七年级数学人教版第四章几何图形初步第一节PPT课件
人教版七年级数学上册课件:第四章 数学活动
数学活动
活动一:制作火车模型
如图是一些火车车厢的模型,它们对应着什么样的立体图形?选择 适当的比例,在一张硬纸板上画出它们的展开图,折叠起来,得到 火车车厢的模型.你还可以给它们加上窗子,或是装上货物,加上 车轮∙∙∙∙∙∙
活动要求
1.根据立体图形,选择适当比例,画出它们的展开图; 2.利用展开图,折叠出火车模型; 3.修饰完善,完成设计制作.
(4)
实践
用折纸法剪出五角星
步骤:1.顶点,以 折痕为角的一边折出 36°角.
3. 将折出的 72°角通过折叠二等分 .
(1)
(2)
(3)
(4)
4. 将36°角反方向折叠,将重复叠在 一 起的五个36°角在其一边上任选一点剪 去54°角,打开折叠的纸则五角星剪成.
活动二:制作一个五角星
同学们对五角星很熟悉,你会自 己画一个标准的五角星吗?
要求: <ⅰ>画一个五角星; <ⅱ>用折纸方法剪出一个五角星.
实践画五角星
画法:
1. 任意画一个圆.
2. 以圆心为顶点,连续画72°的角,与圆相交于5点. 3. 连接每隔一点的两点.
(1)
(2)
(3)
4. 擦去多余的线,就得到五角星.
(5)
探究结果
(1)画五角星的道理:我们将顶点在圆心 的角画成72°,结果得到五个相等的圆心角, 它们的和恰为一个周角360°. 这些角的边将 圆分成五个相等的扇形. 连接每隔一点的两 点所形成的新的五个角,我们发现它们都是 相等的且可量出都等于36°. 这五个角就是 五角星的五个角.
(2)折纸方法剪五角星的道理:
对待生活中的每一天若都像生命中的最后 一天去对待,人生定会更精彩.
新人教版七年级数学上册第4章 几何图形初步《4.3.1 角》优质课件
Aபைடு நூலகம்C
记作角∠用O符吗号?“∠”来表示. 为什注么意? :
1.用三个大写字母表示时,
O
B
中间字母是顶点字母;
(1)用三个大写字母:
∠AOB 或∠BOA ; 2.用一个大写字母表示
或用一个大写字母: ∠O.
时,顶点处只能有一 个角.
角的表示
(2)用一个数字加弧线表示:
1 能把∠∠1AOB
(3)用一记个为作小什∠写么1希吗?腊?字母加弧线表示:
学习重点: 角的概念及其表示方法.
复习回顾
1.填表:
图形 表示方法 端点个数
延伸方向
线段
线段AB 或线段a
两个
不向任何一方延伸
射线 直线
射线AB 或射线a
直线AB 或直线a
一个 0个
向一方无限延伸 向两方无限延伸
2.下图中共有几条线段?
AB
C
DE
我们知道,线段是一种基本的几何图形, 角也是一种基本的几何图形.在小学我们已 经对角有些粗浅的认识,本节课在已有的知 识基础上,我们将对角作进一步的研究.
角的度量在日常生活中经常要用到,度量离不开度 量单位和工具.通过本节课的学习为后面继续探究角的 知识:角的和差、角平分线等做好准备.
课件说明
学习目标: 1. 了解角度制,通过与时间单位相类比,理解和掌
握角的度分秒及其换算. 2. 通过回忆量角器的使用方法,得到用量角器作一
个角等于已知角的方法,进而从数的角度认识角. 3. 通过探究度分秒之间的换算及简单运算,了解类
如图,已知∠AOB,用量角器
量出它的度数.
A
O
B
用量角器度量角的方法: 1.对中——角的顶点对量角器的中心; 2.重合——角的一边与量角器的零线重合; 3.读数——读出角的另一边所对的度数.
