[推荐学习]2018版高考数学大一轮复习第五章平面向量复数5.3平面向量的数量积教师用书

合集下载

2018版高考数学文科北师大版一轮复习课件:第五章 平

2018版高考数学文科北师大版一轮复习课件:第五章 平
解析
关闭
答案
-13知识梳理 双基自测 自测点评
1
2
3
4
3.已知������������=a,������������=b,������������=c,������������=d,且四边形 ABCD 为平行四边形, 则( ) A.a-b+c-d=0 B.a-b+c+d=0 C.a+b-c-d=0 D.a+b+c+d=0
-11知识梳理 双基自测 自测点评
1
2
3
4
1.下列结论正确的画“√”,错误的画“×”. (1)向量与有向线段是一样的,因此可以用有向线段表示向量. ( )
(2)������������ + ������������ + ������������ = ������������. ( ) (3)若两个向量共线,则其方向必定相同或相反. ( ) (4)若向量 ������������与向量������������ 是共线向量,则A,B,C,D四点在一条直线 上. ( ) (5)若a∥b,b∥c,则a∥c. ( )
-7知识梳理 双基自测 自测点评
1
2
3
4
5
6
4.向量的线性运算
向量 定 运算

法则 (或几何意义 )



求两个向量 加法 和的运算
三角形法则
(1)交换 律:a+b=b+a (2)结合律: (a+b)+c= a+(b+c)
平行四边形法则
-8知识梳理 双基自测 自测点评
1
2
3
4
5
6
向量 定 义 法则 (或几何意义 ) 运算 向量 a 加上 b 的 相反 向量,叫 a 减法 与 b 的差 ,求两个 向量差的运算,叫 三角形法则 向量的减法 (1)|λa|=|λ|· |a| ; (2)当 λ>0 时,λ a 的方向 求实数 λ 与向量 与 a 的方向相同 ;当 数乘 a 的积的运算 λ<0 时,λa 的方向与 a 的方向相反 ;当 λ=0 时,λa=0

