effects are observed whenever relatively undisturbed lands are transformed to more intensive uses, including livestock grazing, selective tree harvest and even fire prevention. The habitat suitability of forests and other ecosystems surrounding those under intensive use are also impacted by the fragmenting of existing habitat into smaller pieces (habitat fragmentation), which exposes forest edges to external influences and decreases core habitat area. Smaller habitat areas generally support fewer species (island biogeography), and for species requiring undisturbed core habitat, fragmentation can cause local and even general extinction. Research also demonstrates that species invasions bynon-native plants, animals and diseases may occur more readily in areas exposed by LULCC, especially in proximity to human settlements.Climate ChangeLULCC plays a major role in climate change at global, regional and local scales. At global scale, LULCC is responsible for releasing greenhouse gases to the atmosphere, thereby driving global warming. LULCC can increase the release of carbon dioxide to the atmosphere by disturbance of terrestrial soils and vegetation, and the major driver of this change is deforestation, especially when followed by agriculture, which causesthe further release of soil carbon in response to disturbance by tillage. Changes in land use and land cover are also behind major changes in terrestrial emissions of other greenhouse gases, especially methane (altered surface hydrology: wetland drainage and rice paddies; cattle grazing), and nitrous oxide (agriculture: input of inorganic nitrogen fertilizers; irrigation; cultivation of nitrogen fixing plants; biomass combustion).Though LULCC certainly plays a critical role in greenhouse gas emissions, the complexity and dynamic interplay of land use processes favoring net accumulation versus net release of carbon dioxide and other greenhouse gases makes it a poorly constrained component of our global budgets for these gases; an active area of current research. A further source of uncertainty in estimating the climate changes caused by LULCC is the release of sulfur dioxide and particulates by biomass combustion associated with agriculture, land clearing and human settlements. These emissions are believed to cause regional and global cooling by the reflection of sunlight from particulates and aerosols, and by their effects on cloud cover.Land cover changes that alter the reflection of sunlight from land surfaces (albedo) are another major driver of global climate change. The precise contribution of this effect to global climate change remains a controversial but growing concern. The impact of albedo changes on regional and local climates is also an active area of research, especially changes in climate in response to changes in cover by dense vegetation and built structures. These changes alter surface heat balance not only by changing surface albedo, but also by altering evaporative heat transfer caused by evapotranspiration from vegetation (highest in closed canopy forest), and by changes in surface roughness, which alter heat transfer between the relatively stagnant layer of air at Earth’s surface (the boundary layer) and the troposphere. An example of this is the warmer temperatures observed within urban areas versus rural areas, known as the urban heat island effect.PollutionChanges in land use and land cover are important drivers of water, soil and air pollution. Perhaps the oldest of these is land clearing for agriculture and the harvest of trees and other biomass. Vegetation removal leaves soils vulnerable to massive increases in soil erosion by wind and water, especially on steep terrain, and when accompanied by fire, also releases pollutants to the atmosphere. This not only degrades soil fertility over time, reducing the suitability of land for futureagricultural use, but also releases huge quantities of phosphorus, nitrogen, and sediments to streams and other aquatic ecosystems, causing a variety of negative impacts (increased sedimentation, turbidity, eutrophication and coastal hypoxia). Mining can produce even greater impacts, including pollution by toxic metals exposed in the process. Modern agricultural practices, which include intensive inputs of nitrogen and phosphorus fertilizers and the concentration of livestock and their manures within small areas, have substantially increased the pollution of surface water by runoff and erosion and the pollution of groundwater by leaching of excess nitrogen (as nitrate). Other agricultural chemicals, including herbicides and pesticides are also released to ground and surface waters by agriculture, and in some cases remain as contaminants in the soil. The burning of vegetation biomass to clear agricultural fields (crop residues, weeds) remains a potent contributor to regional air pollution wherever it occurs, and has now been banned in many areas.Other impactsOther environmental impacts of LULCC include the destruction of stratospheric ozone by nitrous oxide release from agricultural land and altered regional and local hydrology (dam construction, wetland drainage, irrigation projects, increased impervious surfaces in urban areas). Perhaps the most important issue for most of Earth’s human population is the long-term threat to future production of food and other essentials by the transformation of productive land to nonproductive uses, such as the conversion of agricultural land to residential use and the degradation of rangeland by overgrazing.MethodsThe methods of land-change science include remote sensing and geospatial analysis and modeling, together with the interdisciplinary assortment of natural and social scientific methods needed to investigate the causes and consequences of LULCC across a range of spatial and temporal scales.Remote sensingRemote sensing is an essential tool of land-change science because it facilitates observations across larger extents of Earth’s surface than is possible by ground-based observations. This is accomplished by use of cameras, multi-spectral scanners, RADAR and LiDAR sensors mounted on air- and space-borne platforms, yielding aerial photographs, satelliteimagery, RADAR and LiDAR datasets. Data available from remote sensing vary from the very high-resolution datasets produced irregularly over extents no larger than a single state or province (by aerial photography, imaging, LiDAR, and by high resolution satellite