人教版数学七年级上册第四章 几何图形初步
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.知道什么是立体图形和平面图形,能够认识立体图形和平面图形.阅读教材P114~116,思考下列问题.1.几何图形包括平面图形和立体图形.2.立体图形可以分成哪几类?知识探究1.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,这样的几何图形叫做平面图形.2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.自学反馈完成教材P115~116的两个思考题.活动1小组讨论例1生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答.例2常见立体图形的归类,小组讨论归纳.活动2跟踪训练1.教材P121习题4.1第1、2、3题.2.教材P122习题4.1第8题.3.(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.活动3课堂小结1.常见的立体图形有哪些?常见的平面图形有哪些?2.生活中很多图案都由简单的几何图形构成,我们也有能力设计美观、有意义的图案.第2课时展开、折叠与从不同方向观察立体图形1.能够识别常见立体图形从不同方向看到的图形并能够正确的画出它们.2.能够识别常见立体图形的平面展开图.阅读教材P117~118,思考下列问题.1.从三个方向看立体图形包括哪三种?2.什么是立体图形的展开图?知识探究1.从三个方向看立体图形:从正面看,从左面看,从上面看.2.将立体图形的表面适当剪开,展开成平面图形,这样的平面图形为立体图形的展开图.自学反馈教材P118练习第1、2题.活动1小组讨论例1教材P117图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?小组合作学习,你摆我动手,画一画,并进行展示.例2教材P118探究,小组合作学习.活动2跟踪训练教材P121~122习题4.1第4、6、7题.活动3课堂小结1.立体图形从三个方向看到的图形.2.学会了简单几何体(如棱柱、正方体等)的平面展开图,知道按不同的方式展开会得到不同的展开图.3.学会了动手实践,与同学合作.4.不是所有立体图形都有平面展开图.。
第四章 几何图形初步章节复习(课件)七年级数学上册教材配套教学课件(人教版)
″
=17°+6.6′
6.6
°
60
=17+
=5719′12″
【点睛】按1°=60′,1′=60″,先把度化成分,再把分化成秒.
(小数化整
=17.11.
数)
1
1
【点睛】按1″= ′,1′= °先把秒化成分,再把分化成度.
60
60
(整数化小数)
2
2
∴MN=CM+CN=4+3=7(cm).
A
M
C
N
B
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的
长度吗?并说明理由;
1
猜想:MN= acm.
2
A
M
C
N
B
证明:同(1)可得
11CM= AC,C= BC,22
1
1
1
1
∴MN=CM+CN= AC+ BC= (AC+BC)= a(cm).
经过两点有一条直线,并且只有一条直线.
2.直线、射线、线段的联系与区别
3.基本作图
(1)作一线段等于已知线段;
(2)利用尺规作图作一条线段等于两条线段的和、差.
4.线段的中点
C是线段AB的中点,
1
AC=BC= AB,
2
AB=2AC=2BC.
A
C
B
5. 有关线段的基本事实 两点之间,线段最短.
6.连接两点的线段的长度,叫做这两点间的距离.
5
的中点,求DE的长.
3
解:∵AC=15cm,CB= AC,
5
3
∴CB= ×15=9cm,
人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)
1
4
3
如果两个角的和为90° (直角),那么称这两个
角 互为余角 ,简称“互余”。
几何语言叙述:
如果∠1+∠2=90°(或者∠1=90°-∠2),
那么∠1与∠2互为余角 .
总结归纳
2
1
4
3
如果两个角的和为180°(平角),那么称这两
个角 互为补角,简称“互补”。
几何语言叙述:
如果∠3+∠4=180°(或者∠3=180°-∠4),
o
10
o
30
o
o
80
60
o
100
o
120
o
150
o
170
3.填表:
∠α
5°
∠α的余角
∠α的补角
85°
175°
32°
58°
148°
45°
45°
135°
77°
13°
103°
27°37′
117°37′
90° x
180° x
62°23′
x
4.如右图,点A、O、B在同一直线上,OD平分
AOB, COE=90°。回答下列问题:
总结归纳
性质:
同角或等角的余角相等。
同角或等角的补角相等。
例题解析
请认真观察下图,回答下列问题:
①图中有哪几对互余的角?请用几何语言形式表示:
(∠A+∠1=90°, ∠1+∠2=90°)
(∠A+∠E=90°) (∠2+∠E=90°)
②图中哪几对角是相等的角(直角除外)?为什么?
(∠2=∠A) (同角的余角相等)
O
从立体图形到平面图形__几何图形初步课件
从正面看
从左面看
从上面看
分别从正面、左面、上面看圆柱、圆锥、球,各能得到什么 平面图形?
