中学数学教学中的反证法-精选教育文档
2020-2021学年高中北师大版数学选修2-2课件:1.3 反证法
【跟踪训练】 如图所示,AB,CD为圆的两条相交弦,且不全为直径,求证:AB,CD不能互相平分.
【证明】连接AC,CB,BD,DA, 假设AB,CD互相平分, 则四边形ACBD为平行四边形, 所以∠ACB=∠ADB,∠CAD=∠CBD. 因为四边形ACBD为圆的内接四边形, 所以∠ACB+∠ADB=180°, ∠CAD+∠CBD=180°,
【证明】假设a2+b2+c2+d2+ab+cd=1.因为ad-bc=1, 所以a2+b2+c2+d2+ab+cd+bc-ad=0, 即(a+b)2+(c+d)2+(a-d)2+(b+c)2=0. 所以a+b=0,c+d=0,a-d=0,b+c=0, 则a=b=c=d=0, 这与已知条件ad-bc=1矛盾,故假设不成立. 所以a2+b2+c2+d2+ab+cd≠1.
所以∠ACB=90°,∠CAD=90°, 所以对角线AB,CD均为圆的直径,与已知条件矛盾, 所以AB,CD不能互相平分.
类型二 用反证至少有两个钝角”的否定是
______________________________.
2.已知a,b为正实数,请用反证法证明: a 1 与 b 1 中至少有一个不小于2.
2.本例1条件改为“任何三角形的内角至多有一个钝角”,则其否定为 ________. 【解析】“任何三角形的内角至多有一个钝角”的否定为存在一个三角形,其 内角有两个或三个钝角. 答案:存在一个三角形,其内角有两个或三个钝角
类型三 用反证法证明唯一性命题 【典例】已知:一点A和平面α. 求证:经过点A只能有一条直线和平面α垂直. 【思路导引】
浅谈数学教学中的反证法
浅谈数学教学中的反证法摘要】在中学数学教学中,引导学生正确运用反证法是数学教师课堂教学实践的重要任务,本文着重探讨反证法的应用方法,以期对我们的数学教学实践有所帮助。
关键词:反证法,思维流程,教学实践一、反证法是一种重要的数学证明方法所谓证明,就是用已知的数学事实或其真实性显而易见的数学公理去解释、说明、断定要证命题的真实性1。
因此,引导学生学会利用反证法证明数学命题是一项重要的教学内容。
二、反证法在数学中的应用(一)反证法的特点及应用反证法对数学命题的证明方法着重于采取逆向思维,由题设通过推理最终否定结论。
我们假设原命題为a→b ,是推导而出的结果,c通常为条件、公理以及定理等,也可以使临时假设的条件,我们可表示为→(c∧)a→b,逻辑依据:“矛盾律”和“排中律”是反证法的最核心最根本的逻辑依据。
反证法的逻辑思维流程是:假若“结论不能够得以成立”,那么结论已不成立就会出现人所共知的问题,这个问题主要是通过与已知的设定条件相悖,或者与公理等相悖,或与我们做出的临时设定条件相悖,或与自身矛盾等方式显示出来。
种类:我们使用反证法的核心点在于归谬,一般在运用中有简单归谬法和穷举归谬法两种形式。
模式:设定需要证明的命题为“若X则Y”,X是题设,Y是我们得出的结论,X,Y亦均为数学判断,如此,反证法证明命题通常分三步。
反设:首先设定与求证结果相悖的内容。
反设—假设待证结论不成立,亦即肯定待证结论的反面,并将其作为增加条件,添加到给定的题设中去2。
归谬:我们将反设作为条件,基于此采取系统的无任何错误的推理,暴露矛盾,这是反证法的关键环节。
结论:推导出反设不能够成立,从而说明原命题正确。
(二)反证法在中学数学中的应用领域反证法是从证明反论题虚假来证明原命题真实的一种证题方法,是一种重要的间接证法3。
反证法普遍应用于平面几何、代数、三角、立体和解析几何等数学的许多部分内容之中。
反证法的理论依据是形式逻辑中的两个基本规律—矛盾律和排中律4。
中学数学的反证法
( 三 ) 反证法在几何中的应用
反证法几何中的应用也是极为广泛的,不论是平面几何、 立体几何还是解析几何都有体现。接下来我们以平面几何为例, 分析下反证法的应用。
例 3:过平面 α 上的点 A 的直线 a ⊥ α,求证:a 是唯一的。 证明:假设 a 不是唯一的,那么过 A 至少还有一条直线 b, b ⊥ α。∵ a 和 b 是相交的直线,∴ a、b 可以确定一个平面 β。 设 α 和 β 相交过点 A 的直线 c。又∵ a ⊥ α,b ⊥ α,∴ a ⊥ c, b ⊥ c。得出在平面 β 内,过点 A 就存在两条直线垂直于 c,这 与定理是矛盾的。因此,a 是唯一的。 例 4:四边形 ABCD 中,对角线 AC=BD=1。求证:四边形
( 三 ) 反证法的解题步骤
反证法的解题步骤主要是否定结论 - 推出矛盾 - 结论成
立。具体讲就是:
第一步:反设。我们需要做的是找出原命题中的结论,做
出与之相矛盾的假设。这是反证法的关键。如果与原命题相矛
浅谈中学数学中的反证法
本科生毕业论文浅谈中学数学中的反证法院系:数学与计算机科学学院专业:数学与应用数学班级: 2008级数学与应用数学(2)班学号: 200807110211 姓名:黎康乐指导教师:陈志恩完成时间: 2012年5月26日浅谈中学数学中的反证法摘要: 数学命题的证明分直接证法和间接证法两种.在间接证法中,最常见的是反证法.虽然平时我们接触了相关方面的知识,但比较零散,对其概念、应用步骤、使用范围等没有系统的认识,并且由于数学命题的多样性、复杂性,哪些命题适宜用反证法很难给出确切的回答.本课题通过查阅资料和自己在学习数学过程中的发现就中学数学中反证法的概念、反证法的逻辑依据、种类及步骤,解题过程中怎样由假设出发寻找矛盾、以及哪些类型的问题适宜从反证法出发进行证明的问题进行了归纳.并总结出在学习反证法的过程中应注意的三个方面,通过对以上提出的所有问题进行系统归纳,这有利于帮助学生系统的学习反证法,提高学生利用反证法进行解题的技巧从而达到预期效果.关键词:反证法假设矛盾结论Abstract:The mathematical proof points directly proofs proposition and indirect proof two。
