铁芯损耗中的磁滞损耗和涡流损耗的区分

铁芯损耗中的磁滞损耗和涡流损耗的区分
铁芯损耗中的磁滞损耗和涡流损耗的区分

1

变压器铁芯损耗中的磁滞损耗和涡流损耗的区分

(盐城师范学院, 江苏 盐城 224002)

[摘要] 本文介绍了用测试手段区分变压器铁芯损耗中的磁滞损耗和涡流损耗的基本方法,着重阐述了测试原理,测试装置和测试方法以及测试数据处理方法.

[Summary] The text emphatically expounded testing principle, testing device, testing method and the method of dealing with testing data. This article introduced the basic method of distinguishing the magnetic resistance wastage and eddy current wastage of transformer core wastage by testing.

关键词 磁滞损耗 涡流损耗 区分方法

0 引言

在变压器铁芯损耗中包含着磁带损耗和涡流损耗,即:()()()c h FC P P P 涡流损耗磁滞损耗铁损+=

通常的电机测试(如变压器铜铁损的测量)仅是测出总的铁损FC P ,而不能进一步区分出其中的磁滞损耗分量和涡流损耗分量。

本文将简要地介绍一下我们用测试的方法来区分铁芯损耗中的磁带损耗和涡流损耗测试原理,采用测试装置,设计的测试方法以及测试结果的验证方法。

1 测试原理

在通常情况下,铁芯损耗的计算公式为:

V B f V fB P P P m

c m

h c a FC 22

2

σσ+=+= (1)

上式是一经验公式,式中h σ,c σ均为与铁芯材料性质有关的系数,f 为电源频率,m B 为铁芯中磁感应强度的最大值,V 为铁芯材料的体积。

令(1)式中的A V B m

h =2

σ,B V B m

c =2σ,得:

2Bf Af P Fe += (2) 可见,当维持m B 不变时,A 、B 均与频率无关的常数。则有:

Bf A f

P FC

+= (3)

依据(3)式,在中心频率为50Hz 附近取一系列不同的频率值,分别测出其对应的Fe P 值,采用线性回归法对测试数据进行处理,即可得到(3)

式中的两个常数A 和B 。由Af P h =和2

Bf

P c =即可区分出对应于某一f 值的Fe P 中的h P 分量和

c P 分量。

2 测试装置

1.被测样品:TB 单相变压器。(原边额定电压为220伏,副边为36伏。原边绕组匝数为1000匝,副边绕组匝数为180匝,额定容量为500V A 。)

2.变频电源:SDF-1型直流电动同步发电机组及KGT-1型可控调速器。

3.频率表:Hz D ?3型频率表。

4.功率表:W D ?34型低功率因数瓦特表。测试采用该表的300伏电压档和0.5安电流档。

5.电压表:V D ?26型电压表及MF-10万用表。本次测试采用上述两表的300伏档和50伏档,分别用于测量测试电路中的1U 值和2U 值。

6.电流表:A D ?26型电流表,本次测试采用该表的0.5安档。

3 测试方法

1. 实验装置的电路原理图如下:

2. 在测试中,在改变f 值时应始终保持m B 值不变。

2

由公式:f

U

k f U B z ws m ==44.42可见,

要想在保持m B 值为定值的条件下来改变f 值,则应通过保持f

U 2

值不变的方法来实现。当每调整

一次f 值后,应适当地调整变频电源的电压输出,使2U 值与f 值相适应。

3. 为了使电机的f ,U 有较大的调整余地,可采用电机的两相线输出作电源。

4. 应扣除变压器线圈的铜损。因为在功率表所显示的读数(表P )中包含着铁损(Fe P )和线圈铜损(0铜c P )

,故0铜表C Fe P p P ?=。测量铜损的具体方法是先用电桥测出变压器原边线圈的铜电阻

1r ,并记录每次随f 和2U 而改变的0I 值,由

12

00r

I P c =铜即可求出。

4 测试数据及计算方法

1. 实验数据: 2. 计算方法:

根据Bf A f

P Fe +=的形式,对上述数据用线

性回归法处理得:

()

()()J fi f n fi i P f i

P f A Fe i

Fe i 12

2

2210009.300.3505.17572700

.35005.1387583.25.17572?×=?××?×=

?????=∑∑∑∑∑

∑ ()

()

()

JS fi fi n fi

i P fi P n B Fe FeI 32

2

210862.100.3505.1757277583

.200.35005.1387?×=?××?×=

?????=∑∑∑∑∑ 由f Af P h 110009.3?×==及23210862.1f Bf p c ?×==,

即可很方便地求出这台被试变压器的对应于某个f 值的h P 值和c P 值。例如,当f=50Hz 时:

()W P h 05.15= ()W P c 66.4=

5 测试的可靠性

上述测试结果是可以得到验证的,验证的方

法之一可采用计算涡流损耗的理论公式来验算。由V b B f k P m f c 2

2223

4γ=

,分别测出式中的γ(钢片导电率),f k (波形系数,当电动势波形为正弦波时,f k =1.11),m B (铁芯中磁感应强度的最大值),b(钢片厚度),V (铁芯体积),f(电源频率),即可求出c P 值。

