二次根式最常见题型(答案)

合集下载

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.计算:=.【答案】【解析】=2﹣=.【考点】二次根式的加减法.2.下列实数是无理数的是()A.B.C.D.【答案】A.【解析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是无理数,选项正确;B、C、D、都是整数,是有理数,选项错误. 故选A.【考点】无理数.3.若式子有意义,则实数x的取值范围是【答案】x≥1.【解析】根据二次根式的性质可以得到x-1是非负数,由此即可求解.试题解析:依题意得x-1≥0,∴x≥1.【考点】二次根式有意义的条件.4.方程的解为 .【答案】x=1【解析】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.【考点】无理方程.5.函数y中,自变量x的取值范围是【答案】x≥.【解析】根据二次根式的意义,2x﹣1≥0,解得x≥.故答案是x≥.【考点】函数自变量的取值范围.6.计算:-12003+()-2-|3-|+3tan60°。

【答案】6【解析】首先计算乘方,化简二次根式,去掉绝对值符号,然后进行乘法,加减即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值.解:原式=﹣1+4﹣3+3+3×,=﹣1+4+3,=6.7.计算:·-=________.【答案】2【解析】原式=-=3-=2.8.使二次根式有意义的x的取值范围是 .【答案】x≤2.【解析】根据二次根式的性质,被开方数大于等于0,即:2﹣x≥0,解得:x≤2.故答案是x≤2.【考点】二次根式的性质.9.与的大小关系是()A.>B.<C.=D.不能比较【答案】A.【解析】∵,∴,∴.故选A.【考点】实数大小比较.10.计算:.【答案】.【解析】先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:==.【考点】二次根式的化简.11.【答案】.【解析】根据分母有理化、二次根式、非零数的零次幂的意义进行计算即可得出答案.试题解析:考点: 实数的混合运算.12.计算: .【答案】.【解析】把括号展开即可求值.试题解析:故答案为:.考点: 二次根式的运算.13.下列计算中,正确的是()A.B.C.D.【答案】D.【解析】A.已经是最简的,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确.故选D.【考点】二次根式化简.14.实数范围内有意义,则x的取值范围是()A.x>1B.x≥l C.x<1D.x≤1【答案】B.【解析】根据根式有意义的条件,根号下面的数或者式子要大于等于0,即解得:x≥l.【考点】根式有意义的条件.15.计算:【答案】.【解析】根据二次根式的混合运算顺序和运算法则计算即可.试题解析:【考点】二次根式的混合运算.16.是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】C.【解析】∵,∴当时,,∴原式=,∴n的最小值为6.故选C.考点: 二次根式的化简.17.实数4的平方根是.【答案】±2.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴16的平方根是±2.【考点】平方根.18.要使式子在实数范围内有意义,字母a的取值必须满足()A.a≥2B.a≤2C.a≠2D.a≠0【答案】A【解析】使式子在实数范围内有意义,必须有a-2≥0,解得a≥2,故选A【考点】二次根式成立的条件.19.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.20.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.21.下列运算正确的是()A.B.C.D.【答案】D【解析】二次根式的性质:当时,,当时,.A、,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算22.要使式子有意义,则x的取值范围是 .【答案】【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析1.一个数的算术平方根是,则这个数是_____ _____.【答案】2.【解析】∵一个数的算术平方根是,∴这个数为()2=2.故答案是2.【考点】算术平方根.2. 9的平方根是()A.3B.±3C.D.81【答案】B【解析】根据平方根的定义可判断.【考点】平方根3. 49的算术平方根是.【答案】7【解析】根据算术平方根的意义可求.【考点】算术平方根4.的平方根为()A.B.C.3D.【答案】B.【解析】由于=3,故其平方根是.故选B.【考点】平方根.5.在3.14,中,无理数有()个A.1个B.2个C.3个D.4个【答案】B.【解析】有限小数、整数、分数都属于有理数,故3.14,,==2都是有理数,开不尽方的平方根,圆周率都是无限不循环小数,所以是无理数.故选B.【考点】实数的分类.6.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0【答案】B.【解析】A.立方根是它本身的数除去1和0外,还有-1,故该选项错误;B.算术平方根是它本身的数只有1和0,故该选项正确;C.平方根是它本身的数只有1和0,故该选项错误;D.绝对值是它本身的数只有正数和0,故该选项错误.故选B.【考点】1.立方根;2.平方根;3.算术平方根;4.绝对值.7.下列各式正确的是()A.B.C.D.【答案】A.【解析】A选项正确,B、C、D选项错误.故选A.【考点】二次根式的化简.8.大于小于的所有整数的和是 .【答案】-4.【解析】求出和的范围,求出范围内的整数解,最后相加即可.∵-5<<-4,3<<4,∴大于小于的所有整数为-4,±3,±2,±1,0,∴-4-3-2-1+0+1+2+3=-4,【考点】估算无理数的大小.9.下列计算正确的是()A.B.C.D.【答案】D【解析】A.,故本选项错误;B.,故本选项错误;C.,表示25的算术平方根是5,故本选项错误;D.,故本选项正确,故选D.10.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B.11.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.【答案】9【解析】解:因为2a-1的平方根是±3,所以2a-1=9,解得因为3a+b-1的算术平方根是4,所以3a+b-1=16.又所以故a+2b=9.12.在-4,,0,π,1,,这些数中,是无理数的是.【答案】π.【解析】无理数有:π.故答案为:π.【考点】无理数.13.如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A.1B.2C.3D.4【答案】B【解析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.解:设两个正方形的边长是x、y(x<y),则x2=4,y2=9,x=2,y=3,则阴影部分的面积是(y﹣x)x=(3﹣2)×2=2,故选B.点评:本题考查了算术平方根性质的应用,主要考查学生的计算能力.14.若(x-1)=64,则x=______。

二次根式常见题型精析

二次根式常见题型精析

二次根式题型总结例1、求下列各式有意义的所有x 的取值范围。

();();();();();()13221312411521645332-++-++-----x x x x x xx x x x例2、把下列各根式化为最简二次根式:()()(),()(),19600224750325121003234a b a b a b ca b ≥≥≥≥例3、判断下列各组根式是否是同类根式:();;()当时,,,117531516238534202--<<+-m n n m m n n m mn例4、把下列各式的分母有理化:()();();()11232252323111101-++-+--≤≤a aa aa例5、计算:()()()11841213233215121333352253121262-++⎛⎝ ⎫⎭⎪÷÷+⎛⎝ ⎫⎭⎪--+--例6、化简: ()()()1424422242242222a ba ba ab ba a a a a a--÷++++++++-例7、化简练习:()()()()()()()()()()·10262633323464411025125522223222222->------>--+++-+-<<⎛⎝ ⎫⎭⎪------st s m m m x x x x x x a b a b a b b a()||例8、化简求值:已知:223223-=+=b a , 求:ab a b 33+的值。

【专项训练】:一、选择题:在以下所给出的四个选择支中,只有一个是正确的。

1、()a a -=-112成立的条件是:A .a ≠1B .a ≥1C .a <1D .a ≤12、把227化成最简二次根式,结果为:A .233B .29C .69D .393、下列根式中,最简二次根式为:A .4xB .x 24-C .x4D .()x +424、已知t <1,化简1212---+t t t 得: A .22-t B .2t C .2 D .05、下列各式中,正确的是:A .()-=-772B .()-=07072.. C .()-=7722D .()-=07072..6、下列命题中假命题是: A .设()x x x <-=-02,则B .设x x x<=-012,则C .设x x x <=02,则D .设()x x x <=0222,则7、与23是同类根式的是: A .50 B .32 C .18D .758、下列各式中正确的是: A .235+=B .2323+=C .3434a x x a x -=-D .127390-=9、下列各式计算正确的是: A .868686142222+=+=+= B .8442x y x y =C .10610610642822-=+-=⨯=·D .--=--=254925495710、计算()()105453515-÷-的结果是:A .-3B .3C .33D .-33二、计算(字母取正数)()()()()·()·()·()()()()()()()()()()15728249656243332454335905181481621462104107294587329322525321043321118412143212712548213931334166933322m m n mnn m a ba a a ÷÷-⎛⎝ ⎫⎭⎪-----+----+++-()1141015075132152232121163621623312a()()·()-++-+-⎡⎣⎢⎤⎦⎥+++++三、1、化简--+a a a 32442、已知:x y =+=-123123,求:x xy y 225-+3、若5的整数部分为a ,小数部分是b求:a b -1的值。

二次根式各种题型核心题40道——韩春成老师

二次根式各种题型核心题40道——韩春成老师



2
八、比较大小 39. 【中】(2011 南京三中期末考试)若 c 1 , x c c 1 , y c 1 c , z c 2 c 1 ,则 x 、 y 、 z 的大小关系是________. 40. 【中】(北京西城区期末)下列判断正确的是( ) 3 A. 2 3 2 B. 2 2 3 3 C.1
原式 2 【答案】C
1 1 1 4x 1≥ 0 ,故 x ,y ,∴ 可知, 1 4 x ≥ 0 , 2 4 2
题型三: a 2b a b 【答案】C
3 【解析】由题意, a 1 a ≥ 0 , 1 a 0 ,∴ a 3≥0 ,即 a ≤ 0 ,
故 a3 1 a a a 1 a 【答案】D 题型四: a a ≥ 0
题不在多,而在于精!
越付出越富有!
【各章节核心题系列——二次根式 40 题】
(韩春成长期班学员内部资料)
第一部分:题型框架(涵盖 8 大题型)
二次根式的概念和性质
一、 二次根式的定义 题型一:二次根式的定义 题型二:二次根式有意义 二、 二次根式的性质 题型一:
a
2
a
题型二: a 2 a 题型三: a 2b a b 题型四: a a ≥ 0 题型五: a ≥ 0 二次根式的运算及化简求值
越付出越富有!
29. 【中】(北京西城初二下期末)计算:
2( 2 2) ( 7 5)( 7 5)
1 1 1 30. 【中】(沈阳)计算 2 5 1 2 3 3 4 1 2



99 100 1
31. 【中】(湖南省邵阳市中考)阅读下列材料,然后回答问题。 5 2 3 在进行二次根式去处时,我们有时会碰上如 3 , 2 , 3 1 一样的式子,其实我们 还可以将其进一步化简: 5 5 3 5 3 3 ; 3 3 3 (一)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.计算(1)(2)【答案】(1);(2)2.【解析】(1)根据二次根式的乘除法则运算;(2)根据二次根式有意义的条件得到-(a+2)2≥0,得到a=-2,然后把a=-2代入原式进行计算.试题解析:(1)原式===(2)∵-(a+2)2≥0,∴a=-2,原式==3-5+4=2.【考点】二次根式的混合运算.2.计算:【答案】.【解析】先进行二次根式的乘法运算得到原式=3﹣3+2+2+1,然后合并即可.试题解析:原式=3﹣3+2+2+1=.【考点】二次根式的混合运算.3.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.当1≤x≤5时,【答案】4.【解析】根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.试题解析:∵1≤x≤5,∴x-1≥0,x-5≤0.故原式=(x-1)-(x-5)=x-1-x+5=4.考点: 二次根式的性质与化简.6.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.7.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项【考点】根式运算.8.=________________.【答案】6【解析】由题, .,由题, .【考点】二次根式的化简.9.函数中自变量x的取值范围是.【答案】x≥4【解析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.【考点】二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.10.的平方根是()A.4B.±4C.±2D.2【答案】C【解析】一个正数有两个平方根,且它们互为相反数,其中正的平方根叫它的算术平方根.,平方根是±2,故选C.【考点】平方根点评:本题属于基础应用题,只需学生熟练掌握平方根的定义,即可完成.11.函数y=中,自变量x的取值范围是。

初二数学二次根式基础练习和常考题与简单题(含解析)

初二数学二次根式基础练习和常考题与简单题(含解析)