高考数学一轮复习 第五章 平面向量与复数5

高考数学一轮复习 第五章 平面向量与复数5

高考数学一轮复习 第五章 平面向量与复数5.3 平面向量的数量积考试要求 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a ||b |cos θ叫做a 与b的数量积,记作a ·b投影|a |cos θ叫做向量a 在b 方向上的投影|b |cos θ叫做向量b 在a方向上的投影几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论 符号表示 坐标表示模|a |=a ·a |a |=x 21+y 21夹角 cos θ=a ·b |a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0|a ·b |与|a ||b |的关系 |a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21x 22+y 22常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a·b )·c =a·(b·c ).( × ) 教材改编题1.(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( )B .a·b =b·c ,则a =cC .a·b =0⇒a =0或b =0D .(a +b )·(a -b )=|a |2-|b |2 答案 D2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________. 答案 -59解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0, 故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =______;a ·b =______. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0, a ·b =2×2+1×(-1)=3.(2)(2022·邹城模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →|=4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3,cos θ=23,则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫34AB →-AD → =12AB →·AD →-AD →2+316 AB →2 =12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3 B .-2 C .2 D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+t -32=1,解得t =3,所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos ∠DBM =|BM →|2=1. 思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________. 答案 -92解析 由已知可得(a +b +c )2 =a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=__________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°, 所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144=108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( ) A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=1,3·3,432+42=1525=35. 教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e 1,e 2是两个单位向量,且|e 1+e 2|=3,则|e 1-e 2|=________. 答案 1解析 由|e 1+e 2|=3,两边平方, 得e 21+2e 1·e 2+e 22=3.又e 1,e 2是单位向量, 所以2e 1·e 2=1,所以|e 1-e 2|2=e 21-2e 1·e 2+e 22=1, 所以|e 1-e 2|=1.思维升华 (1)求平面向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算; ②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解. (2)求平面向量的夹角的方法①定义法:cos θ=a·b |a ||b |,求解时应求出a ·b ,|a |,|b |的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b|=|a +b|(其中a ≠0,b ≠0).跟踪训练2 (1)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉等于( ) A.73 B.23 C.79 D.29答案 B解析 方法一 设a =(1,0),b =(0,1), 则c =(7,2), ∴cos 〈a ,c 〉=a ·c |a ||c |=73, ∴sin 〈a ,c 〉=23. 方法二 a ·c =a ·(7a +2b ) =7a 2+2a ·b =7, |c |=7a +2b2=7a 2+2b 2+214a ·b =7+2=3,∴cos 〈a ,c 〉=a ·c |a ||c |=71×3=73, ∴sin 〈a ,c 〉=23. (2)(2021·新高考全国Ⅰ改编)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则 ①|OP 1—→|=|OP 2—→|; ②|AP 1—→|=|AP 2—→|; ③OA →·OP 3—→=OP 1—→·OP 2—→; ④OA →·OP 1—→=OP 2—→·OP 3—→.以上结论正确的有________.(填序号) 答案 ①③解析 由题意可知, |OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+-sin β2=1,所以|OP 1—→|=|OP 2—→|,故①正确; 取α=π4,则P 1⎝⎛⎭⎫22,22,取β=5π4,则P 2⎝⎛⎭⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故②错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β), 所以OA →·OP 3—→=OP 1—→·OP 2—→,故③正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA →·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故④错误.题型三 平面向量的实际应用例5 (2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论不正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 B解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |221+cos θ.当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求: (1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2=12+2×1×6+22cos 45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ, 则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+1+32+2×1×1+3cos θ,解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+1+32-⎝⎛⎭⎪⎫6+2222×1×1+3=32, ∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10 km/h ,水流速度的大小为|ν2|=6 km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[]a +b2-a -b2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b , 则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线, 则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,P A →·PB →有最小值,即P A →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C. 2 D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c , M 为AB 的中点, 由极化恒等式有 (a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°,故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2 =12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·四川乐山第一中学模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·宜昌模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2, 所以|a -b |=|a -b |2=|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=a -b ·b|a -b ||b |=-|b |2233|b |·|b |=-32,因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,55 B.⎝⎛⎭⎫-255,-55或⎝⎛⎭⎫255,55 C.⎝⎛⎭⎫255,55 D.⎝⎛⎭⎫-255,55 答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b 62+-32=±⎝⎛⎭⎫255,-55. 5.(2022·盐城模拟)下列关于向量a ,b ,c 的运算,不一定成立的是( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c )C.a·b≤|a||b|D.|a-b|≤|a|+|b|答案 B解析根据数量积的分配律可知A正确;选项B中,左边为c的共线向量,右边为a的共线向量,故B不正确;根据数量积的定义,可知a·b=|a||b|cos〈a,b〉≤|a||b|,故C正确;|a-b|2=|a|2+|b|2-2a·b=|a|2+|b|2-2|a||b|cos〈a,b〉≤|a|2+|b|2+2|a||b|=(|a|+|b|)2,故|a-b|≤|a|+|b|,故D正确.6.已知向量a=(2,1),b=(1,-1),c=(m-2,-n),其中m,n均为正数,且(a-b)∥c,则下列说法正确的是()A.a与b的夹角为钝角B.向量a在b上的投影为-2 2C.2m+n=4D.mn的最小值为2答案 C解析对于A,向量a=(2,1),b=(1,-1),则a·b=2-1=1>0,又a,b不共线,所以a,b的夹角为锐角,故A错误;对于B,设向量a,b的夹角为θ,则cos θ=a·b|a||b|=15×2=1010,所以向量a在b上的投影为|a |cos θ=5×1010=22,故B 错误; 对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,故C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝⎛⎭⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,故D 错误.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方, 得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=a -b2=a 2-2a ·b +b 2=1--1+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b ,所以AD →=12a +12b .(2)AB →·AD →=a ·⎝⎛⎭⎫12a +12b =12a 2+12a·b =12×32+12×3×2×cos 60°=6, 所以AB →·AD →=6.10.(2022·南昌模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n . (1)求函数f (x )的单调递增区间;(2)在Rt △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m ·n =3sin x ·cos x +cos 2x -1 =32sin 2x +12cos 2x -12=sin ⎝⎛⎭⎫2x +π6-12. 令2x +π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 则x ∈⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)f (C )=sin ⎝⎛⎭⎫2C +π6-12=0, sin ⎝⎛⎭⎫2C +π6=12,又C ∈⎝⎛⎭⎫0,π2, 所以C =π3.在△ACD 中,CD =233, 在△BCE 中,BE =22+⎝⎛⎭⎫332-2×2×33×32=213.11.(2022·恩施质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( )A .12B .-12C .20D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD →=AD →·BD →+DC →·BD →=|AD →||BD →|cos ∠BDA -|DC →||BD →|cos ∠BDC=|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案 A解析 AB →|AB →|,AC →|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC →|AC →|所在的直线为∠BAC 的角平分线.因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, 所以∠BAC 的角平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12, 所以cos ∠BAC =12,∠BAC =60°. 所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=10 2 N ,则物体的重力大小为________ N.答案 20解析 如图所示,∵|F 1|=|F 2|=10 2 N ,∴|F 1+F 2|=102×2=20 N ,∴物体的重力大小为20 N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________.答案 1 1120 解析 设BE =x ,x ∈⎝⎛⎭⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB ,∴∠BDE =30°,BD =2x ,DE =3x ,DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos 0°+(1-2x )2=1,∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝⎛⎭⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( )A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≥|a |+1答案 A解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 错误.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m·n =sin 2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .解 (1)m·n =sin A cos B +sin B cos A=sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π,所以sin(A +B )=sin C ,所以m·n =sin C ,又m·n =sin 2C ,所以sin 2C =sin C ,cos C =12, 又因为C ∈(0,π),故C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .因为CA →·(AB →-AC →)=18,所以CA →·CB →=18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。

