2021届河南省新乡市中考数学联考试题
2021年河南省中招考试数学试卷及答案版

河南省中招考试数学试卷一、选取题(每小题3分,共24分)1.下列各数中,最小数是()(A). 0 (B).13(C).-13(D).-32. 据记录,河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表达为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON度数为()(A) .350 (B). 450 (C) .550(D). 6504.下列各式计算对的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,对的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)理解某种节能灯使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成几何体左视田也许是()7.如图,ABCD对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD长是()(A)8 (B) 9 (C)10 (D)118.如图,在Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s速沿折线AC CB BA运动,最后回到A点。
设点P运动时间为x(s),线段AP长度为y (cm),则能反映y与x之间函数关系图像大体是()二、填空题(每小题3分,共21分)9.计算:3272--= .10.不等式组3x6042x0+≥⎧⎨-⎩>所有整数解和是 .11.在△ABC中,按如下环节作图:①分别以B、C为圆心,以不不大于12BC长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=250,则∠ACB度数为 .12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A坐标为(-2,0),抛物线对称轴为直线x=2.则线段AB长为 .13.一种不进明袋子中装有仅颇色不同2个红球和2个白球,两个人依次从袋子中随机摸出一种小球不放回,到第一种人摸到红球且第二个人摸到白球概率是 .14.如图,在菱形ABCD中,AB =1,∠DAB=600,把菱形ABCD绕点A顺时针旋转300得到菱形AB'C'D',其中点C运动能途径为/CC,则图中阴影某些面积为 .15.如图,矩形ABCD中,AD=5,AB=7.点E为DC上一种动点,把△ADE 沿AE 折叠,当点D 相应点D /落在∠ABC 角平分线上时,DE 长为 . 三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中-117.(9分)如图,CD 是⊙O 直径,且CD=2cm ,点P 为CD 延长线上一点,过点P 作⊙O 切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为理解本校男生参加课外体育锻炼状况,随机抽取本校300名男生进行了问卷调查,记录整顿并绘制了如下两幅尚不完整记录图. 请依照以上信息解答下列问题:(1)课外体育锻炼状况扇形记录图中,“经常参加”所相应圆心角度数为 ;(2)请补全条形记录图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢项目是篮球人数;(4)小明以为“全校所有男生中,课外最喜欢参加运动项目是乒乓球人数约为1200×27300=108”,请你判断这种说法与否对的,并阐明理由.19.(9分)在中俄“海上联合—”反潜演习中,我军舰A测得潜艇C俯角为300.位于军舰A正上方1000米反潜直升机B侧得潜艇C俯角为680.试依照以上数据求出潜艇C离开海平面下潜深度.(成果保存整数。
2021年河南省新乡市中考数学一模试卷(有答案)

2021年河南省新乡市中考数学一模试卷一、选择题(每小题3分,共30分)1.下列各数中,最小的数是()A.﹣ B.﹣1 C.﹣|﹣| D.3﹣22.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×1063.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.4.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④ B.①③ C.①② D.③④5.有15位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8分获奖名额,甲同学知道自己的分数后,若要判断自己能否获奖,那么在15位同学成绩统计数据中,只要知道这组数据的()A.平均数B.中位数C.众数 D.方差6.如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠CDB=∠BFD B.△BAC∽△OFD C.DF∥AC D.OD=BC7.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24 C.6 D.128.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1 D.x<﹣1或x>59.如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是()A.B.3 C.D.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.|﹣3|0+= .12.写一个你喜欢的整数m的值,使关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,m= .13.用m、n、p、q四把钥匙去开A、B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能打开一把锁”的概率是.14.如图,菱形ABCD,∠A=60°,AB=4,以点B为圆心的扇形与边CD相切于点E,扇形的圆心角为60°,点E是CD的中点,图中两块阴影部分的面积分别为S1,S2,则S2﹣S1= .15.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE= 时,△EGH为等腰三角形.三、解答题(本题共8小题,满分75分)16.先化简(﹣)÷然后代入合适的x值求值,整数x满足﹣.17.截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?18.如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.(1)求证:DE是⊙O的切线.(2)填空:①当∠CAB= 时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH的长(,要求结果精确得到0.1m)20.在平面直角坐标系内,双曲线:y=(x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.21.2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有艘,乙型货轮有艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?22.如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.(1)发现:在图1中, = ;(2)应用:如图2,将△ADE绕点A旋转,请求出的值;(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出的值.23.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A 不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.2021年河南省新乡市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列各数中,最小的数是()A.﹣ B.﹣1 C.﹣|﹣| D.3﹣2【考点】2A:实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣|﹣|<﹣1<﹣<3﹣2,∴各数中,最小的数是﹣|﹣|.故选:C.2.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14.2万=142000=1.42×105.故选:A.3.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.【解答】解:该几何体的左视图是:故选B.4.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④ B.①③ C.①② D.③④【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:①原式不能合并,不符合题意;②原式=﹣8a6,符合题意;③原式=3x4,不符合题意;④原式=xy5,符合题意,故选A5.