In indirect proof,the most common is required. Although peacetime we contact with the related knowledge,but is scattered,of the concept, application procedures,the scope of use of not understanding of the system,and the mathematical proposition the diversity and complexity, which is suitable for proposition is very difficult to give the exact with reduction to answer. This subject will be required in the middle school mathematics concept, apagoge is logical basis, types and steps, problem solving process of how a hypothesis of contradictions, and looking for what types of questions appropriate counter-evidence method from the proof of the set out on the induction. And summed up in the process of learning be should be paid attention in the three aspects,through all the questions put to the above system induce,this will help the students to learn the required system,improve the students use to problem solving skills required to achieve the expected effect。
浅谈“反证法”在高中数学的应用
浅谈“反证法”在高中数学的应用反证法,又称归谬法,是一种通过否定或质疑对方的论点,从而证明自己观点正确性的方法。
这种证明方法在高中数学中有着广泛的应用,下面我们就来谈谈反证法在高中数学中的应用。
反证法的原理是:如果一个命题的结论是错误的,那么这个命题的前提也必须是错误的。
这个原理基于逻辑推理的矛盾性,即如果一个命题的前提和结论之间存在矛盾,那么这个命题就是错误的。
根据这个假设,推导出与原命题的结论相矛盾的结论;说明这个矛盾的结论与原命题的结论是矛盾的,从而证明原命题的结论是正确的。
下面我们通过一个实例来说明反证法在高中数学中的应用:例题:求证:在任意三角形ABC中,至少有一个内角小于或等于60度。
证明:假设在三角形ABC中,所有内角都大于60度,即每个内角都大于60度。
根据三角形内角和定理,三角形内角和为180度,因此三角形ABC的内角和大于180度。
但是,这与三角形内角和定理相矛盾,因为三角形的内角和不可能大于180度。
因此,我们的假设是错误的,至少有一个内角小于或等于60度。
通过这个例子,我们可以看到反证法的应用范围很广,可以用来证明各种类型的命题,包括数量关系、不等式、函数性质等等。
虽然反证法在高中数学中有着广泛的应用,但是并不是所有的命题都可以使用反证法来证明。
一般来说,反证法适用于那些结论是“至多”、“至少”等形式的命题,因为这些命题的结论可以被否定。
如果命题的结论是“等于”、“不等于”等形式,那么就不适合使用反证法。
反证法是一种非常重要的数学证明方法,在高中数学中有着广泛的应用。
通过掌握反证法的原理和步骤,我们可以更好地理解和掌握数学中的各种知识点,提高自己的数学素养。
使用反证法也可以培养我们的逻辑思维能力,让我们更加严谨、准确地思考问题。
因此,我们应该认真学习反证法,并将其应用到实际生活中去。
在中学数学的学习过程中,我们经常会遇到一些看似简单但实际上需要巧妙思维才能解决的问题。
这时候,反证法就像是一把利剑,能帮助我们破解难题。
1.3《反证法》课件(北师大版选修2-2)
但奇数≠偶数,这一矛盾说明p为偶数.
【解析】在推理过程中我们将(a1-1),(a2-2),„,(a7-7)重新 分组,会有a1+a2+„+a7与1+2+„+7,这两个式子相等,从而 会得出矛盾.
答案:a1-1,a2-2,„,a7-7;
(a1-1)+(a2-2)+„+(a7-7); (a1+a2+„+a7)-(1+2+„+7).
一个特称命题“存在正整数n,有xn≤xn+1.”
3.(5分)完成反证法证题的全过程.
题目 设a1,a2,„,a7是1,2,„,7的一个全排列,
求证:p=(a1-1)(a2-2)„(a7-7)为偶数. 证明:假设p为奇数,则________均为奇数. 因奇数个奇数之和为奇数,故有 奇数= ________ = ________ =0.
4.(15分)已知a+b+c>0,ab+bc+ca>0,abc>0, 求证:a>0. 【解题提示】由于本题的证明结果从正面较难分析全面, 故应选用反证法,先假设a≤0,然后证明与已知条件矛盾.
【证明】假设a≤0,即a<0或a=0.
(1)若a=0,则abc=0,这与abc>0矛盾; (2)若a<0,则由abc>0,知bc<0,
(A)三角形中至少有一个内角不小于60° (B)四面体的三组对棱都是异面直线
(C)闭区间[a,b]上的单调函数f(x)至多有一个零点
(D)设a,b∈Z,若a+b是奇数,则a,b中至少有一个为奇数 【解析】选D.由于a+b是奇数,则a,b必为一奇一偶,而不是 a,b中至少有一个为奇数.