立体图形 从正面看 从左面看 从上面看
这个点 一定要 画出来
从正面、左面、上面观察三棱柱,看一看各能得到什么平面图形?
从正面看
从左面看
从上面看
看得见的轮廓, 要用实线画出来
从正面、左面、上面观察四棱锥,看一看各能得到什么平面图形?
从左面看
从上面看
右图是一个由 9 个正方体组成的立 体图形,分别从正面、左面、上面观 察这个图形,各能得到什么平面图形 ?
正面
左面
上面
从正面、左面、上面看这个由正方 体组合成的立体图形各能得到什么 平面图形?
从正面看
从左面看
从上面看
从正面、左面、上面看这个由正方体组 合成的立体图形各能得到什么平面图形 ?
对于一些立体图形的问题,常把它们转化为平面图形来 研究和处理.从不同方向看立体图形,往往会得到不同形状 的平面图形.
借助计算机,可以 用这些平面图形还 原出立体图形.
这是一个工件的立体图,设计师们常常画出从不同方向 看它得到的平面图形来表示它.
分别从正面、左面、上面观察这个长方体,看一看各能得到 什么平面图形?
从正面看
从左面看
从上面看
看得见的轮廓, 要用实线画出来
如图,右面三幅图分别是从哪个方向看这个棱柱得到的?
上面
正面
左面
如图是一个正六棱柱,从上面看到的图形是(C ).
水平放置的下列几何体,从正面看不是长方形的是(B ).
从正面、左面、上面看这个由正方体组合成 的立体图形各能得到什么平面图形?
从正面看
教学重点
第4章 几何图形初步 整理与复习(教学课件)七年级数学上册(人教版)
目录
一、几何图形 二、直线、射线、线段
三、角
知识点梳理
一、几何图形 1. 立体图形与平面图形
(1) 立体图形的各部分不都在同一平面内,如:
(2) 平面图形的各部分都在同一平面内,如:
A.①
B.②
C.③
D.④
【解答】解:根据题意可得, 从学校A到书店B有①、②、③、④四条路线,其中最短的路线是②. 故选:B.
考点分析
例14:如图,是一个三级台阶,A 和 B是这个台阶的两个相对的端 点,A 点上有一只蚂蚁,想到 B 点去吃可口的食物. 若这只蚂蚁从 A 点出发,沿着台阶面爬到B 点,你能画出蚂蚁爬行的最短路线吗?
② 如果两个角的和等于180°(平角),就说这两个角 互为补角 ( 简称为两个角互补 ).
(2) 性质:① 同角 (等角) 的补角相等. ② 同角 (等角) 的余角相等.
知识点梳理
(3) 方位角 ① 定义:物体运动的方向与正北、正南方向之间的夹角称为
方位角,一般以正北、正南为基准,用向东或向西旋转的角 度表示方向.
知识点梳理
3. 角的平分线 应用格式:
OC 是 ∠AOB 的角平分线, ∠AOC =∠BOC = 1 ∠AOB
2 ∠AOB = 2∠BOC = 2∠AOC
B C
O
A
知识点梳理
4. 余角和补角 (1) 定义:① 如果两个角的和等于90°( 直角 ),就说这两个角 互为余角 ( 简称为两个角互余 ).
)
【解答】解:A是圆柱; B是圆锥; C是三棱锥,也叫四面体; D是球体,简称球; 故选:B.