有15位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8分获奖名额,甲同学知道自己的分数后,若要判断自己能否获奖,那么在15位同学成绩统计数据中,只要知道这组数据的()A.平均数B.中位数C.众数 D.方差【考点】WA:统计量的选择.【分析】由于比赛设置了8个获奖名额,共有15名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:B.6.如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠CDB=∠BFD B.△BAC∽△OFD C.DF∥AC D.OD=BC【考点】S8:相似三角形的判定;MC:切线的性质.【分析】根据切线的性质、直径的性质、相似三角形的判定和性质等知识,一一判断即可.【解答】解:∵AD是切线,∴OD⊥DF,∵AC⊥OD,∴DF∥AC,故C正确,∴∠F=∠CAB,∵∠CDB=∠CBA,∴∠CDB=∠BFD,故A正确,∵AB是直径,∴∠AEO=∠ACB=90°,∴OE∥BC,∴△BAC∽△OAE,∵△OAE∽△OFD,∴△BAC∽△OFD,故B正确,无法证明OD=BC,故选D.7.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24 C.6 D.12【考点】G6:反比例函数图象上点的坐标特征;G5:反比例函数系数k的几何意义.【分析】设点M的坐标为(m,n),由点M为线段AB的中点即可得知点A(2m,0)、点B(0,2n),再根据反比例函数图象上点的坐标特征结合三角形的面积即可求出S△AOB的值.【解答】解:设点M的坐标为(m,n),则点A(2m,0),点B(0,2n),∵点M在双曲线y=(x>0)上,∴mn=6,∴S△AOB=OA•OB=2mn=12.故选D.8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1 D.x<﹣1或x>5【考点】HC:二次函数与不等式(组).【分析】根据二次函数的对称性求出与x轴的另一个交点坐标,然后根据函数图象写出x轴上方部分的x 的取值范围即可.【解答】解:由图可知,对称轴为直线x=2,∵抛物线与x轴的一个交点坐标为(5,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),又∵抛物线开口向下,∴不等式ax2+bx+c>0的解集是﹣1<x<5.故选A.9.如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是()A.B.3 C.D.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KO:含30度角的直角三角形.【分析】先根据直角三角形的性质求出AB的长,再由作法可知DE是线段AB的垂直平分线,故可得出BD=AD,BE=AE,再由直角三角形的性质即可得出结论.【解答】解:∵△ABC中,∠C=90°,∠A=30°,BC=2,∴AB=2BC=4.∵DE是线段AB的垂直平分线,∴BD=AD=AB=2,BE=AE,∴∠ABE=∠A=30°,∴BE===.故选A.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】连接DE,根据折叠的性质可得∠CPD=∠C′PD,再根据角平分线的定义可得∠BPE=∠C′PE,然后证明∠DPE=90°,从而得到△DPE是直角三角形,再分别表示出AE、CP的长度,然后利用勾股定理进行列式整理即可得到y与x的函数关系式,根据函数所对应的图象即可得解.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=﹣x2+x(0<x<5),纵观各选项,只有D选项符合.故选:D.二、填空题(每小题3分,共15分)11.|﹣3|0+= ﹣1 .【考点】24:立方根;6E:零指数幂.【分析】根据题目中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:|﹣3|0+=1+(﹣2)=﹣1,故答案为:﹣1.12.写一个你喜欢的整数m的值,使关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,m= 1 .【考点】AA:根的判别式.【分析】根据根的判别式求出m<,答案不唯一,只要取小于的整数就可以.【解答】解:∵关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,∴△=(﹣3)2﹣4×1×2m=9﹣8m>0,解得:m<,取m=1,故答案为:1.13.用m、n、p、q四把钥匙去开A、B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能打开一把锁”的概率是.【考点】X6:列表法与树状图法.【分析】画树状图展示所有8种等可能的结果数,再找出取一把钥匙恰能打开一把锁”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有8种等可能的结果数,其中取一把钥匙恰能打开一把锁”的结果数为2,所以取一把钥匙恰能打开一把锁”的概率==,故答案为:.14.如图,菱形ABCD,∠A=60°,AB=4,以点B为圆心的扇形与边CD相切于点E,扇形的圆心角为60°,点E是CD的中点,图中两块阴影部分的面积分别为S1,S2,则S2﹣S1= 2﹣π.【考点】MC:切线的性质;L8:菱形的性质;MO:扇形面积的计算.【分析】连接BE,由以点B为圆心的扇形与边CD相切于点E,得到在菱形ABCD中,∠A=60°,AB=4,求得BE⊥CD,由点E是CD的中点,得到CE=CD=2,BE=2,∠EBC=30°,于是得到结论.【解答】解:连接BE,∵以点B为圆心的扇形与边CD相切于点E,∵在菱形ABCD中,∠A=60°,AB=4,∴BE⊥CD,∵点E是CD的中点,∴CE=CD=2,BE=2,∠EBC=30°,∵扇形的圆心角为60°,∴S2﹣S1=×CE•BE﹣=2×2﹣π=2﹣π.故答案为:2﹣π.15.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE= 4﹣2 时,△EGH为等腰三角形.【考点】PB:翻折变换(折叠问题);KI:等腰三角形的判定;LB:矩形的性质.【分析】根据余角的性质得到∠AEG=∠DGH,根据全等三角形的性质得到DG=AE,由折叠的性质得到BE=GE,根据勾股定理列方程即可得到结论.【解答】解:∵在矩形ABCD中,∠A=∠D=∠B=∠EGH=90°,∴∠AGE+∠AEG=∠AGE+∠DGH=90°,∴∠AEG=∠DGH,∵△EGH为等腰三角形,∴EG=GH,在△AEG与△DGH中,,∴△AEG≌△DGH,∴DG=AE,∵AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,∴BE=GE,∴BE=8﹣AE,∴AG=AE+2,∵AG2+AE2=GE2,∴(AE+2)2+AE2=(8﹣AE)2,∴AE=4﹣2,∴AE=4﹣2时,△EGH为等腰三角形.故答案为:4﹣2.三、解答题(本题共8小题,满分75分)16.先化简(﹣)÷然后代入合适的x值求值,整数x满足﹣.【考点】6D:分式的化简求值;2B:估算无理数的大小.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的x的值代入求值即可,注意整数x满足﹣.【解答】解:(﹣)÷==2(x﹣2)﹣(x+2)=2x﹣4﹣x﹣2=x﹣6,∵x满足﹣,∴当x=1时,原式=1﹣6=﹣5.17.截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【考点】VC:条形统计图;V2:全面调查与抽样调查;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.18.如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.(1)求证:DE是⊙O的切线.(2)填空:①当∠CAB= 45°时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为正方形.【考点】MR:圆的综合题.【分析】(1)连接OD后,证明△DOE≌△BOE后,可得∠OBE=∠ODE=90°,所以DE是⊙O的切线;(2)①由(1)可知:∠ODE=90°,要使四边形AOED是平行四边形,即需要DE∥AO,所以需要∠AOD=90°,又因为OA=OD,所以∠CAB=45°;②由①可知:四边形OBED是矩形,又因为OD=OB,所以四边形OBED是正方形.【解答】解:(1)连接OD,∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∠BOE=∠BAC,∠DOE=∠ADO,∵OD=OA,∴∠BAC=∠ADO,∴∠BOE=∠DOE,在△DOE与△BOE中,,∴△DOE≌△BOE,∴∠OBE=∠ODE=90°,∴DE是⊙O的切线;(2)①当∠CAB=45°时,∴∠ADO=45°,∴∠AOD=90°,又∵∠EDO=90°,∴DE∥AB,∵OE∥AC,∴四边形AOED是平行四边形;②由①可知:∠EDO=∠DOB=∠ABC=90°,∴四边形OBED是矩形,∵OD=OB,∴矩形OBED是正方形.故答案为:①45°;②正方形.