浅谈反证法在中学数学中的应用
浅谈反证法在中学数学中的应用反证法是一种间接法,证明定理的一种方法,先提出和定理中的结论相反的假定,然后从这个假定中得出和已知条件相矛盾的结果来,这样就否定了原来的假定而肯定了定理,也叫归谬法. 反证法是一种间接证法,它不直接证明论题“若A则B”(即A→B)为真,而是从反面去证明它的否定命题“既A且B”为假,从而肯定“若A则B”为真的证明方法.1.2 反证法的来源1.2.1 古希腊的反证法反证法,无论是逻辑上的还是数学上的,它的概念都是一致的.即是反证法是证明的一种方法.西方数学在毕达哥拉斯学派的影响下,认为万物皆数.但随着这个表征数学史第一次危机“根号2”的问题的出现,使得希腊人重新审视了自己的数学,这最终导致希腊人放弃了以数为基础的几何.1.2.2 中国古代数学的反证法在我们中国的传统数学中,本身对于演绎的证明一般就不太重视,而且中国传统逻辑学的不完备,尽管我们中国的先辈们认识到了一些逻辑规律,并且在魏晋时期就已经大兴辩难之风,但是他们大多使用的都是类似于反驳,在他为《九章算术》作注释时也多次采用了归谬论证法,墨子也使用归谬法.但是应该指出,明确的反证法的用法却是凤毛麟角,在这一点上与西方存在着差别极大,而在中国数学中,即便是刘徽这位我国古代在理论与逻辑方面都很擅长的数学大师,也只是用到了反驳(如:举反例).1.2.3 反证法的其他来源① 墨子的“归谬法”例如:“学之益也,说在诽者.”通过证明“学习无益”是假,而得到“学习有益”的命题是真.这是一个非常有意思的反证法的特例.而将其归为归谬论证欠妥切,归谬是反驳的一种方法,显然在这里是证明一个命题为真.② 刘徽的“证伪法”在我们的数学中,我们都只将证明与反驳对应为直接证明、归谬法(如反例法)与间接证明(如反证法).从这意义来说,刘徽他并没有使用过反证法,他仅仅只是在使用归谬法,只是在推翻一些假命题,即在证伪.1.3 反证法的一般步骤学习反证法应把握它的一般步骤:反设:假定所要证的结论不成立,而设结论的反面(否定命题)成立;归谬:将“反设”作条件,由此出发经过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理及明显的事实矛盾或自相矛盾.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误.既然结论的反面不成立,从而肯定了结论成立.具体方法:命题r=在C下,若A则B反证:若A则¬B,证明¬B与A的矛盾例1求证 A(原论题)证明 (1)设非A真(非A为反论题)(2)如果非A,则B(B为由非A推出的论断)(3)非B(已知)(4)所以,并非非A(根据充分条件假言推理的否定后件式)(5)所以,A(非非A=A).例2如果a是大于1的整数,而所有不大于a的素数都不能整除a,则a是素数.证明假设a是合数,记a=bc (b、c∈Z,且b, c>1),由于a不能被大于1且不大于a的素数整除,所以b>a,c>a,从而bc>a,这与假设a=bc矛盾,故a是素数.2. 反证法的适用范围究竟什么样的命题可以用反证法来证呢?当然没有绝对的标准,但证题的实践告诉我们:下面几种命题一般用反证法来证比较方便.2.1否定性命题即结论以“没有……”“不是……”“不能……”等形式出现的命题,直接证法一般不易入手,而反证法有希望成功.例3 求证:在一个三角形中,不能有两个角是钝角.已知:∠A,∠B,∠C是三角形ABC的三个内角.求证:∠A,∠B,∠C中不能有两个钝角.证明假如∠A,∠B,∠C中有两个钝角,不妨设∠A>900,且∠B>900,则∠A+∠B+∠C>1800.这与“三角形内角和为1800”这一定理相矛盾. 故∠A,∠B均大于900不成立.所以一个三角形不可能有两个钝角.2.2限定式命题即结论中含有“至多”、“至少”、“不多于”或“最多”等词语的命题.例4 求证:素数有无穷多个.证明假设素数只有n个: P1、P2……Pn,取整数N=P1?P2……Pn+1,显然N不能被这几个数中的任何一个整除.因此,或者N本身就是素数(显然N不等于“P1、P2、……Pn中任何一个),或者N含有除这n个素数以外的素数r,这些都与素数只有n个的假定相矛盾,故素数个数不可能是有限的.2.3某些存在性命题例5 设x,y∈(0,1),求证:对于a, b∈R ,必存在满足条件的x,y,使|xy - ax - by|≥31成立.证明假设对于一切x,y∈〔0 , 1〕使|xy - ax- by| <31恒成立,令x = 0, y = 1 ,则|b|<31令x = 1 , y = 0,得| a| <31令x = y = 1,得| 1 - a - b| <31.但| 1 -a - b| ≥1 - | a| - | b| >1 -31-31=31产生矛盾,故欲证结论正确.2.4一些不等量命题的证明如:不等式,反证法是证明它的一种重要方法,但当结论反面有无穷多种情况时,一般不宜用反证法.2.5基本命题例6. 求证:两条相交直线只有一个交点.已知:如图,直线a、b相交于点P,求证:a、b只有一个交点.证明假定a,b相交不只有一个交点P,那么a, b至少有两个交点P、Q.于是直线a是由P、Q两点确定的直线,直线b也是由P、Q两点确定的直线,即由P、Q两点确定了两条直线a,b.与已知公理“两点只确定一条直线”相矛盾,则a,b不可能有两个交点,于是两条相交直线只有一个交点.2.6整除性问题例7. 设a、b都是整数,a2+b2 能被3整除,求证:a和b都能被3整除.证明假设a、b不都能被3整除.分三种情况讨论:(1)a、b都不能被3整除,因a不能被3整除,故a2不能被3整除,同理,b2不能被3整除,所以a2+b2也不能被3整除,矛盾.(2)a能被3整除,b不能被3整除,可得a2能被3整除,b2不能被3整除,故a2+b2也不被3整除,矛盾.(3)同理可证第三种情况.由(1)(2)(3)得,原命题成立.参考文献[1]赵雄辉.证明的方法[M].湖南:湖南人民出版社.2001:85-92.[2]龙朝阳.反证法的理论基础与适用范围[J].安顺师专学报.1999(2):40-46.[3]陈国祥.适合用反证法证明的几类问题[J].中学数学教学参考.1994(7):22-23.[4]颜长安.反证法初探[J].数学通讯. 2001(13):22-24.[5]高珑珑.反证法例说[J].中学数学月刊. 1997(4):33-35.[6]徐加生.例谈正难则反的解题策略[J]. 数学教学研究.1999(4):12-13.。
若有意会便可言传——《反证法》教学设计与反思
性质 ,从而给 出抛物线 的对称轴、顶点等概念 ,而 利 用问题 ( 5 )学 生进 一 步经 历探 究二 次函数 图象 特 征 的形 成 过程 ,加深 对 其理 解 和认 识 ,从而 突 破 了 本节 的难 点 . 通 过 这两 次追 问 ,突 破 了学 生思维盲 点 的缺 口,
扫清 了对 二 次 函数 图象 的认 识 盲 区 ,教 师 只有 对教 材 的深 度理 解 和 学 生 已有认 知 经验 的准 确 定位 ,才 能对 突 破 思维 盲点 了然 于胸 ,使 课堂 更 加 生动 与 丰 富.