人教版数学几何图形PPT模板
2.几何图形都是由__点__、__线__、__面__、_体___组成的,_点___是构成图形的 基本元素.用运动的观点看,点动成_线___,线动成_面___,面动成__体__. 练习2.如图,将一条线段AB绕着端点A旋转120°,得到的平面图形为
(C ) A.三角形 B.圆锥 C.扇形 D.不能确定
•
1.阅读说明文,首先要整体感知文章 的内容 ,把握 说明对 象,能 区分说 明对象 分为具 体事物 和抽象 事理两 类;其 次是分 析文章 内容, 把握说 明对象 的特征 。事物 性说明 文的特 征多为 外部特 征,事 理性说 明文的 特征多 为内在 特征。
•
2.该类题目考察学生对文本的理解, 在一定 程度上 是在考 察学生 对这类 题型答 题思路 。因此 一定要 将这些 答题技 巧熟记 于心, 才能自 如运用 。
•
3. 结合实际,结合原文,根据知识库 存,发 散思维 ,大胆 想象。 由文章 内容延 伸到现 实生活 ,对现 实生活 中相关 现象进 行解释 。对人 类关注 的环境 问题等 提出解 决的方 法,这 种题考 查的是 学生的 综合能 力,考 查的是 学生对 生活的 关注情 况。
•
4.做好这类题首先要让学生对所给材 料有准 确的把 握,然 后充分 调动已 有的知 识和经 验再迁 移到文 段中来 。开放 性试题 ,虽然 没有规 定唯一 的答案 ,可以 各抒已 见,但 在答题 时要就 材料内 容来回 答问题 。
七年级数学上册(人教版)
第四章 几何图形初步
4.1 几何图形
4.1.2 点、线、面、体
1.几何体也简称_体___,包围着体的是_面___,面有_平__面___和__曲__面__两种;面 和面相交的地方是_线___,线有_直__线___和__曲__线___;线和线相交的地方是 __点__. 练习1.如图所示的几何体,它由__3__个平面和__1__个曲面围成;面与面相交 有__4__条直线和__2__条曲线;线与线相交有__4__个顶点.
人教七年级数学上册《几何图形初步》课件(共42张PPT)
如下图:OC是∠AOB的平分线,则有 ∠AOC=∠BOC= ∠AOB ∠AOB=2 ∠AOC= 2∠BOC
类似地,还有角的三等分线等。 通过折纸作角的平分线
4.余角和补角
(1)概念 如果两个角的和等于90°(直角),就说这两个角
互为余角。如∠3=35°,∠4=55°,那么∠3和∠4互为余角
。
如果两个角的和等于180°(平角),就说这两个角互 为补角。如下图∠1+∠2=180°,则∠1和∠2互为补角
同理分别规定出“西北” 、“西南”方向。
(1)方位角的表示 ----------通常先写北或南,再写偏东还是偏西 。例如:“北偏东35°”;“ 南偏西60°”等。
(2)方位角的应用
经常用于航空、航海、测绘中,领航员常用地图和罗盘进 行方位角的测定。
在下图中,射线OA、射线OB、射线OC、射线OD分别表示
3.角的四种表示方法
表示方法
图标
用三个大写的字母
A
表示
B
C
用一个顶点的字母 表示
o
用希腊字母表示
α
用一个数字表示
1
记法
注意事项
ABC 顶点字母在中间
o
顶点处只有 一个角时
α 在靠近顶点处
画弧线, 注上数字 或希腊字母 1
4.角的符号 用“ ” 表示 5.角的分类
小于号是“< ”
锐角: 大于0度而小于90度的角
4.线段的大小和比较
度量法
(1)线段的长短比较 叠合法
(2)线段的中点
把一条线段分成两条相等线段的点,叫做这条线段的中 点。
例如:点B是线段AC的中点
...
则有: AB=BC= AC
ABC
七年级数学上册第四章几何图形初步4.1几何图形4.1.2点、线、面、体课件(新版)新人教版
图4-1-2-2
图4-1-2-3 解析 A是由4旋转得到的,B是由2旋转得到的,C是由1旋转得到的,D是 由3旋转得到的. 点拨 利用面动成体这一性质解题.
题型二 探索几何体的顶点、棱、面之间的关系 例2 新年晚会会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立 体图形,多面体是其中的一部分,多面体中围成立体图形的每一个面都 是平的,没有曲的,如棱柱、棱锥等,如图4-1-2-4.
)
答案 B
5.如图,第二行的图形绕虚线旋转一周,便形成第一行的某个图形(几何 体),将对应的两个图末)圆柱是由长方形绕着它的一边所在直线旋 转一周得到的,那么图4-1-2-1是以下四个图形中的哪一个绕着直线旋转 一周得到的 ( )
图4-1-2-1
初中数学(人教版)
七年级 上册
第四章 几何图形初步
知识点 点、线、面、体
重要提示 (1)几何图形都是由点、线、面、体组成的,点是构成图形 的基本元素.点、线、面、体经过运动变化,就能组合成各种各样的几 何图形,形成多姿多彩的图形世界. (2)一般地,有曲面的几何体都可以由某个平面图形旋转得到.将一个平 面图形旋转成立体图形,既与平面图形的形状有关,也与平面图形旋转 时所绕的轴有关,因此在分析平面图形旋转后得到的立体图形时,要综 合分析平面图形的形状和旋转轴两个因素.