初二数学二次根式基础练习和常考题与简单题(含解析)一•选择题(共7小题)1 •若式子.有意义,则x的取值范围为()x-3A. x>2B. X M3C. x> 2 或X M3D. x>2 且X M32 •下列二次根式中属于最简二次根式的是()A.三B.产C.上D.3•如果■、. ’•二;,那么X取值范围是()A. X<2B. x v2C. X>2D. x>24. 若1v x v 2,则|—卜:「的值为()A. 2X- 4B.- 2C. 4- 2XD. 25. 下列各式计算正确的是()A.匚+ 二二二B. 4 二-3 二=1C. 2 二X 3 二=6 二D. =十二=36. 若.T订是正整数,最小的整数门是()A. 6B. 3C. 48D. 27. 下列根式中,不能与=合并的是()二.填空题(共7小题)8. 计算"•'的结果是—.V39. _______________________________________________________ 三角形的三边长分别为3、m、5,化简{(卜™)'-心旷对星= _____________________ .10 .若实数a、b、c在数轴的位置,如图所示,则化简:.ii .- [--= ------------ . - -11. __________________________________________________ 若二次根式是最简二次根式,则最小的正整数a= _____________________________ .第2页(共24页)12. 计算:(匚+1)(二-1)= ______13 .已知x、y都是实数,且y= •- 1-' +4,则y X= ____解答题(共26小题) 计算:—_.计算:(占-1)(弋二+1) — (— ) 2+| 1 - :| —( n- 2) °+七.32 - - 先化简,再求值:-亠?亠-亠,其中a=二+1. ,-1 丁 1计算:一^+「(「- _) + -.V2-1当x=wL''」时,求代数式x 2+5x - 6的值. 化简求值::「'七,求歸的值.已知a , b , c 在数轴上如图所示,化简:“丁 - ^+卜,+ . I. I| b0 c-J ------------- 1 ----- 1—>计算3- 9.;.二+3 =(~+不)+ (九上-7)计算:匚+ (- 2013) °-(石)-1+| - 3|二二-」x r +.三.先化简,再求值:(「一+「)宁「,其中a=^+1.aT a 2-2a+La-1已知 a= (*) -1,,c= (2014- n)d=|1-走|,15. 16. 17.18. 19. 20. 21.aI22. (1) (2)23.(1) (2)24. 25.(1) (2)26. 27.14.如果厂〔+ . . — =0,那么第2页(共24页)化简这四个数;把这四个数,通过适当运算后使得结果为2.请列式并写出运算过程.先化简:(2x+1) 2+ (x+2) (x- 2) - 4x (x+1),再求值,其中x=-^p-.£先化简,再求值,其中■■- ;.x+2 x+228•若a 、b 为实数,且b 二•「•+4,求a+b 的值.a+729•计算:(二―二)2-(二+ 二)2. 30. 计算: (1)4 三一叨汁4 .:(2) (- 2.r )J(〒 +3 了 - J) 31. 计算:(1)4- ■ . : - I(2)]汁.| T _ : I ' -•-]32. 计算:(-3) °- =+| 1 -二|+ -.V3+V236. 计算与化简(1),二1_ !一 (2)_ 「 _ .37. (1) 一个正数的平方根是2a - 3与5 -a ,求这个正数.(2)已知x 、y 都是实数,且■ ■-> ■-,求y 的值.38. 若x ,y ,a ,b 满足关系式〒-+ =丄;,二〔丨心 •,试求x , y 的值.39. 已知a, b 为等腰三角形的两条边长,且 a ,b 满足b=「+仁】】+4,求此 三角形的周长. 40.已知 a , b , c ABC 的三边长,且( =+ ) 2=3 (甘二二+!汇+ ■),试说明这个三角形是什么三角形.42•计算:("-1)(甘.:■+〔)—(—一) 2+| 1 -计—(冗―2) 0+ ■:. 33.先化简,,其中x=' ,34.已知:._汁1「.二,工.41.计算:343• (1)计算:Tx - 4X ■ X(1- ") °;2 k2 k2 ’___ (2)先化简,再求值:(_:_- +「)宁,其中a, b满足-■ +|ba2-2ab+ b2a2-ab-1 =°.244•先化简,再求值:---------- ----- ,其中a= =+1.a2-l a-145 .计算:一+ (二-二)+ 匚.V2~l46•计算:5 +•不-「X ;+.〒- =初二数学二次根式基础练习和常考题与简单题(含解析)参考答案与试题解析一•选择题(共7小题)1. (2016?乐亭县一模)若式子::有意义,则x的取值范围为()x-3A. x>2B. X M3C. x> 2 或X M3D. x>2 且X M3【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解. 【解答】解:根据二次根式有意义,分式有意义得:x-2>0且x- 3M 0,解得:X>2且X M 3.故选D.【点评】本题考查了二次根式有意义的条件和分式的意义. 考查的知识点为:分式有意义,分母不为0; 二次根式的被开方数是非负数.2. (2015?锦州)下列二次根式中属于最简二次根式的是()A、 B.三C. - D.【分析】A、B选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:A、不是最简二次根式,故本选项错误;B、不是最简二次根式,故本选项错误;C、不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选D.【点评】本题考查了对最简二次根式定义的应用,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幕的指数等于或大于2,也不是最简二次根式.3. (2015?维坊模拟)如果.,那么x取值范围是()A. x<2B. x v2C. x>2D. x>2【分析】根据二次根式的被开方数是一个》0的数,可得不等式,解即可.【解答】解:T」=2- x,x—2w 0,解得x<2.故选A.【点评】本题考查了二次根式的化简与性质.解题的关键是要注意被开方数的取值范围.4. (2016?呼伦贝尔)若1v x v2,则.■.. 的值为()A. 2x —4B.—2C. 4—2xD. 2【分析】已知1v x v2,可判断x —3v0, x—1>0,根据绝对值,二次根式的性质解答. 【解答】解:••• 1vxv 2,•- x—3v 0, x —1 >0, 原式=|x-3|+ ::1'=|x—3|+| x—1|=3 —x+x —1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a>0)的代数式叫做二次根式.当a>0时,■■表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:「=| a| .5. (2015?潜江)下列各式计算正确的是()A.匚+ 二二二B. 4 二—3 二=1C. 2 7x 3 二=6 二D. =* 二=3【分析】分别根据二次根式有关的运算法则,化简分析得出即可.【解答】解:A.好[好二,无法计算,故此选项错误,B4.;t- 3化二「;,故此选项错误,C.2二x 3二=6X 3=18,故此选项错误,故选D.【点评】此题主要考查了二次根式的混合运算,熟练掌握二次根式基本运算是解题关键.6. (2015?安徽模拟)若"E-是正整数,最小的整数门是()A. 6B. 3C. 48D. 2【分析】先将所给二次根式化为最简二次根式,然后再判断n的最小正整数值.【解答】解:.冇=4帀,由于.冇是正整数,所以n的最小正整数值是3, 故选B.【点评】此题考查二次根式的定义,解答此题的关键是能够正确的对二次根式进行化简.7. (2015?凉山州)下列根式中,不能与二合并的是()A. B ;C , D--【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、;-2_,本选项不合题意;D、」;二;'「,本选项不合题意;故选C.【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.二•填空题(共7小题)8. (2015?南京)计算一的结果是5 .【分析】直接利用二次根式的性质化简求出即可.【解答】解:——-=;莎X -=5.V3故答案为:5.【点评】此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.9. (2016?山西模拟)三角形的三边长分别为3、m、5,化简辰费-皿乔= 2m-10 .【分析】先利用三角形的三边关系求出m的取值范围,再化简求解即可.【解答】解:•••三角形的三边长分别为3、m、5,二2v m v8,•••-:_,「「;=m- 2-(8-m)=2m- 10.故答案为:2m- 10.【点评】本题主要考查了二次根式的性质与化简及三角形三边关系,解题的关键是熟记三角形的三边关系.故答案为:-a- b.【点评】正确地根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.11. (2016?山西模拟)若二次根式沁…-是最简二次根式,则最小的正整数a=2 .【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:二次根式/.;.小是最简二次根式,则最小的正整数a=2, 故答案为:2.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个10(2016春?惠山区期末)若实数a、b、c在数轴的位置,如图所示,贝U化简:.,| ■-〔-一= -a-b . - »【分析】先根据数轴上各点的位置判断出a,b的符号及a+c与b-c的符号,再进行计算即可.【解答】解:由数轴可知,c v b v0v a, |a| v|c|,••• a+c v 0,b- c>0,•原式=-(a+c)-(b - c)= - a - b.条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.12. (2014?畐州)计算:(「+1)( _- 1)= 1 .【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(匚+1)(二-1)= :「故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.13. (2014?苏州模拟)已知x、y都是实数,且y= J 垃-3+V3-X+4,则y x= 64【分析】先根据二次根式有意义的条件列出关于x的不等式组,求出x的值代入y x进行计算即可.【解答】解:Ty=.. -<+4,解得x=3,.y=4,••• y x=43=64. 故答案为:64.【点评】本题考查的是二次根式有意义的条件及有理数的乘方,能根据二次根式有意义的条件求出x的值是解答此题的关键.14. (2015春?泰兴市期末)如果除\」+ ==0,那么【分析】先由非负数的性质求得a, b的值,再代入原式化简计算可得答案.【解答】解:•••化-+『—=0,而心0, 》0;• a=1, b=2•原式=1+ _=1+ 7.故本题答案为:1+ ".【点评】本题考查了二次根式的化简,还利用了非负数的性质:若两个非负数的和为0,则这两个数均为0.三.解答题(共26小题)15. (2016?德州校级自主招生)计算:「.丄.-【分析】先根据二次根式的乘除法法则得到原式=二-- 二+2二然后利用二次根式的性质化简后合并即可.【解答】解:原式=山-:二+2 7=4 —空并+2 ■■=4+聲汇【点评】本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各二次根式化为最简二次根式,然后进行二次根式的加减运算.16. (2014?张家界)计算:(■—1)(,+1)-(-[)—2+| 1 — : —(n—2)0+匚.【分析】根据零指数幕、负整数指数幕和平方差公式得到原式=5 —1 —9+匚—1-1+2匚,然后合并即可.【解答】解:原式=5 - 1-9+匚-1 - 1+2 -=-7+3 匚.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、负整数指数幕.通分和约分,本题难度不大.【分析】先进行二次根式的化简和乘法运算,然后合并. 【解答】解:原式=匚+1+3 - 3匚+匚【点评】本题考查了二次根式的混合运算, 解答本题的关键是掌握二次根式的化 简和乘法法则.17. (2016?安徽三模)先化简,再求值:2-T 亠-",其中 a=「+1.【分析】首先把‘ 2节寸1写成 泌',然后约去公因式(a+1),再与后一项式子进行通分化简,最后代值计算. 【解答】解: oa +2N +1 aa 2-l 蔦孑= ___ a_=a+l _ n二-I--I【点评】本题主要考查二次根式的化简求值的知识点, 解答本题的关键是分式的18. (2015?闵行区二模)计算:V2-1卜二(二-二)+ 匚.19. (2015?湖北模拟)当x 二匸「时,求代数式X 2+5X -6的值.【分析】可直接代入求值. 【解答】解:当x 二匸〕时,2x +5x - 6=(L - ) 2+5 (也■■)- 6 =6 - 2 "+5 - - 5- 6 =2%「! ■.【点评】主要考查二次根式的混合运算,要掌握好运算顺序及各运算律.【分析】本题需先对要求的式子和已知条件进行化简,再把所得的结果代入即可 求出答案. :(a+b) (d~b)3(a+b)-+1; b= \「,./-b '=(血+1?_(竝_¥=2人卜 ::知条件进行化简是本题的关键.21 . ( 2016春?日照期中)已知a ,b ,c 在数轴上如图所示,化简: --I - - -: :,-.a b0 ciiIi =20. (2016春?潮南区期中)化简求值:2 k 2 求-的值.【解答】解:【点评】本题主要考查了二次根式的化简求值, 在解题时要能对要求的式子和已3a+3b【分析】根据数轴abc的位置推出a+bv 0,c- a>0,b+cv 0,根据二次根式的性质和绝对值进行化简得出-a+a+b+c- a- b- c,再合并即可.