采用这种验证方法我们对前述测试结果进行了检验,结果证明两者是基本一致的。

根据上述原理和测试方法同样可以对三相电力变压器,各类有铁芯的电抗器、镇流器的Fe P 中的h P 和c P 值进行区分和定量的分析。

()Hz f

45.00 47.00 48.50 50.00 51.50 53.0099.00 ()W P Fe

17.39 18.15 18.99 19.67 20.43 21.33

22.19

电缆损耗计算公式

电缆损耗计算公式 如果从材料上计算,那需要的数据比较多,那不好算,而且理论与实际差别较大。嗯,是比较正常的。常规电缆是5-8%的损耗。一般常用计算损耗的方法,就是通过几个电表的示数加减计算的。因为理论与实际的误差是比较大的,线路老化,会造成线路电阻变大,损耗增大。7%的损耗,是正常的。还需要你再给出一些数据…如电阻率等… 185的铜线,长度200米,电 缆损耗是多少。 电缆线路损耗计算一条500米长的240铜电缆线路损耗怎么计。 首先要知道电阻: 截面1平方毫米长度1米的铜芯线在20摄氏度时电阻为0.018 欧,R=P*L/S(P电阻系数.L长度米.S截面平方毫米) 240平方毫米铜线、长度500米、电阻:0.0375欧姆假定电流100安培,导线两端的电压:稀有金属3.75伏。耗功率:37.5瓦。 急求电缆线电损耗的计算公式? 线路电能损耗计算方法A1 线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗 电量计算为:ΔA=3 Rt×10-3 (kW·h) (Al-1)Ijf = (A) (Al-2)式中ΔA——代表日损耗电量,kW·h;t——运行时间(对于代表日t=24),h;Ijf——均方根电流,A;R——线路电 阻,n;It——各正点时通过元件的负荷电流,A。当负荷曲线以三相有功功率、无功功率表示时:Ijf= = (A) (Al-3)式中Pt ——t时刻通过元件的三相有功功率,kW;Qt——t时刻通过 元件的三相无功功率,kvar;Ut——t时刻同端电压,kV。A2 当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流Ijf与平均电流 Ipj(代表日负荷电流平均值)的等效关系。 3*150+1*70电缆300米线路损耗如何计算 300*0.01=3米也就是说300米的主材消耗量是3米.如果工作量是300米的工程,那么造价时的主材应申请303米.但如果是300米的距离敷设电缆时,需考虑波形弯度,弛度和交叉的附加长度,那么就应该是(水平长度+垂直长度)*1.025+预留长度,算完得数后再乘以1.01就是主材的最后消耗量。 一般电缆的损耗怎样计算 理论上只能取个适当的系数,如金属1.01~1.02,非金属1.04~1.05。要确切的得称重收集数据并总结归纳可得。 电缆线用电损耗如何计算?如现用YJV22-3*150+1*70 电缆线。 电缆电阻的计算: 1、铜导线的电阻率为:0.0175hexun1 Ω·m, 根据公式:R=P*L/S(P电阻系数.L长度米.S截面平方毫米),电缆的电阻为:R=0.0175*260/70=0.065Ω; 2、根据用公式P=I2R计算功率损耗。

铁芯损耗中的磁滞损耗和涡流损耗的区分

1 变压器铁芯损耗中的磁滞损耗和涡流损耗的区分 (盐城师范学院, 江苏 盐城 224002) [摘要] 本文介绍了用测试手段区分变压器铁芯损耗中的磁滞损耗和涡流损耗的基本方法,着重阐述了测试原理,测试装置和测试方法以及测试数据处理方法. [Summary] The text emphatically expounded testing principle, testing device, testing method and the method of dealing with testing data. This article introduced the basic method of distinguishing the magnetic resistance wastage and eddy current wastage of transformer core wastage by testing. 关键词 磁滞损耗 涡流损耗 区分方法 0 引言 在变压器铁芯损耗中包含着磁带损耗和涡流损耗,即:()()()c h FC P P P 涡流损耗磁滞损耗铁损+= 通常的电机测试(如变压器铜铁损的测量)仅是测出总的铁损FC P ,而不能进一步区分出其中的磁滞损耗分量和涡流损耗分量。 本文将简要地介绍一下我们用测试的方法来区分铁芯损耗中的磁带损耗和涡流损耗测试原理,采用测试装置,设计的测试方法以及测试结果的验证方法。 1 测试原理 在通常情况下,铁芯损耗的计算公式为: V B f V fB P P P m c m h c a FC 22 2 σσ+=+= (1) 上式是一经验公式,式中h σ,c σ均为与铁芯材料性质有关的系数,f 为电源频率,m B 为铁芯中磁感应强度的最大值,V 为铁芯材料的体积。 令(1)式中的A V B m h =2 σ,B V B m c =2σ,得: 2Bf Af P Fe += (2) 可见,当维持m B 不变时,A 、B 均与频率无关的常数。则有: Bf A f P FC += (3) 依据(3)式,在中心频率为50Hz 附近取一系列不同的频率值,分别测出其对应的Fe P 值,采用线性回归法对测试数据进行处理,即可得到(3) 式中的两个常数A 和B 。由Af P h =和2 Bf P c =即可区分出对应于某一f 值的Fe P 中的h P 分量和 c P 分量。 2 测试装置 1.被测样品:TB 单相变压器。(原边额定电压为220伏,副边为36伏。原边绕组匝数为1000匝,副边绕组匝数为180匝,额定容量为500V A 。) 2.变频电源:SDF-1型直流电动同步发电机组及KGT-1型可控调速器。 3.频率表:Hz D ?3型频率表。 4.功率表:W D ?34型低功率因数瓦特表。测试采用该表的300伏电压档和0.5安电流档。 5.电压表:V D ?26型电压表及MF-10万用表。本次测试采用上述两表的300伏档和50伏档,分别用于测量测试电路中的1U 值和2U 值。 6.电流表:A D ?26型电流表,本次测试采用该表的0.5安档。 3 测试方法 1. 实验装置的电路原理图如下: 2. 在测试中,在改变f 值时应始终保持m B 值不变。