参 考 文献 【 1 】 张蜀青 ,曹广 福 .以 问题 驱动对 数 概念教 学【 J ] .中学 数学教 学参考 ,
2 0 1 4( 7 )( 上 旬) :1 2 . 1 3 【 2 ] 中华人 民共和 国教 育部 制定 .义 务教 育数 学课 程标 准 ( 2 0 1 1 年版 本)
展.
( 5 ) 请 通过观 察 图象 , 分析 这 条抛物 线 的特征 , 并把 自己的发现 说 出来 . 让 学 生通过 问题 ( 4 )列表 中 的数据变 化对 应 具 体 函数 图 象 的判 断 、推 理 等过 程 发现 抛 物线 的相 关
5问在接点 ,设计悬念
在教学实践 中,常常会发现很多教 师在课堂小 结 时 ,往 往 仅对 本节 课 内容 进 行一 般 总 结 ,忽视 了 知识 内部 的相 互 关 系 ,匆忙 布 置课 后 练 习 ,预 习作 业 ,使 学 生感 到 乏 味 ,失去 主 动性 、积极 性 .如 果 我们 在 结束 本 节课 前 三 分钟 不 仅仅 满 足对 本 课 的小 结 ,而 是 找 出本 课 与 下节 课 知识 的“ 交接 点 ” 的基 础
传 ” 数 学 问题 ,如 何 言传 是 反证 法 证 明过 程 的一个 难 点 ,以 下是反 证法 的一 个教 学设 计 :
中学数学中的反证法
浅谈中学数学中的反证法摘要小结在解题过程中怎样由假设出发寻找矛盾,哪些类型的问题适用于反证法,以及在学习反证法的过程中应注意的两方面。
关键词反证法命题反设归谬结论0引言反证法是数学的一种极其重要的方法,特别是遇到的一些直接证明难于入手,甚至无法入手的问题,反证法可使证明变得轻而易举。
它和分析法、综合法一样,有着悠久的历史,应用也相当广泛。
在中学数学中,反证法是一个难点。
在学习反证法之前,学生在学习平行线、相交线、三角形等各章中,证题用的都是直接证法,突然学习反证法,与已有的证题习惯不同,所以学生初学反证法,会有排斥的心理。
加之,现在课本要求不高,例题很少,学生与老师不重视,知识不巩固,使学生无法深刻理解反证法的作用。
但是,中学生好奇心强,对新鲜事物兴趣浓,抓住这一特点,从浅显的、学生熟知的事实入手说明“反证法”,再引导其抽象概括,就能收到很好的教学效果。
论文中通过几个例子表现反证法的思维方式,说明反证法在解题中的重要作用,并总结哪些类型的问题适用于反证法。
深刻理解反证法的实质,切实掌握它的解题要领,能提高逻辑思维能力和解决实际问题的能力。
1反证法的由来反证法是数学中的一种证明方法,它是与直接证法相对的间接证法的一种。
法国数学家J·阿达玛在其所著《初等数学教程》(平面几何卷)中作了最准确、最简明扼要的描述:“反证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾”。
反证法作为一种最重要的数学证明方法,在数学命题的证明中被广泛应用。
欧几里得证明“素数有无穷多”的结论,欧多克斯证明“两个正多边形的面积比等于其对应线段比的平方”的结论,“最优化原理”的证明,伽利略推翻“不同重量的物体从高空下落的速度与其重量成正比”的断言,“上帝并非全能”的证明,都用了反证法。
2什么是反证法反证法是从原命题结论的反面出发,通过正确的逻辑推理过程,导致矛盾的结果,从而肯定原命题结论正确的证明方法。
它是反设后通过归谬使命题得到证明的方法,所以,反证法又称“归谬法”。
浅谈反证法在中学数学中的应用
昌吉学院论文(设计)分类号:本科毕业论文(设计)密级:浅谈反证法在中学数学中的应用系院学科门类数学系专业数学与应用数学学号姓名指导教师教师职称讲师二零一三年五月三日毕业论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果或作品。
本人完全意识到本声明的法律后果由本人承担。
作者签名:年月日毕业论文版权使用授权书本毕业论文作者完全了解学院有关保存、使用毕业论文的规定,同意学院保留并向有关毕业论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权本学院及以上级别优秀毕业毕业论文评选机构将本毕业论文的全部或部分内容编入有关数据库以资检索,可以采用复印、缩印或扫描等复制手段保存和汇编本毕业论文。
声明人签名:导师签名:年月日年月日昌吉学院2013届本科毕业论文(设计)摘要数学思想和方法是把数学知识转化为能力的桥梁,在数学的诸多证明方法中,有一种被称为“数学家最精良的武器之一”的间接证明方法,这就是反证法。
反证法是数学中一种应用广泛的证明方法,在许多方面都有着不可替代的作用。
从最基本的性质定理,到某些难度很大的世界难题都是用反证法来证明的。
反证法不仅可以单独使用,也可以结合其他方法一同使用,还可以在论证同一命题时多次使用。
它与一般证明方法不同,反证法又可分为归谬反证法和穷举反证法两种。
本文主要讲了反证法的定义、逻辑依据、分类以及其使用的步骤,并根据大量文献进行探究和研究,对反证法的适应范围、如何正确使用反证法以及运用反证法应该注意的问题进行归纳与总结。