【解答】解:•••从数轴可知:a v b v O v c,••• a+b v0, c- a>0, b+c v0,••• r—|a+b|+ +| b+c|=-a+a+b+c - a - b - c =-a.【点评】本题考查了二次根式的性质,实数、数轴的应用,关键是能得出-a+a+b+c-a- b - c.22. (2014春?汉阳区期末)计算(1) 3 . :■: - 9.丄+3 . .:■:(2)(三+不)+ (九上一7)【分析】(1)首先对每一项二次根式进行化简,然后合并同类二次根式即可,(2)首先对每一项二次根式进行化简,然后去掉括号,进行合并同类二次根式即可.【解答】解:(1)原式=12二-3二+6二=15 「;,(2)原式=4 二+2 二+2 二--=6 '+V.:;.【点评】本题主要考查二次根式的化简,合并同类二次根式,关键在于正确的化简二次根式,正确的去括号,认真的进行计算.23. (2014春?兴业县期末)计算:(1)匚+ (-2013) 0-( 1 ) -1+| - 3|(2).丘十二-.1 x y I .•:+. =.【分析】(1)根据零指数幕和负整数指数幕的意义得到原式=3+1 - 2+3,然后进行加减运算;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=3+1 - 2+3=5;(2)原式=…: 1:; -'一.•. i _+2訂」=4 —.卜+2”;.扌叭 =4+ *(i .【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进 行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕和负整数指 数幕.24. (2016?仙游县校级模拟)先化简,再求值:(二+)- 一,其中旷1 a -2a+la_1a= T +1.【分析】利用通分、平方差公式等将原式化简为厶,代入a 的值即可得出结论. 【解答】解:原式=(止+ 「 )^■,丹(a -l ) 2 ^-1=6+1)(旷1)+1 ? aT: ?,_ a=..当a=二+1时,原式=丄=二!a-l 3【点评】本题考查了分式的化简求值,解题的关键是将原式化简成-.本题属a -l于基础题,难度不大,解决该题型题目时,先将原代数式进行化简,再代入数据 求值是关键.(1)化简这四个数;(2)把这四个数,通过适当运算后使得结果为 2.请列式并写出运算过程.25. (2015?杭州模拟)已知a=()c= (2014— n) 0, d=| 1 — "I ,【分析】(1)根据零指数幕和负整数指数幕和分母有理化求解;(2)可列式子为a+b-3c-d,然后把a b、c、d的值代入计算.【解答】解:(1)a=d)-1=3, b= - =匚+1, c=(2014-n °=1, d=| 1 —匚| =匚3 V2-1-1,(2) a+b - 3c- d=3+ 匚+1 - 3X 1 -匚+1=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕和负整数指数幕.26. (2014?焦作一模)先化简:(2x+1) 2+ (x+2) (x-2)- 4x (x+1),再求值, 其中* -.2【分析】根据整式的运算法则将式子进行化简,再代值计算.【解答】解:原式=4X+4x+1+x2- 4 - 4x2- 4x=«- 3,当厂时,【点评】本题不是很难,但是在合并同类项时要仔细.27. (2010?莱芜)先化简,再求值:二;:',其中弓.孟* u 矗T £【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x-2看作一个整体.【解答】解:原式=三',:,一—…x+2 x+2=X2-16X X+2.■ - '■ ■:=::■: - ■ ■:-=■ ■:=-(x+4),当时,原式= 一■■=_■ = :■:.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解; 第15页(共24页)除法要统一为乘法运算.28. (2016春?澄城县期末)若a、b为实数,且b二-二+4,求a+b的值.【分析】根据二次根式有意义的条件列出方程,分别求出a、b的值,计算即可. 【解答】解:由题意得,a2- 1 >0, 1-a2>0, 解得,a=± 1,则b=4,••• a+b=3或5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.29. (2016春?闵行区期末)计算:(「- -)2-(「+ _)2.【分析】先进行完全平方公式的运算,然后合并.【解答】解:原式=3 - 2 7+2 - 3 -2「- 2=-4 '■.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握完全平方公式以及二次根式的合并.30. (2016春?定州市期中)计算:(1) 4 ~+ . ■-口- +4 ■:(2)(- 2 .h) J (于+3」-7)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算. 【解答】解:(1)原式=4 ~+3 :-2 ~+4 -=7 +2 :;(2)原式=4X 12-(5 二+ 二-4 二)第仃页(共24页)=48宁(2 二)=8【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进 行二次根式的乘除运算,然后合并同类二次根式.31. (2015春?黔南州期末)计算:(“ ":•…ii - 〔 •丄:(2) 「汁「「T 一 〕 「一— 【分析】(1)先化简,再进一步去掉括号计算即可;(2)利用二次根式的性质化简,平方差公式计算,再进一步合并即可.【解答】解:(1)原式=2「+• - + 7 2 4=3 一-二 4(2)原式=3 - 1 - 3 - 1+ 二+1=':-1.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.【解答】解::::- ::=1 - 3 二 + 匚-1 +=-3 ■+ ■:+ ■— ■:,=-2 =、.【点评】此题主要考查了二次根式的混合运算以及绝对值的性质, 在进行此类运 32. (2011?上海)计算: (-3) 0- =+| 1 -匚|+ 1V3+\/2【分析】观察,可以首先去绝对值以及二次根式化简,再合并同类二次根式即可.算时一般先把二次根式化为最简二次根式的形式后再运算.其中 x= , y=27. 2【分析】首先对二次根式进行化简,然后去括号、合并二次根式即可化简,然后 把x , y 的值代入求解.【解答】解:原式=(6.「+3 7T ) ;+6.「)=9 二—6 二当 x= , y=27 时, 2=---【点评】本题考查了二次根式的化简求值,正确对二次根式进行化简是关键.【分析】本题需先对a 的值和要求的式子进行化简,然后把a 的值代入化简以后 的式子即可求出结果.a v 1,33. (2015春?封开县期中)先化简,再求值 丁34. (2003?济南)已知:)-第仃页(共24页)=—2 —:.【点评】本题主要考查了二次根式的化简求值,在解题时要能灵活应用二次根式化简的方法是本题的关键.35. (2015秋?哈尔滨校级月考)计算】【分析】把二次根式的被开方数相除,再根据二次根式的性质开出来即可.【解答】解:原式=二壯 b=2a.【点评】本题考查了二次根式的性质,二次根式的乘除的应用,主要考查学生的 计算和化简能力.36. (2012?深圳模拟)计算与化简(1) 乙〉].厂:(2) -「儿【分析】(1)先化简二次根式,再进行计算即可;(2)先化简二次根式,再合并同类二次根式即可.=「 2::;2 一岳•(2) 原式=2a 2 =+3a?5a 二x 3a 二 2 -3 一、 【解答】解:(1)原式=((2)根据二次根式的被开方数是非负数,列出关于x的不等式组,然后解得x值,从而求得y值;最后将它们代入所求的代数式求值即可.【解答】解:(1)设该正数为x.则由题可知2a- 3+5 - a=0,解得a二—2,所以2a- 3=- 7,所以x=49,即所求的正数是49;(2)根据题意,得x_3^0解得x=3,••• y=4;.•. y x=43=64,即y x=64.【点评】此题主要考查了平方根的性质,注意如果一个数的平方等于A,那么这个数就叫做A的平方根,也叫做A的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.38. 若x, y, a, b满足关系式心T+ 一-巳—m x "-:,试求x, y的值.【分析】由a+b- 2014》0, 2014-( a+b)>0,所以a+b=2014.再利用两个根式的和等于0,即每一个被开方数等于0.【解答】解:依题意,得a+b- 2014》0, 2014-( a+b)》0,解得a+b=2014.所以二一■:+、.U =0,3x- 6=0, 2y- 7=0,x=2, y=.【点评】考查了二次根式的意义和性质.概念:式子-(a》0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.39. (2014春?黄梅县校级期中)已知a, b为等腰三角形的两条边长,且a, b 第20页(共24页)满足b= - 1+ :一+4,求此二角形的周长.【分析】根据二次根式有意义:被开方数为非负数可得a的值,继而得出b的值,然后代入运算即可.【解答】解:•••.—,、.:有意义,--a=3,b=4,当a为腰时,三角形的周长为:3+3+4=10;当b为腰时,三角形的周长为:4+4+3=11.【点评】本题考查了二次根式有意义的条件,属于基础题,注意掌握二次根式有意义:被开方数为非负数.40. (2013秋?川汇区校级月考)已知a, b,c ABC的三边长,且(:+幕+ 一)2=3 (V込初二辰),试说明这个三角形是什么三角形.【分析】先利用完全平方公式展开后合并得到a+b+c-.亍-丁- =o,再利用配方法得到(1-”;.北)2+ (”;.北-)2+ (-I - )2=0,然后根据非负数的性质得到灵-血=0,血-讥=0,灵-叭=0,所以a=b=c.【解答】解:•(空和+心+ )2=3 (叮'),a+b+c+2、匕:+2 了:+2 丨—3 .-1- 3 : - 3 :'L ;=0,a+b+c- 1’- 心:- 门:=0,2a+2b+2c- 2 -1 ■ - 2 -■ —2门:=0,••( 1-“:「.;)2+ (',-吋二)2+ (1-悩二)2=0,•••灵-麻=0,亦-讥=0,讥-讥=0,• a=b=c,•这个三角形为等边三角形.【点评】本题考查了二次根式的应用:把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.41. (2016?德州校级自主招生)计算- "-''::.=4—遽 ci +2' -,y 1;'.=4+*(匚. 【点评】本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各 二次根式化为最简二次根式,然后进行二次根式的加减运算.42. (2014?张家界)计算:(山—1) (*二+1)-(-二)2+| 1-灯:—( n — 2) 30+ ".【分析】根据零指数幕、负整数指数幕和平方差公式得到原式 =5 — 1 — 9+匚—1 —1+2匚,然后合并即可.【解答】解:原式=5- 1 — 9+ ~— 1 — 1+2 -=—7+3 _.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、负整 数指数幕. 43. (2014?荆门)(1)计算: 丁X 〒-4X X ( 1—二)°;2.2 k 2 ________________________________________(2)先化简,再求值:(”+「)- ,其中a ,b 满足 +|b a -2ab+b 2 "a a -ab—二 | =0. 【分析】(1)根据二次根式的乘法法则和零指数幕的意义得到原式X - X 仁2匚-.,然后合并即可; 4(2)先把分子和分母因式分解和除法运算化为乘法运算, 再计算括号内的运算,【分析】先根据二次根式的乘除法法则得到原式 :+2 ,然后利 用二次根式的性质化简后合并即可.然后约分得到原式=「,再根据非负数的性质得到a+仁0, b—二=0,解得a=—1,b b=二,然后把a和b的值代入计算即可.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、非负 数的性质和分式的化简求值.44. (2016?安徽三模)先化简,再求值:-亠‘亠-:,其中a=「+1.a 2-l H2 2 【分析】首先把自+严+1写成 £辛) 然后约去公因式(a+1),再与后一 项式子进行通分化简,最后代值计算.2【解答】解:亠_'一 _ ,32-1 旷 1= ____ a:.I ; U.:...=曰+1 a=2匚-匚-4X - 4(2)原式=[:"''- (a-b)=(丁一: — ')?a-b a-b=\- ?oA-_i-b-」L : ? I.:a ] ?3(自-b)a-b b 2 =- 一,T .丨 +| b - ;|=0,••• a+1=0, b - =0,解得 a= - 1, b= ■:,当 a=- 1,【解答】解:(1)原式= b=「时,【点评】本题主要考查二次根式的化简求值的知识点,解答本题的关键是分式的 通分和约分,本题难度不大. 45. (2015?闵行区二模)计算: 一二(二-7) + 匚. V2-1 【分析】先进行二次根式的化简和乘法运算,然后合并. 【解答】解:原式=匚+1+3-3匚+匚 =4 -':. 【点评】本题考查了二次根式的混合运算, 解答本题的关键是掌握二次根式的化 简和乘法法则. Y5 2 V4 Y5 【分析】先二次根式化为最简二次根和根据二次根式的乘除法得到原式 =:+ :- 丨+3灯.宀"=2 - - 1+3,然后合并即可.=2 _- 1+3=2 _+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后进行二次根式的加减运算.,31且【点评】本题考查了二次根式的混合运算,二次根式的化简是解此题的关键.37. (2009春?岳阳校级期末)(1) 一个正数的平方根是2a - 3与5 - a ,求这个 正数. (2)已知x 、y 都是实数,且 八门,求y "的值.【分析】(1)因为一个正数x 的平方根有两个,且互为相反数,由此即可得到关 于a 方程,解方程即可得a 的值,然后代入求x ;46. (2015春?石林县期末)计算: V4 5【解答】/。