电机损耗计算

Power loss:这个名词,出现在11及之前的版本。指的是感应电流对应的铜耗。比如鼠笼式异步电机转子导条铜耗,永磁体涡流损耗等。在12及更高版本中,该名词已更名为Solidloss。 Solidloss:如上解释,出现在12及更高版本中,指的是大块导体中感应电流产生的铜耗。Coreloss:铁耗。指的是根据硅钢片厂商提供的损耗曲线,求得的铁耗。 Ohmic_loss:感应电流产生的损耗的密度分布。也就是Powerloss或Solidloss的密度。Stranded Loss R:电压源(非外电路中的)对应的绞线铜耗。 Stranded Loss:电流源,外电路中的电压源或电流源,对应的绞线铜耗。 铜耗问题,阐述如下。 铜耗分为2部分,一是主动导体产生的,比如异步和同步电机定子绕组;二是被动导体产生的,比如鼠龙式异步电机转子导条。主动导体一般是多股绞线(也就是stranded),被动导体一般是大块导体(solid)。它们分别对应stranded loss(R)和solid loss。 主动导体损耗:需要设置导体为stranded,并施加电压源,电流源或外电路。当施加的是电压源时,并且给定电机相电阻和端部漏电感(此处针对二维模型)值,则后处理中results/create transient report/retangular report/stranded loss R就是主动导体的损耗,比如异步或同步电机的定子铜耗。当施加的是电流源,外电路中的电压源或电流源时,后处理中results/create transient report/retangular report/stranded loss就是主动导体的损耗。建议选用电压源方法计算铜耗,因为电阻值是由用户指定的,而不是软件根据截面积和长度自动计算出来的,这样可以算得比较准确。 被动导体损耗:只需要给定被动导体的电导率,并且set eddy effect,则后处理中solidloss 即是被动导体的损耗,比如鼠龙式异步电机转子导条。这有点类似于涡流损耗的计算方法,因为涡流损耗和被动导体损耗,都是在非零电导率的导体上产生的。 以上方法,基于Ansoft maxwell 13.0.0及以上版本,并且适用于任何电机。 铁耗分析 对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。注意,B-P曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。 再谈一下什么情况下需要做涡流损耗分析。对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。以上两种情况需要考虑做涡流损耗分析。现以永磁电机为例,具体阐述。对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。

效率与损耗

损耗与效率 §1 概述 一、损耗与效率的关系 效率是电机的一个重要性能指标 ↑↑↓→↓↓∑耗材尺寸,,,:,δδB A p B A 效率高低取决→损耗大小p ∑→ 材料性能、绕组型式、电机结构等 高效电机就是设法降低电机的损耗、多用材料。 二、电机损耗分类 铁心中的基本损耗——主要是主磁场在铁心中交变产生的磁滞、涡流损耗 表面损耗:定转子开槽而引起的气隙磁导谐 波磁场在对方铁心表面产生的损耗 空载铁心中附加损耗 脉振损耗:定、转子开槽使对方齿中磁通因电机旋 损耗 转而变化所产生的损耗 电气损耗:工作电机在绕组铜中产生的损耗,包括接触损耗 负载时附加损耗:漏磁场包括谐波磁场在定、转子绕组中、铁心及结构件中引起的各 种损耗 机械损耗:通风损耗、轴承磨擦损耗、电刷和换向器(集电环)磨擦损耗 §2 基本铁耗 产生的原因:由主磁场在铁心内发生变化时所产生的 主磁场的变化:①交变磁化性质:变压器铁心、定转子齿中发生 ②旋转磁化性质:定、转子铁轭中发生的