关键词:反证法;逻辑依据;中学数学;归谬昌吉学院本科毕业论文格式规范目录摘要 (I)目录.................................................................................................................................... I I 引言 (1)1反证法的定义及逻辑依据 (2)1.1反证法的定义 (2)1.2反证法的逻辑依据 (2)2反证法的分类及步骤 (4)2.1反证法的分类 (4)2.2运用反证法解决问题的步骤 (5)3反证法的适用范围 (6)3.1逆命题 (6)3.2基本命题 (6)3.3否定性命题 (7)3.4限定式命题 (8)3.5整除性问题 (8)3.6无穷性命题 (9)3.7某些存在性命题 (9)3.8全称肯定性命题 (10)3.9一些不等量命题 (10)4运用反证法应注意的问题 (12)4.1了解矛盾种类 (12)4.2正确的作出反设 (13)4.3正确的导出矛盾 (15)4.4必须明确推理特点 (16)总结 (16)参考文献 (17)致谢 (18)昌吉学院2013届本科毕业论文(设计)引言在当今和未来社会中,人们面对纷繁复杂的信息,经常需要作出选择和判断,进而进行推理,作出决策,因而义务教育阶段,数学课程的学习,强调学生的数学活动,发展学生的推理能力。
浅谈中学数学中的反证法
浅谈中学数学中的反证法摘要:反证法是数学中一种重要的证明方法,它以其独特的证明方法和思维方式对培养逻辑思维能力和创造性思维有着重大的意义.本文阐明反证法的定义、概念、种类、证明的一般步骤,探索反证法在中学数学教学中的应用及其适用的范围。
反证法;证明;矛盾关键词:一、绪论在我们的生活中,通常会遇到许多形形色色的有趣的事,比如道路旁结满杏子的杏树,看着那压弯了枝桠的诱人果子,为什么会无人问津?再比如我们身边的童话故事中常常会出现的阎王,,,让我一起欣赏下面的精彩故事。
故事一:从前有个叫王戎的小朋友,一天,他和伙伴外出发现路边的一棵树上结满了李子,其他人都一哄而上抢着去摘那些李子,尝了之后才发现是苦的,唯一没有行动的王戎说:“如果李子不苦的话,路过的人早就摘光了,可这颗树上却结满了李子,所以李子一定是苦的。
”这个故事中王戎就很好的使用了反证法说明了李子为什么不甜,不好吃。
生活中有很多的事物如果我们从正面去论证它,可能举出成千上万的事例也无法得出它的正确性,但我们都清楚事物都是有两面性的,他除了正面必定还有相反的一面,今天我们要讨论的就是从反面入手,得到我们想要的结果,我们把这种方法称之为——反证法。
二、什么是反证法反证法是“间接证明法”的一类,是从反方向证明的证明方法,即:肯定题设而否定结论,从而得出矛盾。
法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。
具体地讲,反证法就是从反论题入手,把命题结论的否定当作条件,使之得到与条件相矛盾,肯定了命题的结论,从而使命题获得了证明。
(一)反证法定义反证法(Proofs by Contradiction,又称归谬法、背理法),是一种论证方式,他首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。
(二)反证法概念反证法是从反面的角度思考问题的证明方法,属于“间接证明”的一类,即肯定题设而否定结论,从而导出矛盾,推理而得。
反证法在初中代数中的应用
反证法是高中阶段需要掌握的基本证明方法,它在中学数学中有着广泛的应用。
了解反证法的思维方式,强调反证法中的逆向思维对于解决相关命题的重要性,引导并要求学生能用逆向思维解决更多的数学问题,特别是对于一些难度比较大的证明题,灵活地运用反证法,就能迎刃而解。
本文首先介绍了反证法的相关基础知识,通过分析命题,总结反证法在各类命题中的使用规律,然后归纳出反证法在中学数学代数解题中的应用。
反证法是间接论证的方法之一,是通过推论出与论题相矛盾的命题来确定原论题的真实性的一种方法。
即肯定题设而否定结论,从而导出矛盾,推理而得。
也就是说假设命题的结论不成立,在已知条件和“否定命题结论”的新条件下,通过逻辑推理,得出与公理、定理、题设相矛盾的结论或自相矛盾的结论,从而得出命题结论的反面不成立,即证明了原命题结论一定是正确的。
1.反证法的一般步骤反证法的证明模式可以简单的概括为两个否定,一个推理。
也就是否定结论,再利用相关的知识点,正确无误的推导出与逻辑矛盾的结果,最后便可以否定刚开始的否定。
所以可以得出反证法证明命题的一般步骤,如下:(1)反设。
假设原命题反设成立;(2)归谬。
从命题的假设出发,经过相关推理得出和反面命题矛盾,或者与定义、公理、定理相矛盾的结论;(3)结论。
得出假设命题不成立,即证明原命题成立2.反证法在代数中的应用反证法是高中数学的重点和难点之一。
尽管在平时一些定理或者命题的证明中,学生接触过一些,但是接触的都比较浅,印象不是特别的深,以至于在解题过程中,根本没有运用反证法来解决问题的意识。
所以在平时的课堂中,可以加入反证法来对例题进行另种方法的讲解,在其讲解过程中,反复地强调反证法的逻辑思维,让反证法渐渐渗透到学生的数学思想中,培养学生多维度思考问题的能力以及学生的逆向思维能力。
下面我们来看看反证法在高中代数中的简单运用。
2.1 肯定性命题反证法可以用来解决结论里面出现“一定是”、“是”等肯定性词语的命题。
