力的正交分解法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一:物体的受力分析

(一)物体的受力分析

物体之所以处于不同的运动状态,是由于它们的受力情况不同。要研究物体的运动,必须分析物体的受力情况。正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功。

如何分析物体的受力情况呢?主要依据力的概念,从物体所处的环境(有多少个物体接触)和运动状态着手,分析它与所处环境的其他物体的相互联系。具体的分析方法是:

1、确定所研究的物体,然后找出周围有哪些物体对它产生作用。

不要找该物体施于其他物体的力。比如所研究的物体叫A,那么就应该找出“甲对A”和“乙对A”及“丙对A”的力……而“A对甲”或“A对乙”等力就不是A所受的力。也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上。

2、要养成按步骤分析的习惯。

先画重力:作用点画在物体的重心。

其次画接触力(弹力和摩擦力):绕研究对象逆时针(或顺时针)观察一周,看研究对象跟其他物体有几个接触点(面),某个接触点(面)若有挤压,则画出弹力,若还有相对运动或趋势,则画出摩擦力。分析完这个接触点(面)后再依次分析其他接触点(面)。

再画其他场力:看是否有电场、磁场作用,如有则画出场力。

3、画完受力图后再作一番检查。

检查一下画出的每个力能否找出它的施力物体,若没有施力物体,则该力一定不存在。特别是检查一下分析的结果,能否使研究对象处于题目所给的运动状态,否则必然发生了多力或漏力的现象。

4、如果一个力的方向难以确定,可用假设法分析。

先假设此力不存在,观察所研究的物体会发生怎样的运动,然后审查这个力应在什么方向时,研究对象才能满足给定的运动状态。

5、合力和分力不能重复地列为物体所受的力。

力的合成与分解的过程是合力与分力“等效替代”的过程,合力和分力不能同时存在。在分析物体受力情况时,如果已考虑了某个力,那么就不能再考虑它的分力。例如,在分析斜面上物体的受力情况时,就不能把物体所受重力和“下滑力”并列为物体所受的力,因为“下滑力”是物体所受重力在沿斜面方向上的一个分力。

专题二:力的正交分解法

1、定义:把力沿着两个选定的互相垂直的方向分解,叫做力的正交分解法。

说明:正交分解法是一种很有用的方法,尤其适于物体受三个或三个以上的共点力作用的情怳。

2、正交分解的原理

一条直线上的两个或两个以上的力,其合力可由代数运算求得。当物体受到多个力的作

用,并且这几个力只共面不共线时,其合力用平行四边形定则求解很不方便。为此,我们建立一个直角坐标系,先将各力正交分解在两条互相垂直的坐标轴上,分别求出两个不同方向

上的合力F x和F y,然后就可以由F合=,求合力了。

说明:“分”的目的是为了更方便的“合”

正交分解法的步骤:

(1)以力的作用点为原点作直角坐标系,标出x轴和y轴,如果这时物体处于平衡状态,则两轴的方向可根据方便自己选择。

(2)将与坐标轴不重合的力分解成x轴方向和y轴方向的两个分力,并在图上标明,用符号F x和F y表示。

(3)在图上标出力与x轴或力与y轴的夹角,然后列出F x、F y的数学表达式。如:F 与x轴夹角为θ,则F x=Fcosθ,F y=Fsinθ。与两轴重合的力就不需要分解了。

(4)列出x轴方向上的各分力的合力和y轴方向上的各分力的合力的两个方程,然后再求解。

【典型例题】

例1、如图所示,用绳AC和BC吊起一个重100N的物体,两绳AC、BC与竖直方向的夹角分别为30°和45°。求:绳AC和BC对物体的拉力的大小。

解:此题可以用平行四边形定则求解,但因其夹角不是特殊角,计算麻烦,如果改用正交分解法计算简便得多。先以C为原点作直角坐标系,设x轴水平,y轴竖直,在图上标

出F AC和F BC在x轴和y轴上的分力。即:

F ACx=F AC sin30°=F AC F ACy=F AC cos30°=F AC

F BCx=F BC sin45°=F BC F BCy=F BC cos45°=F BC

在x轴上,F ACx F BCx大小相等即F AC=F BC (1)在y轴上,F ACy与F BCy的合力与重力相等

即F AC+F BC=100 (2)

解(1)(2)得绳BC的拉力F BC=25(-)N=25(-1)N

绳AC的拉力F AC=50(-1)N

例2、如图所示,重力为500N的人通过跨过定滑轮的轻绳牵引重200N的物体,当绳与水平面成60°角时,物体静止。不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。

分析:人和重物静止,所受合力皆为零,对物分析得到,绳拉力F等于物重200N;人受四个力作用,将绳的拉力分解,即可求解。

解:如图所示,将绳的拉力分解得

水平分力F x=Fcos60°=200×N=100N

竖直分力F y=Fsin60°=200×N =100N

在x轴上,F′与F x二力平衡所以静摩擦力F′=F x =100N

在y轴上,三力平衡得地面对人支持力

F N=G-F y=(500-100)N=100(5-)N

例3、如图所示:将重力为G的光滑圆球用细绳拴在竖直墙壁上,如图,当把绳的长度增长,则绳对球的拉力T和墙对球的弹力N是增大还是减小。

图(a)

解:根据球的平衡条件=0用已知力G求未知力T、N。

(1)明确对象,作受力分析,如图(a),球受G、N、T,设绳与墙夹角为θ。

(2)选用方法:

A、合成法:因为=0。所以任意两个力的合力均与第三个力大小相等,方向相反。如图(b),N、G合力T?,T?=T根据平行四边形法则,则在

图(b)图(c)

B、分解法:因为=0。所以其中任一个力在其它两个力方向的分力均与该力大小相等、方向相反而平衡。如图(c),在T、N方向上分解G有T?=T,N?=N。仍可看

C、用正交分解法:建立直角坐标系。如图(d),因为球受=0,必同时满足

。对三种解法要深刻理解,针对具体问题灵活运用,讨论结果:

相关文档
最新文档