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH 的长(,要求结果精确得到0.1m)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先过点D作DE⊥AH于点E,设DE=xm,则CE=(x+2)m,解Rt△AEC和Rt△BED,得出AE=(x+2),BE=x,根据AE﹣BE=10列出方程(x+2)﹣x=10,解方程求出x的值,进而得出GH的长.【解答】解:如图,过点D作DE⊥AH于点E,设DE=xm,则CE=(x+2)m.在Rt△AEC和Rt△BED中,有tan30°=,tan60°=,∴AE=(x+2),BE=x,∵AE﹣BE=AB=10,∴(x+2)﹣x=10,∴x=5﹣3,∴GH=CD+DE=2+5﹣3=5﹣1≈7.7(m).答:GH的长约为7.7m.20.在平面直角坐标系内,双曲线:y=(x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知==3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.【解答】解:(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴==3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y=(x>0)(2)由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB=×3×3+×(1+3)×6+×1×1=17,∴四边形OCDB的面积是1721.2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有16﹣0.5m 艘,乙型货轮有4﹣0.5m 艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设用乙、丙两种型号的货轮分别为x艘,y艘,根据题意列方程组即可得到结论;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,根据题意列不等式得到m=2,4,6,设集团的总利润为w,于是得到结论.【解答】解:(1)设用乙、丙两种型号的货轮分别为x艘,y艘,则,解得:,答:用2艘乙种型号的货轮,6艘丙种型号的货轮;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,则4﹣0.5m+m≤16﹣0.5m,解得:m≤12,∵m为正整数,(16﹣0.5m)与94﹣0.5m)均为正整数,∴m=2,4,6,设集团的总利润为w,则w=10×5(16﹣0.5m)+5×3.6(4﹣0.5m)+7.5×4m=﹣4m+872,当m=2时,集团获得最大利润,最大利润为8.64亿元.故答案为:16﹣0.5m,4﹣0.5m.22.如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.(1)发现:在图1中, = ;(2)应用:如图2,将△ADE绕点A旋转,请求出的值;(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出的值.【考点】SO:相似形综合题.【分析】(1)如图1中,作DH⊥BC于H,连接AM.只要证明四边形MNDH时矩形,即可解决问题.(2)如图2中,连接AM、AN.只要证明△BAD∽△MAN,利用相似比为即可解决问题.(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.由△BAD∽△MAN,推出==sin∠ABC,只要证明△ABC时等腰直角三角形即可解决问题.【解答】解:(1)如图1中,作DH⊥BC于H,连接AM.∵AB=AC,BM=CM,∴AM⊥BC,∵△ADE时等边三角形,∴∠ADE=60°=∠B,∴DE∥BC,∵AM⊥BC,∴AM⊥DE,∴AM平分线段DE,∵DN=NE,∴A、N、M共线,∴∠NMH=∠MND=∠DHM=90°,∴四边形MNDH时矩形,∴MN=DH,∴==sin60°=,故答案为.(2)如图2中,连接AM、AN.∵△ABC,△ADE都是等边三角形,BM=MC,DN=NE,∴AM⊥BC,AN⊥DE,∴=sin60°,=sin60°,∴=,∵∠MAB=∠DAN=30°,∴∠BAD=∠MAN,∴△BAD∽△MAN,∴==sin60°=.(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.∵AB=AC,AD=AE,BM=CM,DN=NE,∴AM⊥BC,AN⊥DE,∵∠BAC=∠DAE,∴∠ABC=∠ADE,∴sin∠ABM=sin∠ADN,∴=,∵∠BAM=BAC,∠DAN=∠DAE,∴∠BAM=∠DAN,∴∠BAD=∠MAN.∴△BAD∽△MAN,∴==sin∠ABC,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE,∴∠ABD=∠ACE,∵BD⊥CE,∴∠BHC=90°,∴∠ACE+∠COH=90°,∵∠AOB=∠COH,∴∠ABD+∠AOB=90°,∴∠BAO=90°,∵AB=AC,∴∠ABC=45°,∴=sin45°=.23.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标;(3)P、B重合,E点在x轴上,这样A、P、E三点在x轴上,所以A、P、E、F为顶点不可能构成平行四边形,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.【解答】解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).。
2021年河南省新乡市第十二中学校高一数学理联考试卷含解析

2021年河南省新乡市第十二中学校高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 圆的半径是,则圆心角为的扇形面积是()....参考答案:B略2. 在四边形ABCD中,若,则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形参考答案:D【考点】向量的加法及其几何意义.【专题】作图题.【分析】根据向量加法的平行四边形法则,即可得解解:∵在四边形ABCD中,若,且共起点∴由向量加法加法的平行四边形法则知,线段AC是以AB、AD为邻边的平行四边形的对角线∴四边形ABCD是平行四边形故选D【点评】本题考查向量的加法.共起点的两个向量相加时满足平行四边形法则;首尾相接的两个向量相加时满足三角形法则;多个向量相加时满足多边形法则.属简单题3. 设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是( )A.若,,且m∥β,n∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m∥α,n∥α,则m∥nD.若m,n为两条异面直线,且m∥α,n∥α,m∥β,n∥β,则α∥β参考答案:D略4. 点在直线上,则的最小值为▲.参考答案:8略5. 已知,,则________________.参考答案:略6. 已知集合A ={x | x ( x -1) = 0},那么 ( )A.0∈A B. 1A C.∈A D. 0A参考答案:A7. 对于等式,下列说法中正确的是()A.对于任意,等式都成立 B. 对于任意,等式都不成立C.存在无穷多个使等式成立 D.等式只对有限个成立参考答案:C略8. 已知sinα﹣cosα=,α∈(0,π),则tanα的值是()A.﹣1 B.C.D.1参考答案:A【考点】同角三角函数间的基本关系.【分析】由条件可得 1﹣2sinαcosα=2,求得sin2α=﹣1,可得2α的值,从而求得tanα 的值.【解答】解:∵已知,∴1﹣2sinαcosα=2,即sin2α=﹣1,故2α=,∴α=,tanα=﹣1.故选:A.9. 如图所示为函数(,,)的部分图象,那么()A. B.C. D.参考答案:B10. 已知=()A.lg5 B.1 C.510 D.105参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知4a=2,lgx=a,则x= .参考答案:【考点】对数的运算性质.【专题】计算题.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.12. 右图是亳州市某中学“庆祝建党90周年演讲比赛”中,12位评委为某位选手打出的分数的茎叶统计图,则去掉一个最高分和一个最低分之后,所剰数据的平均数为,众数为。
河南省新乡市2021版中考数学一模考试试卷(I)卷