数学数学二次根式试题附解析

数学数学二次根式试题附解析

一、选择题1.若01x <<=( ). A .2xB .2x -C .2x -D .2x 2.下列二次根式中,是最简二次根式的是( )AB C . D 3.下列各式中,无意义的是( )A B C D .310-4.x 的取值范围是( )A .13x ≥B .13x >C .13x ≤D .13x <5.下列算式:(1=2)3)=7;(4)+= ) A .(1)和(3) B .(2)和(4) C .(3)和(4) D .(1)和(4)6.x 的取值范围是( ) A .x≥2020 B .x≤2020 C .x> 2020D .x< 2020 7.“分母有理化”是我们常用的一种化简的方法,如:7==+x =>,故0x >,由22332x ==-=,解得x=结果为( )A .5+B .5+C .5D .5- 8.下列各式计算正确的是( )A B .C .D9.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( ) A .3 B .4 C .6 D .910.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .3C .18D .192二、填空题11.已知实数,x y 满足(22200820082008x x y y --=,则2232332007x y x y -+--的值为______.12.当x 3x 2﹣4x +2017=________.13.甲容器中装有浓度为a 40kg ,乙容器中装有浓度为b 90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.14.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为 ________.15.已知整数x ,y 满足20172019y x x =+--,则y =__________. 16.化简:321x 17.若a 、b 为实数,且b =22117a a a --++4,则a+b =_____. 18.2121=-+3232=+4343=+++……=___________.19.能合并成一项,则a =______.20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积S =ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.x 的值,代入后,求式子的值. 【答案】答案见解析.【解析】试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义.试题解析:原式==== 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=222.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46.【解析】试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案; (2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++,∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ , ∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++∴225a m n =+,62mn = ,又∵a m n 、、为正整数,∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =,即a 的值为:46或14.23.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x -【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案.解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x -∴ 3,4x y ==当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.24.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可.【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭. 【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题25.计算(1+(2+-÷(4)((3)2b【答案】(1)234)7.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+=+22=;(2==;(3÷==;4(4)((22=-=7本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.26.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120 (2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】 (1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.28.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a b a b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解.【详解】解:∵0<x <1,∴0<x <1<1x , ∴10x x +>,10x x-<.原式=11x x x x +-- =11x x x x++- =2x .故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.2.D解析:D【分析】根据最简二次根式的特点解答即可.【详解】A ,故该选项不符合题意;B =C 、D 不能化简,即为最简二次根式,故选:D .【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.3.A解析:A【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案.【详解】AB ,有意义,不合题意;C D 、33110=10-,有意义,不合题意; 故选A.【点睛】 此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.4.C解析:C【分析】根据二次根式的性质:被开方数大于或等于0,列不等式求解.【详解】解:依题意有当130x -≥时,原二次根式有意义;解得:13x≤;故选:C.【点睛】本题考查了二次根式的基本性质(被开方数大于或等于0);解一元一次不等式,在解一元一次不等式的过程中要用到不等式的基本性质(1.不等式两边同时加上或同时减去一个数,不等号的方向不变;2.不等式两边同时乘以或同时除以一个正数,不等号的方向不变;3.不等式两边同时乘以或同时除以一个负数,不等号的方向改变.)熟记并灵活运用不等式的基本性质是解本题的关键.5.B解析:B【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】(1(2),正确;(3,错误;(4)==故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.6.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.7.D解析:D【分析】进行化简,然后再进行合并即可.【详解】设x=<x<,∴0∴266x=-+,∴212236x=-⨯=,∴x=∵5=-,∴原式5=-5=-故选D.【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.8.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;==,故正确.3故选D.9.A解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.10.A解析:A【分析】∆的面积;利用阅读材料,先计算出p的值,然后根据海伦公式计算ABC【详解】7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S==故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题11.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 12.2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x﹣2)2+2013 =()2+2013=3+2013=2016.故答案是:2016.解析:2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x﹣2)2+2013 =2+2013=3+2013=2016.故答案是:2016.点睛:此题主要考查了配方法的应用,解题关键是把式子配成完全平方,然后整体代入即可求解,考查了学生对整体思想的认识和应用,学生对整体思想不熟时出错的主要原因. 13.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m即可.【详解】解:根据题意,甲容器中纯果汁含量为akg,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利=,求出m即可.【详解】,甲容器倒出mkg果汁中含有纯果汁makg,乙容器倒出mkg果汁中含有纯果汁mbkg,,=,整理得,-6b=5ma-5mb,∴(a-b)=5m(a-b),.∴m=5故答案为:5【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.14.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.15.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018.解析:2018【解析】试题解析:y ===令a =b = 显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.16.【解析】根据二次根式的性质,化简为:-=-=-4;==.故答案为 ; .解析: 【解析】根据二次根式的性质,化简为:故答案为 ; 17.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.18.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n 个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第11=,第2=,第3=归纳类推得:第n 1=-n 为正整数),则2020++,2020=+,=,20202=-,=,2018故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.19.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.20.【分析】根据a,b,c的值求得p=,然后将其代入三角形的面积S=求值即可.【详解】解:由a=4,b=5,c=7,得p===8.所以三角形的面积S===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

二次根式专项练习附答案

二次根式专项练习附答案

二次根式专项练习附答案(共6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、已知,为实数,且,求的值.2、若的整数部分为,小数部分为,求的值.3、.4、阅读下列解题过程:,,请回答下列回题:(1)观察上面的解答过程,请直接写出=﹣;(2)根据上面的解法,请化简:.5、数a、b在数轴上的位置如图所示,化简:.6、使有意义的的取值范围是.7、若x,y为实数,且y=4++,则y﹣x的值是.8、当x时,二次根式在实数范围内有意义.9、方程:的解是 .10、若代数式有意义,则的取值范围为__________.11、若,则的值为.12、比较大小:;13、若+有意义,则=14、已知xy=3,那么的值为_________.15、把根号外的因式移到根号内:= .16、已知a,b,c为三角形的三边,则= .17、________.18、计算.19、计算;20、;21、);22、计算:23、计算:;24、25、计算:26、若二次根式在实数范围内有意义,则x的取值范围为( ).≥2 B. x≤2 ≥-2 ≤-227、若二次根式有意义,则的取值范围是【】A. B. C. D.28、若, 则的值为()A. C. 9 D.29、不改变根式的大小,把中根号外的因式移到根号内正确的结果是 A . B . C .- D .30、为使有意义,x的取值范围是()A.x>B.x≥C .x≠D .x≥且x≠31、下列二次根式中,化简后能与合并的是( )A. B. C. D.32、已知则与的关系为()33、下列计算正确的是()A. B.+C. D.34、下列计算或化简正确的是()A.B.C.D.35、下列二次根式中属于最简二次根式的是【】A .B .C .D .36、如果,那么(A );(B );(C );(D ).37、下列二次根式中,最简二次根式是().A. B. C. D.38、已知,则a的取值范围是…………【】A.a≤0;B.a<0; C.0<a≤1; D.a>039、式子(>0)化简的结果是()A. B. C. D.40、式子成立的条件是()A.≥3B.≤1 ≤≤3 <≤3参考答案一、简答题1、解:由题意,得,且,∴,∴.∴.2、解:可知,,则.3、4、考点:分母有理化.专题:计算题.分析:(1)根据题目提供的信息,最后结果等于分母的有理化因式;(2)先把每一项都分母有理化,然后相加减即可得解.解答:解:(1)=﹣;(2)+++…++,=﹣1+﹣+﹣+…+﹣+﹣,=﹣1,=10﹣1,=9.故答案为:(1)﹣,(2)9.点评:本题考查了分母有理化,读懂题目信息,得出每一个分式化简的最后结果等于分母的有理化因式是解题的关键.5、考点:二次根式的性质与化简;实数与数轴..专题:常规题型.分析:根据数轴判断出a、b的取值范围,然后判断出a+1,b﹣1,a﹣b的正负情况,再根据二次根式的性质去掉根号,进行计算即可得解.解答:解:根据图形可得,﹣2<a<﹣1,1<b<2,所以﹣1<a+1<0,0<b﹣1<1,a﹣b<0,所以,=﹣(a+1)+(b﹣1)+(a﹣b),=﹣a﹣1+b﹣1+a﹣b,=﹣2.点评:本题考查了二次根式的性质与化简,实数与数轴.根据图形判断出a、b的取值范围,是解题的关键.二、填空题6、解析:由4x-1≥0,得.7、考点:二次根式有意义的条件..分析:根据二次根式的意义,被开方数大于或等于0,列不等式组求解.解答:解:根据二次根式的意义得,解得x=5.则y=4,∴y﹣x=4﹣5=﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8、【答案】9、答案:x=1010、答案:且a≠111、答案:712、<13、1.考点:二次根式有意义的条件.分析:根据二次根式的被开方数是非负数得到x=0,由此可以求得的值.解答:解:由题意,得,解得x=0,则==1.故答案是:1.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14、15、16、解析:根据三角形的三边关系,可知,,,从而化简二次根式可得结果.17、三、计算题18、原式=﹣3+3=019、原式=2﹣3=﹣120、21、22、解:原式=1+3—3—1 (4分)=0 ( 2分)23、=024、解:(1)原式=2﹣2+=.25、四、选择题26、A27、D28、A 解析:所以,所以所以.29、C30、考点:二次根式有意义的条件..专题:常规题型.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可求解.解答:解:根据题意得,2x+3≥0且3x﹣2≠0,解得x≥﹣且x≠.故选D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.31、A 解析:因为所以只有A 项化简后能与合并.32、D 解析:∵,∴33、C 解析:B 中的二次根式的被开方数不同,不能合并;C项正确;D 项34、答案:A35、C 36、答案:D37、C38、答案:C39、A 解析:因为>0,,所以<0,所以.40、D 解析:根据二次根式的定义,式子成立的条件为,-1,即1<.。

二次根式试卷(含答案)

二次根式试卷(含答案)