[推荐学习]2018版高考数学大一轮复习第五章平面向量复数5.4平面向量的应用第1课时平面向量在几何

[推荐学习]2018版高考数学大一轮复习第五章平面向量复数5.4平面向量的应用第1课时平面向量在几何

(浙江专用)2018版高考数学大一轮复习 第五章 平面向量、复数 5.4 平面向量的应用 第1课时 平面向量在几何中的应用教师用书1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角).3.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的投影是向量.( × )(3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) (4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )1.(教材改编)已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+-2=22,|AC →|=16+64=45,|BC →|=36+36=62, ∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.2.已知在△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD →|等于( ) A .6 B .5 C .4D .3答案 D解析 在△ABC 中,由余弦定理可得AB 2+AC 2-2AB ·AC ·cos A =BC 2,又AB →·AC →=|AB →|·|AC →|·cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC →=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →|=3,故选D.3.(2017·浙江名校协作体联考)若向量a ,b 满足|a |=|2a +b |=2,则a 在b 方向上投影的最大值是( ) A. 3 B .- 3 C. 6 D .- 6答案 B解析 由题意得|2a +b |2=4|a |2+4|a||b |cos 〈a ,b 〉+|b |2=16+8|b |cos 〈a ,b 〉+|b |2=4,则cos 〈a ,b 〉=-|b |2-128|b |=-(|b |8+32|b |)≤-2|b |8·32|b |=-32,当且仅当|b |=23时等号成立,所以向量a 在向量b 方向上投影的最大值是|a |cos 〈a ,b 〉=- 3. 4.(2016·武汉模拟)平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是____________. 答案 x +2y -4=0解析 由OP →·OA →=4,得(x ,y )·(1,2)=4, 即x +2y =4.第1课时 平面向量在几何中的应用题型一 向量在平面几何中的应用 命题点1 向量和平面几何知识的综合例1 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. 答案 (1)12(2)5解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝ ⎛⎭⎪⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .则D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ), PA →=(2,-y ),PB →=(1,a -y ),则PA →+3PB →=(5,3a -4y ), 即|PA →+3PB →|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a . 因此当y =34a 时,|PA →+3PB →|2取最小值25.故|PA →+3PB →|的最小值为5. 命题点2 三角形的“四心”例2 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心 答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究1.在本例中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则如何选择?答案 A解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.2.在本例中,若动点P 满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则如何选择? 答案 D解析 由条件,得AP →=λ(AB →|AB →|cos B +AC →|AC →|cos C ),从而AP →·BC →=λ(AB →·BC →|AB →|cos B +AC →·BC →|AC →|cos C )=λ·|AB →|·|BC →-B|AB →|cos B +λ·|AC →|·|BC →|cos C |AC →|cos C=0,所以AP → ⊥BC →,则动点P 的轨迹一定通过△ABC 的垂心. 命题点3 平面向量数量积与余弦定理例3 (2016·杭州二模)在△ABC 中,AB =8,AC =6,AD 垂直BC 于点D ,E ,F 分别为AB ,AC 的中点,若DE →·DF →=6,则BC 等于( )A .213B .10C .237D .14答案 A解析 由题意,知DE =AE ,DF =AF , ∵DE →·DF →=|DE →|·|DF →|·cos∠EDF =|DE →|·|DF →|·|DE →|2+|DF →|2-|EF →|22|DE →|·|DF →|=|AE →|2+|AF →|2-|EF →|22=16+9-|EF →|22=6,∴|EF →|=13,∴BC =213.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.(1)在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰非等边三角形 D .三边均不相等的三角形(2)(2016·宁波八校联考)在△ABC 中,AB →=(2,3),AC →=(1,2),则△ABC 的面积为________.答案 (1)A (2)1-32解析 (1)AB→|AB →|,AC→|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的角平分线.因为(AB →|AB →|+AC→|AC →|)·BC →=0,所以∠BAC 的角平分线垂直于BC ,所以AB=AC .又AB→|AB →|·AC→|AC →|=⎪⎪⎪⎪⎪⎪⎪⎪AB →|AB →|·⎪⎪⎪⎪⎪⎪⎪⎪AC →|AC →|·cos∠BAC =12, 所以cos∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形.(2)cos∠BAC =AB →·AC→|AB →||AC →|=2+615, ∴sin∠BAC =2-315,∴S △ABC =12|AB →|·|AC →|·sin∠BAC =1-32.题型二 向量在解析几何中的应用 命题点1 向量与解析几何知识的综合例4 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x=___________.答案 (1)2x +y -3=0 (2)± 3 解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k2=3,得k =±3,即yx=± 3. 命题点2 轨迹问题例5 已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC →-12PQ →)=0.(1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任意一条直径,求PE →·PF →的最值. 解 (1)设P (x ,y ),则Q (8,y ). 由(PC →+12PQ →)·(PC →-12PQ →)=0,得|PC →|2-14|PQ →|2=0,即(x -2)2+y 2-14(x -8)2=0,化简得x 216+y 212=1.∴点P 在椭圆上,其方程为x 216+y 212=1. (2)∵PE →=PN →+NE →,PF →=PN →+NF →, 又NE →+NF →=0.∴PE →·PF →=PN →2-NE →2=x 2+(y -1)2-1 =16(1-y 212)+(y -1)2-1=-13y 2-2y +16=-13(y +3)2+19.∵-23≤y ≤2 3.∴当y =-3时,PE →·PF →的最大值为19, 当y =23时,PE →·PF →的最小值为12-4 3. 综上,PE →·PF →的最大值为19;PE ·PF 的最小值为12-4 3.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.(1)(2016·合肥模拟)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)·PC →的最小值为________.(2)(2016·温州一模)如图,已知F 1,F 2为双曲线C :x 2a2-y 2b2=1(a >0,b >0)的左,右焦点,点P 在第一象限,且满足|F 2P →|=a ,(F 1P →+F 1F 2→)·F 2P →=0,线段PF 2与双曲线C 交于点Q ,若F 2P →=5F 2Q →,则双曲线C 的渐近线方程为( )A .y =±55x B .y =±12xC .y =±32x D .y =±33x 答案 (1)-92(2)B解析 (1)∵圆心O 是直径AB 的中点, ∴PA →+PB →=2PO →,∴(PA →+PB →)·PC →=2PO →·PC →, ∵PO →与PC →共线且方向相反,∴当大小相等时,PO →·PC →最小.由条件知,当PO =PC =32时,最小值为-2×32×32=-92.(2)由(F 1P →+F 1F 2→)·F 2P →=0,可得|F 1P →|=|F 1F 2→|=2c ,则点P (x ,y )(x >0,y >0)满足⎩⎪⎨⎪⎧x +c 2+y 2=4c 2,x -c2+y 2=a 2,解得⎩⎪⎨⎪⎧x =c -a 24c,y =a 16c 2-a24c.