解析 分三种情况进行讨论. ①以8 cm长的边所在直线为轴,旋转得到的圆锥的体积V1= ×π×62×8=9 6π(cm3). ②以6 cm长的边所在直线为轴,旋转得到的圆锥的体积V2= ×π×82×6=1
1 3 1 3
28π(cm3).
③以10 cm长的边所在直线为轴,旋转得到的几何体是由两个同底面的 圆锥组成的,设圆锥底面的半径为r cm,则有 ×6×8= ×10×r,解得r=4.8.
人教版七年级数学上册课件:第四章几何图形初步 巧用线段中点(或分点)的有关计算 (共20张PPT)
(2)几秒后,恰好有OA:OB=1:2? 设运动时间为t s. ①B与A相遇前:12-4t=2(t+3),即t=1; ②B与A相遇后:4t-12=2(t+3),即t=9. 答:1 s或9 s后,恰好有OA:OB=1:2.
解:(1)因为点M,N分别是AC,BC的中点,
所以MC= 1 AC= 1 ×8=4(cm),
NC= 1 BC=2 1 ×62=3(cm). 所以M2 N=MC2 +NC=4+3=7(cm).
(2)若C为线段AB上任意一点,满足AC+CB=a cm,其
他条件不变,你能猜想出MN的长度吗?说明理由.
所以BN= BC= ×8=4(cm).
所以MN=M1 B+BN1 =10+4=14(cm). 综上所述,2 线段MN2 的长为6 cm或14 cm.
(2)根据(1)中的计算过程和结果,设AB=a,BC=b, 且a>b,其他条件都不变,求MN的长度(直接写 出结果).
MN= 1 (a+b)或MN= 1 (a-b).
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/72021/9/72021/9/72021/9/79/7/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月7日星期二2021/9/72021/9/72021/9/7 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/72021/9/72021/9/79/7/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/72021/9/7September 7, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/72021/9/72021/9/72021/9/7
人教版七年级数学几何图形初步课件
圆锥体的侧面是一个曲面,其高就是底面和顶面 之间的距离。圆锥体的表面积和体积的计算公式 是 A = πrl + πr^2 和 V = (1/3)πr^2h,其中 r 是底面的半径,l 是母线长,h 是高。
04 几何图形的变换与运动
平移与旋转
平移
平移是一种在平面内将图形沿某一方向移动一定距离而不改变其形状和大小的位 置变换。平移不改变图形的形状、大小和方向,只改变图形的位置。在平面内, 将一个图形沿某个方向移动一定的距离,这种图形运动称为平移。
圆柱体体积
圆柱体的体积等于其底面积和高度的乘积。例如,一个底面 半径为r厘米,高为h厘米的圆柱体,其体积为π×r^2×h立方 厘米。
06 实践与应用
生活中的几何图形
总结词
了解生活中的几何图形
详细描述
通过观察生活中的物品,如桌子、椅子、窗户、门等,了解它们的几何形状,如矩形、圆形、三角形等。
设计创意作品
详细描述
通过这些公式,我们可以计算出给定边长的 立方体的体积和表面积。
D
球体
总结词
球体是一个三维空间中所有点与固定点等距的几何体。
总结词
球体的中心是其最中心的点,也是任意点到球心的距离都 相等的点。
详细描述
球体的表面是一个连续的曲面,由无数个圆周组成。球体 的表面积和体积的计算公式是 A = 4πr^2 和 V = (4/3)πr^3,其中 r 是球的半径。
角的概念
角是具有公共端点的两 条射线组成的图形,分 为锐角、直角和钝角。
直线的相交
通过不同的直线相交, 可以得到不同种类的角 ,如对顶角、同位角、 内错角等。
角的度量单位
角的度量单位是度(° ),通过量角器可以测 量角的度数。
人教版七年级数学上册《几何图形初步——点、线、面、体》教学PPT课件(3篇)
举出生活中能够说明“点动成线”这一结论的例子.