sensors such as IKONOS and Quickbird), to regional datasets produced at regular intervals from satellites (e.g., Landsat, SPOT), to the lower-resolution (> 250 m) datasets now produced across the entire Earth on a daily basis (e.g., MODIS).Geospatial analysisMaps and measurements of land cover can be derived directly from remotely sensed data by a variety of analytical procedures, including statistical methods and human interpretation. Maps of land use and land cover (LULC) are produced from remotely sensed data by inferring land use from land cover (e.g., urban = barren, agriculture = herbaceous vegetation). Conventional LULC maps are categorical, dividing land into categories of land use and land cover (thematic mapping; land classification), while recent techniques allow the mapping of LULC or other properties of land as continuous variables or as fractional cover of the land by different LULC categories, such as tree canopy, herbaceous vegetation, and barren (continuous fields mapping). Both types of LULC datasets may be compared between time periods using geographic information systems (GIS) to map and measure LULCC at local, regional, and global scales.Driving forcesAssessing the driving forces behind LULCC is necessary if past patterns are to be explained and used in forecasting future patterns. Driving forces on LULCC can include almost any factor that influences human activity, including local culture (food preference, etc.), economics (demand for specific products, financial incentives), environmental conditions (soil quality, terrain, moisture availability), land policy & development programs (agricultural programs, road building, zoning), and feedbacks between these factors, including past human activity on the land (land degradation, irrigation and roads). Investigation of these drivers of LULCC requires a full range of methods from the natural and social sciences, including climatology, soil science, ecology, environmental science, hydrology, geography, information systems, computer science, anthropology, sociology, and policy science.ModelingSpatially-explicit models of the social and environmental causes and consequences of LULCC is made possible by GIS and other computer-based techniques which can define and test relationships between environmental and social variables using a combination of existing data (census data, soil maps, LULC maps), observations on the ground (ecological measurements, household surveys and interviews with land managers) and data from remote sensing. These spatial models of LULCC drivers and their impacts can be used to establish cause and effect in LULCC observed in the past and are also extremely useful tools for land mangers and policymakers, offering forecasts of future land use changes and their effects. Models of LULCC dependence on political, economic, environmental and other changes can then be used to explore the impacts of policy decisions and other factors using scenario analysis and other computer modeling techniques, guiding policymakers and land managers toward sustainable land management decisions.Sustainable land managementSustainable land management is a central challenge in the sustainable management of earth systems and resources. On the one hand, land management must ensure a growing supply of food and other resources to human populations, which are expected to grow for decades to come. On the other hand, management of land to procure these resources is linked with potentially negative consequences in the form of climate change, biodiversity loss and pollution. Moreover, local alteration of land use and land cover can have global consequences, requiring local and regional solutions to global problems and the cooperation of the w orld’s policymakers, land managers, and other stakeholders in land management at local, regional and global scales.At the global scale, the Kyoto Protocol offers an example of international efforts to reduce climate change caused by greenhouse gas emissions from land. It offers incentives, such as a trade in carbon credits, that encourage land use practices which promote the storage of carbon on land, including the planting of trees, perennial crops, the return of crop residues to soils, and no-till agriculture,. The Protocol also promotes practices that reduce emissions of methane and nitrous oxide from agricultural land.Regional efforts to modify land use practices to reduce nonpoint pollution of air and water are already in place in many areas of the world, includingthe USA (Chesapeake Bay Program) and China (Tai Lake Program). In developed areas, including cities and suburbs, there are nowwell-developed land use policies and practices to protect streams and other aquatic ecosystems from the excessive runoff and flooding produced by the construction of impervious surfaces (buildings and roads).Management of land in support of biodiversity covers a wide range of policies and practices. The most basic of these is to set-aside existing biodiverse habitats as conservation reserves from which humans are excluded. Another is the establishment of preserves and parks in which local human populations and tourists participate in the less harmful economic use and preservation of biodiverse lands. More recently, efforts are being made to restore biodiverse habitats on lands stripped of their original habitat, and to manage existing agricultural and urban landscapes to enhance their suitability as habitat by practices including the planting of native plants and the restoration of habitat patches within intensively managed landscapes. Another new land use practice is the establishment of corridors of habitat between existing patches of habitat distributed across landscapes, creating larger effective habitats by connecting smaller patches together and enhancing species migrations. This will be an especially important practice in response to future changes in climate that will cause the habitat ranges of many species to migrate, mostly northward, requiring species migration through managed areas.Protection of productive agricultural land has become a major priority in many regions of the world. Land degradation by overgrazing and intensive agriculture on marginal lands is a major driver of land loss;a number of national and international programs have responded with land reforms and incentive programs to avoid this outcome. In rapidly industrializing nations with dense populations