浅谈中学数学中的反证法
浅谈中学数学中的反证法1. 定义与基本原理反证法,又称归谬法,是数学证明中一种重要且独特的证明方法。
其基本思想是先假设命题的反面(即要证命题的否定)成立,然后通过合理的逻辑推理,推导出与已知事实、定理、公理或逻辑原则相矛盾的结果,从而由于矛盾的存在,证明原假设(即命题的反面)不成立,进而间接证明原命题成立。
2. 逻辑依据与分类逻辑依据反证法的逻辑依据在于反证法的逻辑结构——反设、归谬、存真。
即首先反设命题的反面为真,然后通过逻辑推理导出矛盾,最后根据矛盾律(在同一思维过程中,两个相互矛盾的思想不能同时为真,必有一假),断定反设不成立,从而肯定原命题为真。
分类根据反设后推导出的矛盾点不同,反证法可以分为直接反证法和间接反证法。
直接反证法是通过推导出与已知事实或定理直接相矛盾的结果来证明;间接反证法则是通过假设多个情况并分别推导矛盾,最后排除所有可能,从而证明原命题。
3. 应用步骤1. 反设:根据原命题,假设其反面成立。
2. 归谬:基于假设,通过逻辑推理,推导出与已知事实、定理、公理或逻辑原则相矛盾的结果。
3. 存真:由于矛盾的存在,根据矛盾律,断定原假设(即命题的反面)不成立,从而间接证明原命题成立。
4. 适用范围反证法在数学中广泛应用于证明存在性命题、唯一性命题以及某些难以直接证明的命题。
特别是在处理一些“至少”、“存在”等类型的命题时,反证法往往能化繁为简,提供简洁明了的证明思路。
5. 典型例题解析例:证明根号2是无理数。
反设:假设根号2是有理数,那么它可以表示为两个互质的正整数的比,即存在正整数m,n(m,n互质)使得根号2 = m/n。
归谬:两边平方得2 = m^2/n^2,即m^2 = 2n^2。
由于m,n互质,若n为奇数,则m^2为偶数,进而m也为偶数,设m = 2k(k为正整数),则4k^2 = 2n^2,即n^2 = 2k^2,同样推出n为偶数,这与m,n互质矛盾。
存真:因此,假设不成立,根号2是无理数。
反证法在中学数学中的应用及教学研究
反证法在中学数学中的应用及教学研究
反证法是求证数学问题中常见的一种间接证明方法,广泛应用于中学数学各知识分支中。
以下是反证法在中学数学中的应用及教学研究:
应用:
1. 反证法在中学数学中主要用于证明某些命题或不等式。
例如,在证明三角形中的一些性质时,常常采用反证法。
2. 在几何学中,反证法也被广泛应用于证明一些关于图形的基本性质。
例如,在证明勾股定理时,常常采用反证法。
3. 在代数中,反证法也被用于证明一些不等式或等式。
例如,在证明一些代数恒等式时,常常采用反证法。
教学研究:
1. 反证法的应用:在中学数学教学中,教师需要引导学生理解反证法的原理和应用。
教师可以通过实例和练习题来帮助学生理解反证法的应用。
2. 反证法的思维方式:反证法是一种间接的证明方法,需要先假设相反的结论,然后推导出矛盾,从而否定假设并证明原命题。
这种思维方式需要教师在教学过程中引导学生逐步掌握。
3. 反证法的技巧:在应用反证法时,需要一些技巧,例如如何假设相反的结论、如何推导出矛盾等。
教师需要在教学过程中引导学生掌握这些技巧。
4. 反证法的意义:反证法是一种重要的数学证明方法,它能够帮助学生训练逻辑思维和创造性思维,提高分析和解决问题的能力。
因此,教师在教学过程中需要强调反证法的意义和作用。
总之,反证法在中学数学中具有广泛的应用和教学研究价值。
通过掌握反证法的原理、技巧和思维方式,学生可以更好地理解和应用数学知识,提高数学素养和能力。
反证法在中学数学中的应用文献综述
反证法在中学数学中的应用文献综述反证法在中学数学中的应用文献综述摘要:反证法是一种数学证明方法,是一种从形式的假设出发证明结论,推出矛盾结果作为证据,以此来证明原始假设是错误的方式。
本文综述了反证法在中学数学中的应用文献,可以发现,反证法在解决方程、不等式、函数、比例和概率等数学概念和其他数学问题中都有着成功的应用。
反证法能够有效提高学生动手能力,为学生系统学习数学提供有价值的见解。
关键词:反证法;中学数学;应用Introduction反证法是一种从形式的假设出发证明结论的数学证明方法,它是通过证明原始假设导致的结果是不可能的,从而证明原始假设是错误的,其中有诸多可能的Falsifiability,即进一步通过证明品种有着假设矛盾的情况来证明原始假设是正确的(Berg,2005)。
反证法是学生进行数学证明的基本方法,它可以有效的提高学生的动手能力,同时提供更为系统的对于数学概念的学习。
本文综述了反证法在中学数学中的应用文献,以期向学生介绍一种更有效的学习策略。
Application of the Method of Proof by Contradiction in High School Mathematics解决方程和不等式:反证法是数学模型中非常常用的证明步骤,常常被用来解决复杂的方程和不等式(Matijević et al.,2013)。
例如,埃斯林(2006)在他的《中学数学》一书中提出证明:三角形的角平分线相交于其三条边的中点。
他通过假设反过来,即“若三角形的角平分线不相交于其三条边的中点”,那么总能找到一组足够大的三角形,使得三条角平分线相交点不再是三条边的中点,从而证明原始假设是错误的。