初中数学二次根式练习一.选择题(共10小题)1.(2013•宜昌)若式子在实数范围内有意义,则x的取值范围是()A.x=1 B.x≥1 C.x>1 D.x<1 2.(2013•宜宾)二次根式的值是()A.﹣3 B.3或﹣3 C.9D.33.(2013•新疆)下列各式计算正确的是()A.B.C.a0=1 D.(﹣3)﹣2=﹣4.(2011•泸州)设实数a,b在数轴上对应的位置如图所示,化简的结果是()A.﹣2a+b B.2a+b C.﹣b D.b5.(2011•凉山州)已知,则2xy的值为()A.﹣15 B.15 C.D.6.(2009•襄阳)函数y=的自变量x的取值范围是()A.x>0 B.x≥﹣2 C.x>﹣2 D.x≠﹣2 7.(2009•济宁)已知a为实数,那么等于()A.a B.﹣a C.﹣1 D.08.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1C.2D.39.(2004•泰州)若代数式+的值为2,则a的取值范围是()A.a≥4 B.a≤2 C.2≤a≤4 D.a=2或a=4 10.(2002•鄂州)若x<0,且常数m满足条件,则化简所得的结果是() A.x B.﹣x C.x﹣2 D.2﹣x11.(2013•盘锦)若式子有意义,则x的取值范围是_________.12.(2012•自贡)函数中,自变量x的取值范围是_________.13.(2010•孝感)使是整数的最小正整数n=_________.14.(2010•黔东南州)把根号外的因式移到根号内后,其结果是_________.15.(2002•娄底)若=﹣1,则x_________.16.(2001•沈阳)已知x≤1,化简=_________.17.(2012•肇庆)计算的结果是_________.18.(2009•大连)计算:()()=_________.19.(2006•厦门)计算:()0+•()﹣1=_________.20.(2007•河池)化简:=_________.21.(2011•威海)计算的结果是_________.三.解答题(共8小题)23.(2003•海南)先化简,后求值:(x+1)2﹣x(x+2y)﹣2x,其中x=+1,y=﹣1.24.计算题:(1);(2)25.计算:(﹣)2 26.计算:27.计算:12.28.(2010•鄂尔多斯)(1)计算﹣22+﹣()﹣1×(π﹣)0;(2)先化简,再求值:÷(a+),其中a=﹣1,b=1.29.(2009•仙桃)先化简,再求值:,其中x=2﹣.30.(2012•绵阳)(1)计算:(π﹣2)0﹣|+|×(﹣);(2)化简:(1+)+(2x ﹣)(3)已知a 是34-的小数部分,那么代数式⎪⎭⎫⎝⎛-•⎪⎪⎭⎫ ⎝⎛++++-+a a a a a a a a a 42442222的值为(4).有一道题:“先化简,再求值:41442222-÷⎪⎭⎫⎝⎛-++-x x x x x ,其中3-=x .”小玲做题时把“3-=x "错钞成了“3=x ”,但她的计算结果是正确的,请你解释这是怎么回事.参考答案与试题解析一.选择题(共10小题)1.(2013•宜昌)若式子在实数范围内有意义,则x的取值范围是()A.x=1 B.x≥1 C.x>1 D.x<1考点:二次根式有意义的条件.分析:二次根式有意义:被开方数是非负数.解答:解:由题意,得x﹣1≥0,解得,x≥1.故选B.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(2013•宜宾)二次根式的值是()A.﹣3 B.3或﹣3 C.9D.3考点: 二次根式的性质与化简.专题:计算题.分析:本题考查二次根式的化简,.解答:解:=﹣(﹣3)=3.故选D.点评:本题考查了根据二次根式的意义化简.二次根式化简规律:当a≥0时,=a;当a≤0时,=﹣a.3.(2013•新疆)下列各式计算正确的是()C.a0=1 D.A.B.(﹣3)﹣2=﹣考点:二次根式的加减法;零指数幂;负整数指数幂;二次根式的性质与化简.分析:根据二次根式的加减、负整数指数幂、零指数幂及二次根式的化简,分别进行各选项的判断,即可得出答案.解答:解:A、﹣=3﹣4=﹣,运算正确,故本选项正确;B、(﹣3)﹣2=,原式运算错误,故本选项错误;C、a0=1,当a≠0时成立,没有限制a的取值范围,故本选项错误;D、=2,原式运算错误,故本选项错误;故选A.4.(2011•泸州)设实数a,b在数轴上对应的位置如图所示,化简的结果是()A.﹣2a+b B.2a+b C.﹣b D.b考点:二次根式的性质与化简;实数与数轴.分析:根据数轴上a,b的值得出a,b的符号,a<0,b>0,以及a+b>0,即可化简求值.解答:解:根据数轴上a,b的值得出a,b的符号,a<0,b>0,a+b>0,∴=﹣a+a+b=b,故选:D.点评:此题主要考查了二次根式的化简以及实数与数轴,根据数轴得出a,b的符号是解决问题的关键.5.(2011•凉山州)已知,则2xy的值为()A.﹣15 B.15 C.D.考点:二次根式有意义的条件.分析:首先根据二次根式有意义的条件求出x的值,然后代入式子求出y的值,最后求出2xy的值.解答:解:要使有意义,则,解得x=,故y=﹣3,∴2xy=2××(﹣3)=﹣15.故选A.点评:本题主要考查二次根式有意义的条件,解答本题的关键是求出x和y的值,本题难度一般.6.(2009•襄阳)函数y=的自变量x的取值范围是()A.x>0 B.x≥﹣2 C.x>﹣2 D.x≠﹣2考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可求解.解答:解:根据题意得:x+2>0,解得,x>﹣2故选C.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.(2009•济宁)已知a为实数,那么等于()考点: 二次根式的性质与化简.分析:根据非负数的性质,只有a=0时,有意义,可求根式的值.解答:解:根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=0时,有意义,所以,=0.故选D.点评:注意:平方数和算术平方根都是非负数,这是解答此题的关键.8.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1C.2D.3考点: 二次根式有意义的条件.分析:先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.解答:解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选C.点评:本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.(2004•泰州)若代数式+的值为2,则a的取值范围是()A.a≥4 B.a≤2 C.2≤a≤4 D.a=2或a=4考点:二次根式的性质与化简.分析:若代数式+的值为2,即(2﹣a)与(a﹣4)同为非正数.解答:解:依题意,得|2﹣a|+|a﹣4|=a﹣2+4﹣a=2,由结果可知(2﹣a)≤0,且(a﹣4)≤0,解得2≤a≤4.故选C.点评:本题考查了根据二次根式的意义与化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.10.(2002•鄂州)若x<0,且常数m满足条件,则化简所得的结果是() A.x B.﹣x C.x﹣2 D.2﹣x考点: 二次根式的性质与化简;分式的值为零的条件.分析:利用绝对值和分式的性质,先求m值,再对所求式子化简.解答:解:∵则|m|﹣1=0,且m2+m﹣2=(m﹣1)(m+2)≠0解得m=﹣1,∵x<0,∴1﹣x>1>0,原式=||x﹣1|﹣1|=|1﹣x﹣1|=|﹣x|=﹣x故选B.点评:本题考查了二次根式的化简,注意二次根式、绝对值的结果为非负数.二.填空题(共12小题)11.(2013•盘锦)若式子有意义,则x的取值范围是x≥﹣1且x≠0.考点: 二次根式有意义的条件;分式有意义的条件.分析:根据二次根式及分式有意义的条件解答即可.解答:解:根据二次根式的性质可知:x+1≥0,即x≥﹣1,又因为分式的分母不能为0,所以x的取值范围是x≥﹣1且x≠0.点评:此题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义;当分母中含字母时,还要考虑分母不等于零.12.(2012•自贡)函数中,自变量x的取值范围是x≤2且x≠1.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,可知2﹣x≥0;分母不等于0,可知:x﹣1≠0,则可以求出自变量x的取值范围.解答:解:根据题意得:解得:x≤2且x≠1.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(2012•眉山)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:= 1.考点:一次函数图象与系数的关系;二次根式的性质与化简.专题:压轴题.分析:先根据图象判断出a、b的符号,再根据绝对值的性质去掉绝对值符号即可.解答:解:根据图象可知直线y=(3﹣a)x+b﹣2经过第二、三、四象限,所以3﹣a<0,b﹣2<0,所以a>3,b<2,所以b﹣a<0,a﹣3>0,2﹣b>0,所以=a﹣b﹣|a﹣3|﹣(2﹣b)=a﹣b﹣a+3﹣2+b=1.故答案为1.点评:主要考查了一次函数的图象性质及绝对值的性质,要掌握它的性质才能灵活解题.14.(2010•孝感)使是整数的最小正整数n=3.考点:二次根式的性质与化简.分析:先将所给二次根式化为最简二次根式,然后再判断n的最小正整数值.解答:解:=2,由于是整数,所以n的最小正整数值是3.点评:解答此题的关键是能够正确的对二次根式进行化简.15.(2010•黔东南州)把根号外的因式移到根号内后,其结果是﹣.考点: 二次根式的性质与化简.专题: 常规题型.分析:由题意得,2﹣a>0,则a﹣2<0,那么此根式为负,把负号留在根号外,a﹣2平方后,移到根号内,约分即可.解答:解:由题意得,2﹣a>0,则a﹣2<0,∴=﹣.故答案为:﹣.点评:此题主要考查二次根式的性质,二次根式有意义的条件是被开方数是非负数,还要考虑分母不为0这个条件.16.(2002•娄底)若=﹣1,则x<0.考点: 二次根式的性质与化简.解答:解:由=﹣1,得=﹣x,且分母x≠0,∴x<0.点评:本题主要考查了开平方的性质,及分式运算符号的取法.17.(2001•沈阳)已知x≤1,化简=﹣1.考点: 二次根式的性质与化简.分析:根据二次根式的性质化简以及运用完全平方公式.解答:解:∵x≤1,∴1﹣x≥0,x﹣2<0原式=﹣=|1﹣x|﹣|x﹣2|=1﹣x﹣(2﹣x)=﹣1.点评:应把被开方数整理成完全平方公式的形式,再利用=|a|进行化简.需注意二次根式的结果一定为非负数.18.(2012•肇庆)计算的结果是2.考点:二次根式的乘除法.专题: 计算题.分析:根据二次根式乘法、商的算术平方根等概念分别判断.解答:解:原式=2×=2.故答案为2.点评:本题考查了二次根式的乘除法,正确理解二次根式乘法、商的算术平方根等概念是解答问题的关键.19.(2009•大连)计算:()()=2.考点: 二次根式的乘除法;平方差公式.分析:直接利用平方差公式解题即可.解答:解:()()=()2﹣1=3﹣1=2.点评:本题考查学生利用平方差公式进行实数的运算能力,既要掌握数学中常用的平方差公式a2﹣b2=(a+b)(a ﹣b),还要掌握无理数乘方的运算规律.20.(2006•厦门)计算:()0+•()﹣1=2.考点: 分母有理化;零指数幂;负整数指数幂.分析:0﹣1解答:解:()0+•()﹣1=1+•=1+1=2.点评:传统的小杂烩计算题,涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;二次根式的化简.21.(2007•河池)化简:=2+.考点: 分母有理化.分析:本题只需将原式分母有理化即可.解答:解:==2+.点评:本题考查的是二次根式的分母有理化,找出分母的有理化因式是解答此类问题的关键.22.(2011•威海)计算的结果是3.考点: 二次根式的混合运算.专题:计算题.分析:本题只需将二次根式化为最简,然后合并同类二次根式,最后进行二次根式的除法运算即可.解答:解:原式=(5﹣2)÷=3.故答案为:3.点评:本题考查二次根式的混合运算,难度不大,解答此类题目时往往要先将二次根式化为最简.三.解答题(共8小题)23.(2003•海南)先化简,后求值:(x+1)2﹣x(x+2y)﹣2x,其中x=+1,y=﹣1.考点:整式的混合运算—化简求值;二次根式的乘除法.分析:先运用完全平方公式、单项式与多项式的乘法去括号,再合并同类项,最后求值.解答:解:(x+1)2﹣x(x+2y)﹣2x,=x2+2x+1﹣x2﹣2xy﹣2x,=1﹣2xy,当x=+1,y=﹣1时,原式=1﹣2(+1)(﹣1)=1﹣2×(3﹣1)=1﹣4=﹣3.点评:利用公式可以适当简化一些式子的计算.24.计算题:(1);(2).考点:二次根式的乘除法.分析:(1)根据二次根式的乘除法法则依次进行计算即可;(2)可运用平方差公式进行计算.解答:解:(1)原式=2×2××=3×=;(2)原式=(2)2﹣()2=12﹣5=7.点评:一般情况下,在进行二次根式计算时,不是最简二次根式的要化为最简二次根式.能利用公式的要利用公式,要看具体情况而定.25.计算:(﹣)2考点: 二次根式的乘除法;完全平方公式.分析:利用完全平方公式及二次根式的乘法进行计算即可,解答:解:原式=()2+()2﹣2•=3+2﹣2=5﹣2.点评:本题主要考查的是二次根式的乘法运算.涉及的知识点有完全平方公式的应用.26.计算:.考点:二次根式的乘除法.分析:根据乘法法则分别进行计算;先把除法转化成乘法,再分别进行相乘即可求出答案;解答:解:=5××=10;点评:主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则=.27.计算:12.考点: 二次根式的乘除法.分析:首先把二次根式化为最简二次根式,再把除法化成乘法,然后约分计算即可.解答:解:原式=12×÷×,=12×××,=2.点评:此题主要考查了二次根式的乘除法,关键是正确把二次根式进行化简.28.(2010•鄂尔多斯)(1)计算﹣22+﹣()﹣1×(π﹣)0;(2)先化简,再求值:÷(a+),其中a=﹣1,b=1.考点: 分式的化简求值;零指数幂;负整数指数幂;分母有理化.专题:计算题.分析:(1)涉及到立方根、负整数指数幂、零指数幂三个知识点,可分别针对各知识点进行计算,然后按实数的运算规则进行求解;(2)这道求代数式值的题目,不应考虑把a、b的值直接代入,通常做法是先把代数式化简,然后再代入求值.解答:解:(1)原式=﹣4﹣3﹣3=﹣10;(2)原式==;当a=﹣1,b=1时,原式=.点评:本题考查了实数的运算及分式的化简计算.在分式化简过程中,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.29.(2009•仙桃)先化简,再求值:,其中x=2﹣.考点:分式的化简求值;分母有理化.分析:先把分式化简:先除后减,做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分;做减法运算时,应是同分母,可以直接通分.最后把数代入求值.解答:解:原式===;当x=2﹣时,原式==﹣.点评:考查分式的化简与求值,主要的知识点是因式分解、通分、约分等.30.(2012•绵阳)(1)计算:(π﹣2)0﹣|+|×(﹣);(2)化简:(1+)+(2x﹣)考点:分式的混合运算;零指数幂;二次根式的混合运算.分析:(1)首先计算0次方,以及开方运算,去掉绝对值符号,化简二次根式,然后合并同类二次根式即可求解;(2)首先计算括号内的分式,然后进行同分母的分式的加法运算即可.解答:解:(1)原式=1﹣|﹣2+|×(﹣)=1﹣(2﹣)×(﹣)=1+﹣1=;(2)原式=+=+==x+1.点评:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.。

二次根式精选练习题及答案

二次根式精选练习题及答案

二次根式精选练习题及答案二次根式是高中数学中的一个重点内容,也是历年高考的常考题型。

掌握好二次根式的运算方法不仅有助于提高数学成绩,更能为今后学习更高深的数学知识打下坚实的基础。

下面是一些二次根式的精选练习题及其答案,供大家参考。

1.将下列二次根式合并为一个二次根式:$\sqrt{7}+\sqrt{3}-\sqrt{28}$解:$\sqrt{7}+\sqrt{3}-\sqrt{28}=\sqrt{7}+\sqrt{3}-2\sqrt{7}=-\sqrt{7}+\sqrt{3}$2.将下列二次根式化为最简形式:$\frac{2\sqrt{5}-\sqrt{2}}{\sqrt{3}+3\sqrt{5}}$解:$\frac{2\sqrt{5}-\sqrt{2}}{\sqrt{3}+3\sqrt{5}}=\frac{(2\sqrt{5}-\sqrt{2})(\sqrt{3}-3\sqrt{5})}{3-45}=\frac{-16\sqrt{5}+6\sqrt{6}}{-42}=\frac{8\sqrt{5}-3\sqrt{6}}{21}$3.将下列二次根式化为最简形式:$\sqrt{5-2\sqrt{6}}$解:设$\sqrt{5-2\sqrt{6}}=a\pm b\sqrt{6}$,则有$a^2+6b^2=5$和$2ab=-2$。

解得$a=1,b=-\frac{1}{\sqrt{6}}$或$a=-1,b=\frac{1}{\sqrt{6}}$,因此$\sqrt{5-2\sqrt{6}}=1-\frac{1}{\sqrt{6}}\sqrt{6-2\sqrt{6}}=1-\frac{1}{\sqrt{6}}\sqrt{(1-\sqrt{2})(1-\sqrt{3})}=\boxed{\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}}$4.将下列二次根式化为最简形式:$\sqrt{7+4\sqrt{3}}$解:同上题,设$\sqrt{7+4\sqrt{3}}=a+b\sqrt{3}$,则有$a^2+3b^2=7$和$2ab=4$。