又F 2P →=5F 2Q →,解得Q (c -a 220c ,a 16c 2-a 220c),又Q 在双曲线C 上,代入双曲线方程化简得80c 4-168a 2c 2+85a 4=0,则(4c 2-5a 2)(20c 2-17a 2)=0,又c >a ,所以4c 2-5a 2=0,4(a 2+b 2)-5a 2=0,则a =2b ,则双曲线C 的渐近线方程为y=±b a x =±12x ,故选B.11.函数与方程思想在向量中的应用典例 (1)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于______.(2)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ=________.思想方法指导 求向量模的最值或范围问题往往将模表示成某一变量的函数,采用求函数值域的方法确定最值或范围;在向量分解问题中,经常需要用已知向量来表示其他向量,此时可通过三点共线建立向量之间的关系,比较基向量的系数建立方程组求解. 解析 (1)因为b ≠0,所以b =x e 1+y e 2,x ≠0或y ≠0. 当x =0,y ≠0时,|x ||b |=0;当x ≠0时,|b |2=(x e 1+y e 2)2=x 2+y 2+3xy , |x |2|b |2=x 2x 2+y 2+3xy =1y 2x 2+3·yx+1, 不妨设y x =t ,则|x |2|b |2=1t 2+3t +1,当t =-32时,t 2+3t +1取得最小值14, 此时|x |2|b |2取得最大值4,所以|x ||b |的最大值为2.综上,|x ||b |的最大值为2.(2)由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),得(μ2-1)AB →+λ2AD →+(λ2+μ2)AC →=0,得(μ2-1)AB →+λ2AD →+(λ2+μ2)(AD →+12AB →)=0,得(14λ+34μ-1)AB →+(λ+μ2)AD →=0.又因为AB →,AD →不共线,所以由平面向量基本定理得⎩⎪⎨⎪⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎪⎨⎪⎧λ=-45,μ=85.所以λ+μ=45.答案 (1)2 (2)451.(2015·安徽)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC →答案 D解析 在△ABC 中,由BC →=AC →-AB →=2a +b -2a =b ,得|b |=2.又|a |=1,所以a·b =|a||b |cos 120°=-1,所以(4a +b )·BC →=(4a +b )·b =4a·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC →,故选D.2.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0, 即AC →·(BC →+BA →+CA →)=0, 2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.3. 如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A .a -12bB.12a -b C .a +12bD.12a +b 答案 D解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .4.已知点A (-2,0),B (3,0),动点P (x ,y )满足PA →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线答案 D解析 ∵PA →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴PA →·PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6,即点P 的轨迹是抛物线.5.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( ) A .2 B .3 C.1728 D.10答案 B解析 设点A 的坐标为(a 2,a ),点B 的坐标为(b 2,b ),直线AB 的方程为x =ty +m ,与抛物线y 2=x 联立得y 2-ty -m =0,故ab =-m ,由OA →·OB →=2得a 2b 2+ab =2,故ab =-2或ab =1(舍去),所以m =2,所以△ABO 的面积等于12m |a -b |=|a -b |=|a +2a |,△AFO 的面积等于12×14|a |=|a |8,所以△ABO 与△AFO 的面积之和等于|98a |+|2a |≥2 98|a |×2|a |=3,当且仅当98|a |=2|a |,即|a |=43时“=”成立,故选B.6. 在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图).若光线QR 经过△ABC 的重心,则AP 等于( )A .2B .1 C.83 D.43答案 D解析 分别以AB ,AC 所在直线为x 轴,y 轴建立平面直角坐标系,则A (0,0),B (4,0),C (0,4),得△ABC 的重心D (43,43),设AP =x ,从而P (x,0),x ∈(0,4),由光的几何性质可知点P 关于直线BC ,AC 的对称点P 1(4,4-x ),P 2(-x,0)与△ABC 的重心D (43,43)共线,所以4343+x =43--x 43-4,解得x =43.7.(2016·杭州模拟)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为______. 答案3解析 ∵|a +b |2-|a -b |2=4a·b =4|a ||b |cos π3=4>0,∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a·b =3, ∴|a -b |= 3.8.已知点D 为△ABC 所在平面上一点,且满足AD →=15AB →-45CA →,若△ACD 的面积为1,则△ABD的面积为________. 答案 4解析 由AD →=15AB →-45CA →,得5AD →=AB →+4AC →, 所以AD →-AB →=4(AC →-AD →), 即BD →=4DC →.所以点D 在边BC 上,且|BD →|=4|DC →|, 所以S △ABD =4S △ACD =4.9.已知直线2x +y +2=0与x 轴,y 轴的交点分别为A ,B ,椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1和上顶点D ,若BF 1→·AD →=0,则该椭圆的离心率e =________.答案255解析 因为直线2x +y +2=0与x 轴,y 轴的交点分别为A ,B , 所以A (-1,0),B (0,-2),易知F 1(-c,0),D (0,b ), 所以BF 1→=(-c,2),AD →=(1,b ). 因为BF 1→·AD →=0,所以-c +2b =0,所以b c =12,即a 2-c 2c 2=12, 所以a 2c 2=54,所以该椭圆的离心率e =c a =255.10.若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________.答案 [π6,5π6]解析 如图,向量α与β在单位圆O 内,因为|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,故以向量α,β为边的三角形的面积为14,故β的终点在如图的线段AB 上(α∥AB →,且圆心O 到线段AB 的距离为12),因此夹角θ的取值范围为[π6,5π6].11.(2016·嘉兴第二次教学测试) 如图,设正△BCD 的外接圆O 的半径为R (12<R <33),点A在BD 下方的圆弧上,则(AO →-AB →|AB →|-AD →|AD →|)·AC →的最小值为________.答案 -12解析 因为(AO →-AB →|AB →|-AD →|AD →|)·AC →=(AO →-AC →|AC →|)·AC →=12|AC →|2-|AC →|=12(|AC →|-1)2-12,因为3R ≤|AC →|≤2R ,而12<R <33,所以当|AC →|=1时,取到最小值-12.12. 如图,已知△ABC 的面积为14 cm 2,D ,E 分别为边AB ,BC 上的点,且AD ∶DB =BE ∶EC =2∶1,求△APC 的面积.解 设AB →=a ,BC →=b 为一组基底, 则AE →=a +23b ,DC →=13a +b .因为点A ,P ,E 与D ,P ,C 分别共线, 所以存在λ和μ使AP →=λAE →=λa +23λb ,DP →=μDC →=13μa +μb .又AP →=AD →+DP →=(23+13μ)a +μb ,所以⎩⎪⎨⎪⎧λ=23+13μ,23λ=μ,解得⎩⎪⎨⎪⎧λ=67,μ=47.所以S △PAB =47S △ABC =14×47=8(cm 2),S △PBC =(1-67)·S △ABC =14×17=2(cm 2),于是S △APC =14-8-2=4(cm 2).13.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程. 解 设M (x ,y )为所求轨迹上任一点, 设A (a ,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ), 由PA →·AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →,得(x -a ,y )=-32(-x ,b -y )=⎝ ⎛⎭⎪⎫32x ,32y -b , ∴⎩⎪⎨⎪⎧x -a =32x ,y =32y -32b ,∴⎩⎪⎨⎪⎧a =-x2,b =y3.∵b >0,∴y >0,把a =-x2代入①,得-x2(x +x2)+3y =0,整理得y =14x 2(x ≠0).∴动点M 的轨迹方程为y =14x 2(x ≠0).。