问题 汽车的雨刷在挡风玻璃上画出一个扇 面,从几何的角度观察这种现象,你可以 得出什么结论?
小结:线动成面.
问题 当面运动时又会形成什么图形?如何 验证你的猜想?
小结:面动成体.
电视屏幕上的画面,大型团体操的背景图案, 都可以看作由点组成的.
长方体
正方体
球体
圆柱
合作探究
图形构成的元素
以上立体图形都是几何体,简称体.
问题: 1. 你知道这些几何体是由什么围成的吗? 2. 下图中的图形分别有哪些面?这些面有什么不同吗?
结论: 1. 几何体是由面围成的. 2. 面分为平面和曲面.
合作探究
实际生活中的平面与曲面
平面
曲面
平面
曲面
练一练 如下图,围成这些立体图形的各个面中,哪些面是平的?哪些面 是曲的?
正方体 圆柱体 球
长方体
小结:长方体、正方体、圆柱、圆锥、球、 棱柱、棱锥等都是几何体,几何体简称体.
思考 包围着体的是什么? 小结:包围着体的是面.
观察这些面,它们有区别吗?
小结:面是有区别的,可以分为平面和曲面 ;围成体的面只是平面或曲面的一部分.
思考 面与面相交的地方形成了什么图形?
小结:面与面相交的地方形成线,线分为 直线和曲线.
2.体是由_______围成的,面和面相交形成_______, 线和线相交形成______;
3.点动成________,线动成______,面动成_______;
• 4.将三角形绕直线L旋转一周,可以得到如下图所示立体图形的是 ()
•
A
B
C
D
点、线、面、体
七年级数学上册第四章几何图形初步认识4.1.1 立体图形与平面图形 第2课时(图文详解)
人教版七年级数学上册第四章几何图形初步认识
5.长方形、正方形、圆等都是 平面 图形. 6.写出下列几何体的名称.
棱柱
棱锥
圆锥
人教版七年级数学上册第四章几何图形初步认识
7.下列图形中为圆柱的是( D ).
8.埃及金字塔类似于几何体( C ).
(A)圆锥 (B)圆柱 (C)棱锥 (D)棱柱
人教版七年级数学上册第四章几何图形初步认识
你做对了吗?
人教版七年级数学上册第四章几何图形初步认识
1.下面是由六个正方形连在一起的图形,经折叠后能围 成正方体的图形有哪几个?
A
B
C
D
E
F
G
人教版七年级数学上册第四章几何图形初步认识
2.(武汉中考)如图所示,李老师办公桌上放着一个圆柱 形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的 图形是( )
人教版七年级数学上册第四章几何图形初步认识
9.下列图形中不是立体图形的是( D ).
(A)球
(B)圆柱
(C)圆锥 (D)圆
人教版七年级数学上册第四章几何图形初步认识
10.小明为班级专栏设计了一个图案,如图所示,主 题是“我们喜爱合作学习”,请你也尝试用圆、扇形、 三角形、四边形、直线等为环保专栏设计一个图案, 并标明你的主题.
人教版七年级数学上册第四章几何图形初步认识
4.(宁波中考)骰子是一种特别的数字立方体(如图),它
符合以下规则:相对两面的点数之和总是7.下面四幅图中
可以折成符合规则的骰子的是( )
(A)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1
图2
图3
1、请你把相应的实物与图形用线连接起来.
2、你能说出下列图形中有哪些平面图形吗
指出下列立体图形的名称,并指出图中的各立体 图形的表面中包含哪些平面图形
当堂达标测试(满分100分)
(一)选择题(每小题20分,共40分.)