such as China, and in the past, Korea, Japan and Western European nations, demand for land for industry and residential use is driving the transformation of some of the most productive agricultural land in the world out of production. Policy efforts to avoid this loss of production are also in place, but their effectiveness in the face of economic demand is often limited. Another threat is the wide adoption of automobile transportation in some developed nations, which has transformed large areas of agricultural land to relatively low density residential uses around cities and along highways (urban sprawl). “Smart growth” and other programs have been developed in these areas to encourage more efficient and desirable land use and to protect agricultural land.The examples above demonstrate the variety of solutions to environmental harm by LULCC that are in progress. The effectiveness of these and otherregional and national efforts to reduce the negative impacts of LULCC remain to be seen. The need for greater efforts and new methods to monitor and mediate the negative consequences of LULCC remains acute, if we are to sustain current and future human populations under desirable conditions.Further Reading∙DeFries, R. S., G. P. Asner, and R. A. Houghton, editors. 2004. Ecosystems and Land Use Change. American Geophysical Union, Washington, DC.∙Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J.Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty, and P. K. Snyder. 2005.Global consequences of land use. Science 309:570-574.∙Global Land Project. 2005. Science Plan and Implementation Strategy. IGBP Report No.53/IHDP Report No. 19, IGBP Secretariat, Stockholm.∙Meyer, W. B., and B. L. Turner. 1994. Changes in Land Use and Land Cover: A Global Perspective. Cambridge University Press, Cambridge England; New York, NY, USA.∙Ruddiman, W. F. 2003. The anthropogenic greenhouse era began thousands of years ago.Climatic Change 61:261-293.∙Turner II, B. L., W. C. Clark, R. W. Kates, J. F. Richards, J. T. Mathews, and W. B. Meyer.1990. The Earth as Transformed by Human Action: Global and Regional Changes in theBiosphere Over the Past 300 Years. Cambridge University Press with Clark University,Cambridge; New York.CitationErle Ellis (Lead Author);Robert Pontius (Topic Editor) "Land-use and land-cover change". In: Encyclopedia of Earth. Eds. Cutler J. Cleveland (Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment). [First published in the Encyclopedia of Earth April 18, 2010; Last revised Date April 18, 2010; Retrieved March 7, 2011The AuthorDr. Erle Ellis is Associate Professor of Geography and Environmental Systems at the University of Maryland, Baltimore County,where he teaches Environmental Science, Landscape Ecology and Biogeochemistry. His research focuses on ecological processes in anthropogenic landscapes at local, regional and global scales, and their transformation by population growth and industrially-based technologies. He has studied long-term changes in nitrogen balance in village ecosystems of China's Tai Lake Re ... (Full Bio)。
土地利用和土地覆盖变化
1.4 LUCC的环境影响
(2)土壤环境效应
LUCC对土壤的环境效应累积为土壤质量、土壤 生产力的下降,主要表现为不同形式的土壤退化,主 要包括土壤侵蚀(水蚀、风蚀)、土壤化学退化(土 壤污染、盐碱化、水浸、酸化等)、土壤物理退化 如土壤紧实等。
1.4 LUCC的环境影响
1土壤环境。不合理的土地利用方式如森林的砍伐、 矿区开采、陡坡开垦以及过度放牧是造成土壤侵 蚀和土地沙化的主要原因。(黄土高原的水土流 失)
2.3 LUCC与中国的可持续发展
① 土地资源的短缺和退化。 ② 土地资源多功能性的特点。 ③ 土地利用与其它自然资源利用的密切关系。 ④ 快速工业化过程中土地资源的丧失。
LUCC的研究对象可以概括为两个方面的内容: ① 与全球环境变化有关的科学问题 ② 与国家或区域的可持续发展有关的发展战略问题
1.3 研究内容与方法
LUCC研究计划以五个中心问题为导向 ① 近三百年来人类利用导致的土地覆盖的变化 ② 人类土地利用发生变化的主要原因 ③ 土地利用变化在今后50年如何影响土地覆盖 ④ 人类和生物物理的直接驱动力对特定类型土
CONTENTS 第一节
1.1 背景及意义 1.2 基本概念 1.3 研究内容与方法 1.4 LUCC的环境影响
1.4 LUCC的环境影响
(1)对气候的影响
地表及其覆盖的植被决定着太阳辐射在地表的分配.土地表面性质发生 变化时引起能量的重新分配,从而影响气候的变化。
研究表明,土地利用与土地覆盖变化对大气的影响主要有两个途径:
2土壤养分。不同的土地利用类型对养分的滞留和 转化的作用不同,具有不同的土地空间组合,进 而影响了土壤养分的迁移规律。
3土壤微生物。土壤微生物的多样性与地表植被群 落的生产力和多样性呈正相关,并随着植被群落 存在的年限而增加。
《六国论》中重要句子规范翻译
4、思厥先祖父,暴霜露,斩荆棘,以有尺 寸之地。
翻译:回想他们的过世的祖辈父辈,冒着霜 露,披荆斩棘,因而才有一点点土地。
5、举以予人,如弃草芥。
翻译:拿(它)来送人,就像抛弃小草一样。
6、然则诸侯之地有限,暴秦之欲无厌,奉 之弥繁,侵之愈急。
翻译:然而那么诸侯的土地有限,暴秦的欲 望没有满足;谁送给它土地更加频繁,它 侵犯谁就更加急迫。
1、赂秦而力亏,破灭之道也。
翻译:贿赂秦国因而力量亏损,是六国灭 亡的道理。
2、不赂者以赂者丧,盖失强援,不能独完。
翻译:不割地贿赂秦国的国家因为割地贿 赂秦国的国家而灭亡,因为他们失去了强 有力的外援,不能单独保全。
3、较秦之所得,与战胜而得者,其实百倍;
翻译:把秦国由受贿赂得到的土地与战胜 而得到的土地比较,它实际上有一百倍 。
10、后秦击赵者再,李牧连却之。洎牧以谗诛, 邯郸为郡,惜其用武而不终也。
翻译:后来秦国又两次攻打赵国,李牧接连使秦 国退却。等到李牧因受谗言被赵王杀害,都城邯 郸就变成秦国的一个郡,可惜它用兵抵抗却没能 坚持到底啊。
11、向使三国各爱其地,齐人勿附于秦,刺客不 行,良将犹在,则胜负之数,存亡之理,当与秦 相较,或未易量。
7、至于颠覆,理固宜然。
翻译:六国落到灭亡的地步,按理本来应当 这样。
8、燕赵之君,始有远略,能守其土,义不 赂秦。
翻译:燕国和赵国的君主,起初有来自大的谋 略,能够守住自己的土地,坚持正义不贿 赂秦国。
9、至丹以荆卿为计,始速祸焉。
翻译:到了燕太子丹用派遣荆轲刺杀秦王作 为对付秦国的策略,才招致灭亡的祸患。
13、苟以天下之大,下而从六国破亡之 故事,是又在六国下矣。
翻译:如果凭借偌大国家,却自取下策重蹈 六国灭亡的覆辙,这就又在六国之下了
土地利用/覆被变化(LUCC)对生态环境的影响
土地利用/覆被变化(LUCC)对生态环境的影响摘要:土地是生态环境的重要组成部分,土地利用与生态环境存在着不可分割的联系。
土地利用/覆盖变化(LUCC)研究发现,土地利用对局地气候、土壤、水文、生态系统、资源利用以及自然灾害都有明显的影响。
土地利用作为环境变化的动力使生态环境的质量发生正向或逆向变化。
关键词:土地利用/覆被LUCC 生态环境土地是生态环境的重要组成部分,土地利用与生态环境存在着不可分割的联系。
土地利用是人们根据土地资源的特性、功能和一定的经济目的,对土地的使用、保护和改造的过程。
在这一过程中,人类与土地生态系统进行物质、能量和价值、信息的交流、转换,土地生态系统中自然发生的物质或能量转化的自然再生产过程就不断受到影响,从而推动生态环境的变化和演替。
土地利用作为环境变化的动力使生态环境的质量发生正向变化或逆向变化。
一、LUCC研究的基本目标LUCC 研究的基本目标是提高对土地利用/覆被变化动态过程的认识,并着重提高预测土地利用/覆被变化的能力。
具体包含四个目标:一是调查和描述不同尺度下土地利用和覆被变化的时空过程;二是认识和把握不同时空尺度下土地利用和覆被变化的驱动力及驱动机制;三是确定各种土地利用与可持续发展间的关系;四是认识LUCC、生物地球化学过程及气候变化之间的关系。
二、LUCC对生态环境的影响分析土地利用/覆被变化对生态环境的影响主要表现在两个方面:一方面改变地球表面物理特征(如粗造度、反照率、土壤含水量等),如把耕地变为居民点及工矿用地或交通用地,改变了地面的下垫面,从而影响太阳辐射的吸收和反射;另一方面是影响大气中的微量元素,如温室气体的排放和吸收可以改变地球表面的生物地球化学的循环过程,另外,土地利用变化还通过土地覆盖的改变而直接影响到生物多样性、影响区域的水分循环特征、改变生态系统的结构以及组成,从而对生态系统的功能产生影响。
(一)对水环境影响。
1.土地利用/覆被变化影响水量的时空分配。
英语翻译
AbstractLUCC is the important component and primary causes of global environment change, the core question of sustainable development, which will be closely linked with humanity's future survival. It is restricted by both natural factor and humanities factor such as society, economy, politics influences and so on. At the same time, the integrated function of LUCC in turn is affecting the global environment and the development of human society. Since 1995 IGBP and IHDP jointly proposed the LUCC research plan, rapidly has caused the widespread attention of internationalsociety and geographer, the LUCC research is generally launched indomestic and foreign, also has become the international front topic of geography study.As the capital of Shanxi Province,The economical of Taiyuan capital fast developed, the urbanization and industrialization level unceasingly enhanced in recent years, along with the high development, the land use and cover of Taiyuan city also was having the huge