(带答案)人教版初中数学二次根式常考题型例题

(带答案)人教版初中数学二次根式常考题型例题

(带答案)人教版初中数学二次根式常考题型例题(文末附答案)单选题1、下列二次根式中,是最简二次根式的是( )A .√18B .√13C .√27D .√122、下列等式中成立的是( )A .(−3x 2y )3=−9x 6y 3B .x 2=(x+12)2−(x−12)2 C .√2÷(√2√3)=2+√6D .1(x+1)(x+2)=1x+1−1x+2 3、下列计算正确的是( )A .√8÷√2=2√2B .√9=±3C .√(−3)2=3D .√24=√2 4、已知m=(﹣√33)×(﹣2√21),则有( )A .5.0<m <5.1B .5.1<m <5.2C .5.2<m <5.3D .5.3<m <5.45、式子√a+1a−2有意义,则实数a 的取值范围是( )A .a ≥-1B .a ≠2C .a ≥-1且a ≠2D .a >2 6、(√24-3√15+√223)×√2的值是 ( )A .163√3-3√30B .3√30-23 √3C .2√30-23 √3D .203√3- √307、√2的相反数是【 】A .√2B .√22C .−√2D .−√22 8、下列二次根式是最简二次根式的是( )A .√12B .√0.3C .√8D .√6填空题9、已知√a −b +|b −1|=0,则a +1=__.10、若二次根式√1x−1有意义,则x 的取值范围是__________.11、比较大小:√22 __________12(填写“>”或“<”或“=”). 12、已知x ﹣2=√2,则代数式(x +1)2﹣6(x +1)+9的值为_____.13、计算:(√5-2)2018(√5+2)2019的结果是_____.解答题 14、观察下列等式: √2+1=√2(√2+1)(√2−1)=√2−1 √3+√2=√3√2(√3+√2)(√3−√2)=√3−√2 √4+√3=√4√3(√4+√3)(√4−√3)=√4−√3 解答下列问题:(1)写出一个无理数,使它与3−√2的积为有理数; (2)利用你观察的规律,化简2√3+√11; (3)计算:1+√2√2+√3+⋯…3+√10.15、已知x =2+√3,y =2-√3.试求代数式x y +y x 的值.(带答案)人教版初中数学二次根式_003参考答案1、答案:B解析:根据最简二次根式的定义对各选项分析判断利用排除法求解.A 、√18=3√2不是最简二次根式,错误;B 、√13是最简二次根式,正确;C 、√27=3√3不是最简二次根式,错误;D 、√12=2√3不是最简二次根式,错误,故选B .小提示:本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2、答案:D解析:根据幂的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则计算即可.解:A 、(−3x 2y )3=−27x 6y 3,故选项A 错误;B 、(x+12)2−(x−12)2=x 2+2x+14−x 2−2x+14=x 2+2x +1−x 2+2x −14=x ,故选项B 错误;C 、√2÷(√2√3)=√2÷(√3√2⋅√3√2√2⋅√3) =√2√3+√2√6=√2√6√3+√2=√3√3√2)(√3+√2)(√3−√2) =6−2√6,故选项C 错误;D 、1x+1−1x+2=x+2(x+1)(x+2)−x+1(x+1)(x+2)=x +2−x −1(x +1)(x +2) =1(x+1)(x+2),故选项D 正确,故选:D .小提示:本题考查了的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则,熟练掌握相关运算法则是解决本题的关键.3、答案:C解析:根据二次根式的乘除运算法则以及利用二次根式的性质化简,逐项计算,即可判断.A、√8÷√2=√4=2,故此选项错误;B、√9=3,故此选项错误;C、√(−3)2=3,正确;D、√2×4=√22×4=2√2,故此选项错误;故选:C.小提示:本题考查了二次根式的乘除运算,熟练掌握二次根式的加减乘除运算法则以及二次根式的性质化简是解题的关键.4、答案:C解析:直接利用二次根式的乘法运算法则化简,进而得出m的取值范围.∵m=(−√33)×(−2√21)=2√7=√28,5.22=27.4,5.32=28.09,∴5.2<m<5.3.故选C.小提示:考查二次根式的乘除法,估算无理数的大小,掌握无理数的估算方法是解题的关键.5、答案:C解析:根据被开方数大于等于0,分母不等于0列式计算即可.解:由题意得,a+1≥0,a≠2解得,a≥-1且a≠2,所以答案是:C.小提示:本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.6、答案:A解析:解:原式=√48−3√30+√163=4√3−3√30+4√33=16√33−3√30.故选A.7、答案:C解析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此√2的相反数是−√2.故选C.8、答案:D解析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.A、被开方数含分母,故A不符合题意;B、被开方数0.3=310,含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.小提示:本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、答案:2.解析:利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.∵√a−b+|b﹣1|=0,又∵√a−b≥0,|b−1|≥0,∴a﹣b=0且b﹣1=0,解得:a=b=1,∴a+1=2.故答案为2.小提示:本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程是解题的关键.10、答案:x>1解析:概念二次根式被开方数大于或等于0,分母不为0求解即可.解:二次根式√1x−1有意义,则1x−1≥0且x−1≠0,解得,x>1,所以答案是:x>1.小提示:本题考查了二次根式和分式有意义的条件,解题关键是熟记二次根式和分式有意义的条件,列出不等式.11、答案:>解析:直接用√22−12,结果大于0,则√22大;结果小于0,则12大.解:√22−12=√2−12>0,∴√22>12,所以答案是:>.小提示:本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.12、答案:2解析:利用完全平方公式得到原式=(x﹣2)2,然后利用整体代入的方法计算.解:(x+1)2﹣6(x+1)+9=[(x+1)﹣3]2=(x﹣2)2,∵x﹣2=√2,∴原式=(√2)2=2,故答案为2.小提示:本题考查应用完全平方公式进行因式分解,进而利用整体代入法求代数式的值,灵活应用公式进行因式分解是关键.13、答案:√5+2解析:逆用积的乘方运算法则以及平方差公式即可求得答案.(√5-2)2018(√5+2)2019=(√5-2)2018×(√5+2)2018×(√5+2)=[(√5-2)×(√5+2)]2018×(√5+2)=(5-4)2018×(√5+2)=√5+2,故答案为√5+2.小提示:本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.14、答案:(1)3+√2;(2)2√3−√11;(3)√10−1.解析:(1)由平方差的运算法则,即可得到答案;(2)找出题目中的规律,把分母有理化,即可得到答案;(3)先把分母有理化,然后进行化简,即可得到答案.解:(1)∵(3−√2)(3+√2)=9−2=7,∴这个无理数为:3+√2;(2)2√3+√11=√3−√11)(2√3+√11)(2√3−√11)=2√3−√1112−11=2√3−√11;(3)1+√2√2+√3+⋯…+3+√10=√2−1+√3−√2+⋯+√10−√9=√10−1.小提示:本题考查了二次根式的运算法则,分母有理化,平方差运算,熟练掌握运算法则,正确的发现题目中的规律是解题关键.15、答案:14解析:先计算出x+y、xy的值,再代入原式=x 2+y2xy=(x+y)2−2xyxy计算可得.解:∵x=2+√3,y=2−√3,∴x+y=2+√3+2−√3=4,xy=(2+√3)×(2−√3)=1,则原式=x 2+y2xy=(x+y)2−2xyxy=42−2×11=14.小提示:本题主要考查分母有理化与分式的加减运算,解题的关键是掌握分式加减运算法则、完全平方公式与平方差公式及二次根式的运算法则.11。

数学二次根式试题含答案

数学二次根式试题含答案
【分析】
(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;
(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.
【详解】
解:(1)

(2)

【点睛】
本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.
(1)
(2)
【答案】(1)-5;(2)9
【分析】
(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果;
(2)利用平方差公式计算即可.
【详解】
(1)


(2)

【点睛】
本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.
26.计算:
(1)
(2)
【答案】(1) ;(2)
20.已知 ,则 的值为_______.
三、解答题
21.先观察下列等式,再回答问题:
① =1+1=2;
② =2+ =2 ;
③ =3+ =3 ;…
(1)根据上面三个等式提供的信息,请猜想第四个等式;
(2)请按照上面各等式规律,试写出用n(n为正整数)表示的等式,并用所学知识证明.
【答案】(1) ;(2) ,证明见解析.
证明:等式左边 =n 右边.
故 n 成立.
【点睛】
本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律“ n ”.解决该题型题目时,根据数值的变化找出变化规律是关键.

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析1. 4的平方根是()A.2B.C.D.【答案】C.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴4的平方根是±2.故选C.【考点】平方根.2.观察下列计算过程:因为112=121,所以,因为1112=12321,所以……,由此猜想=()A.111 111 111B.11 111 111C.1 111 111D.111 111【答案】A.【解析】:因为112=121,所以,因为1112=12321,所以,则="111" 111 111.故选A.【考点】算术平方根.3.在3.14,中,无理数有()个A.1个B.2个C.3个D.4个【答案】B.【解析】有限小数、整数、分数都属于有理数,故3.14,,==2都是有理数,开不尽方的平方根,圆周率都是无限不循环小数,所以是无理数.故选B.【考点】实数的分类.4.观察下列计算过程:…,由此猜想= .【答案】111111111.【解析】观察给出的等式,算术平方根的1的个数是被开方数的位数加1后的一半.【考点】1算术平方根;2找规律.5.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0【答案】B.【解析】A.立方根是它本身的数除去1和0外,还有-1,故该选项错误;B.算术平方根是它本身的数只有1和0,故该选项正确;C.平方根是它本身的数只有1和0,故该选项错误;D.绝对值是它本身的数只有正数和0,故该选项错误.故选B.【考点】1.立方根;2.平方根;3.算术平方根;4.绝对值.6.下列各数中无理数有(),,,,,A.1个B.2个C.3个D.1个【答案】B.【解析】根据有理数与无理数的定义分别进行判断即可得到,是无理数.故选B.【考点】无理数.7.若,为实数,且,则的值为()A.-1B.1C.1或7D.7【答案】D.【解析】∵,∴a2﹣9=0且a+3≠0,解得a=3,b=0+4=4,则a+b=3+4=7.故选D.【考点】二次根式有意义的条件.8.下列计算正确的是()A.B.C.D.【答案】D【解析】A.,故本选项错误;B.,故本选项错误;C.,表示25的算术平方根是5,故本选项错误;D.,故本选项正确,故选D.9.若某数的立方等于-0.027,则这个数的倒数是____________.【答案】【解析】立方等于-0.027的数为-0.3,其倒数是.10.一个正方体的体积变为原来的27倍,则它的棱长变为原来的倍.【答案】3【解析】因为正方体的体积是棱长的立方,当体积变为原来的27倍时,则棱长变为原来的3倍.11.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B.12.若一个正数的平方根分别是和,则,这个正数是 .【答案】-1 9【解析】由于一个正数有两个平方根且互为相反数,所以,即,所以此正数为9.13.小东在学习了后,认为也成立,因此他认为一个化简过程:=是正确的. 你认为他的化简对吗?如果不对,请说明理由并改正.【答案】不正确,理由见解析【解析】解:不正确.因为只有正数有平方根,负数是没有平方根的,所以这一步是错误的.注意的前提条件是.正确的化简过程是:14.已知和︱8b-3︱互为相反数,求-27 的值.【答案】37【解析】解: 因为︱8b-3︱且和︱8b-3︱互为相反数,所以︱8b-3︱所以所以-27=64-27=37.15.估计的值在哪两个整数之间()A.75和77B.6和7C.7和8D.8和9【答案】D【解析】因为所以故选D.16.下列各数中,是无理数的是()A.﹣2B.0C.D.【答案】C【解析】无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.解:A、﹣2是有理数,不是无理数,故本选项错误;B、0是有理数,不是无理数,故本选项错误;C、是无理数,故本选项正确;D、是有理数,不是无理数,故本选项错误;故选C.点评:本题考查了对无理数的应用,注意:无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.17.下列命题中正确的是()A.两个无理数的和一定是无理数B.正数的平方根一定是正数C.开立方等于它本身的实数只有1D.负数的立方根是负数【答案】D【解析】根据立方根以及平方根的定义和无理数的加减运算分别判断得出即可.解:A、当两个无理数互为相反数时,和为0,故此选项错误;B、正数的平方根有两个,故此选项错误;C、开立方等于它本身的实数有1,﹣1,0,故此选项错误;D、负数的立方根是负数,此选项正确.故选:D.点评:此题主要考查了命题与定理,熟练掌握相关的法则是解题关键.18.若,则a=.【答案】4【解析】根据已知得出a=22,求出即可.解:∵=2,∴a=22=4.故答案为:4.点评:本题考查了算术平方根的应用,关键是能根据题意得出a=22.19.已知a2=1,|a|=﹣a,求的值.【答案】2【解析】根据已知求出a的值,代入求出即可.解:∵a2=1,∴a=±1,∵|a|=﹣a,∴a=﹣1,∴===2.点评:本题考查了算术平方根和二次根式的化简求值的应用,主要考查学生的计算能力.20.如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A.1B.2C.3D.4【答案】B【解析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.解:设两个正方形的边长是x、y(x<y),则x2=4,y2=9,x=2,y=3,则阴影部分的面积是(y﹣x)x=(3﹣2)×2=2,故选B.点评:本题考查了算术平方根性质的应用,主要考查学生的计算能力.21.化简:=_____。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.计算:(1)(2)【答案】(1)原式=﹣6;(2)原式=2x﹣x.【解析】(1)根据二次根式的乘法法则运算;(2)先把各二次根式化为最简二次根式,然后合并即可试题解析:(1)原式==﹣6;(2)原式=2+2x﹣x﹣2=2x﹣x.【考点】二次根式的混合运算2.下列式子中,是最简二次根式的是()A.B.C.D.【答案】B.【解析】A、=3,故A选项错误;B、是最简二次根式,故B选项正确;C、=2,不是最简二次根式,故C选项错误;D、=,不是最简二次根式,故D选项错误.故选B.【考点】最简二次根式.3.化简后的结果是()A.B.C.D.【答案】B.【解析】.故选B.【考点】二次根式的化简.4.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.5.计算:______.【答案】13【解析】6.在实数,,,,中,无理数有()A.1个B.2个C.3个D.4个【答案】A【解析】因为所以在实数,0,,,中,有理数有,0,,,只有是无理数.7.阅读下面问题:;.试求:(1)的值;(2)(为正整数)的值.(3)的值.【答案】(1)(2)(3)9【解析】解:(1)=.(2).(3)8.在3.14、、、、、0.2020020002这六个数中,无理数有()A.1个B.2个C.3个D.4个【答案】B.【解析】无理数即无限不循环小数,显然3.14、、0.2020020002这三个数是有限小数,不是无理数;而是无理数,所以也是,毫无疑问是无理数,的结果是一个无限循环小数,所以不是无理数,因此无理数有2个,即:故选B.【考点】无理数的定义.9.(1)已知:(x+5)2=16,求x;(2)计算:【答案】(1),;(2).【解析】本题考查了平方根、立方根的定义及性质和绝对值的性质.(1)根据平方根的定义,先得出:,再分别计算出的值;(2)先利用平方根、立方根的性质及绝对值的性质分别计算出每个式子的值,最后相加.试题解析:解:(1)∵∴∴,原式【考点】1、平方根的定义及性质;2、立方根的定义及性质;3、绝对值的性质.10.在数轴上与表示的点距离最近的整数点所表示的数是 .【答案】2【解析】本题主要考查了实数与数轴的对应关系,解题应看这个无理数的被开方数在哪两个能开得尽方的数的被开方数之间,比较无理数的被开方数和这两个能开得尽方的数的被开方数的距离,进而求解.先利用估算法找到与的点两边的两个最近整数点,再比较这两个点与的大小即可解决问题.因为,所以左右两边的整数点是1和2,又因为3与4的距离最近,所以与的点的距离最近的整数点所表示的数是2,故填2.【考点】实数与数轴.11.若(x-3)2+=0,则x-y= .【答案】5.【解析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.解:根据题意得,x-3=0,y+2=0,解得x=3,y=-2,x-y=3-(-2)=3+2=5.故答案为:5.【考点】1.非负数的性质:2.算术平方根;3.偶次方.12.估算的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【答案】C.【解析】因为5<<6,所以3<<4.故选C.【考点】估算无理数的大小.13.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较大14.观察各数:,,,.其中最小数与最大数的和为(结论化简);【答案】【解析】依题意:;;;,易知最大数为,最小数为。