河南省新乡市2021版中考数学一模考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共41分)1. (3分) (2018七上·余杭期末) 如图,AE⊥BC于点E ,AF⊥CD于点F ,则下列哪条线段的长度是表示点A到BC的距离()A . ADB . AFC . AED . AB2. (3分) (2017九上·台州月考) 下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A . 1个B . 2个C . 3个D . 4个3. (3分)(2019·海州模拟) 下列运算错误的是()A . a8÷a4=a4B . (a2b)4=a8b4C . a2+a2=2a2D . (a3)2=a54. (2分)若四个有理数之和的是3,其中三个数是-10,+8,-6,则第四个数是()A . +8B . -8C . +20D . +115. (3分)(2015·温州) 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A .B .C .D .6. (3分)(2017·遵义) 2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A . 2.58×1011B . 2.58×1012C . 2.58×1013D . 2.58×10147. (3分)如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A . 以点C为圆心,OD为半径的弧B . 以点C为圆心,DM为半径的弧C . 以点E为圆心,OD为半径的弧D . 以点E为圆心,DM为半径的弧8. (3分)(2011·苏州) 已知,则的值是()A .B . ﹣C . 2D . ﹣29. (3分) (2018八上·开平月考) 如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600 ,那么∠DAE等于()A . 45°B . 30 °C . 15°D . 60°10. (3分) (2019九下·温州竞赛) 我校七年级开展了“你好!阅读“的读书话动。
新乡市2021版中考数学试卷(II)卷

新乡市2021版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·通辽) 的相反数是()A . 2019B .C . ﹣2019D .2. (2分) (2018九下·江阴期中) 左下图是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是()A .B .C .D .3. (2分)(a2)3等于()A . 3a2B . a5D . a84. (2分) (2016八上·平谷期末) 京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A . 1个B . 2个C . 3个D . 4个5. (2分) (2019七下·宿豫期中) 年月,某公司新开发了一款智能手机,该手机的磁卡芯片直径为米,这个数据用科学记数法表示为()A .B .C .D .6. (2分)某商店选用28元/千克的A型糖3千克,20元/千克的B型糖2千克,12元/千克的C型糖5千克混合成杂拌糖后出售,这种杂拌糖平均每千克的售价应为()A . 20元B . 18元C . 19.6元D . 18.4元7. (2分)如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A . 5﹕3B . 4﹕1C . 3﹕18. (2分)直角三角形斜边上的中线与连结两直角边中点的线段的关系是()A . 相等且平分B . 相等且垂直C . 垂直平分D . 垂直平分且相等9. (2分) (2017八上·武城开学考) 若A(2x-5,6-2x)在第四象限,则X的取值范围是()A . x>3B . x>-3C . x<-3D . x<310. (2分)(2017·茂县模拟) 已知:如图为二次函数y=ax2+bx+c的图象,则一次函数y=ax+b的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共6题;共7分)11. (1分)(2012·阜新) 函数中自变量x的取值范围是________.12. (1分) (2019七上·江阴期中) 若则的值是________.13. (1分) (2017八下·宜兴期中) 小芳抛一枚硬币10次,有6次正面朝上,当她抛第11次时,正面朝上的概率为________.14. (1分)(2018·河源模拟) 如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于D ,若AC∶BC=4∶3,AB= 10cm,则OD的长为________ __cm.15. (1分)若x=2是关于x的方程的一个根,则a 的值为________.16. (2分)(2018·青海) 如图,下列图案是由火柴棒按某种规律搭成的,第个图案中有2个正方形,第个图案中有5个正方形,第个图案中有8个正方形,则第个图案中有________个正方形,第n个图案中有________个正方形.三、解答题 (共8题;共83分)17. (10分) (2020八上·襄城期末) 先化简,再求值.(1),其中x=0.5(2),其中x=-3.218. (8分)(2017·襄城模拟) 今年是襄阳“创建文明城市”工作的第二年,为了更好地做好“创建文明城市”工作,市教育局相关部门对某中学学生“创文”的知晓率,采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”,“比校了解”,“基本了解”,和“不了解”四个等级.小辉根据调查结果绘制了如图所示的统计图,请根据提供的信息回答问题:(1)本次调查中,样本容量是________;(2)扇形统计图中“基本了解”部分所对应的圆心角的度数是________;在该校2000名学生中随机提问一名学生,对“创文”不了解的概率估计值为________;(3)请补全频数分布直方图.19. (10分)(2018·拱墅模拟) 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(),反比例函数对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x (min)之间的函数关系().根据图象解答下列问题:(1)求危险检测表在气体泄漏之初显示的数据是多少;(2)求反比例函数的表达式,并确定车间内危险检测表恢复到气体泄漏之初时对应x的值.20. (15分) (2017八下·简阳期中) 4月20日8时2分,四川省雅安市芦山县发生了7.0级地震,当地的部分房屋严重受损,上万灾民无家可归,灾情牵动亿万中国人的心.某市积极筹集救灾物质 260吨物资从该市区运往雅安甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:车型甲地(元/辆)乙地(元/辆)运往地大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.21. (10分)(2017·衡阳模拟) 如图,直线l1:y=x与双曲线y= 相交于点A(a,2),将直线l1向上平移3个单位得到l2 ,直线l2与双曲线相交于B、C两点(点B在第一象限),交y轴于D点.(1)求双曲线y= 的解析式;(2)求tan∠DOB的值.22. (10分)(2018·青岛模拟) 如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)23. (10分) (2019八下·闽侯期中) 如图(1)正方形ABCD,E、F分别在边BC、CD上(不与端点重合),∠EAF=45°,EF与AC交于点G①如图(i),若AC平分∠EAF,直接写出线段EF,BE,DF之间等量关系;②如图(ⅱ),若AC不平分∠EAF,①中线段EF,BE,DF之间等量关系还成立吗?若成立请证明;若不成立请说明理由(2)如图(ⅲ),矩形ABCD,AB=4,AD=8.点M、N分别在边CD、BC上,AN=2 ,∠MAN=45°,求AM 的长度.24. (10分) (2016九上·济源期中) 某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共83分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-2、24-1、24-2、。
2021-2022学年-有答案-河南省新乡市某校初三(上)12月月考数学试卷 (3)

2021-2022学年河南省新乡市某校初三(上)12月月考数学试卷一、选择题1. 下列事件中,为必然事件的是( )A.通常情况下,抛出的篮球会下落B.三角形内角和为360∘C.从一副扑克牌中,随意抽出一张是大王D.明天一定会下雨2. 如图,A ,B ,C ,D 是⊙O 上的四个点,且BC ⌢=AD ⌢,若AC =5,则BD 的长度为( )A.4B.4.5C.5D.5.53. 如图,将△ABC 绕点C 按逆时针方向旋转55∘后得到△A ′B ′C ,若∠ACB =25∘,则∠BCA ′的度数为( )A.50∘B.40∘C.30∘D.20∘4. 如图,在⊙O 中,直径AB ⊥CD ,∠D =38∘,则∠A 的度数是( )A.52∘B.38∘C.19∘D.26∘5. 在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明每次摸一个后放回再摸,通过多次试验发现,摸出红球的频率稳定在0.4左右,则袋子中红球的个数最有可能是( )A.8B.5C.12D.156. 如图,扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为150∘,AB的长为30cm,BD的长为15cm,则DÊ的长为( )A.25π4cm B.25π2cm C.50πcm D.25πcm7. 如图,PA,PB是⊙O的切线,A,B为切点,点C在⊙O上,且∠ACB=55∘,则∠APB等于()A.55∘B.110∘C.70∘D.60∘8. 