2018高考数学(文)(人教新课标)大一轮复习配套文档第五章平面向量与复数5-1平面向量的概念及线性运算Wor

2018高考数学(文)(人教新课标)大一轮复习配套文档第五章平面向量与复数5-1平面向量的概念及线性运算Wor

第五章平面向量与复数1.平面向量(1)平面向量的实际背景及基本概念①了解向量的实际背景.②理解平面向量的概念和两个向量相等的含义.③理解向量的几何表示.(2)向量的线性运算①掌握向量加法、减法的运算,理解其几何意义.②掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.③了解向量线性运算的性质及其几何意义.(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义.②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加法、减法与数乘运算.④理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积①理解平面向量数量积的含义及其物理意义.②了解平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与其他一些实际问题.2.数系的扩充和复数的引入(1)理解复数的基本概念,理解复数相等的充要条件.(2)了解复数的代数表示法及其几何意义.(3)能进行复数代数形式的四则运算,了解两个具体复数相加、相减的几何意义.5.1 平面向量的概念及线性运算1.向量的有关概念(1)向量:既有____________又有____________的量叫做向量,向量的大小,也就是向量的____________(或称模).AB →的模记作____________.(2)零向量:____________的向量叫做零向量,其方向是________的.(3)单位向量:长度等于__________________的向量叫做单位向量.a||a 是一个与a 同向的____________.-a|a |是一个与a ________的单位向量.(4)平行向量:方向________或________的________向量叫做平行向量.平行向量又叫_________,任一组平行向量都可以移到同一直线上.规定:0与任一向量____________.(5)相等向量:长度____________且方向____________的向量叫做相等向量.(6)相反向量:长度____________且方向____________的向量叫做相反向量.(7)向量的表示方法:用________表示;用____________表示;用________表示.2.向量的加法和减法 (1)向量的加法①三角形法则:以第一个向量a 的终点A 为起点作第二个向量b ,则以第一个向量a 的起点O 为________以第二个向量b 的终点B 为________的向量OB →就是a 与b 的________(如图1).推广:A 1A 2→+A 2A 3→+…+A n-1A n →=____________.图1图2②平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作▱ABCD ,则以A 为起点的__________就是a 与b 的和(如图2).在图2中,BC →=AD →=b ,因此平行四边形法则是三角形法则的另一种形式.③加法的运算性质:a +b =____________(交换律);(a +b )+c =____________(结合律);a +0=____________=a .(2)向量的减法已知向量a ,b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=____________,即a -b 表示从向量b 的终点指向向量a (被减向量)的终点的向量(如图).3.向量的数乘及其几何意义(1)定义:实数λ与向量a 的积是一个向量,记作____________,它的长度与方向规定如下:①||λa =____________;②当λ>0时,λa 与a 的方向____________; 当λ<0时,λa 与a 的方向____________; 当λ=0时,λa =____________. (2)运算律:设λ,μ∈R ,则: ①λ(μa )=____________; ②(λ+μ)a =____________; ③λ(a +b )=____________. 4.两个向量共线定理向量a (a ≠0)与b 共线的充要条件是有且只有一个实数λ,使得____________.自查自纠1.(1)大小 方向 长度 ||AB → (2)长度为0任意(3)1个单位长度 单位向量 方向相反 (4)相同 相反 非零 共线向量 平行 (5)相等 相同 (6)相等 相反 (7)字母 有向线段 坐标2.(1)①起点 终点 和 A 1A n → ②对角线AC →③b +a a +(b +c ) 0+a (2)a -b 3.(1)λa ①|λ||a | ②相同 相反 0 (2)①μ(λa ) ②λa +μa ③λa +λb 4.b =λa设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3解:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则当a 为零向量时,a 的方向任意;当a 不为零向量时,a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.故选D .设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解:AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=-13AB→+43AC →.故选A .(2015·湖北联考)已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →等于( )A .2OA →-OB →B .-OA →+2OB →C.23OA →-13OB →D .-13OA →+23OB →解:由2AC →+CB →=0得2OC →-2OA →+OB →-OC →=0,故OC →=2OA →-OB →.故选A .在平行四边形ABCD 中,点E 为CD 的中点,AM→=mAB →,AN →=nAD →(mn ≠0),若MN →∥BE →,则n m=________.解:MN →=AN →-AM →=nAD →-mAB →,BE →=BC →+CE →=AD →-12AB →,因为MN →∥BE →,且向量AD →和AB →不共线,所以n 1=-m -12,解得nm=2.故填2.直角三角形ABC 中,斜边BC 长为2,O 是平面ABC 内一点,点P 满足OP →=OA →+12(AB →+AC →),则|AP→|=________.解:如图,取BC 边中点D ,连接AD ,则12(AB →+AC →)=AD →,OP →=OA →+12(AB →+AC →)⇒OP →=OA →+AD →⇒OP →-OA →=AD→⇒AP →=AD →,因此|AP →|=|AD →|=1.故填1.类型一 向量的基本概念给出下列命题:①两个向量相等,则它们的起点相同,终点也相同;②若|a |=|b |,则a =b ;③若AB →=DC →,则四点A ,B ,C ,D 构成平行四边形; ④在▱ABCD 中,一定有AB →=DC →; ⑤若m =n ,n =p ,则m =p . 