一、磁滞损耗 1、磁滞损耗系数:单位质量铁磁物质内由交变磁化引起的磁滞损耗h p 2、磁滞损耗耗系数计算 在电机铁心内磁通密度T B 6.10.1≤≤时: 磁密振幅 交变磁化的频率下测在周波频率取决于材料性能的常数------=B f HZ fB p h h h h ) 50(2σσσ (h p 与f 、B 有关,与材料有关) 任意频率下: 2 50 B f p h h σ= 3、旋转磁化引起的磁滞损耗一般较交变磁化放大45-65%(轭磁密一般在1.0-1.5T ) 这在以后计算基本铁耗时用系数a k 考虑。 二、涡流损耗 1、产生的原因: 铁心中的磁场发生变化时,在铁心中感应电势,会产生电流,这电流即涡流。由它引起的损耗为涡流损耗。 2、涡流损耗系数计算 电阻率 钢片密度钢片厚度------??= =ρρπσσFe Fe Fe Fe e e e d d fB p 6) (222 任意频率下: 2)50 ( B f p e e σ= 涡流损耗系数e p 与B 、f 及材料厚度平方Fe ?成正比。 三、轭部及齿部的基本铁耗 1、钢的损耗系数(比损耗) 22)50 (50B f B f p p p e h e h Fe σσ+=+= 2、钢比损耗简便计算 3 .125010 )50 ( f B p p Fe = (瓦/公斤)

电力线路线损计算方法

电力线路线损计算方法 线路电能损耗计算方法 A1线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗电量计算为: ΔA=3Rt×10-3(kW?h)(Al-1) Ijf=(A)(Al-2) 式中ΔA——代表日损耗电量,kW?h; t——运行时间(对于代表日t=24),h; Ijf——均方根电流,A; R——线路电阻,n; It——各正点时通过元件的负荷电流,A。 当负荷曲线以三相有功功率、无功功率表示时: Ijf==(A)(Al-3) 式中Pt——t时刻通过元件的三相有功功率,kW; Qt——t时刻通过元件的三相无功功率,kvar; Ut——t时刻同端电压,kV。 A2当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流Ijf与平均电流Ipj(代表日负荷电流平均值)的等效关系为K(亦称负荷曲线形状系数),Ijf=KIpj,则代表日线路损耗电量为: ΔA=3K2Rt×10-3(kW?h)(A2-1) 系数K2应根据负荷曲线、平均负荷率f及最小负荷率α确定。 当f>0.5时,按直线变化的持续负荷曲线计算K2: K2=[α 1/3(1-α)2]/[1/2(1 α)]2(A2-2) 当f<0.5,且f>α时,按二阶梯持续负荷曲线计算K2: K2=[f(1 α)-α]/f2(A2-3) 式中f——代表日平均负荷率,f=Ipj/Imax,Imax为最大负荷电流值,Ipj为平均负荷电流值; α——代表日最小负荷率,α=Imin/Imax,Imin为最小负荷电流值。 A3当只具有最大电流的资料时,可采用均方根电流与最大电流的等效关系进行能耗计算,令均方根电流平方与最大电流的平方的比值为F(亦称损失因数),F=/,则代表日的损耗电量为: ΔA=3FRt×10-3(kW?h)(A3-1) 式中F——损失因数; Imax——代表日最大负荷电流,A。 F的取值根据负荷曲线、平均负荷率f和最小负荷率α确定。 当f>0.5时,按直线变化的持续负荷曲线计算F: F=α 1/3(1-α)2(A3-2) 当f<0.5,且f>α时,按二阶梯持续负荷曲线计算:

软磁材料的损耗(一)

软磁材料的损耗(一) 铁氧体磁性材料处在随时间变化的磁场中,材料所吸收的并以热形式耗散的能量,称为磁性材料的损耗。在低磁通密度下,铁氧体磁性材料的损耗可用损耗角正切 tgò来表示: (1-13) 式中。Rs=仅由磁芯引起的测量线圈的串联电阻(Ω)Ls =带磁芯线圈的串联电感(H) f = 频率(Hz) tgò 损耗角正切的倒数,称为品质因数,用 Q 表示 (1-14) 众所周知,铁氧体磁性材料的总损耗包括涡流损耗tgòe,磁滞损耗 tg òh 以及剩余损耗 tgòr,即: tgò=tgòe+tgòh+tgòr (1-15) 涡流损耗与材料电阻率,磁芯尺寸及使用频率有关,并可由下面近似公式表示: (1-16) 式中,ρ= 材料的电阻率,d = 磁芯尺寸,β=系数。对厚度为 d 的

薄片,β=6;对直径为 d 的园柱体,β=16。在弱磁场条件下,由磁滞现象引起的损耗角正切由下式表示: tgòh=ηBμeB (1-17) 式中,ηB = 材料磁滞常数(T1)B = 测量时磁芯中磁感应强度的峰值(T)μe = 磁芯的有效磁导率。总损耗减去涡流损耗和磁滞损耗的差值,称为剩余损耗。在低频弱磁场条件下,因为频率低,涡流损耗可以忽略,且弱磁场下磁滞损耗很小,所以实际测量磁芯损耗角正切实质上主要是剩余损耗值。当磁芯中有气隙存在时,磁芯损耗因子与有效磁导率μe 有关。在低磁通密度时,只要漏磁通可忽略,比损耗与气隙长度无关,即: (1-18) 因此,常用损耗角正切与相对磁导率之比,来表征磁性材料的优值,有时也用μ·Q 乘积来表示,因为tgò/μ=1/μQ。对于开路状态使用的磁芯(如棒形磁芯、螺纹磁场芯等),磁芯损耗用表观品质因数 Qapp 来表示: (1-19) 式中,Qe = 有磁芯线圈的品质因数;Q0 = 无磁芯线圈的品质因数;损耗的出现导致磁导率的下降。图 1-10 示出高磁导率 MnZn 铁氧体的初始磁导率和损耗与频率的关系。