已知(−3,y1),(−2,y2),(1,y3)是抛物线y=4x2上的点,则( )A.y1<y2<y3B.y3<y1<y2C.y3<y2<y1D.y2<y3<y19. 某校举行数学竞赛,班主任王老师决定从本班4名(其中3男1女)同学中随机选择2名同学参加竞赛.王老师先从4名同学中随机选择一名同学,记下姓名,再从剩余的3名同学中随机选择另一名同学,记下姓名,则选中的两名同学中没有女同学的概率为( )A.12B.13C.14D.1610. 如图,在由边长相同的7个正六边形组成的网格中,点A,B在格点上.再选择一个格点C.使△ABC是以AB为腰的等腰三角形,符合点C条件的格点个数是( )A.1B.2C.3D.4二、填空题如果一个正多边形的中心角是36∘,那么这个正多边形的边数是________.某校九年级在“停课不停学”期间,积极开展网上答疑活动.在某时间段共开放8个网络教室,其中2个是语文答疑教室,3个是数学答疑教室,3个是英语答疑教室.学校为了解九年级学生参与网上答疑的情况,学校教学管理人员随机进入一个网络教室,那么他进入数学答疑教室的概率为________.如图,线段AB与⊙O相切于点C,连接OA,OB,若OA=OB=10cm,AB=16cm,则⊙O的半径为________cm.如图所示的是一块长为100m,宽为50m的长方形绿地,在绿地中开辟两条宽为xm的道路(阴影部分)后剩余绿地的面积为4704m2,则x的值为________.如图,正方形ABCD的边长为4,分别以正方形的三条边为直径在正方形内部作半圆,则图中阴影部分的面积是________.三、解答题解方程:x2−3x=2(3−x).如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,求∠CDF的度数.如图,一个圆锥的侧面展开图是半径为6cm,圆心角为60∘的扇形,求:(1)圆锥的底面半径.(2)圆锥的全面积.如图,D为⊙O上一点,点C在直径BA的延长线上,CD是⊙O的切线.(1)求证:∠CDA=∠CBD;(2)若∠CBD=30∘,AB=4,求AC的长.在一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有“−2,−2,2,4”四个数字.(1)求这四个数字的众数.(2)从这个口袋中随机摸出1个球,求摸出的球面上的数字是这组数字的众数的概率.(3)若拿走一个写有数字“−2”的球并搅匀后,先从剩余的三个球中随机摸出一个球,记下数字后放回,搅匀后再任意摸出一个球,记下数字,请用列表或画树状图的方法求两次摸出的球其球面上的数字不同的概率.如图,AB 是⊙O 的直径,M 是OA 的中点,过点M 作CD ⊥AB 交⊙O 于点C ,D ,DE ⊥CA 交CA 的延长线于点E .(1)∠ECD =________∘;(2)求证:DE 是⊙O 的切线;(3)点F 在BC ⌢上,∠CDF =45∘,DF 交AB 于点N .若DE =3,求BN 的长.如图,已知一个锐角等于60∘的菱形ABCD ,将一个60∘的∠MAN 的顶点与该菱形的顶点A 重合,以点A 为旋转中心,按顺时针方向旋转这个60∘的∠MAN ,使它的两边分别交CB ,DC 或它们的延长线于点E ,F .(1)如图1,当∠BAE =∠DAF 时,AE 与AF 的数量关系是________.(2)如图2,旋转∠MAN ,当∠BAE ≠∠DAF 时,(1)中的结论是否成立?若成立,加以证明;若不成立,请说明理由.(3)若菱形ABCD 的边长为4,BE =1,求AF 的长.已知抛物线y=ax2−6ax−16a(a<0)与x轴交于A,B两点(点A在点B的左侧),交y轴于点C,顶点为M.(1)请直接写出A,B两点的坐标:________;________.,∠ACB的平分线交x轴于点D.(2)若a=−14①求抛物线顶点M的坐标;②求直线CD的解析式;③点Q在线段CD上,且该抛物线绕点Q旋转180∘后,得到的新抛物线恰好经过原抛物线的顶点M,请直接写出Q点的坐标.参考答案与试题解析2021-2022学年河南省新乡市某校初三(上)12月月考数学试卷一、选择题1.【答案】A【考点】必然事件【解析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A ,通常情况下,抛出的篮球会下落,是必然事件;B ,三角形内角和为360∘,是不可能事件;C ,从一副扑克牌中,随意抽出一张是大王,是随机事件;D ,明天一定会下雨,是随机事件.故选A.2.【答案】C【考点】圆心角、弧、弦的关系【解析】根据已知条件得出BD ⌢=AC ⌢,再根据弧,弦之间的关系,即可解答.【解答】解;∵ AD ⌢=BC ⌢,∴ AD ⌢+AB ⌢=AB ⌢+BC ⌢,∴ AC ⌢=BD ⌢,∴ BD =AC =5.故选C .3.【答案】C【考点】旋转的性质【解析】易知旋转角∠ACA ′=55∘,则根据∠BCA ′=∠ACA ′−∠AC B 即可.【解答】解:根据旋转的定义可知旋转角∠ACA′=55∘,∴∠BCA′=∠ACA′−∠ACB=55∘−25∘=30∘.故选C.4.【答案】D【考点】圆周角定理垂径定理【解析】连接OC,则OC=OD,得出∠OCD=∠D=38∘,再根据AB⊥CD,求出∠BOC,最后结合圆周角定理分析即可.【解答】解:连接OC,如图,∵OC=OD,∴∠OCD=∠D=38∘.∵AB⊥CD,∴∠BOC=90∘−∠OCD=90∘−38∘=52∘,∠BOC=26∘.∴∠A=12故选D.5.【答案】A【考点】概率公式利用频率估计概率【解析】设袋子中红球有x个,根据摸出红球的频率稳定在0.4左右列出关于x的方程,求出x的值即可得答案.【解答】解:设袋子中红球有x个,=0.4,根据题意得:x20解得x=8,∴袋子中红球有8个.故选A.6.【答案】B【考点】弧长的计算【解析】此题暂无解析【解答】解:由已知得AD=AB−BD=15cm,∴ 由弧长公式,得DÊ的长为150×15×π180=25π2(cm).故选B.7.【答案】C【考点】切线的性质圆周角定理多边形的内角和【解析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB=110∘,再根据切线的性质以及四边形的内角和定理即可求解.【解答】解:连接OA,OB,如图,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55∘,∴∠AOB=110∘,∴∠APB=360∘−90∘−90∘−110∘=70∘.故选C.8.【答案】C【考点】二次函数y=ax^2+bx+c (a≠0)的图象和性质【解析】此题可以把图象上三点的横坐标代入求得纵坐标y值,再比较大小.【解答】解:由于三点(−3, y1),(−2, y2),(1, y3)是抛物线y=4x2上的点,抛物线的对称轴为x=0,可得y3<y2<y1.故选C.9.【答案】A【考点】列表法与树状图法【解析】先根据题意列出表格,由表可知:共有12种等可能结果,其中没有女同学的情况有6种,即可求出结果.【解答】解:列表如下:由表可知:共有12种等可能结果,其中没有女同学的情况有6种,故P(没有女同学)=612=12.故选A.10.【答案】B【考点】等腰三角形的性质与判定【解析】确定AB的长度后确定点C的位置即可.【解答】解:AB的长等于六边形的边长+最长对角线的长,据此可以确定共有2个点C,位置如图.故选B.二、填空题【答案】10【考点】多边形【解析】一个正多边形的中心角都相等,且所有中心角的和是360度,用360度除以中心角的度数,就得到中心角的个数,即多边形的边数.【解答】解:由题意可得:边数为360∘÷36∘=10,则它的边数是10.故答案为:10.【答案】38【考点】概率公式【解析】根据概率公式解答即可.【解答】解: ∵在8个网络教室中有3个是数学答疑教室,∴学校教学管理人员随机进入一个网络教室是数学答疑教室的概率=38.故答案为:38.【答案】6【考点】勾股定理切线的性质等腰三角形的性质:三线合一【解析】连接OC,由切线的性质可得OC⊥AB,又知OA=OB,由等腰三角形的三线合一的性质得到OC也是AB的中线,从而得到AC=B C;再根据勾股定理求得OC的长,就求得了圆的半径.【解答】解:∵ AB与⊙O相切于点C,∴OC⊥AB.又∵OA=OB,∴AC=BC=12AB=12×16=8(cm).在Rt△AOC中,OC=√AO2−AC2=√102−82=6(cm),∴⊙O的半径为6cm.故答案为:6.【答案】2【考点】一元二次方程的应用【解析】由在绿地中开辟两条道路后剩余绿地面积为4704m2,即可得出关于x的一元二次方程,然后解方程即可求解.【解答】解:依题意,得:100×50−(100+50)x+x2=4704,即x2−150x+296=0,解得x1=2,x2=148(不合题,舍去),∴绿地中开辟两条宽为2m的道路.故答案为:2.【答案】4π−8【考点】正方形的性质求阴影部分的面积【解析】阴影部分的面积是四个半圆的面积的和减去正方形的面积的一半,据此求解即可.【解答】解:易知:两半圆的交点即为正方形的中心,设此点为O,连接AO,DO,如图,则图中的四个小弓形的面积相等,∵两个小弓形面积=12×π×22−S△AOD=2π−12×4×2=2π−4,∴四个小弓形面积=4π−8,即阴影部分的面积是4π−8.故答案为:4π−8.三、解答题【答案】解:x(x−3)=−2(x−3),移项,得x(x−3)+2(x−3)=0,(x−3)(x+2)=0,解得x1=3,x2=−2.【考点】解一元二次方程-因式分解法【解析】【解答】解:x(x−3)=−2(x−3),移项,得x(x−3)+2(x−3)=0,(x−3)(x+2)=0,解得x1=3,x2=−2.