其中不正确的个数是( ) A .2B .3C .4D .5解:两个向量起点相同,终点也相同,则两个向量相等;但两个相等向量,不一定有相同的起点和终点,故①不正确.若|a |=|b |,由于a 与b 方向不确定,所以a ,b 不一定相等,故②不正确.若AB →=DC →,可能有A ,B ,C ,D 在一条直线上的情况,所以③不正确.正确的是④⑤.故选B .【点拨】从共线向量、单位向量、相反向量等的概念及特征逐一进行考察.(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制.(3)相等向量的关键是方向相同且长度相等.(4)共线向量即为平行向量,它们均与起点无关.(5)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的移动混为一谈.下列命题中,正确的是________.(填序号)①有向线段就是向量,向量就是有向线段; ②向量a 与向量b 平行,则a 与b 的方向相同或相反;③向量AB →与向量CD →共线,则A ,B ,C ,D 四点共线; ④如果a ∥b ,b ∥c ,那么a ∥c ;⑤两个向量不能比较大小,但它们的模能比较大小.解:①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a 与b 中有一个为零向量,零向量的方向是任意的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行;④不正确,如果b 为零向量,则a 与c 不一定平行;⑤正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.故填⑤.类型二 向量的线性运算在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.解法一:AG →=AB →+BG →=AB →+23BE →=AB →+23(AE →-AB →)=AB →+23⎝ ⎛⎭⎪⎫12AC →-AB →=13AB →+13AC →=13a +13b.解法二:由于G 是△ABC 的中线BE 与CF 的交点,所以G 为△ABC 的重心.延长AG 交BC 于H ,由重心的性质知,AG →=23AH →=23×12(AB →+AC →)=13a +13b .【点拨】(1)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来解决.(2)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.(3)在解答用已知向量线性表示未知向量的问题时,可以利用共线向量定理,将共线向量用参数表示,再利用平面向量基本定理,建立参数的方程(组)求解参数,最后得出结论.(1)设P 是△ABC 所在平面内一点,BC →+BA →=2BP →,则( )A.PA →+PB →=0 B.PC →+PA →=0 C.PB →+PC →=0D.PA →+PB →+PC →=解:如图,根据向量加法的几何意义有BC →+BA →=2BP →⇔P 是AC 的中点,故PC →+PA →=0.故选B .(2)(2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.AD →B.12AD → C.BC →D.12BC → 解:EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →.故选A . 类型三 向量共线的充要条件及其应用已知A ,B ,C 是平面内三个不相同的点,O 是平面内任意一点,求证:向量OA →,OB →,OC →的终点A ,B ,C 共线的充要条件是存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1.证明:(1)先证必要性.若OA →,OB →,OC →的终点A ,B ,C 共线,则AB →∥BC →, 所以存在实数m 使得BC →=mAB →,即OC →-OB →=m (OB →-OA →),所以OC →=-mOA →+(1+m )OB →.令λ=-m ,μ=1+m ,则λ+μ=-m +1+m =1, 即存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1.(2)再证充分性.若OC →=λOA →+μOB →,且λ+μ=1,则OC →=λOA →+(1-λ)OB →,所以OC →-OB →=λ(OA →-OB →),即BC →=λBA →, 所以BC →∥BA →,又BC 与BA 有公共点B ,所以A ,B ,C 三点共线. 综合(1)(2)可知,原命题成立.【点拨】证明三点A ,B ,C 共线,借助向量,只需证明由这三点A ,B ,C 所组成的向量中有两个向量共线,即证明存在一个实数λ,使AB →=λBC →.但证明两条直线AB ∥CD ,除了证明存在一个实数λ,使AB →=λCD →外,还要说明两直线不重合.注意:本例的结论可作定理使用.(1)已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A ,B ,DB .A ,B ,C C .B ,C ,DD .A ,C ,D解:BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB →,所以A ,B ,D 三点共线.故选A .(2)设两个非零向量a 与b 不共线,若k a +b 和a +k b 共线,则实数k =________.解:因为k a +b 和a +k b 共线,所以存在实数λ,使k a +b =λ(a +k b ),即k a +b =λa +λk b .所以(k -λ)a =(λk -1)b .因为a ,b 是两个不共线的非零向量,所以k -λ=λk -1=0,所以k 2-1=0.所以k =±1.故填±1.(3)如图,在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点.若AN →=λAB →+μAC →,则λ+μ的值为()A .12B .13C .14D .1解:由N 为AM 的中点,可得AN →=12AM →=λAB →+μAC →,整理得AM →=2λAB →+2μAC →,由B ,M ,C 三点共线可得2λ+2μ=1,即λ+μ=12.故选A .1.准确理解向量的概念,请特别注意以下几点: (1)a ∥b ,有a 与b 方向相同或相反两种情形; (2)向量的模与数的绝对值有所不同,如|a |=|b |⇒/ a =±b ;(3)零向量的方向是任意的,并不是没有,零向量与任意向量平行;(4)对于任意非零向量a ,a||a 是与a 同向的单位向量,这也是求单位向量的方法;(5)向量平行,其所在直线不一定平行,两向量还可能在一条直线上;(6)只要不改变向量a 的大小和方向,可以自由平移a ,平移后的向量与a 相等,所以线段共线与向量共线是有区别的,当两向量共线且有公共点时,才能得出线段共线,向量的共线与向量的平行是一致的.2.向量具有大小和方向两个要素,既能像实数一样进行某些运算,又有直观的几何意义,是数与形的完美结合.