change, which cause a series of ecological environment problem. Therefore, the quantitative synthetic study to the urban and suburban area in Taiyuan city, specially accurately withdrawing the LUCC information, and in based on which, the spatial patternchange of ecology service function value caused by LUCC in research area is quantitatively evaluated,which have the important theory and practice significance to the land resource sustainable use in research area, understanding the spatial pattern change of ecological environment which caused by LUCC, promoting the coordinated development of region economy and environment.At present, the research of LUCC offen stresses to the change of land quantity and quality on the certain time ,but neglects the spatial pattern and the spatial evolution. The research of ecosystem service value influenced by land use use are also more, but mostly directly quotes the research results of Constaza and so on or carries on the corresponding adjustment take this as the foundation to calculate the time difference of ecosystem service value, the research to space difference as well as the spatial pattern research of the ecosystem service value in differenttime interval is very few.Instrcted by the geographic information TuPu、ecology and sustainable development theory and so on, take the urban and suburban area in Taiyuan city as an example, based on two remote sensing images, the DEM data and the partial investigation data, on-the-spot investigation, using GIS and RS technology, This research mainly concluded following four aspects research : (1) based on the GIS platform, established the LUCC database of the urban and suburban in Taiyuancity in 1990 -2002 year, analyzed the change tendency of land use and the change characteristic of main land use type in research in this interval; (2) supported by GIS and RS, used the geographic information TuPu theory, produced the land use change TuPu of research in 1990 -2002 year, and the spatial pattern of land use change in research area was further analyzed;(3) the ecosystem service value database of research area in 1990-2002 year was established suported GIS and ecology theory and the ecosystem service value change caused by land use change was quantitative analysed in 1990-2002 year; (4)bsed on the GIS and RS, using the geographic information TuPu theory, the ecosystem service value change TuPu and the ecosystem service value change quantity TuPu was produced of research area in 1990 -2002 year on base of land use change TuPu, the spatial pattern of ecosystem service value change in resarch area was furhher analysed.The important conclusion below was obtained through above synthetic study:(1) The statistical analysis to the land use change database indicated that: in 12 years the overall tendency of research area was: the area of farmland, rangeland and waters relatively reduced, while the area of garden plot, unused land, forest land and construction land relatively increased. The forest land area only increased 8535.74 hm2, which had the biggest increasing area in all land use type. In the same time, the area of farmland had remarkable reduction, reduced by 16456.47 hm2 in 12 years.(2) The characteristic of land use change was that farmland change as unused land, farmland change as construction land in research area in 12 years, What the biggest change area is the transformation from farmland to unused land, altogether 9 772.80 hm2 in farmland transform to unused land, occupied 19.98% of the overall change area, which mainly occured in the north of research area north, namely the Jian caoping area, the primary cause which the increasing of unused land in this region was that university extended as well as some energy chemical industry taken the farmland but not to complete again adds on a part of farmland degenerate to the saline and alkali land.(3) The main extention tendency was the increasing of unused land and forest land, which ocupied 10.68% in all area, occupied 30.49% in all extended area. Seeing from the research area expansionTupu, this mainly occured in the north of research area; In all contraction's area, the contraction's area of farmland was the biggest, accounted for 16.81% of the research area total area, occupied 47.98% of all contraction area.(4) The ecosystem service value caused by land use change presented increasing tendency in 12 years, but the increasing scope is not very big, which explained that the ecological environment of the research area developed to the benign direction in whole. The ecosystem service value offorest land had the biggest contribution to the total ecosystem service value of research area, which mainly benefited in Returning farmland to forest as well as the afforestation policy.(5) Seeing from the ecosystem service value change Tupu and the ecosystem service value change quantity Tupu of research area, the ecosystem service value of Jian caoping area had the obvious reduction, which mainly was caused by the increasing of unused land.The land use change Tupu, land use expansion Tupu, land use contraction Tupu as well as the ecosystem service value change Tupu, ecosystem service value change quantity Tupu were producted supported by RS、GIS and the geographic information Tupu theory, which had the important meaning to understand the spatial pattern and the spatial variation rule of land use change and ecosystem service value change in research area and also was the innovation of this article.摘要土地利用/土地覆被变化(Land use and Land cover change,LUCC)是全球环境变化的重要组成部分和主要原因之一,自1995年“国际地圈——生物圈计划”(IGBP)和“全球环境变化人文计划”(IHDP)联合提出LUCC研究计划以来,LUCC研究在国内外普遍展开。
全球环境变化研究的核心领域土地利用土地覆被变化的国际研究动向
全球环境变化研究的核心领域土地利用土地覆被变化的国际研究动向一、本文概述随着全球人口的增长和经济的快速发展,土地利用和土地覆被变化(LUCC)已成为全球环境变化的重要驱动力之一。
这种变化不仅直接影响生物多样性、水资源、气候等多个方面,还通过影响地球系统的各个组成部分,间接影响全球环境的整体稳定性。
因此,对土地利用土地覆被变化的深入研究,对于我们理解全球环境变化的机理,预测未来环境变化趋势,以及制定有效的应对策略具有极其重要的意义。
本文旨在全面概述全球环境变化研究的核心领域——土地利用土地覆被变化的国际研究动向。
我们将首先回顾土地利用土地覆被变化的基本概念和研究背景,然后分析当前国际学术界在该领域的研究热点和前沿问题,包括土地利用变化的驱动力、土地覆被变化的生态效应、土地利用变化的社会经济影响等。
我们还将关注新技术和新方法在土地利用土地覆被变化研究中的应用,如遥感技术、地理信息系统、模型模拟等。
通过对全球土地利用土地覆被变化研究动向的梳理和分析,本文旨在为全球环境变化的深入研究和应对策略提供有益的参考和启示。
我们期待通过这一研究,为应对全球环境变化、保护地球生态环境、促进可持续发展提供科学依据和决策支持。
二、土地利用/土地覆被变化的基本概念与研究意义土地利用/土地覆被变化(Land Use/Land Cover Change,简称LUCC)是全球环境变化研究的核心领域之一。
土地利用是指人类对土地进行的各种经营活动,包括农业、林业、牧业、城市建设等;而土地覆被则是指地球表面覆盖的自然或人工植被、水体、裸地等。
LUCC涉及的是这两个层面的动态变化及其相互作用。
研究LUCC具有重要的现实意义和理论价值。
LUCC直接影响了全球生态系统服务功能和生物多样性,对全球碳循环、水循环、气候系统等自然过程产生深远影响。