【答案】解:∵五边形ABCDE是⊙O的内接正五边形,∴∠BAE=108∘,∠BDC=360∘2×5=36∘.∵AF是⊙O的直径,∴BF̂=EF̂,∴∠BAF=12∠BAE=54∘,∴∠BDF=∠BAF=54∘,∴∠CDF=∠BDF−∠BDC=54∘−36∘=18∘. 【考点】正多边形和圆圆周角定理【解析】根据正五边形的性质和圆周角定理即可得到结论.【解答】解:∵五边形ABCDE是⊙O的内接正五边形,∴∠BAE=108∘,∠BDC=360∘2×5=36∘.∵AF是⊙O的直径,∴BF̂=EF̂,∴∠BAF=12∠BAE=54∘,∴∠BDF=∠BAF=54∘,∴∠CDF=∠BDF−∠BDC=54∘−36∘=18∘. 【答案】解:(1)设圆锥的底面半径为r.扇形的弧长=60π×6180=2π,∴2πr=2π,解得r=1,即圆锥的底面半径为1cm.(2)圆锥的全面积=60π×62360+π×12=7πcm2.【考点】圆锥的展开图及侧面积弧长的计算扇形面积的计算【解析】【解答】解:(1)设圆锥的底面半径为r.=2π,∴2πr=2π,扇形的弧长=60π×6180解得r=1,即圆锥的底面半径为1cm.(2)圆锥的全面积=60π×62+π×12=7πcm2.360【答案】(1)证明:如图,连接OD.∵CD是⊙O的切线,∴OD⊥CD,∴∠CDA+∠ODA=∠CDO=90∘.∵AB为⊙O的直径,∴∠ODA+∠ODB=∠ADB=90∘,∴∠CDA=∠ODB.∵OD=OB,∴∠CBD=∠ODB,∴∠CDA=∠CBD.(2)解:∵∠CBD=30∘,∴∠CDA=30∘.∵AB为⊙O的直径.∴∠ADB=90∘,∴∠C=180∘−∠CDB−∠CBD=180∘−(30∘+90∘)−30∘=30∘,∴∠CDA=∠C,∴AC=AD.∵AB=4,AB=2,∴在Rt△ADB中,AD=12∴AC=2.【考点】切线的性质圆周角定理含30度角的直角三角形【解析】无无【解答】(1)证明:如图,连接OD.∵CD是⊙O的切线,∴OD⊥CD,∴∠CDA+∠ODA=∠CDO=90∘.∵AB为⊙O的直径,∴∠ODA+∠ODB=∠ADB=90∘,∴∠CDA=∠ODB.∵OD=OB,∴∠CBD=∠ODB,∴∠CDA=∠CBD.(2)解:∵∠CBD=30∘,∴∠CDA=30∘.∵AB为⊙O的直径.∴∠ADB=90∘,∴∠C=180∘−∠CDB−∠CBD=180∘−(30∘+90∘)−30∘=30∘,∴∠CDA=∠C,∴AC=AD.∵AB=4,∴在Rt△ADB中,AD=12AB=2,∴AC=2.【答案】解:(1)依据众数的定义可知,数字“−2,−2,2,4”的众数是−2.(2)摸出的球面上的数是这组数字的众数的概率为24=12.(3)画树状图如图所示:所有等可能的结果共有9种,两次摸出的球其球面上的数字不同的结果共有6种,∴ 两次摸出的球其球面上的数字不同的概率为69=23.【考点】众数概率公式列表法与树状图法【解析】【解答】解:(1)依据众数的定义可知,数字“−2,−2,2,4”的众数是−2.(2)摸出的球面上的数是这组数字的众数的概率为24=12.(3)画树状图如图所示:所有等可能的结果共有9种,两次摸出的球其球面上的数字不同的结果共有6种,∴ 两次摸出的球其球面上的数字不同的概率为69=23.【答案】30(2)证明:∵CD⊥AB,AB是⊙O的直径,∴CM=MD.∵M是OA的中点,∴AM=MO.又∵∠AMC=∠DMO,∴△AMC≅△OMD,∴∠ACM=∠ODM,∴CA//OD.∵DE⊥CA,∴∠E=90∘,∴∠ODE=180∘−∠E=90∘,∴DE⊥OD,∴DE是⊙O的切线.(3)解:由(1)可知∠ECD=30∘,∵∠E=90∘,DE=3,∴CD=2DE=6.∵OA⊥CD于点M,∴M是CD中点,∠AMC=90∘,∴MC=MD=3.∵∠ECD=30∘,∴AC=2AM,∴AC2=AM2+CM2,∴4AM2=AM2+9,∴AM=√3.∵M是OA的中点,∴OA=2AM=2√3,∴AB=4√3.∵∠CDF=45∘,∠DMN=90∘,∴∠MND=45∘,∴△MDN是等腰直角三角形,∴MN=MD=3,∴BN=AB−AM−MN=4√3−√3−3=3√3−3.【考点】圆周角定理垂径定理含30度角的直角三角形切线的判定全等三角形的性质与判定勾股定理【解析】(1)由CD⊥AB和M是OA的中点,利用三角函数可以得到∠DOM=60∘,进而得到△OAD是等边三角形,∠AOD=60∘,进而求得∠ECD;(1)只需证明DE⊥OD.便可以得到DE与⊙O相切;(3)利用圆的综合知识,可以证明,∠CND=90∘, ∠CFN=60∘,根据特殊角的三角函数值可以得到FN的数值.【解答】(1)解:如图,连接OD,AD.∵AB是⊙O的直径,CD⊥AB,∴AB垂直平分CD,∵M是OA的中点,∴OM=12OA=12OD,∴∠ODM=30∘,即∠DOM=60∘.∴∠ECD=12∠DOA=30∘.故答案为:30.(2)证明:∵CD⊥AB,AB是⊙O的直径,∴CM=MD.∵M是OA的中点,∴AM=MO.又∵∠AMC=∠DMO,∴△AMC≅△OMD,∴∠ACM=∠ODM,∴CA//OD.∵DE⊥CA,∴∠E=90∘,∴∠ODE=180∘−∠E=90∘,∴DE⊥OD,∴DE是⊙O的切线.(3)解:由(1)可知∠ECD=30∘,∵∠E=90∘,DE=3,∴CD=2DE=6.∵OA⊥CD于点M,∴M是CD中点,∠AMC=90∘,∴MC=MD=3.∵∠ECD=30∘,∴AC=2AM,∴AC2=AM2+CM2,∴4AM2=AM2+9,∴AM=√3.∵M是OA的中点,∴OA=2AM=2√3,∴AB=4√3.∵∠CDF=45∘,∠DMN=90∘,∴∠MND=45∘,∴△MDN是等腰直角三角形,∴MN=MD=3,∴BN=AB−AM−MN=4√3−√3−3=3√3−3.【答案】AE=AF(2)仍然成立.证明:如图,连接AC.∵四边形ABCD是菱形,∠B=60∘,∴AB=BC=AD=CD,∠B=∠D=60∘,∴△ABC,△ACD是等边三角形,∴AB=AC,∠ACD=∠B=∠BAC=60∘.∠MAN=60∘=∠BAC,∴∠BAE=∠CAF,∴△BAE≅△CAF(ASA),∴AE=AF.(3)①当点E在BC上时,如图,过点A作AH⊥BC于点H,连接AC.∵ △ABC是等边三角形,AH⊥BC,∴AB=BC=AC=4,BH=HC=2,∴AH=√AB2−BH2=√16−4=2√3.∵ EH=BH−BE=2−1=1,∴AE=√AH2+EH2=√12+1=√13,∴AF=AE=√13.②当点E在CB的延长线上时,如图,过点A作AH⊥BC于点H,连接AC,∵ △ABC是等边三角形,AH⊥BC,∴AB=BC=AC=4,BH=HC=2,∴AH=√AB2−BH2=√16−4=2√3.∴EH=BH+BE=2+1=3,∴AE=√AH2+EH2=√12+9=√21,∴AF=AE=√21,综上所述,AF的长为√13或√21.【考点】菱形的性质全等三角形的性质与判定勾股定理【解析】【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D.又∵∠BAE=∠DAF,∴△ABE≅△ADF(ASA),∴AE=AF.故答案为:AE=AF.(2)仍然成立.证明:如图,连接AC.∵四边形ABCD是菱形,∠B=60∘,∴AB=BC=AD=CD,∠B=∠D=60∘,∴△ABC,△ACD是等边三角形,∴AB=AC,∠ACD=∠B=∠BAC=60∘.∠MAN=60∘=∠BAC,∴∠BAE=∠CAF,∴△BAE≅△CAF(ASA),∴AE=AF.(3)①当点E在BC上时,如图,过点A作AH⊥BC于点H,连接AC.∵ △ABC是等边三角形,AH⊥BC,∴AB=BC=AC=4,BH=HC=2,∴AH=√AB2−BH2=√16−4=2√3.∵ EH=BH−BE=2−1=1,∴AE=√AH2+EH2=√12+1=√13,∴AF=AE=√13.②当点E在CB的延长线上时,如图,过点A作AH⊥BC于点H,连接AC,∵ △ABC是等边三角形,AH⊥BC,∴AB=BC=AC=4,BH=HC=2,∴AH=√AB2−BH2=√16−4=2√3.∴EH=BH+BE=2+1=3,∴AE=√AH2+EH2=√12+9=√21,∴ AF =AE =√21,综上所述,AF 的长为√13或√21.【答案】(−2,0),(8,0)(2)①当a =−14时,抛物线的解析式为:y =−14x 2+32x +4=−14(x −3)2+254, ∴ 当x =3时,y =254,∴ 顶点M 的坐标为(3,254) ; ②∵ 抛物线的解析式为y =−14(x −3)2+254, ∴ 点C 的坐标为(0,4),∴ OC =4.∵ OA =2,OB =8,∴ AC 2=20,BC 2=80,AB 12=100,AC 2+BC 2=AB 2,∴ △ABC 为直角三角形,∠ACB =90∘ ,∴ 当CD 平分∠ACB 时,∠BCD =45∘.如图,过点B 作BE ⊥BC ,垂足为B ,交直线CD 于点E ,得△CBE 为等腰直角三角形.过点E 作EF ⊥x 轴,垂足为F ,易证△BEF ≅△CBO , ∴ BF =OC =4,EF =OB =8,∴ 点E 的坐标为(4,−8).设直线CD 解析式为y =kx +b ,把C (0,4)和E (4,−8)代入得{4=b ,−8=4k +b ,解得{k =−3,b =4,∴ 直线CD 的解析式为y =−3x +4.③如图,设Q 点的坐标为(m,−3m +4),则顶点M 绕点Q 旋转180∘后的对应点N 的坐标为(2m −3,−6m +74). 设旋转后的新抛物线的解析式为y =14(x −2m +3)2−6m +74, 把点M 的坐标(3,254)代入新抛物线的解析式得: 254=14(3−2m +3)2−6m +74,解得m 1=6+3√142,m 2=6−3√142. 又∵ 点D 的坐标为(43,0),∴ m 1=6+3√142时,点Q 不在线段CD 上,舍去, ∴ Q 点的坐标为(6−3√142,−14+9√142). 【考点】二次函数图象上点的坐标特征二次函数综合题二次函数图象与几何变换【解析】答案未提供解析。