二次根式试卷(含答案)

二次根式试卷(含答案)

初中数学二次根式练习一.选择题(共 小题).( 宜昌)若式子在实数范围内有意义,则 的取值范围是()...>.<.( 宜宾)二次根式的值是().﹣.或﹣...( 新疆)下列各式计算正确的是()..(﹣ )﹣ ﹣.. .( 泸州)设实数 , 在数轴上对应的位置如图所示,化简的结果是().﹣..﹣..( 凉山州)已知,则 的值为().﹣... .( 襄阳)函数 的自变量 的取值范围是().>.﹣.>﹣.﹣ .( 济宁)已知 为实数,那么等于()﹣ ﹣.... .( 荆门)若 ( ) ,则 ﹣ 的值为().﹣....( 泰州)若代数式 的值为 ,则 的取值范围是()....或.( 鄂州)若 < ,且常数 满足条件,则化简所得的结果是()..﹣.﹣.﹣二.填空题(共 小题).( 盘锦)若式子有意义,则 的取值范围是 ..( 自贡)函数中,自变量 的取值范围是 . .( 孝感)使是整数的最小正整数 ..( 黔东南州)把根号外的因式移到根号内后,其结果是 ..( 娄底)若 ﹣ ,则 ..( 沈阳)已知 ,化简 . .( 肇庆)计算的结果是 ..( 大连)计算:()() ..( 厦门)计算:() ()﹣ ..( 河池)化简: ..( 威海)计算的结果是 .三.解答题(共 小题).( 海南)先化简,后求值:( ) ﹣ ( )﹣ ,其中 , ﹣ ..计算题:( );.计算:(﹣) .计算: .计算: ..( 鄂尔多斯)( )计算﹣ ﹣()﹣ ( ﹣) ;( )先化简,再求值: ( ),其中 ﹣ , ..( 仙桃)先化简,再求值:,其中 ﹣..( 绵阳)( )计算:( ﹣ ) ﹣(﹣);( )化简:( ) ( ﹣)已知a 是34-的小数部分,那么代数式⎪⎭⎫ ⎝⎛-•⎪⎪⎭⎫ ⎝⎛++++-+a a a a a a a a a 42442222的值为.有一道题:“先化简,再求值:41442222-÷⎪⎭⎫⎝⎛-++-x x x x x ,其中3-=x .”小玲做题时把“3-=x ”错钞成了“3=x ”,但她的计算结果是正确的,请你解释这是怎么回事.参考答案与试题解析一.选择题(共 小题).( 宜昌)若式子在实数范围内有意义,则 的取值范围是()...>.<考点:二次根式有意义的条件.分析:二次根式有意义:被开方数是非负数.解答:解:由题意,得 ﹣ ,解得, .故选 .点评:考查了二次根式的意义和性质.概念:式子( )叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义..( 宜宾)二次根式的值是().﹣.或﹣..考点:二次根式的性质与化简.专题:计算题.分析:本题考查二次根式的化简,.解答:解: ﹣(﹣ ) .故选 .点评:本题考查了根据二次根式的意义化简.二次根式化简规律:当 时, ;当 时, ﹣ ..( 新疆)下列各式计算正确的是()..(﹣ )﹣ ﹣..考点:二次根式的加减法;零指数幂;负整数指数幂;二次根式的性质与化简.分析:根据二次根式的加减、负整数指数幂、零指数幂及二次根式的化简,分别进行各选项的判断,即可得出答案.解答:解: 、﹣ ﹣ ﹣,运算正确,故本选项正确;、(﹣ )﹣ ,原式运算错误,故本选项错误;、 ,当 时成立,没有限制 的取值范围,故本选项错误;、 ,原式运算错误,故本选项错误;故选 .点评:本题考查了二次根式的加减、负整数指数幂、零指数幂及二次根式的化简,解答本题的关键是掌握各部分的运算法则..( 泸州)设实数 , 在数轴上对应的位置如图所示,化简的结果是().﹣..﹣.考点:二次根式的性质与化简;实数与数轴.分析:根据数轴上 , 的值得出 , 的符号, < , > ,以及 > ,即可化简求值.解答:解:根据数轴上 , 的值得出 , 的符号, < , > , > ,﹣ ,故选: .点评:此题主要考查了二次根式的化简以及实数与数轴,根据数轴得出 , 的符号是解决问题的关键. .( 凉山州)已知,则 的值为().﹣...考点:二次根式有意义的条件.分析:首先根据二次根式有意义的条件求出 的值,然后代入式子求出 的值,最后求出 的值.解答:解:要使有意义,则,解得 ,故 ﹣ ,(﹣ ) ﹣ .故选 .点评:本题主要考查二次根式有意义的条件,解答本题的关键是求出 和 的值,本题难度一般. .( 襄阳)函数 的自变量 的取值范围是(). >.﹣.>﹣.﹣考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于 ,分母不等于 ,可求解.解答:解:根据题意得: > ,解得, >﹣故选 .点评:函数自变量的范围一般从三个方面考虑:( )当函数表达式是整式时,自变量可取全体实数;( )当函数表达式是分式时,考虑分式的分母不能为 ;( )当函数表达式是二次根式时,被开方数非负..( 济宁)已知 为实数,那么等于()..﹣.﹣.考点:二次根式的性质与化简.分析:根据非负数的性质,只有 时,有意义,可求根式的值.解答:解:根据非负数的性质 ,根据二次根式的意义,﹣ ,故只有 时,有意义,所以, .故选 .点评:注意:平方数和算术平方根都是非负数,这是解答此题的关键. .( 荆门)若 ( ) ,则 ﹣ 的值为().﹣...考点:二次根式有意义的条件.分析:先根据二次根式的性质,被开方数大于或等于 ,可求出 、 的值,再代入代数式即可.解答:解: ( ) 有意义,﹣ 且 ﹣ ,, ﹣ ,﹣ ﹣(﹣ ) .故选 .点评:本题主要考查了二次根式的意义和性质:概念:式子( )叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义..( 泰州)若代数式 的值为 ,则 的取值范围是()....或考点:二次根式的性质与化简.分析:若代数式 的值为 ,即( ﹣ )与( ﹣ )同为非正数.解答:解:依题意,得 ﹣ ﹣ ﹣ ﹣ ,由结果可知( ﹣ ) ,且( ﹣ ) ,解得 .故选 .点评:本题考查了根据二次根式的意义与化简.二次根式规律总结:当 时, ;当 时, ﹣ ..( 鄂州)若 < ,且常数 满足条件,则化简所得的结果是()..﹣.﹣.﹣考点:二次根式的性质与化简;分式的值为零的条件.分析:利用绝对值和分式的性质,先求 值,再对所求式子化简.解答:解:则 ﹣ ,且 ﹣ ( ﹣ )( )解得 ﹣ ,< ,﹣ > > ,原式 ﹣ ﹣ ﹣ ﹣ ﹣ ﹣故选 .点评:本题考查了二次根式的化简,注意二次根式、绝对值的结果为非负数.二.填空题(共 小题).( 盘锦)若式子有意义,则 的取值范围是 ﹣ 且 .考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式及分式有意义的条件解答即可.解答:解:根据二次根式的性质可知: ,即 ﹣ ,又因为分式的分母不能为 ,所以 的取值范围是 ﹣ 且 .点评:此题主要考查了二次根式的意义和性质:概念:式子( )叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义;当分母中含字母时,还要考虑分母不等于零..( 自贡)函数中,自变量 的取值范围是 且 .考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于 ,可知 ﹣ ;分母不等于 ,可知: ﹣ ,则可以求出自变量 的取值范围.解答:解:根据题意得:解得: 且 .点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:( )当函数表达式是整式时,自变量可取全体实数;( )当函数表达式是分式时,考虑分式的分母不能为 ;( )当函数表达式是二次根式时,被开方数为非负数..( 眉山)直线 ( ﹣ ) ﹣ 在直角坐标系中的图象如图所示,化简:.考点:一次函数图象与系数的关系;二次根式的性质与化简.专题:压轴题.分先根据图象判断出 、 的符号,再根据绝对值的性质去掉绝对值符号即可.析:解解:根据图象可知直线 ( ﹣ ) ﹣ 经过第二、三、四象限,答:所以 ﹣ < , ﹣ < ,所以 > , < ,所以 ﹣ < , ﹣ > , ﹣ > ,所以 ﹣ ﹣ ﹣ ﹣( ﹣ ) ﹣ ﹣ ﹣ .故答案为 .点主要考查了一次函数的图象性质及绝对值的性质,要掌握它的性质才能灵活解题.评:.( 孝感)使是整数的最小正整数 .二次根式的性质与化简.考点:分先将所给二次根式化为最简二次根式,然后再判断 的最小正整数值.析:解解: ,由于是整数,所以 的最小正整数值是 .答:解答此题的关键是能够正确的对二次根式进行化简.点评:.( 黔东南州)把根号外的因式移到根号内后,其结果是 ﹣.考二次根式的性质与化简.点:常规题型.专题:分由题意得, ﹣ > ,则 ﹣ < ,那么此根式为负,把负号留在根号外, ﹣ 平方后,移到析:根号内,约分即可.解解:由题意得, ﹣ > ,则 ﹣ < ,答:﹣.故答案为:﹣.点此题主要考查二次根式的性质,二次根式有意义的条件是被开方数是非负数,还要考虑分母不为 这评:个条件..( 娄底)若 ﹣ ,则 < .考二次根式的性质与化简.点:分根据已知变形得 ﹣ ,且分母 ,由二次根式的性质判断 的符号.析:解答:解:由 ﹣ ,得 ﹣ ,且分母 ,< .本题主要考查了开平方的性质,及分式运算符号的取法.点评:.( 沈阳)已知 ,化简 ﹣ .二次根式的性质与化简.考点:分根据二次根式的性质化简以及运用完全平方公式.析:解解: ,答:﹣ , ﹣ <原式 ﹣﹣ ﹣ ﹣﹣ ﹣( ﹣ ) ﹣ .点应把被开方数整理成完全平方公式的形式,再利用 进行化简.需注意二次根式的结果一定评:为非负数..( 肇庆)计算的结果是 .考二次根式的乘除法.点:专计算题.题:分根据二次根式乘法、商的算术平方根等概念分别判断.析:解解:原式答:.故答案为 .本题考查了二次根式的乘除法,正确理解二次根式乘法、商的算术平方根等概念是解答问题的关键.点评:.( 大连)计算:()() .考二次根式的乘除法;平方差公式.点:直接利用平方差公式解题即可.分析:解解:()() () ﹣ ﹣ .答:点本题考查学生利用平方差公式进行实数的运算能力,既要掌握数学中常用的平方差公式 ﹣ 评:( )( ﹣ ),还要掌握无理数乘方的运算规律..( 厦门)计算:() ()﹣ .考分母有理化;零指数幂;负整数指数幂.点:分按照实数的运算法则依次计算,注意() ,()﹣ .考查知识点:负指数幂、零指数析:幂、二次根式的化简.解解:() ()﹣ .答:点传统的小杂烩计算题,涉及知识:负指数为正指数的倒数;任何非 数的 次幂等于 ;二次根式的评:化简..( 河池)化简: .分母有理化.考点:本题只需将原式分母有理化即可.分析:解解: .答:点本题考查的是二次根式的分母有理化,找出分母的有理化因式是解答此类问题的关键.评:.( 威海)计算的结果是 .考二次根式的混合运算.点:计算题.专题:本题只需将二次根式化为最简,然后合并同类二次根式,最后进行二次根式的除法运算即可.分析:解解:原式 ( ﹣ ) .答:故答案为: .点本题考查二次根式的混合运算,难度不大,解答此类题目时往往要先将二次根式化为最简.评:三.解答题(共 小题).( 海南)先化简,后求值:( ) ﹣ ( )﹣ ,其中 , ﹣ .考整式的混合运算 化简求值;二次根式的乘除法.点:先运用完全平方公式、单项式与多项式的乘法去括号,再合并同类项,最后求值.分析:解解:( ) ﹣ ( )﹣ ,答:﹣ ﹣ ﹣ ,﹣ ,当 , ﹣ 时,原式 ﹣ ( )(﹣ ) ﹣ ( ﹣ ) ﹣ ﹣ .利用公式可以适当简化一些式子的计算.点评:.计算题:( );( ).考二次根式的乘除法.点:分析:( )根据二次根式的乘除法法则依次进行计算即可;( )可运用平方差公式进行计算.解答:解:( )原式 ;( )原式 ( ) ﹣() ﹣ .点评:一般情况下,在进行二次根式计算时,不是最简二次根式的要化为最简二次根式.能利用公式的要利用公式,要看具体情况而定..计算:(﹣)考点:二次根式的乘除法;完全平方公式.分析:利用完全平方公式及二次根式的乘法进行计算即可,解答:解:原式 () () ﹣﹣﹣ .点评:本题主要考查的是二次根式的乘法运算.涉及的知识点有完全平方公式的应用. .计算:.考点:二次根式的乘除法.分析:根据乘法法则分别进行计算;先把除法转化成乘法,再分别进行相乘即可求出答案;解答:解: ;点评:主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则 . .计算: .考点:二次根式的乘除法.分析:首先把二次根式化为最简二次根式,再把除法化成乘法,然后约分计算即可.解答:解:原式 ,,.点评:此题主要考查了二次根式的乘除法,关键是正确把二次根式进行化简..( 鄂尔多斯)( )计算﹣ ﹣()﹣ ( ﹣) ;( )先化简,再求值: ( ),其中 ﹣ , .考点:分式的化简求值;零指数幂;负整数指数幂;分母有理化.专题:计算题.分析:( )涉及到立方根、负整数指数幂、零指数幂三个知识点,可分别针对各知识点进行计算,然后按实数的运算规则进行求解;( )这道求代数式值的题目,不应考虑把 、 的值直接代入,通常做法是先把代数式化简,然后再代入求值.解答:解:( )原式 ﹣ ﹣ ﹣ ﹣ ;( )原式 ;当 ﹣ , 时,原式 .点评:本题考查了实数的运算及分式的化简计算.在分式化简过程中,首先要弄清楚运算顺序,先去括号,再进行分式的乘除..( 仙桃)先化简,再求值:,其中 ﹣.考点:分式的化简求值;分母有理化.分析:先把分式化简:先除后减,做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分;做减法运算时,应是同分母,可以直接通分.最后把数代入求值.解答:解:原式;当 ﹣时,原式 ﹣.考查分式的化简与求值,主要的知识点是因式分解、通分、约分等.点评:.( 绵阳)( )计算:( ﹣ ) ﹣ (﹣);( )化简:( ) ( ﹣)考分式的混合运算;零指数幂;二次根式的混合运算.点:分( )首先计算 次方,以及开方运算,去掉绝对值符号,化简二次根式,然后合并同类二次根式即析:可求解;( )首先计算括号内的分式,然后进行同分母的分式的加法运算即可.解解:( )原式 ﹣ ﹣ (﹣)答:﹣( ﹣) (﹣)﹣;( )原式.点本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.评:。