变压器损耗计算公式

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是:

关于Ansoft maxwell中电机铁耗和涡流损耗计算的说明

考虑到最近很多人在问这个问题,因此专门整理出来,供新手参考。 先谈一下什么情况下需要做铁耗分析。对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。注意,B-P 曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。 再谈一下什么情况下需要做涡流损耗分析。对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。以上两种情况需要考虑做涡流损耗分析。现以永磁电机为例,具体阐述。对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。 以上方法,适用于Ansoft maxwell 13.0.0及以上版本,并适用于所有电机种类。 一、 MAXWELL分析磁场时,电气设备或电气元件(无论是电机还是变压器)主要包括两个部分,一个是励磁线圈,另外一个是磁性材料。所以总的损耗包括线圈损耗(也叫铜损)和磁芯损耗(也叫铁损)两个部分。其中线圈损耗还包括直流损耗(也就是直流电阻的损耗)和交流损耗(交流电流下的趋肤效应和邻近效应产生的损耗),这个交流损耗也叫做涡流损耗,在涡流场和瞬态场中可以通过设置EDDY EFFECTS来计算。而铁损只能在瞬态场中计算。铁损的计算,主要是由磁芯材料供应商提供的各种频率和工作磁感应强度下的测试数据为基础,使用STEINMETZ方程式,采用插值法得到的。这个铁损已经包含了磁芯的所有损耗,即:磁滞损耗,涡流损耗和剩余损耗。铁损的计算分两种,一种主要是软磁铁氧体(POWER FERRITE),另外一种主要是矽钢片(ELECTRICAL STEEL),两种计算公式不同。 二、 SOLIDLOSS(实体导体损耗)是指任何导体材料的损耗,既可以包含源电流,又可以有涡流电流。 SOLID CONDUCTOR(实体导体)又包含两种,一种是主动导体,即有外加电流的导体,另外一种 是被动导体,即没有外加电流。被动导体又有两种情况,短路和开路。定子和转子其实就是被动导体 ,当然有涡流存在,也就是一种SOLIDLOSS。其实应该还有一种导体损耗,DISPLACEMENT (位移电流),但是通常都很小,一般用于交变电场分析,磁场中很少用。 三、关于powerloss和coreloss

10KV电缆的线路损耗及电阻计算公式

10KV电缆的线路损耗及电阻计算公式 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不

Maxwell 铁耗计算和涡流损耗

Maxwell help文件 为Maxwell2D/3D的瞬态求解设置铁芯损耗 一、铁损定义(core loss definition) 铁损的计算属性定义(Calculating Properties for Core Loss(BP Curve) 要提取损耗特征的外特性(BP曲线),先在View/EditMaterial对话框中设置损耗类型(Core Loss Type)是硅钢片(Electrical Steel)还是铁氧体(Power Ferrite)。 以设置硅钢片为例。 1、点击Tools>Edit Configured Libraries>Materials. 或者,在左侧project的窗口中,往下拉会有一个文件夹名为definitions,点开加号,有个materials文件夹,右击,选择Edit All Libraries.,“Edit Libraries”对话框就会出现。 2、点击Add Material,“View/Edit Material”对话框会出现。 3、在“Core Loss Type”行,有个“Value”的框,单击,会弹出下拉菜单,可以拉下选择是硅钢片(Electrical Steel)还是铁氧体(Power Ferrite)。 其他的参数出现在“Core Loss Type”行的下面,例如硅钢片的Kh,Kc,Ke,and Kdc,功率铁氧体的Cm,X,Y,and Kdc。如果是硅钢片,对话框底部的“Calculate Properties for”下拉菜单也是可以使用的,通过它可以从外部引入制造厂商提供的铁损曲线等数据(Kh,Kc,Ke,and Kdc)确定损耗系数(Core Loss Coefficient)。 4、如果你选择的是硅钢片,按如下操作: ①从对话框底部的“Calculate Properties for”下拉菜单中选择损耗系数的确定方法(永磁铁permanent magnet、单一频率的铁损core loss at one frequency、多频率的铁损core loss versus frequency),然后会蹦出BP曲线对话框。 单一频率的损耗:点击图表上面的“Import from file.”可以直接导入BP曲线数据文件,但要“*。Tab”格式文件。如果纵横轴错了,可以点击“Swap X-Y Data”按钮,调换B轴和P 轴的数据,但是B轴和P轴的方向不变。或者直接在左侧的表格中填入对应的B值和P值,行不够了可以点击“Add Row Above”按钮,和“add row below”分别从上面和下面添加行,“append rows”是一口气加好几行,或者删除行“delete rows”。表下面的“frequency”表示当前的BP曲线是在什么频率下的性能。“Thickness”表示硅钢片的厚度,“conductivity”是电导率。点击“OK”确定。 多频率的损耗:打开对话框后左下方有个“Edit”窗口,是添加要设定BP曲线的频率的。分别加上几个频率,如1Hz和2Hz。每填写一个赫兹点一下“Add”按钮,就会把频率添加到上面的表格中。在相应的频率后面有“Edit dataset”按钮,点击可进入BP曲线编辑页面。与单一的相同,可以导入文件或者自己填写BP曲线数据。填完点击“OK”按钮。右侧的图中就会出现设定的BP曲线。在图标下面选择“select frequency”显示单一的左侧亮蓝色的频率下的BP曲线,选择“All frequencies”显示所有频率下的BP曲线。选择“original curve”则BP曲线的第一个点需要从0开始。选择“Regression Curve”则,图中不仅显示设定的BP曲线,还会附加一条BP值的增长趋势曲线。 ②确定BP曲线 ③在“Core Loss Unit”对话框里选择BP曲线的单位 ④输入频率Frequency、硅钢片质量密度Mass Density、导电率Conductivity、厚度Thickness 的值和单位。 Kh——滞后系数(Hysteresis Coefficient) Kc——经典涡流系数(Classical Eddy Coefficient) Ke——过量系数(Excess Coefficient) Kdc——考虑直流偏磁效应的系数