【市级联考】河南省新乡市2021届数学八下期末统考模拟试题含解析

【市级联考】河南省新乡市2021届数学八下期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.一个多边形的内角和比外角和的倍多,则它的边数是()A.八B.九C.十D.十一2.化简233a aa++的结果是()A.﹣3 B.3 C.﹣a D.a3.用配方法解方程x2+3x+1=0,经过配方,得到()A.(x+32)2=134B.(x+32)2=54C.(x+3)2=10 D.(x+3)2=84.若解方程225111mx x x+=+--会产生增根,则m等于( )A.-10 B.-10或-3 C.-3 D.-10或-45.设正比例函数y=mx的图象经过点A(m,4),且y的值随x的增大而增大,则m=()A.2 B.-2 C.4 D.-46.若不等式组1++9+1+1-123x ax x<⎧⎪⎨≥⎪⎩有解,则实数a的取值范围是()A.a<-36 B.a≤-36 C.a>-36 D.a≥-367.如图,在四边形ABCD中,3AB=,5BC=,130A∠=︒,100D∠=︒,AD CD=.若点E,F分别是边AD,CD的中点,则EF的长是()A .2B .3C .2D .58.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( )A .当40h =时,t 约2.66秒B .随高度增加,下滑时间越来越短C .估计当80h cm =时,t 一定小于2.56秒D .高度每增加了10cm ,时间就会减少0.24秒9.设a ,b 是实数,定义@的一种运算如下:a@b=(a+b )2﹣(a ﹣b )2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c )=a@b+a@c③不存在实数a ,b ,满足a@b=a 2+5b 2④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a=b 时,a@b 最大.其中正确的是( )A .②③④B .①③④C .①②④D .①②③10.小明3分钟共投篮80次,进了50个球,则小明进球的频率是( ).A .80B .50C .1.6D .0.62511.平面直角坐标系中,将直线l 向右平移1个单位长度得到的直线解析式是y=2x+2,则原来的直线解析式是( ) A .y=3x+2 B .y=2x+4 C .y=2x+1 D .y=2x+312.下列各式中,一定是二次根式的是( )A 37B 5-C .5D x 二、填空题(每题4分,共24分)13.已知一次函数y =kx +b 的图像过点(-1,0)和点(0,2),则该一次函数的解析式是______。
新乡市2021年中考数学试卷(I)卷

新乡市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单项选择题(本题共10个小题,每小题3分,共30分) (共10题;共30分)1. (3分)(2019·玉林模拟) 2018年泰兴国际半程马拉松全程约为21097.5米,将21097.5用科学记数法表示为()A . 21.0975×103B . 2.10975×104C . 21.0975×104D . 2.10975×1052. (3分) (2016九上·岳池期末) 下列图形中,是轴对称图形但不是中心对称图形的是()A . 平行四边形B . 菱形C . 正三角形D . 圆3. (3分)的立方根是()A . ±4B . -4C .D .4. (3分)(2019·五华模拟) 其几何体的三视图如图所示,这个几何体是()A . 三棱柱B . 四棱锥C . 四棱柱D . 圆锥5. (3分)下列因式分解正确的是()A . x2﹣7x+12=x(x﹣7)+12B . x2﹣7x+12=(x﹣3)(x+4)C . x2﹣7x+12=(x﹣3)(x﹣4)D . x2﹣7x+12=(x+3)(x+4)6. (3分)(2019·铁岭模拟) 如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是()A .B .C .D .7. (3分)正八边形的中心角是()A . 45°B . 135°C . 360°D . 1080°8. (3分)如图,是测量一物体体积的过程:(2ml=1cm)步骤一:将300ml的水装进一个容量为500ml的杯子中;步骤二:将四颗相同的玻璃球放入水中,结果水没有满;步骤三:再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积为下列范围内的()A . 10cm3以上,20cm3以下B . 20cm3以上,30cm3以下C . 30cm3以上,40cm3以下D . 40cm3以上,50cm3以下9. (3分) (2019八上·大庆期末) 不等式组的解集在数轴上表示为()A .B .C .D .10. (3分) (2018八上·三河期末) 如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A . 2个B . 3个C . 4个D . 5个二、填空题(本题共11个小题,每小题3分,共33分) (共11题;共33分)11. (3分) (2020七上·自贡期末) 计算:|-2|-1=________.12. (3分) (2016八上·平阳期末) 函数y= 中,自变量x的取值范围是________.13. (3分) (2016七下·瑶海期中) 已知2x=3,2y=5,则22x﹣y﹣1的值是________.14. (3分) (2016九上·相城期末) 一组数据2, 4, 2, 3, 4的方差 =________.15. (3分)已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则 ________.16. (3分)(2017·淮安模拟) 一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为________.17. (3分)如图,已知△ABC,∠C=70°,∠B=40°,AD⊥BC,AE平分∠BAC,则∠DAE=________.18. (3分)如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值范围是________ .19. (3分)(2016·济宁) 已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是________km/h.20. (3分)在Rt△ABC中,∠ACB=90°,BC=1,AB=2,CD⊥AB于D,则tan∠ACD=________.21. (3分)(2017·江阴模拟) 在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3 ,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为________.三、解答题(本题共8个小题,共57分) (共8题;共57分)22. (6分)如图,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?23. (6分)(2016·沈阳) 我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比丢沙包2010%打篮球60p%跳大绳n40%踢毽球4020%根据图表中提供的信息,解答下列问题:(1)m=________,n=________,p=________;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.24. (6分) (2019九上·滦南期中) 如图,某渔船向正东方向以12海里时的速度航行,在A处测得岛C在北偏东的60°方向,1小时后渔船航行到B处,测得岛C在北偏东的30°方向,已知该岛周围10海里内有暗礁.(1) B处离岛C有多远?(2)如果渔船继续向东航行,需要多长时间到达距离岛C最近的位置?(3)如果渔船继续向东航行,有无触礁危险?25. (6分) (2016九上·江夏期中) 已知:关于x的方程x2+(8﹣4m)x+4m2=0(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在实数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.26. (7.0分)(2013·资阳) 在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.27. (7.0分)(2017·宁夏) 为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:用户每月用水量(m3)32及其以下3334353637383940414243及其以上户数(户)200160180220240210190100170120100110(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x的函数关系式;(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?28. (9分) (2020八上·大洼期末) 如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD =∠BCE = 90°,点M为AN的中点,过点E与AD平行的直线交射线AM于点N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】