LUCC反映了人类活动对自然环境的干预程度,是人类社会经济发展的一面镜子。
因此,通过对LUCC的研究,我们可以深入理解人类活动与自然环境的相互作用机制,为制定科学的资源管理和环境保护政策提供理论依据。
土地利用与土地覆被变化
土地利用与土地覆被变化2012级地理科学摘要:人类活动对环境的影响越来越成为自然地理学的关注中心,其中土地利用及土地覆被变化是全球环境变化的重要环节和主要原因。
因此,国际地圈——生物圈计划(IGBP)和全球环境变化中的人文方面计划(IHDP)联合提出“土地利用和土地覆被变化”(IGBP and IHDP,1993,1995,1999)这一核心研究领域,受到社会各界的极大重视。
本文从“土地利用与土地覆被变化”的研究内容,研究案例等方面来说明。
关键词:土地利用土地覆被LUCC一、土地利用与覆被变化的概念1.土地利用的概念世界粮农组织(FAO)1985年指出:“土地利用是由自然条件与人的干涉所决定的土地功能。
”陈百明1996年将土地利用定义为“人类为了经济社会目的而进行的一系列生物和技术活动,对土地长期或周期性的经营活动”。
许炎谟和陈章琛1987年将土地利用定义成“一种社会经济现象,是人类在漫长的历史过程中对土地资源进行持续开发和改造治理的结果”。
综上所述,土地利用是指人类有目的地开发利用土地资源的一切活动,如农业用地、林业用地、工业用地、交通用地、居住用地、休闲娱乐用地等都是不同的土地利用类型。
2.土地覆被变化的概念美国“全球变化研究计划”将土地覆被定义为“覆盖着地球表面的植被及其他特质”;摆万奇等将土地覆被定义为“覆盖地面的自然物体和人工建筑物,它反映的是地球表层的自然状态”;还有学者将土地覆被定义为“地球表面当前所具有的自然和人为影响所形成的覆被物,包括地表植被、土壤、冰川、湖泊、沼泽、湿地及道路等”和“土地覆被是随着遥感技术的应用而出现的新概念,是指覆被地面的自然物体和人工建筑物,最主要的组成部分是植被,也包括土壤和陆地表面的水体”。
总之,土地利用是指人类有目的地开发利用土地资源的一切活动,而土地覆被则是指地表自然形成的或者人为引起的覆盖状况。
土地利用与土地覆被,一个是发生在地球表面的活动过程,另一个则是各种地表活动的产物,二者共同构成了土地资源社会和自然的双重属性。
土地利用覆被变化(LUCC)研究进展
土地利用覆被/变化(LUCC)研究进展作者:余慧容,蒲春玲来源:《经济研究导刊》2012年第19期摘要:土地利用/覆被变化(LUCC)研究一直是全球变化研究的热点。
从LUCC相关概念入手,对LUCC的国内外研究进展进行总结归纳,得到结论:国外LUCC领域的研究启动早、覆盖面广且研究较为深入,中国LUCC研究主要集中在时空变化、驱动机制、生态环境效应及模型模拟研究四个方面,加强区域性研究、提高模型的实用性仍是中国今后LUCC领域研究的重点。
关键词:LUCC; 时空演变; 模型模拟中图分类号:F301.24 文献标志码:A 文章编号:1673-291X(2012)19-0142-03土地利用/覆被变化(LUCC)研究是全球变化研究的核心主题之一[1],其研究成果对于实现区域土地可持续利用有着至关重要的意义。
一、LUCC相关概念土地覆被(Land Cover)曾被IGBP(国际地圈与生物圈计划)和IHDP(全球环境变化人文计划)定义成人类活动和自然过程共同作用后在近地面层及地球陆地表层所形成的自然状态[2],其他组织机构和学者也给出了其他定义,但其内涵均包括:(1)其本身是由植被、土壤和陆地表面的水体等构成;(2)其是构成陆地生物圈的重要成分[3]。
土地利用(Land Use)于1985年被世界粮农组织(FAO)定义为土地利用是由自然条件与人的干涉所决定的土地功能[4],但目前应用较广的定义是:人类所进行的一切有目的开发利用土地资源的行为活动的总称,如耕地、林地、牧草地、建设用地等都是不同的土地利用类型[1]。
可见,土地覆被和土地利用间具有巨大的关联性,前者的变化作用于后者,而后者又是造成前者变化的最重要影响因素,其二者共同构成了土地的社会、自然双重属性。
二、LUCC国外研究进展1990年全球变化研究委员会最早提出了一个全球性LUCC研究框架。
国际上真正意义上的LUCC研究开始于1992年,联合国在“21世纪议程”中明确提出将加强LUCC研究作为21世纪工作的重点[5]。
Unit 2 Diet全新版大学英语综合教程五课文翻译
Unit 2 DietText A Let's Go Veggie!1 If there was a single act that would improve your health, cut your risk of food-borne illnesses, and help preserve the environment and the welfare of millions of animals, would you do it?2 The act I'm referring to is the choice you make every time you sit down to a meal.3 More than a million Canadians have already acted: They have chosen to not eat meat. And the pace of change has been dramatic.4 Vegetarian food sales are showing unparalleled growth. Especially popular are meat-free burgers and hot dogs, and the plant-based cuisines of India, China, Mexico, Italy and Japan.5 Fuelling the shift toward vegetarianism have been the health recommendations of medical research. Study after study has uncovered the same basic truth: Plant foods lower your risk of chronic disease; animal foods increase it.6 The American Dietetic Association says: "Scientific data suggest positive relationships between a vegetarian diet and reduced risk for several chronic degenerative diseases."7 This past fall, after reviewing 4,500 studies on diet and cancer, the World Cancer Research Fund flatly stated: "We've been running the human biological engine on the wrong fuel."8 This "wrong fuel" has helped boost the cost of degenerative disease in Canada to an estimated $400 billion a year, according to Bruce Holub, a professor of nutritional science at the University of Guelph.9 Animal foods have serious nutritional drawbacks: They are devoid of fiber, contain far too much saturated fat and cholesterol, and may even carry traces of hormones, steroids and antibiotics. It makes little difference whether you eat beef, pork, chicken or fish.10 Animal foods are also gaining notoriety as breeding grounds for E. coli, campylobacter and other bacteria that cause illness. According to the Canadian Food Inspection Agency, six out of ten chickens are infected with salmonella. It's like playing Russian roulette with your health.11 So why aren't governments doing anything about this? Unfortunately, they have bowed to pressure from powerful lobby groups such as the Beef Information Center, the Canadian Egg Marketing Agency and the Dairy Farmers of Canada. According to documents retrieved through the Freedom of Information Act, these groups forcedchanges to Canada's latest food guide before it was released in 1993.12 This should come as no surprise: Even a minor reduction in recommended intakes of animal protein could cost these industries billions of dollars a year.13 While health and food safety are compelling reasons for choosing a vegetarian lifestyle, there are also larger issues to consider. Animal-based agriculture is one of the most environmentally destructive industries on the face of the Earth.14 Think for a moment about the vast resources required to raise, feed, shelter, transport, process and package the 500 million Canadian farm animals slaughtered each year. Water and energy are used at every step of the way. Alberta Agriculture calculates that it takes 10 to 20 times more energy to produce meat than to produce grain.15 Less than a quarter of our agricultural land is used to feed people directly. The rest is devoted to grazing and growing food for animals. Ecosystems of forest, wetland and grassland have been decimated to fuel the demand for land. Using so much land heightens topsoil loss, the use of harsh fertilizers and pesticides, and the need for irrigation water from dammed rivers. If people can shift away from meat, much of this land could be converted back to wilderness.16 The problem is that animals are inefficient at converting plants to edible flesh. It takes, for example, 8.4 kilograms of grain to produce one kilogram of pork, the U. S. government estimates.17 After putting so many resources into animals, what do we get out? Manure — at a rate of over 10,000 kilograms per second in Canada alone, according to the government. Environment Canada says cattle excrete 40 kilograms of manure for every kilogram of edible beef. A large egg factory can produce 50 to 100 tonnes of waste per week, the Ontario Ministry of Agriculture estimates.18 And where does it go? In the 1992 Ontario Groundwater Survey, 43 per cent of tested wells were contaminated with agricultural run-off containing fecal coliform bacteria and nitrates. Earlier this month, charges were laid against a large Alberta feedlot operator for dumping 30 million litres of cattle manure into the Bow River, "killing everything in its path," as a news story described it.19 And then there is methane, a primary contributing gas in global warming and ozone layer