低压线路损失计算方法

1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为

Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不同,负载变化波动大,要起模拟真实情况,计算出某一各线路在某一时刻或某一段时间内的电能损失是很困难的。因为不仅要有详细的电网资料,还在有大量的运行资料。有些运行资料是很难取得的。另外,某一段时间的损失情况,不能真实反映长时间的损失变化,因为每个负载点的负载随时间、随季节发生变化。而且这样计算的结果只能用于事后的管理,而不能用于事前预测,所以在进行理论计算时,都要对计算方法和步骤进行简化。为简化计算,一般假设: (1)线路总电流按每个负载点配电变压器的容量占该线路配电变压器总容量的比例,分配到各个负载点上。 (2)每个负载点的功率因数cos 相同。 这样,就能把复杂的配电线路利用线路参数计算并简化成一个等值损耗电阻。这种方法叫等值电阻法。

永磁同步电机永磁体涡流损耗计算与研究解读

密级:内部高速电主轴永磁同步电机永 磁体涡流损耗计算研究 The calculation and analysis of high-speed spindle permanent magnet motor eddy current losses in the permanent magnet 学院:电气工程学院 专业班级:电气工程及其自动化0903班 学号: 学生姓名: 指导教师:(副教授) 2013 年 6 月

摘要 永磁同步电机是由永磁体建立励磁磁场的同步电机,电机结构较为简单,降低了加工和装配费用,提高了电机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电机的效率和功率密度。当外磁场发生变化时,永磁体就会产生涡流导致发热。因此,很有必要对转子永磁体内的涡流进行计算和分析,并采取相应的解决办法。 本文主要运用了有限元软件对高速电主轴永磁电机永磁体的涡流损耗进行分析,以得到永磁体涡流损耗的大小和分布规律,并研究永磁体涡流损耗的影响因素,从而为减小永磁体涡流损耗提供依据。 首先建立高速电主轴永磁电机有限元模型,对模型进行激励源加载和剖分,为涡流损耗的分析奠定基础;然后采用上述模型,计算得到永磁体内涡流损耗的大小和分布;分析正弦波供电和变频器供电下永磁体涡流损耗的特点;最后着重研究不同极槽数、转子磁路结构对永磁体涡流损耗的影响,提出减小涡流损耗的措施,为提高电机性能奠定基础。 针对永磁同步电机自身的特点,通过二维电磁场有限元方法分别求解了空载时和负载时电机永磁体内的涡流。采用了瞬态分析,根据瞬态计算出的数据绘出了涡流损耗波形,并得出永磁体内的涡流损耗分布图。最后通过分析波形得出了影响永磁体内涡流的因素以及应采取的措施。 关键词:永磁同步电机;永磁体;涡流损耗;有限元法 I

电机铁芯损耗曲线的拟合

电机铁芯损耗曲线的拟合 作者:池海钰 来源:《科技创新导报》2011年第15期 摘要:文章提出了在电机电磁设计中用公式计算铁芯损耗,这样在计算铁芯损耗的时候,省去了通过磁密查曲线的过程,根据计算得到的磁密,通过公式就可以直接得到,大大简化了编程及计算过程。 关键词:电机铁耗拟合曲线 中图分类号:TP2 文献标识码:A 文章编号:1674-098X(2011)05(c)-0116-01 概述 随着电机功率的提高,从电磁设计到机械加工,都具有很高的难度,众所周知,随着电机容量的增大,电磁负荷增加,电机的发热及冷却成为电机设计最为关心的问题。电机发热主要由铁芯产生的热量和绕组产生的热量。 1 铁心损耗的计算原理 铁耗是由交变磁场在铁心内产生的。目前工程上普遍采用的是由Bertotti等人首先提出的铁心损耗分离理论,它根据铁磁材料在交变磁场作用下产生损耗发热的机理不同,进而进行分离后分别考虑,最后叠加求得铁磁材料总损耗。因此,对导磁又导电的材料,根据 Bertotti铁耗分离理论,铁耗一般由3部分组成,即磁滞损耗、涡流损耗和附加损耗,如式(1)。 (1) 式中:式中,为单位重量铁心总损耗;为单位重量磁滞损耗;为单位重量涡流损耗;为单位重量附加损耗。 根据Steinmetz方程,磁滞损耗和附加损耗可以统称为Steinmetz损耗,可以用式(2)表示: (2) 式中,、和是取决于材料性能的常数,当时,表示不考虑附加损耗,只考虑钢片在工频下的损耗。 在一般电机的频率范围内,磁场在钢片上可以认为均匀分布的,涡流损耗可以通过解析方法计算得到,单位重量内的涡流损耗为 (3)