向量是一个几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析、判断,这是研究平面向量最重要的方法与技巧.3.向量加法的三角形法则可简记为“首尾相接,指向终点”;减法法则可简记为“起点重合,指向被减向量”;加法的平行四边形法则可简记 “起点重合,指向对角顶点”.4.平面向量的三种线性运算的结果仍为向量,在三种线性运算中,加法是最基本、最重要的运算,减法运算与数乘运算都以加法运算为基础,都可以归结为加法运算.5.对于两个向量共线定理(a (a ≠0)与b 共线⇔存在唯一实数λ使得b =λa )中条件“a ≠0”的理解:(1)当a =0时,a 与任一向量b 都是共线的; (2)当a =0且b ≠0时,b =λa 是不成立的,但a 与b 共线.因此,为了更具一般性,且使充分性和必要性都成立,我们要求a ≠0.换句话说,如果不加条件“a ≠0”,“a 与b 共线”是“存在唯一实数λ使得b =λa ”的必要不充分条件.1.设a ,b 都是非零向量,下列四个条件中,使a|a |=b|b |成立的充分条件是( ) A .a =-b B .a ∥bC .a =2bD .a ∥b 且|a |=|b |解:由题意a |a |=b|b |表示与向量a 和向量b 同向的单位向量相等,故a 与b 同向共线.故选C .2.已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b .如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向解:因为c ∥d ,所以存在实数λ,使得c =λd ,即k a +b =λ(a -b ),所以⎩⎪⎨⎪⎧k =λ,1=-λ, 解得⎩⎪⎨⎪⎧k =-1,λ=-1. 此时c =-d .所以c 与d 反向.故选D .3.已知O ,A ,M ,B 为平面上四点,且OM →=λOB →+(1-λ)OA →,实数λ∈(1,2),则( )A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .O ,A ,M ,B 四点一定共线解:由题意得OM →-OA →=λ(OB →-OA →),即AM →=λAB →.又λ∈(1,2),所以点B 在线段AM 上.故选B .4.已知O 是△ABC 所在平面内一点,D 为BC 的中点,且2OA →+OB →+OC →=0,则( )A.AO →=2OD →B.AO →=OD →C.AO →=3OD →D .2AO →=OD →解:因为D 为BC 的中点,所以由2OA →+OB →+OC →=0得OB →+OC →=-2OA →=2AO →,即2OD →=2AO →,所以AO →=OD →.故选B .5.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解:由题意得AD →=AB →+BD →=AB →+13BC →,BE →=BA →+AE →=BA →+13AC →,CF →=CB →+BF →=CB →+13BA →,因此AD →+BE →+CF →=CB →+13(BC →+AC →-AB →)=CB →+23BC →=-13BC →,故AD →+BE →+CF →与BC →反向平行.故选A .6.在平行四边形ABCD 中,点E 是AD 的中点,BE与AC 相交于点F ,若EF →=mAB →+nAD →(m ,n ∈R ),则m n的值为( )A .-2B .-12C .2D.12解:设AB →=a ,AD →=b ,则EF →=m a +n b ,BE →=AE →-AB →=12b -a ,由向量EF →与BE →共线可知存在非零实数λ,使得EF →=λBE →,即m a +n b =12λb -λa ,又a 与b 不共线,则⎩⎪⎨⎪⎧m =-λ,n =12λ, 消去λ得m n =-2.故选A .7.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD →=12AB →,BE →=23BC →.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解:DE →=BE →-BD →=23BC →-12BA →=23(AC →-AB →)+12AB →=-16AB→+23AC →, 因为DE →=λ1AB →+λ2AC →,所以λ1=-16,λ2=23,从而λ1+λ2=12.故填12.8.已知D 为△ABC 的BC 边上的中点,点P 满足PA →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.解:PA →+BP →+CP →=0,则CA →+BP →=0,即CA →=PB →,则P 为以AB ,AC 为邻边的平行四边形的第四个顶点,如图所示.因此AP →=-2PD →,则λ=-2. 故填-2.9.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示BC →和MN →.解:BC →=BA →+AD →+DC →=-a +b +12a =b -12a .MN →=MD →+DA →+AN →=-14a +(-b )+12a =14a -b .10.设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 与a +k b 共线. 解:(1)证明:因为AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),所以BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. 所以AB →,BD →共线,又因为它们有公共点B ,所以A ,B ,D 三点共线. (2)因为k a +b 与a +k b 共线,所以存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b ,所以(k -λ)a =(λk -1)b , 因为a ,b 是不共线的两个非零向量,所以k -λ=λk -1=0,即k 2-1=0,所以k =±1.11.如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.解:因为A ,M ,D 三点共线, 所以OM →=λ1OD →+(1-λ1)OA → =12λ1b +(1-λ1)a ,① 因为C ,M ,B 三点共线,所以OM →=λ2OB →+(1-λ2)OC →=λ2b +1-λ24a ,②由①②可得⎩⎪⎨⎪⎧12λ1=λ2,1-λ1=1-λ24, 解得⎩⎪⎨⎪⎧λ1=67,λ2=37. 故OM →=17a +37b.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上 解:若C ,D 调和分割点A ,B ,则AC →=λAB →(λ∈R ),AD →=μAB →(μ∈R ),且1λ+1μ=2.对于选项A ,若C 是线段AB 的中点,则AC →=12AB →⇒λ=12⇒1μ=0,故A 选项错误;同理B 选项错误;对于选项C ,若C ,D 同时在线段AB上,则0<λ<1,0<μ<1⇒1λ+1μ>2,C选项错误;对于选项D,若C,D同时在线段AB的延长线上,则λ>1,μ>1⇒1λ+1μ<2,故C,D不可能同时在线段AB的延长线上,D选项正确.故选D.。