depletion. Excluding natural sources, 27 per cent of Canada's and 20 per cent of the world's methane comes from livestock.20 John Robbins, author of the Pulitzer prize-nominated book Diet for a New America (Group West), said it best when he stated: "Eating lower on the food chain is perhaps the most potent single act we can take to halt the destruction of our environmentand preserve our natural resources."21 Our environment also includes the animals killed for their meat. It has become an accepted fact that today's factory-farmed animals live short, miserable, unnatural lives.22 As part of my research at the University of Waterloo, I toured some of the country's largest "processing" plants. The experience has left me with recurring nightmares.23 I saw "stubborn" cows being beaten and squealing pigs chased around the killing floor with electric calipers.24 I looked on in utter shock as a cow missed the stun gun and was hoisted fully conscious upside down by its hind leg and cut to pieces, thrashing until its last breath.25 Noticing my shock, the foreman remarked: "Who cares? They're going to die anyway."26 Because it can cost hundreds of dollars per minute to stop the conveyor line, animal welfare comes second to profit. Over 150,000 animals are "processed" every hour of every working day in Canada, according to Agriculture Canada.27 The picture gets uglier still. En route to slaughter, farm animals may legally spend anywhere from 36 to 72 hours without food, water or rest. They're not even afforded the "luxury" of temperature controlled trucks in extreme summer heat or sub-zero cold.28 Agriculture Canada has estimated that more than 3 million Canadian farm animals die slow and painful deaths en route to slaughter each year.29 I've also visited typical Canadian farms. Gone are the days when piglets snorted and roosters strutted their way about the barnyard. Most of today's modernized farms have long, windowless sheds in which animals live like prisoners their entire lives. I have seen chickens crammed four to a cage, nursing pigs separated from their young by iron bars and veal calves confined to crates so narrow they couldn't turn around. Few of these animals ever experience sunlight or fresh air —and most of their natural urges are denied.30 Although it is difficult to face these harsh realities, it is even more difficult to ignore them. Three times a day, you make a decision that not only affects the quality of your life, but the rest of the living world. We hold in our knives and forks the power to change this world.31 Consider the words of Albert Einstein: "Nothing will benefit human health and increase the chances for survival of life on Earth as the Evolution to a vegetarian diet."32 Bon appetite.咱们吃素吧!如果有一件事,既能增进健康、减少患上食物引起的疾病的危险,又有助于保护环境、保护千万动物安全生存,你做不做?我说的这件事就是每次坐下来就餐时挑选菜肴。
土地利用/覆被变化(LUCC)环境效应研究综述
范畴, 而耕地 、 林地、 草地、 公路 、 建筑及土壤、 冰雪和水 体
属 土地覆 盖 的范 畴。
土地 利用是 土地覆 被变化 最重要 的影响 因素 。 地覆 土 被 的变化 反过来 又作 用 于土 地利 用 。全 球 不 同区域 土地
覆被的性质主要决定于 自然因素, 目前的土地覆被状况 但
题 已引起人 类社会 的广泛关注 , 深入研 究这些 问题具有重要 的理论 意义和 实践 价值。针对土地利用/ 覆被变化 引起 的环境效 应的复杂性 、 累积性 , 文在总结 国内外 L C 本 U C环境 效应的研 究成果的同时, L C 把 U C环境效应 分为 : 土壤环境 效应、 气环境 大 效应、 水环 境效应 以及 生态效应四类进行阐述 , 并结合 目前研 究在 内容 和方法方 面存 在缺乏统一 的指 标体 系、 究区域时 空 研
维普资讯
第3 1卷第 5期 2O 06年 8 月
环境科学 与管理
L ENCE ND ^ ^ SCI A M N GEMENT
V 13 . . o . 1 No 5 Au . O 6 g2O
文章 编号 :63 2220 )5 00 5 17 —11 (060 —06 —0
境变化人类 因素计划”简称 m)) ( P将土地覆被定义为“ 地
球 陆地 表层和 近地 面层 的 自然状态 , 自然过 程和人 类 活 是
尺度单一、 以单要素静 态研究为主、 实验研 究相对薄弱以及 动态模拟 不够等 问题对其发展趋势进行 了探讨。
关 键 词 : 利 用/ 被 变化 ( c ) 土地 覆 I c ;环 境 效 应 :生 态 系统 献 标 识码 : A
全球变化中人的行为非常复杂, 但从对地球表层系统
现代自然地理学复习资料
现代自然地理学复习资料一、名词解释1、土地利用:土地利用时指土地的使用情况。
是人类根据土地的自然特点,按照一定的经济、社会目的,采取一系列生物、技术手段对土地进行长期或周期性的经营管理和治理改造活动。
土地覆被(LUCC):土地覆被是指地表的覆盖情况。
不仅包括地表的植被,也包括地表的人工覆盖物和人工改造物,是地球表层的植被覆盖物和人工覆盖物的总和。
两者的关系:土地利用时土地覆盖变化的外在驱动力。
土地覆盖反过来影响土地的利用方式,两者在地表构成一个综合体。
2、土地:是地球表面某一地段包括地址、地貌、气候、水文、土壤、动植物等全部自然要素在内的自然综合体,也包括过去和现在人类活动对地理环境的作用在内。
土地资源:是指在目前和可预见未来的技术水平下,能直接为人类用于生产和生活所应用的土地。
3、地域分异规律:自然环境的各个因素及整个自然地理环境的综合特征按特确定方向作有规律发生水平或垂直分异现象,称为地域分异规律。
包括维度地带性和经度地带性。
自然区划:由于地域分异因素综合作用的结果,使自然环境在空间分布上具有一定的规律性。
根据这种规律性趣划分各自自然区域之间的差异和界限,确定各自然区划等级之间的从属关系,可以构成一个区域等级组合体系。
自然区域的这种系统研究法,称为自然区划。
4、诊断层:用于鉴别土壤类型,在性质上有一系列定量说明的土层。
诊断表层 (A或A+AB)和诊断表下层(B或E)。
诊断特性:如果用来鉴别土壤类型的依据不是土层,而是具有定量说明的土壤性质,则称为诊断特性。
5、地理学:是研究地球表面环境的结构分布,及其发生变化的规律性以及人地关系的科学。
自然地理学:作为地理学的一个重要分支学科,他研究自然地理环境的组成、结构、功能、动态及其空间分异规律、主要采用定性描述的方法,分别研究地球表层的各种自然要素,如地形、气候、水文、土壤、植物等和自然综合体的空间分布特征,以及它们在空间上的相互依存与联系,旨在揭示不同地域之间在自然性质方面的差异性或相似性。
土地利用名词解释
土地利用名词解释
土地利用(Land use)是指人类对地表土地资源的开发利用方式。
它涵盖了人类活动、基础设施建设和自然环境的综合关系,包括城市化、农业、林业、畜牧业、工业、交通、旅游等各种活动。
土地利用的目的是适应社会和经济发展的需要,同时最大限度地保护生态环境和自然资源。
以下是几种常见的土地利用名词解释:
1. 城市化(Urbanization):指城市人口比重和城市规模的增加,以及城市的扩展和发展过程。
2. 农业(Agriculture):指农民对土地进行种植、养殖等活动,生产农产品供给社会的经济行为。
3. 林业(Forestry):指对森林地区的经营和管理,包括种植、砍伐、造林、保护等一系列活动。
4. 畜牧业(Livestock farming):指人类对牲畜进行饲养和经营,以获得畜产品供给社会的经济活动。
5. 工业(Industry):指通过对土地进行工厂、厂房建设,进
行生产和制造的经济活动。
6. 交通(Transportation):指对土地进行道路、铁路、航空等交通基础设施建设和运输活动。
7. 旅游(Tourism):指对土地进行旅游设施建设和旅游服务的经济行为,以吸引游客并促进地方经济发展。
总之,土地利用是人类对土地资源进行开发利用的方式,旨在满足人类社会和经济发展的需求,同时保护生态环境和自然资源。
综合自然地理名词解释
综合自然地理学名词解释1、地域分异规律:自然环境的各组成成分及地理综合体沿确定方向发生水平分化的普遍的必然的现象。
2、全大陆地域分异规律主要有四种形式:大陆纬度地带性、干湿地带性、水平地带性、巨型构造体系引起的分异。
3、全球性地域分异规律主要有三种形式:热力分带、海陆分异、地表形态的起伏分化。
4、自然地理环境空间结构的一般特性主要有:分层性,渗透性,地域性。
5、地理环境整体性:地理环境个组成部分和组成要素相互联系作用形成的总体。
6、大陆水平地带性:在大陆纬度地带性及非纬度地带性共同作用下应具有的、明显的自然地理综合特性。
主要表现形式:经向式、纬向式、斜交式。
7、大陆干湿地带性:大陆上随海陆格局而产生的干湿分异。
8、地带性区划单位:根据纬度地带的属性及其特征划分的各级地域单位。
等级序列:自然带—自然地带—自然亚地带—自然次亚地带。
9、非地带性区划单位:根据非纬度地带的属性及其特征划分的各级地域单位。
等级序列:自然大区—自然地区—自然亚地区—自然小区(州)。
10、土地类型的演替:指在现代地理过程和人类活动的作用下,土地类型由一种属性向另一种属性转变的过程。
11、综合自然区划:以地域分异规律理论作指导,按地域综合体的相似性和差异性,以及相似的程度进行逐级划分或合并,并建立相应的等级系统。
主要原则有:发生统一性,相对一致性,区域共轭性,综合性与主导因素相结合。
一般的区划方法有:顺序划分和逐级合并。
12、带段性:非地带性单位内部的地带性分异。
13、省性:是地带性单位内部的非地带性分异。
14、土地类型:根据一定的原则和指标,对同一级别的不同土地单位按其相似性进行类群归并的产物。
15、土地类型结构:指某一区域,同一级的不同土地类型单位在空间上的组合方式和质量对比关系。
16、中国1/100万土地资源图的评价系统是:土地潜力区—土地适宜类—土地质量等—土地限制型—土地资源单位。
17、美国土地资源评价的等级系统是:土地潜力级—土地潜力亚级—土地潜力单元。
土地利用覆被变化名词解释
土地利用覆被变化名词解释
土地利用覆被变化是指在一定时期内,特定地区土地利用类型和覆盖范围的变化情况。
它描述了土地在不同时间段内的利用方式和覆盖类型的变化情况,通常以土地利用类型的数量和空间分布的改变为主要指标。
土地利用覆被变化是一个综合性概念,包括了农业用地、城市建设用地、森林、草地、湿地、水域等不同类型土地的变化。
这些变化可能包括土地利用类型的转换、面积的增减、空间分布的扩张或收缩等。
土地利用覆被变化通常是由人类活动引起的,例如农业扩张、城市化进程、工业化发展等。
这些人类活动会导致土地利用类型的改变,从而对生态环境、生物多样性、土地资源可持续利用等方面产生影响。
土地利用覆被变化的研究对于了解土地资源的可持续利用、生态环境的保护、气候变化的影响等具有重要意义。
通过对土地利用覆被变化的监测和分析,可以为土地规划、环境保护、资源管理等提供科学依据,以实现可持续发展的目标。
总结起来,土地利用覆被变化是指特定地区在一定时间段内土
地利用类型和覆盖范围的变化情况,它涉及到不同类型土地的转换、面积的增减、空间分布的改变等,是人类活动对土地资源和生态环
境产生影响的重要指标。
土地利用、土地覆被的环境效应
人文地理201801 倪新洁
名词解释
O1/
土地利用
FIRST/ LAND USE
BY AWEI.