式中,为钢片的电阻率,为钢片的密度,为钢片的厚度。 由上式可知,涡流损耗系数与磁通密度、频率及材料厚度的平方成正比。在厚度一定的情况下, (4) 其中 (5) 一般情况下,附加损耗比较小,计算中不予考虑。因此,式(1)又可简化为 (6) 对电机中常用的硅钢薄板,当频率不是很高时,如工频或几百赫兹以下,铁耗可简化为: (7) 式中,为硅钢片在1T、50Hz情况下的单位重量的铁心损耗,一般由硅钢片制造厂商提供。 从以上分析可以看出,式(7)较简单,一般在工程上使用。式(6)是计算铁芯损耗较为准确的公式,但式中出现了、、和四个未知数。我们可以通过实验,在不同频率下测得这种硅钢片材料损耗的一系列曲线,然后用式(6)拟合出这条曲线,从而得到这四个未知参数的值。这样,计算铁芯损耗的时候,就可以省去通过磁密查曲线的过程,根据计算得到的磁密,通过式(6)就可以直接得到,大大简化了编程及计算过程。 2 损耗参数的计算 从式(6)可以看出,为确定各参数的值,需要一系列的铁芯损耗实验值作为已知条件拟合得到。根据数学理论可以知道,符合这些实验值的参数值有很多,为比较准确分离Steinmetz损耗和涡流损耗,需要不同频率、不同厚度时的铁损值做曲线拟合,拟合得到的参数值能比较正确地模拟铁芯损耗的实际情况。本文以M250-50硅钢片为例,介绍各损耗系数的求解方法。附表为 M250在厚度为0.5mm和0.35mm时的损耗曲线。 根据前面的分析,附表的数据应满足式(6),因此,根据附表就可以拟合出各个参数的值。本例采用专业的曲线拟合软件1stOpt进行数据拟合,需要做以下方面的工作: (1)定义s、f、B为自变量,P为因变量,、、和为参数,以式(6)作为拟合函数; (2)以实验测得的结果作为已知数据,如附表;

详解:集肤效应、邻近效应、边缘效应、涡流损耗

1.集肤效应 1.1 集肤效应的原理 图 1.1 表示了集肤效应的产生过程。图中给出的是载流导体纵向的剖面图,当导体流过电流(如图中箭头方向)时,由右手螺旋法则可知,产生的感应磁动势为逆时针方向,产生进入和离开剖面的磁力线。如果导体中的电流增加,则由于电磁感应效应,导体中产生如图所示方向的涡流。由图可知:涡流的方向加大了导体表面的电流,抵消了中心线电流,这样作用的结果是电流向导体表面聚集,故称为集肤效应。在此引进一个集肤深度〈skin depth 〉的概念,此深度的电流密度大小恰好为 表面电流密度大小的1/e 倍: 一般用集肤深度Δ来表示集肤效应,其表达式为: 其中:γ为导体的电导率,μ为导体的磁导率, f 为工作频率。 图 1.1. 集肤效应产生过程示意图 图 1.2. 高频导体电路密度分布图高频时的导体电流密度分布情形,大致如图 1.2 所示,由表面向中心处的电流密度逐渐减小。由上图及式 1.1 可知,当频率愈高时,临界深度将会愈小,结果造成等效阻值上升。因此在高频时,电阻大小随着频率而变的情形,就必须加以考虑进去。 1.2 影响及应用

在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使 用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用 方面,利用趋肤效应可以对金属进行表面淬火。 考虑到交流电的集肤效应,为了有效地利用导体材料和便于散热,发电厂的大电流母线常做成槽形 或菱形母线;另外,在高压输配电线路中,利用钢芯铝绞线代替铝绞线,这样既节省了铝导线,又 增加了导线的机械强度,这些都是利用了集肤效应这个原理。 集肤效应是在讯号线里最基本的失真作用过程之一,也有可能是最容意被忽略误解的。与一般讯号 线的夸大宣传所言 ,集肤效应并不会改变所有的高频讯号 ,并且不会造成任何相关动能的损失。 正好相 图 2.1 表示了邻近效应的产生过程。 A 、B 两导体流过相同方向的电流 IA 和 IB ,当电流按图中箭头 方向突增时,导体 A 产生的突变磁通 ΦA -B 在导体 B 中产生涡流,使其下表面的电流增大,上表面 的电流减少。同样导体 B 产生的突变磁通 ΦB -A 在导体 A 中产生涡流,使其上表面的电流增大,下 表面的电流减少。这个现象就是导体之间的邻近效应。 当流过导体的电流相同,导体之间的距离一定时,如果导体之间的相对面积不同,邻近效应使得导 体有效截面面积不同。研究表明 :导体的相对面积越大则导体有效截面越大,损耗相对较小。 图 2.2. 临近效应示意图 反,集肤效应会因传导体的不同成分,在传递高频讯号时有不连贯的现象。同样地,在陈旧的线束 传导体上,集肤效应助长讯号电流在多条线束上的交互跳动,对于声音造成刺耳的记号。 图 2.1. 临近效应产生过程示意 图