1.下列说法错误的是(D )
A.长方体和正方体都是四棱柱 B.棱柱的侧面都是四边形 C.柱体的上下底面形状相同 D.圆柱只有底面为圆的两个面 2.下列几种图形:①长方形;②梯形;③正方体;
4.1.1 几何图形
天安门广场
天坛祈年殿—中国
国家体育馆—中国
水立方
金字塔—埃及
泰姬陵—印度
圆形斗兽场—意大利
香 港
白宫—美国
巴台农神庙—希腊
大英博物馆—英国
观察我们周围的世界, 就会发现建筑物的形状千 姿百态,古埃及的金塔, 法国的凯旋门,中国的故 宫与城,这些千姿百态的 建筑物美化了我们生活的 空间,同时也带给我们许 多遐想:建筑师是怎样设 计创造的呢?这其中蕴涵 着许多有关图形的知识
画立体图形时,常把被遮挡的轮廓画成虚线.
课堂小结
几何图形的分类
立体图形:包括正方体,长方 体,球体,圆柱体, 圆锥,棱 几何 柱,棱锥等.
图形
平面图形:包括三角形,正方 形,长方形,菱形,梯形,平行 四边形,圆形等.
平
面
图
形
棱柱
几
柱体
何
圆柱
图
形
立
棱锥
体 锥体
图
圆锥
形
球体
下列实物与给出的哪个几何体相似?
据说在很久以前,埃及的尼罗河每年都会有 洪水泛滥.泛滥的河水在给下游带来肥沃的土壤 的同时,往往将土地的地界冲垮.所以每年洪水 退后,人们便要重新对土地进行测量、计算,以 便重新划分田地.日积月累,古代埃及人便逐渐 学会了计算简单图形面积的方法,进而形成了有 关图形的一些知识.后来人们便将些知识称为 “Geometry”,意为“测地术”,即测量土地的方 法.这就是几何学的雏形.
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体
正方体
圆柱体
生活中你会常见很多实物,由下列实物能 想象出你熟有些几生何活图中你形会的常见各很多部实分物,不由都下列在实同物能 一平面想内象,出你这熟些悉的图几形何体是吗立?体图形。
长方体
正方体
球 圆柱体
圆锥体
常见的立体图形
长方体
圆锥
正方体
棱锥
圆柱
球
棱柱
圆柱:有两个面互相 平行,并且都是圆形,侧 面是曲面,展开是个长方 形,这些面所围成的 几何 体叫圆柱.
棱柱:有两个面互相 平行,其余各面都是平行 四边形,并且每相邻两个 平行四边形的公共边互相 平行.这些面所围成的 几 何体叫棱柱.
圆锥: 只有一个底 面,底面是个圆。圆锥 的侧面是个曲面。把圆 锥的侧面展开得到一个 扇形这些面围成的几何 体叫棱锥.
棱锥:有一个面是多 边行,其余各面是有一个 公共顶点的三角形,这些 面围成的几何体叫棱锥.
球:半圆绕它的直径旋转一周, 旋转所成的曲面叫球面,球面所围成 的几何体叫球体,简称球.
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
你能说出下列图形的名字吗?
三角形 平行四边形
正方形
梯形
五边形
八边形
圆
圆环
椭圆
五角星
几何图形的各部分都在同一平内,这样
的几何图形叫做平面图形.
观察下列图形,从中找出你熟悉的几何图形: 从实物中抽象出来的各种图形统称为几何图形.
常见的立体图形
有些几何图形(如长方体、正方体、圆柱、圆锥、球等) 的各部分不都在同一平面内,这样的几何图形叫做立体图形.
长方体
正方体
圆柱
球
圆锥
圆台
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体
正方体
棱柱与圆柱有什么相同点与不同点?
相同点:圆柱和棱柱都是由两个形状相同的 底面构成,都给人一种直立的感觉.
不同点:圆柱的两个底面是圆形,而棱柱的 底面是多边形.圆柱的侧面只有一个是曲面,而 棱柱的侧面是多个都是平面.
棱柱有直棱柱和斜棱柱
直棱柱(棱柱)
斜棱柱
这两个图形有什么不同?
平面图形
立体图形
④圆柱;⑤圆锥;其中属于立体图形的是(B )
A. ①②③;B. ③④⑤;C. ③⑤;D.④⑤
(二)填空题(每小题20分,共40分.)
3.我们所学的常见的立体图形有 柱 体, 锥 体, 球 体.
4.柱体包括圆柱和棱柱 ,锥体包括棱锥和 圆锥.
(三)图中的一些物体与我们学过的哪些图形相类似? 把相应的物体和图形连接起来(20分)
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日