-土地利用-
LAND USE
·土地利用,是指人类根据土地的自然特点,按一定的经济、社会目的,采取一系列生物、技术手段,对土 地进行长期性或周期性的经营管理和治理改造。 ·侧重于土地的经济属性。 ·对林地的划分:(从林地的利用目的和利用方向)用材林地、经济林地、薪炭林地、防护林地等。
·美国的“城市洪涝”:
“发生在建成环境(尤其是人口稠密地区)中,由于不透水表面增加和持续性降水造成排水系统超负 荷,进而导致的财产被淹的现象。”
-对土地生产力的影响-
·土地利用/土地覆被对于土壤营养成分、含水量等诸多因素有影响,且间作等土地利用方式还有利于植物 充分运用太阳能。对土地生产力的提高有作用。
2.对洪涝灾害的影响 ·土地利用不当还有可能导致一些灾害的发生,而与水资源息息相关的洪涝灾害也在其列。 ·例子:据美国一些小城市调查,当不透水地面占12.00%、平均洪水流量为17.80m3/s,洪水汇流时间 为3.5h.而当不透水地面增至40.00%时、平均洪水流量增至57.80m3/s,洪水汇流时间减至0.4h。工矿 居民建设用地、交通用地的增加,使得整个城市的地面不渗透率增加,地面径流系数相应增大,此外还 有因城镇建设填平原来的河流湖泊,使得天然水体面积大大减少。
2.造成的土壤侵蚀和土壤沙化 ·人类在上述活动中,大量破坏了地表的植被,因而使固体物质的重力迁移和机械搬迁比自然状态下要 增大几十倍至上千倍。 ·例子:美国东部地区某流域的实测资料,在农业发展之前,该河流泥沙含量仅为50mg/l,而在扩大耕地 期间,上升为600mg/l,在进行工程建设期间,进一步上升至2000mg/l。
地震文言文逐字翻译拼音
地忽然而动,山崩川竭,屋舍圮颓,人声鼎沸。
天地变色,日月无光,鬼哭狼嚎,百禽皆惊。
震源千里,波及四邻,哀鸿遍野,惨不忍睹。
【逐字翻译拼音】地忽然而动,shì hū ér rán dòng,山崩川竭,shān bēng chuān jié,屋舍圮颓,wū shè pǐ tuí,人声鼎沸,rén shēng dǐng fèi。
天地变色,tiān dì biàn sè,日月无光,rì yuè wú guāng,鬼哭狼嚎,guǐ kū láng háo,百禽皆惊,bǎi qín jiējīng。
震源千里,zhèn yuán qiān lǐ,波及四邻,bō jí sì lín,哀鸿遍野,āi hóng biàn yě,惨不忍睹,cǎn bù rěn dǔ。
【译文】突然间,大地开始震动,山岳崩塌,河流干涸,房屋倒塌,人们惊慌失措,呼喊声如同鼎沸。
天地变色,日月无光,鬼哭狼嚎,百鸟惊飞。
地震的震源距离千里之遥,波及到四周的邻国,哀鸿遍野,惨不忍睹。
【逐字翻译拼音】忽而:hū ér然:rán动:dòng崩:bēng川:chuān竭:jié屋舍:wū shè圮颓:pǐ tuí人声:rén shēng鼎沸:dǐng fèi变色:biàn sè无光:wú guāng鬼哭:guǐ kū狼嚎:láng háo百禽:bǎi qín皆惊:jiē jīng震源:zhèn yuán千里:qiān lǐ波及:bō jí四邻:sì lín哀鸿:āi hóng遍野:biàn yě惨不忍睹:cǎn bù rěn dǔ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)文献综述题目土地利用与土地覆被时空动态变化分析学院测绘科学与技术学院专业资源环境与城乡规划管理班级0701学生杨慧荣学号0710010111指导教师竞霞二〇一一年六月一日土地利用与土地覆盖变化摘要:文章概要介绍国际地圈-生物圈(IGBP)的核心计划之一——土地利用与土地覆盖变化(LUCC)的科学计划。
阐述了该计划的形成历史、科学目标以及主要研究内容。
指出LUCC研究目的是改善对全球土地利用和土地覆盖变化动态过程(或动力学)的认识,以着重提高规划土地覆盖变化的能力。
关键词:土地利用土地覆盖国际地圈-生物圈(IGBP)计划全球变化1土地利用和土地覆盖的形成历史全球环境变化组织逐渐认识到土地利用与土地覆盖变化的重要性,也意识到对土地利用与土地覆盖这一课题跨学科研究的迫切性。
全球环境变化组织对这一课题的重视目的在于提高我们对这种变化的模拟和研究的能力,这也吸引了国际地圈与生物圈计划”(IGBP)和“全球环境变化人文计划”(HDP),探索对这一课题研究的合作的可能性,他们目的在于改变人们对全球土地利用与土地覆盖动态变化的原始理解。
这两大国际组织委托研究土地利用/土地覆盖变化的“核心项目计划委员会”和“研究项目计划委员会”(CPPC/RPPC LUCC)拟定一个关于共同发起土地利用与土地覆被核心项目的科学计划。
这项计划由“核心项目计划委员会”和“研究项目计划委员会”(CPPC/RPPC LUCC)联合一个大的研究组织通过多次的研习会和探讨会拟定并最终于1996年4月29-31在美国阿姆斯特丹展开讨论。
2就全球环境变化下的土地利用/覆被的目标LUCC研究的目标是在全球范围内提高人们对LUCC动态变化的理解,提高人们对LUCC动态变化的研究能力。
由于人们对土地利用方式的不同引的变化起了全球行的土地利用与土地覆盖的变化,所以LUCC的研究就显得尤为重要了。
土地利用与土地覆盖的变化导致了地圈和生物圈之间的交互作用、生物多样性的遗失,而且也是影响可持续发展和人类对这种全球变化做出反应的主要因素。
因此,洞悉土地利用与土地覆盖变化的机制对模拟和评估环境方面是非常重要的。
那么对于土地利用与土地覆被的一个明确理解对于理解全球环境改变是不可或缺的。
进一步说,洞察土地利用与土地覆被变化的机制需要选择人类能够进行干预的可行路线,通过改变需要和数量来改变全球土地利用(与土地覆被)的转变。
LUCC的研究能够提供与土地利用、土地资源、环境政策与规划相关的资料。
然而,对于科学家和决策者来说,上述所有重要性与全球环境变化的复杂性相比较,土地利用与土地覆被方面的理解是相当缺乏的。
对于土地覆被和许多土地利用来讲,长期性的、大范围的全球性特征和变化的速度只是大体了解那么一点。
尽管出现了很多关于土地利用的精确数据和一些相关的地理数据使得我们可能提高分析的精确度,但是不确定和错误成分仍然占很大一本分比例。
由于生物地理和社会背景大的变动阻碍了对于土地利用与土地覆被动态变化的模拟。
全球需求量的评估建立在简单设想之上,这个设想就是抛开世界上的那些大的区域,尽管用这些地方性的和区域性的评价去推断更大的规模还是比较精确的。
所以说还有很多工作去做来填补这方面资料的空缺。
一项国际性的LUCC研究需要在以下方面进行改进:(1)从土地管理者方面着手,研究土地生物物理和社会科学驱动力(外生变量);(2)土地覆被与土地利用的联系;(3)土里利用与土地覆被的时空动态变化。
这些方面的改进将会促进区域和全球性土地利用与土地覆被的模拟研究和建立新的模型来研究LUCC的变化。
3研究重点LUCC研究者提倡将这三种不同的研究方法结合起来:典型实例研究、理论评估土地覆被模式的变化,区域性和全球性土地利用与覆被模型预测。