函数的证明:反证法可以也可以应用到函数的证明中(Taha,2009)。
例如,函数f (x) = x2 - 3x + 2 是单调递增的,这可以通过反证法来证明。
首先,假设f (x)不是单调递增函数,即存在x1,x2 ∈ R,使得f (x1) < f (x2),但是x1> x2,从而可以从中推断出f (x) - f (x1) < 0, [ f (x2) - f (x1) ] / [ x2 - x1 ] > 0,即f (x)的导数小于等于0,这是跟对f (x)单调递增的定义矛盾的,因此原始假设f (x)不是单调递增函数是错误的。
浅谈反证法在初中数学中的应用
浅谈反证法在初中数学中的应用摘要:反证法作为一种重要的数学方法,在数学中有着许多方面的应用。
反证法突破思维定势,从相反的方向研究事物的运动,是一种开拓思路的方法,即逆向思维。
在我们初中数学教学中,通过应用到反证法增强学生的学习兴趣,提高思维转换及学生的分析和解题的能力。
关键词:反证法;逆向思维;数学教学引言:反证法是一种重要的数学方法,中国古代数学家刘徽,他为《九章算术》作注解时,他多次应用归谬论证法,其中大多数的反驳是正确的,符合逻辑学,墨子也使用归谬法,曾子曰“学之益也,说在诽者。
”这是一个非常有意思的反证法特例。
反证法在初中数学中的应用非常广泛,通过笔者在初中数学耕耘的几年教学经验,浅谈一下反证法在初中数学中的应用。
一、概述(一)反证法的定义当直接证明一个命题较为复杂时,首先我们要假设命题不成立,而后应用命题的条件或有关的结论,通过推理导出矛盾,从而得出假设不成立,即所证明的命题正确,这种证明方法称为反证法。
(二)反证法的相关基础反证法作为初中数学的重要方法,数学中的一些许多重要结论、性质等等都是利用反证法证明的,学会应用反证法对于中学生的数学思维有很大提升。
现从以下几个点去论述反证法的相关基础。
1、反证法的出发点第一步就要否定原命题的结论,这是应用反证法的第一步,构造与原命题相矛盾的反命题,而后从反命题出发,对其进行推理。
2、反证法的推理过程反证法的推理过程必须是合乎逻辑的,使用反证法就必须首先否定原命题的结论,作为假设命题,并把假设命题结论作为推理的已知条件,之后经过相关的逻辑推理,使之得到与已知条件、公理、定理、法则或者已经证明为正确的命题等相矛盾,我们知道假设命题是不成立的,所以肯定了原命题的结论,从而使原命题获得了证明。
3、反证法的逻辑基础“矛盾律”和“排中律”是反证法的逻辑基础,那什么是“矛盾律”呢?即在同一思维下,两个互相矛盾的判断是不可能都为真,一定有一个是假的,这就是我们所说的“矛盾律”。
浅谈中学数学中的反证法引言
浅谈中学数学中的反证法引言反证法在数学中是一种非常重要的间接证明方法,它被称为“数学家最精良的武器之一”,又称为归谬法、背理法。
反证法亦称“逆证”。
其不仅是一种论证方法,对提升学生创新性思维能力与概念思维能力具有积极作用,从某种角度可以说,反证法还是一种思维方式,其还能拓展学生的解题思路,从而使学生形成良好的数学思维。
反证法在中学数学中有着广泛的应用,如今学生在运用反证法解题中,基础一般的学生会受到思维能力的限制,如果能恰当的使用反证法,在一些有难度的题目上也许能够得到解决。
所以本文首先会叙述反证法的产生,具体阐述反证法的定义,即反证法的概念、分类、科学性,介绍逆证在中学数学中的实际运用并论述了逆证应用的具体需要注意的一些问题。
反证法是间接论证的方法之一,亦称“逆证”、矛盾证法;。
早在古希腊,一些数学家就用矛盾证法处理了大量的数学领域方面的问题。
英国物理学家、数学家牛顿(Newton)曾言:“逆证是从事数学研究工作的专家最精确恰当的一个利器”,它在中学数学中有着不可替代的重要作用,一般来说,当学生遇到不容易或者不能从正面进行证明的题目时,则可以尝试运用反证法进行证明。
反证法弥补了直接证明的不足,完善了证明方法,运用反证法可以培养和提高学生的逆向思维能力和创造思维能力,把不可能转化为可能。
教师应要结合熟悉的生活实例和典型的数学例题,帮助并引导学生了解反证法继而使用反证法,然后运用反证法拓宽学生解决问题的思路。
不仅在中学数学中能运用反证法,生活中也能运用反证法解决问题。
如李某与朋友们外出游玩,看到路边的树上结满了果子,朋友们都去摘取果子,唯独李某站在原地一动不动,一朋友问他为什么不去摘取,李某说:“在路边的树上结满果子必然是苦的”,朋友摘取果子尝试,果然是苦的。
为什么李某在还未尝试果子前就知道是苦的?因为李某巧妙地使用了反证法,如果果子是甜的,路边树上的果子已被采摘。
像这样,为了说明某一个结论是正确的,但不从正面直接说明,而是说明它的反面是错误的,从而得出它本身是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学数学教学中的反证法
在生活中,我们都有这样的常识,去掉大米中的砂粒,有两种方法.一种是直接从大米中把砂粒一粒一粒地拣出来;一种是用间接的方法――淘洗法,把砂粒残留下来.这两种方法虽然形式不同,但结果却是一样的,都能达到去掉砂粒的目的.有时用直接方法很困难,而用间接方法却容易得多.牛顿曾说:“反证法是数学家最精当的武器之一.”当一些命题不易从正面直接证明时,就可考虑用反证法.