本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF= OE=2 .
5.B
【解析】
(1)如图1,当点C在点A和点B之间时,
∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
∴MB= AB=4cm,BN= BC=1cm,
∴MN=MB-BN=3cm;
(2)如图2,当点C在点B的右侧时,
∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
∴MB= AB=4cm,BN= BC=1cm,
∴MN=MB+BN=5cm.
综上所述,线段MN的长度为5cm或3cm.
故选B.
12.3
【解析】
【分析】
连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC= S△ABC=2.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2 ①.根据S△OAC=2,得出-a-b=2 ②,①与②联立,求出a、b的值,即可求解.
22.(8分)如图,足球场上守门员在 处开出一高球,球从离地面1米的 处飞出( 在 轴上),运动员乙在距 点6米的 处发现球在自己头的正上方达到最高点 ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点 距守门员多少米?(取 )运动员乙要抢到第二个落点 ,他应再向前跑多少米?
D、(x-1)2+1=0.
(x-1)2=-1,
则方程无实根;
故选B.
点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.
3.D
【解析】
16.计算: ___________.
17.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.
18.二次函数 中的自变量 与函数值 的部分对应值如下表:
…
…
…
…
则 的解为________.
三、解答题(本题包括8个小题)
19.(6分)已知 .化简 ;如果 、 是方程 的两个根,求 的值.
23.(8分)如图,在 中,点 是 的中点,点 是线段 的延长线上的一动点,连接 ,过点 作 的平行线 ,与线段 的延长线交于点 ,连接 、 .
求证:四边形 是平行四边形.若 , ,则在点 的运动过程中:
①当 ______时,四边形 是矩形;
②当 ______时,四边形 是菱形.
24.(10分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.
10.C
【解析】
分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.
详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,
∴∠B=∠ADC=35°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB=90°-∠B=55°,
分析:根据一元二次方程根的判别式判断即可.
详解:A、x2+6x+9=0.
△=62-4×9=36-36=0,
方程有两个相等实数根;
B、x2=x.
x2-x=0.
△=(-1)2-4×1×0=1>0.
方程有两个不相等实数根;
C、x2+3=2x.
x2-2x+3=0.
△=(-2)2-4×1×3=-8<0,
方程无实根;
由②,得x<1,
所以不等式组的解集是:2≤x<1.
不等式组的解集在数轴上表示为:
.
故选A.
【点睛】
本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
7.D
【解析】
【分析】
根据相反数的定义求解即可.
【详解】
的相反数是- ,
故选D.
【点睛】
点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.
6.A
【解析】
【分析】
分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.
【详解】
由①,得x≥2,
【详解】
x2﹣x﹣12=(x﹣4)(x+3).
故答案为(x﹣4)(x+3).
所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
故选D.
【点睛】
本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
9.B
【解析】
∵四边形ABCD是正方形,
∴∠A=∠B=90°,
∴∠EB=90°,
∵∠GEF=90°,
∴∠GEA+∠FEB=90°,
故选C.
点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.
二、填空题(本题包括8个小题)
11.
【解析】
【分析】
分别求出各不等式的解集,再求出其公共解集即可.
【详解】
解不等式①,得x>1,
解不等式②,得x≤1,
所以不等式组的解集是1<x≤1,
故答案是:1<x≤1.
【点睛】
考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
2019-2020学年中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()
A.3B.﹣1C.﹣3D.﹣2
2.下列一元二次方程中,有两个不相等实数根的是( )
A.x2+6x+9=0B.x2=xC.x2+3=2xD.(x﹣1)2+1=0
【分析】
由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.
【详解】
∵抛物线y=x2-2x+m与x轴有两个交点,
∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,
解得:m<1.
故选D.
【点睛】
本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.
参考答案
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.C
【解析】
试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.
【考点】根与系数的关系;一元二次方程的解.
2.B
【解析】
3.若二次函数 的图像与 轴有两个交点,则实数 的取值范围是()
A. B. C. D.
4.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()
A.2B.2 C. D.2
5.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为( )
则S△OAM=S△OCN= k,
∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,
∴ (-b-2+a+2)(-b-a)=2,
将①代入,得
∴-a-b=2 ②,
①+②,得-2b=6,b=-3,
①-②,得2a=2,a=1,
∴A(1,3),
∴k=1×3=3.
故答案为3.
【点睛】
本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC是解题的突破口.
A.2B.3C.4D.5
10.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()
A.35°B.45°C.55°D.65°
二、填空题(本题包括8个小题)
11.不等式组 的解是____.
12.如图,已知函数y=x+2的图象与函数y= (k≠0)的图象交于A、B两点,连接BO并延长交函数y= (k≠0)的图象于点C,连接AC,若△ABC的面积为1.则k的值为_____.
13.甲
【解析】
【分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
∵ ,
∴从甲和丙中选择一人参加比赛,
∵ ,
∴选择甲参赛,
故答案为甲.
【点睛】
此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
14. ;
【解析】
【分析】
根据所给多项式的系数特点,可以用十字相乘法进行因式分解.
【详解】
如图,连接OA.
由题意,可得OB=OC,
∴S△OAB=S△OAC= S△ABC=2.
设直线y=x+2与y轴交于点D,则D(0,2),