磁滞损耗分析

铁芯的涡流损耗分析 当交变磁力线从导电体中穿过时,导电体中就会产生感应电动势,在感应电动势的作用下,在导电体中就会产生回路电流使导体发热;这种由于交变磁力线穿过导体,并在导体中产生感应电动势和回路电流的现象,人们把它称为涡流,因为它产生的回路电流没有作为能量向外输出,而是损耗在自身的导体之中。开关电源变压器的涡流损耗在开关电源的总损耗中所占的比例很大,如何降低开关电源变压器的涡流损耗,是开关电源变压器或开关电源设计的一个重要内容。 开关电源变压器的涡流损耗在开关电源的总损耗中所占的比例很大,如何降低开关电源变压器的涡流损耗,是开关电源变压器或开关电源设计的一个重要内容。 变压器生产涡流损耗的原理是比较简单的,由于变压器铁芯除了是一种很好的导磁材料以外,同时它也属于一种导电体;当交变磁力线从导电体中穿过时,导电体中就会产生感应电动势,在感应电动势的作用下,在导电体中就会产生回路电流使导体发热;这种由于交变磁力线穿过导体,并在导体中产生感应电动势和回路电流的现象,人们把它称为涡流,因为它产生的回路电流没有作为能量向外输出,而是损耗在自身的导体之中。 单激式开关电源变压器的涡流损耗计算与双激式开关电源变压器的涡流损耗计算,在方法上是有区别的。但用于计算单激式开关电源变压器涡流损耗的方法,只需稍微变换,就可以用于对双激式开关变压器的涡流损耗进行计算。 例如,把双激式开关电源变压器的双极性输入电压,分别看成是两次极性不同的单极性输入电压,这样就可以实现对于双激式开关电源变压器涡流损耗的计算。因此,下面仅对单激式开关变压器的涡流损耗计算进行详细分析。 当有一个直流脉冲电压加到变压器初级线圈的两端时,在变压器初级线圈中就就有励磁电流通过,并在变压器铁芯中产生磁场强度H和磁通密度B,两者由下式决定:

电缆电路功率损耗计算

电缆电路功率损耗计算 公式: 电流等于电压除以电阻:I=U/R 功率等于电压与电流的乘积:P=U×I=U×U×I Db危化简大数字的计算,采用对数的方式进行缩小计算:db=10log p 电缆电阻等于电阻率与电缆长度的积再比上电缆的截面积 电阻率的计算公式为:ρ=RS/L ρ为电阻率----常用单位是Ω.m S 为横截面积----单位是㎡ R 为电阻值----单位是Ω L 是导线长度----单位是 M 电缆选择的计算顺序 例:允许损耗为 Xdb x=10log p 计算所损耗的功率 p (1)p=U×U/R 根据额定功率与额定电压计算负荷的等效电阻 (2)计算整个电路的电流 I=(p额—p负)/R负

(3)根据电流与损耗功率决定电缆电阻P=I×I×R (5) 根据电阻率与长度决定电缆截面积 ρ=RS/L 电阻率请询问电缆厂家 几种金属导体在20℃时的电阻率

已知电缆长度,功率,电压,需要多粗电缆 电压380V,电压降7%,则每相电压降=380×2= 功率30kw,电流约60A,线路每相电阻R=60=Ω 长度1000M,电阻 铝的电阻率是,则电缆截面S=1000×=131㎜2 铜的电阻率是,则电缆截面S=1000×=77㎜2 由于电机启动电流会很大,应选用150㎜2以上的铝缆或95㎜2以上的铜缆 电压降7%意味着线路损耗7%这个损耗实际上是很大的。如果每天使用8小时一月就会耗电500度, (农电规程中电一年就是6000度。 压380V的供电半径不得超过500米) 电缆选型表

基本含义:H—电话通信电缆 Y—实心聚氯乙烯或聚乙烯绝缘 YF—泡沫聚烯轻绝缘 YP—泡沫/实心皮聚烯轻绝缘 V—聚乙烯 A—涂塑铝带粘接屏蔽聚乙烯护套 C—自承式 T—石油膏填充 23—双层防腐钢带线包铠装聚乙烯外被层 33—单层细钢丝铠装聚乙烯外被层 43—单层粗钢丝铠装聚乙烯外被层 53—单层钢丝带皱纹纵包铠装聚乙烯外被层 553—双层钢带皱纹纵包铠装聚乙烯外被层

相关文档
最新文档