一、反证法的基本概念
1.反证法的定义
法国数学家阿达玛对反证法的实质做了如下概括:“若肯定定理的假设而否定其结论,就会导致矛盾.”这是对反证法的极好概括.其实反证法也称作归谬法。
反证法适合一些正面证明比较困难,但是否定则比较简单的题目,在高中数学中的应用较为广泛,在解决一些较难问题的时候,反证法能体现其优越性.
2.反证法的基本思想
反证法的基本思想就是否定之否定,这种基本思想可以用下面的公式表示:
“否定→推理→矛盾→肯定”,即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定.
3.反证法的逻辑依据
通过以上三个步骤,为什么能肯定原命题正确呢?其逻辑根据就在于形成逻辑的两个基本规律:“排中律”和“矛盾律”.在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”.反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假.再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于
是我们得到原结论必为真.所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的.
二、反证法的步骤
用反证法证题一般分为三个步骤:
1.反设.假设原命题的结论不成立;
2.归谬.从这个结论出发,经过推理论证,得出矛盾;
3.结论.由矛盾判定假设不成立,从而肯定原命题的结论正确.
即:否定结论→推导出矛盾→结论成立.
三、反证法的种类
1.归谬反证.结论的反面只有一种情形,只要把它驳倒,就能达到证题目的.
2.穷举反证.结论的反面不止一种情形,必须将它们逐一驳倒,才能达到证题目的.
四、反证法的典型例题
例1:已知:AB,CD是圆内非直径的俩弦(如图),求证:AB与CD不能互相平分.
证明:假设AB与CD互相平分与点M,则由已知条件AB,CD均非圆O直径,可以判定M不是圆心O,联结OA,OB,OM.因为OA=OB,M是AB中点,所以OM⊥AB(等腰三角形底边上的中线垂直于底边).同理可得:OM⊥CD,从而过点M有两条直线AB,CD都垂直于OM.这与已知的定理相矛盾.故AB与CD不能互相平分.
五、反证法的使用条件
任何方法都有它成立的条件,也都有它适用的范围.离开了条件超越了范围就会犯错误,同样,问题解决也就没有那么容易.因此,我们应该学会正确使用反证法解题.
虽然用反证法证明,逻辑推理严谨而清晰,论证自然流畅,可谓是干净利落,快速而可行,是一种很积极的证明方法,而且用反证法证题还有很多优点:如思想选择的余地大、推理方便等.但是并不是什么题目都适合用反证法解决.
例2:如果对任何正数p,二次方程ax+bx+c+p=0的两个根是正实数,则系数a=0,试证之.
分析:看了本题的证明过程似乎很合理,但其实第三步,即肯定原结论成立的论证错了.因为,本题的题设条件为对任意正数p,y=0有两个正实数根,结论是a=0,但本题的题设条件与结论是矛盾的;当a=0时,二次方程就变成了一次方程bx+c+p=0,此一次方程在b≠0时,对于任何正数p,它只有一个根;在b=0时,仅当p=-c>0的条件下,它有无数个根,否则无根,但总之不会有两个根.题设条件和结论矛盾.因此,本题不能反证法来处理.若原题改为“如果对于任何正数p,只存在正实根,则系数a=0”,就能用反证法证明.
因此,对于下列命题,较适用反证法解决.
(1)至多至少型命题;(2)唯一性命题;(3)否定型命题;(4)明显型命题;(5)此前无定理可以引用的命题.例3:设a,b都是正数,求证:(a-b)/a≤ln(a/b)≤(a-b)/b.
证明:反设ln(a/b)≤(a-b)/b不成立,便有ln(a/b)≥(a-b)/b,由对称性知:ln(b/a)≥(b-a)/a,相加得:ln(a/b)+ln(b/a)>(a-b)/b+(b-a)/a
即:0>(a-b)/a≥0这一矛盾说明ln(a/b)≤(a-b)/b即:ln(b/a)≥(a-b)/b
交换位置:ln(a/b)≥(a-b)/b
合并得:(a-b)/a≤ln(a/b)≤(a-b)/b
反证法是数学中的一种重要的证明方法.牛顿曾说:“反证法是数学家最精当的武器之一.”它是从命题的否定结论出发,通过正确的逻辑定理推理导出矛盾,从而证明原命题的正确性的一种重要方法.反证法之所以有效是因为它对结论的
否定实际上增加了论证的条件,多一个条件,这对发现正确的解题思路是有帮助的.对于具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,通过逆向思维,从结论入手进行反面思考,问题就能迎刃而解.在现代数学中,反证法已成为最常用和最有效的解决问题的方法之一.。