研究重点之一:土地利用变化机制;案例比较研究研究重点之一是通过将典型地区土地进行分类(利用/覆被转变)来研究土地利用与土地覆被的变化。
它所依据的假设是从土地管理者(像如农民、护林人等是土地利用与土地覆被变化的直接因素)那里得到很多关于土地利用与土地覆被动态变化的数据,然后用这些数据来说明土地利用与土地覆被动态变化的过程和结果。
因此,焦点1的主要目标就是明确土地管理者所利用的土地类型和他们所拥有的土地的动态变化。
同时,它也将过去土地利用与土地覆盖的动态变化纳入了研究范围之内。
研究重点之一将会计划并用常见协定、便准术语和土地利用动态研究方法对相关区域土地利用/覆被动态变化进行比较研究。
这些协定是随着对土地利用与土地覆被的研究而逐步完善起来的,由于以下俩个特点,使得这些协定复杂化:第一,三维生物物理驱动者、社会科学驱动者和土地管理者(最相关的因素)与土地利用与土地覆被的变化是息息相关的,而社会科学驱动者和土地管理者还包括那些积极推进其他领域变化的土地代理商和土地管理体系。
这些因素可能在很大程度上推动了历史和文化的变更。
第二,土地利用与土地覆盖变化只有很小的独立性。
土地覆盖的类型取决于原始条件,那些小的确实必要的任意事件就可能导致不同的结果,使模型预测更加复杂化。
我们将这个问题分解为俩个步骤。
第一步是将驱动力划分为社会驱动力、生物驱动力和最邻近驱动力。
对这三种驱动力一般的思路是用同样的分析方法对比它们在土地动态变化中地理学上的不同作用。
第二步是就时空尺度上尝试去分解至少是一些复杂的和有歧义的驱动力,然后逐个分析。
这一步参考了Holling提出的生态系统的变化在很大程度上可以理解为由于少量驱动力使得特征变化的经常性和空间性这一长时期以来关键性的假设。
在土地利用与土地覆被变化中可能找到一种关键性的过程用于处理一团乱糟糟并且复杂的驱动力和系统吗?研究的重点之一得出地方土地利用与土地覆被变化的精确的一般性的数据并且可以为研究重点之二和研究重点之三服务,使得区域的和全球的土地利用与土地覆被模型操作的顺手起来。
它向研究重点之二提供了土地利用覆被转变的可能性,并且向研究重点之三提供了从地方到区域人类和生物力量的特定改变。
研究重点之二:土地覆盖变化机制;直接观察和诊断模型研究土地利用与土地覆盖变化的一个完整的过程包括运用大规模的以科学实验为依据的土地覆盖变化的直接观察(包括卫星遥感、国家统计资料、土地覆被的详细目录和土地管理中心),这些直接观察可以直接用来检验标定以科学实验为依据的、特殊的土地覆被变化的模型。
这个过程包含两层意思。
第一,它强调了适当频率和空间规模的直接观察老直接量化土地覆盖变化、土地利用贡献和这两者之间的关系。
这些观察给一系列模型的定标和检验提供了一个基础。
第二,关于土地覆被变化的空间直接指向方法可以用在与土地覆被变化同时发生的其它地理的或空间信息的变化中,随着时间的推移,形成一个诊断模型。
与物理环境相关的空间信息(像如土壤、植被、地貌)与社会人口环境(像如人口结构、经济活动、土地使用期)可以归结为土地覆被变化的数据,随着这些数据的积累,在有限的能力范围内,这些以经验为主的预测模型就可以预测在短时期内土地覆被的变化。
这些模型可以为当前与区域和全球相关的碳预算相关的土地覆被变化(过去20年)提供一些基础性数据,也能提供短期性(未来20年)在薄弱的评价方面和向前分析方面的预测。
研究重点之二通过在一些关联地区和大的空间尺度上方便使用土地覆被动态模型为研究重点之一做了补充。
并且,它所提供的这些空间变化模型给研究重点之三,是的更多的整体性分析有了明确的组成成分。
研究重点之三:区域和全球模型;整体评价研究重点之三在全球尺度上为新的还改进模型做了大量的研究。
这些模型将会用来提供土地利用与土地覆盖在地域上的辐射并反过来提供一种土地利用变化造成环境改变的评价方法。
模型系统的研究必须满足几项要求。
在地理上区域中,它们必须可以高效的分解(像如省份模型,用来描述经济系统的国家、第二国家模型)而且这些模型也是国际层次模型的组成部分。
土地利用与土地覆盖模型应该精制而成,目的在于在接下来的50-100年里可以明确土地利用与土地覆被动态变化的主要方向,而且也能够用来处理突发事件。
理论和科学证明技术的变更在很大程度上是自发的。
来自环境迫使的压力驱动技术的革新。
既然技术的变更随着时间的推移是不可避免的,因此,它也是将来土地利用变化的一个决定因素,那么它也使得在土地利用与土地覆盖模型机械技术进程的变更成为必然。
这些模型能够显示出方法交互运行的能力,这是相当重要的,比如土地利用规律、排放物控制措施、区域性投资或者在土地恢复与改善方面的投资。
在设计土地利用与土地覆盖模型是,头脑中应有远见卓识,不确定或有风险的因素都要考虑在内,因为土地利用与土地覆被模型在长时期内是人类与环境交互作用的连接物。
策略性的觉得可以带来不可逆的影响,像如建设一座大坝,为了务农砍光整个热带雨林,或者是将农用地转变为城市或工业用地。
由于未来经济的成本和利益的不确定,并且可能带还环境危险,在决策的这段时间内,经常举棋不定。
最后,水文因素也应该包括在包含在土地利用与土地覆被的模型中。
农业中的供水需求关系逐渐变得清晰起来,在特殊灌溉时期,在特定区域可能就是土地利用动态的关键因素,像如在亚洲细部和半干旱的非洲。
在接下来的10年里供水不足加剧,通过水利用评价可以预测土地利用与土地覆被的变换。
更近一步来说,这些缺乏可能通过土地利用的变化加剧,森林的毁灭,还有可能导致全球变暖。
所以土地利用与土地覆盖模型需要处理水文因素俩个特点:(1)分配水和用水机构(像如社会公共机构、水利机构,订购机构)(2)土地利用与土地覆盖变化的可变性与可用水资源存储量变化的关系。
这个研究重点提供的现状和时间变化的边界需要研究重点之二和研究重点之一的案例中涉及到的外在因素或内在因素因素的影响的支持。
4全局模型全局模型一:分类和数据土地利用与土地覆被的变化研究既需要将土地利用与土地覆被分类标准化(或类型学),又需要数据能够支持一种格式,这种格式允许分类的标准化。
就气候、地形、土壤、植被或者是生产目的而言,土地的定义有很长一段历史,尽管还没有一个令人相当满意的和一致认可的定义方法和全球性土地利用分类,那么像如这样的土地利用分类的定义也就可以说的过去了。
这种定义阻碍了恰当的运用分类系统性的数据的收集。
尽管还是在全球范围内没有同意的原则,但因为全球行数据库的存在,这种定义对土地覆被可能更合适一些。
土地利用与土地覆盖的研究应该加强分类和数据的应用在土地利用的三维空间中:第一维包括土地利用的特点就是“土地和植被是有什么用的”。
这些使用在自然中是生物物理性质的,这些决定了整个片段或一个时期之内。
通过运用一系列概念用描述土地利用的框架已经存在,它包括与能量、营养、水、工具还有应用的时间这些相关物。
土地利用在生物物理方面的整体研究的方法是地理学的一种,涉及到领域、环节、或地表的一部分。