知识点089:二次根式的定义(解答题)

知识点089:二次根式的定义(解答题)

一、填空题(共7小题)1、用代数式表示:面积为S的圆的半径为r=.考点:二次根式的定义。

专题:计算题。

分析:圆的面积公式为S=πr2,根据公式即可求解.解答:解:因为S=πr2,所以r=.点评:本题考查了二次根式的定义,解答是根据圆的面积公式来推导半径.需注意结果是两种情况,但半径为正值.2、已知是整数,则n的最小整数值是0 .考点:二次根式的定义。

专题:计算题。

分析:因为是整数,且=4,则是完全平方数,然后求满足条件的最小正整数n.解答:解:∵且=4,且是整数,∴是整数,∴2n+1是完全平方数;∵2n+1≥0,∴n的最小正整数值是0.故答案为:0.点评:主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.3、下列各式①②③④⑤⑥⑦(其中a<0)中,其中二次根式有 5 个.考点:二次根式的定义。

分析:易得这几个式子的根指数都是2,找到被开方数为非负数的式子的个数即可.解答:解:被开方数一定是非负数的式子有②④⑤⑥⑦共5个,故答案为5.点评:考查二次根式的意义;用到的知识点为:(a≥0)是二次根式.4、若是整数,则正整数a的最小值是10 .考点:二次根式的定义。

专题:计算题。

分析:将化简为5,而是整数,可求正整数a的最小值.解答:解:∵=5,而是整数,∴正整数a的最小值为10.故答案为:10.点评:本题考查了二次根式的定义,二次根式的化简.关键是通过对二次根式化简求a的最小整数值.5、使是整数的最小自然数n= 4 .考点:二次根式的定义。

专题:计算题。

分析:因为是整数,则12+n是完全平方数,满足条件的最小正整数n为4.解答:解:∵是整数,则12+n是完全平方数,∴n的最小自然数为4.故答案是:4.点评:本题主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.6、已知是整数,则满足条件的最小正整数n为 5 .考点:二次根式的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二 次 根 式
1.1 二次根式:
2. 当__________时,212x x ++-有意义。

3. 若
11
m m -+
+有意义,则m 的取值范围是 。

4. 当__________x 时,
()
2
1x -是二次根式。

5. 在实数范围内分解因式:4
2
9__________,222__________x x x -=-+=。

7. 已知()
2
22x x -=-,则x 的取值范围是 。

8. 化简:
()2211x x x -+≤的结果是 。

9. 当≤x ≤5时,
()
2
15_____________x x -+-=。

10. 把1
a a
-
的根号外的因式移到根号内等于 。

11. 使等式()()1111x x x x +-=
-∙+成立的条件是 。

12. 若
1a b -+与24a b ++互为相反数,则()
2005
_____________a b -=。

13. 在式子()()()230,2,12,20,3,1,2
x x y y x x x x ≤+=--≥+中,二次根式有( )
A. 2个
B. 3个
C. 4个
D. 5个 15. 若2≤a ≤3,则
()()22
23a a ---等于( )
A. 52a -
B. 12a -
C. 25a -
D. 21a -
18. 能使等式
2
2
x
x x x =--成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. x ≤2 D. 2x ≥
19. 计算:
()
()
2
2
2112a a -+
-的值是( )
A. 0
B. 42a -
C. 24a -
D. 24a -或42a - 21. 若2440x y y y -+-+=,求xy 的值。

25. 已知,a b 为实数,且()1110a b b +---=,求2005
2006a b -的值。

1.2 二次根式的乘除 1. 当0a ≤,b ≤0时,3__________ab =。

2. 若
2
2m n +-和
3223m n -+都是最简二次根式,则_____,______m n ==。

3. 计算:23________;369__________⨯=⨯=。

4. 计算:
(
)
483273_____________-÷=。

5. 长方形的宽为3,面积为26,则长方形的长为 。

6. 下列各式不是最简二次根式的是( ) A.
21a + B. 21x + C.
24
b D. 0.1y 7. 已知xy ≥0,化简二次根式2
y x x -的正确结果为( )
A. y
B. y -
C. y -
D. y --
8. 对于所有实数,a b ,下列等式总能成立的是( )
A.
(
)
2
a b
a b +=+ B. 22a b a b +=+ C.
()2
2
222a
b a b +=+ D.
()
2
a b a b +=+
10. 对于二次根式2
9x +,以下说法中不正确的是( )
A. 它是一个非负数
B. 它是一个无理数
C. 它是最简二次根式
D. 它的最小值为3
11. 计算:
()1.
232⨯ ()212
5.
121335
÷⨯ ()53236.3
2b ab a b b a ⎛⎫
⋅-÷ ⎪⎝⎭
21.3 二次根式的加减 1. 下列根式中,与3是同类二次根式的是( )
A.
24 B. 12 C. 32
D. 18
2. 下面说法正确的是( )
A. 被开方数相同的二次根式一定是同类二次根式
B. 8与80是同类二次根式
C. 2与
1
50
不是同类二次根式 D. 同类二次根式是根指数为2的根式 3. 与3a b 不是同类二次根式的是( )
A.
2ab B. b
a C. 1ab
D. 3b a
4. 下列根式中,是最简二次根式的是( ) A.
0.2b
B.
1212a b - C. 22
x y - D.
2
5ab
6. 若2
182
102x x x x
++=,则x 的值等于( ) A. 4 B. 2± C. 2 D. 4± 7. 若
3的整数部分为x ,小数部分为y ,则3x y -的值是( )
A. 333-
B. 3
C. 1
D. 3
8. 下列式子中正确的是( ) A. 527+=
B. 22a b a b -=-
C. ()a x b x a b x -=-
D. 6834322
+=+=+ 10.若最简二次根式
1
25a a ++与34b a +是同类二次根式,则____,____a b ==。

11. 一个三角形的三边长分别为8,12,18cm cm cm ,则它的周长是 cm 。

14. 已知33
x =
,则2
1________x x -+=。

15. (
)
(
)
2000
2001
32
32
______________-∙
+=。

16. 计算: ⑴. 112
21231548333
+--
⑵.()
1485423313⎛
⎫-÷+-+ ⎪⎝

⑶.
()()()2
7437433
51
+---
19. 已知:1110a a
+=+,求22
1a a +的值。

20. 已知:,x y 为实数,且
113y x x ≤-+-+,
化简:23816y y y ---+。

21. 已知()1
1
039
32
2++=+-+-y x x x y x ,求
的值。

答案:
21.1 二次根式: 1. 4x ≥; 2. 1
22
x -≤

; 3. 01m m ≤≠-且; 4. 任意实数; 5. ()()()()2
2
333;2
x x x x ++--; 6. 0x ≥;7. 2x ≤; 8. 1x -;
9. 4; 10. a --; 11. 1x ≥; 12. -1;
13——20:A C C A B C D B 21. 4; 22. 1
2
a =-
,最小值为1; 23. ()()()
32361.,2.1xy x x
x x x -+;
24. 5; 25. -2
21.2 二次根式的乘除:
1. b ab -;
2. 1、2;
3. 18;
4. -5;
5. 2.83; 6——10: D D C A B
11.
()()()()()()222
21.6,2.15,3.20,4.,5.1,6.x a b ab b a b ab --;
12. ()()()2
1,2.,3.0ab ab x y -; 13. ()()1.5,2.1x ---
21.3 二次根式的加减: 1——8:B A A C C C C C 9.
8,18; 10. 1、1; 11. ()5223
+; 12. 1; 13. 10;
14. 43-
; 15. 32+;
16. ()()()()3
1.23,
2.4362,
3.4565,
4.42
-+-+; 17. ()()()()
()21.4,2.2,3.
,4.1x y b y x
-+-; 18. 5; 19. 9210+; 20. -1; 21. 2。

相关文档
最新文档