2018届高考数学 第五章 平面向量、数系的扩充与复数的引入 5.2 平面向量基本定理及向量的坐标表示 文 新人

2018届高考数学 第五章 平面向量、数系的扩充与复数的引入 5.2 平面向量基本定理及向量的坐标表示 文 新人

(4)已知向量a,b是一组基底,若实数λ1,μ1,λ2,μ2满足
λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2. ( √ ) (5)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是
������1 ������2
=
������1 ������2
.( ×
)
知识梳理 考点自测
2.(2017河北石家庄二模,文10)已知向量a=(1,m),b=(m,1),则“m=1” 是“a∥b”的( A )
,
������
=
8 5
,
所以 λ+μ=45.
考点一
考点二
考点三
考点四
对点训练 2 在△ABC 中,角 A,B,C 所对的边分别是 a,b,c,若
20a������������+15b������������+12c������������=0,则△ABC 的最小角的正弦值等于( C )
A.45
B.34
面向量的加法、减法 2017 全国Ⅲ,文 13 用坐标表示的向量共线
与数乘运算.
2016 全国Ⅱ,文 13 的条件是高考考查的比
4.理解用坐标表示
较频繁的一个考点,属
的平面向量共线的
于中低档题目.
条件.
知识梳理 考点自测
1.平面向量基本定理 如果e1,e2是同一平面内的两个 不共线 向量,那么对于这一平 面内的任意向量a,有且只有一对实数λ1,λ2,使a= λ1e1+λ2e2 .其中, 不共线的向量e1,e2叫做表示这一平面内所有向量的一组 基底 . 把一个向量分解为两个 互相垂直 的向量,叫做把向量正交分解. 2.平面向量的坐标表示 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向 量i,j作为基底,a为坐标平面内的任意向量,以坐标原点O为起点 ������������=a,由平面向量基本定理可知,有且只有一对实数x,y,使得 ������������ =xi+yj,因此a=xi+yj,我们把实数对 (x,y) 叫做向量a的坐标, 记作a= (x,y) .

高考数学大一轮复习 第五章 平面向量、复数 第1讲 平面向量的概念及线性运算课件

高考数学大一轮复习 第五章 平面向量、复数 第1讲 平面向量的概念及线性运算课件
[说明] 三点共线的等价关系 A,P,B 三点共线⇔A→P=λA→B(λ≠0)⇔O→P=(1-t)·O→A+tO→B(O 为平面内异于 A,P,B 的任一点,t∈R)⇔O→P=xO→A+yO→B(O 为平面内异于 A,P,B 的任一点,x∈R,y∈R,x+y=1).
12/13/2021
第十二页,共四十六页。
D.4
第二十四页,共四十六页。
解析:选 A.①错误.两向量共线要看其方向而不是看起点与 终点.②正确.因为向量既有大小,又有方向,故它们不能比 较大小,但它们的模均为实数,故可以比较大小.③错误.当 a=0 时,无论 λ 为何值,λa=0.④错误.当 λ=μ=0 时,λa =μb,此时,a 与 b 可以是任意向量.
2.已知 D 为三角形 ABC 的边 BC 的中点,点 P 满足P→A+B→P+ C→P=0,A→P=λP→D,则实数 λ 的值为________.
解析:因为 D 为边 BC 的中点, 所以P→B+P→C=2P→D, 又P→A+B→P+C→P=0, 所以P→A=P→B+P→C=2P→D, 所以A→P=-2P→D, 与A→P=λP→D比较,得 λ=-2.
12/13/2021
第六页,共四十六页。
1.向量的有关概念 (1)向量:既有大小又有_方__向__的量叫做向量,向量的大小叫做 向量的_模__. (2)零向量:长度为_0_的向量,其方向是任意的. (3)单位向量:长度等于_1_个__单__位__的向量.
12/13/2021
第七页,共四十六页。
(4)平行向量:方向相同或_相__反__的非零向量,又叫共线向量,
12/13/2021
第二十五页,共四十六页。
平面向量的线性运算 (高频考点) 平面向量的线性运算包括向量的加、减及数乘运算,是高考考 查向量的热点.常以选择题、填空题的形式出现.主要命题角 度有: (1)用已知向量表示未知向量; (2)求参数的值.

【K12教育学习资料】2018版高考数学大一轮复习第五章平面向量复数5.4平面向量的应用第1课时平面

【K12教育学习资料】2018版高考数学大一轮复习第五章平面向量复数5.4平面向量的应用第1课时平面

(浙江专用)2018版高考数学大一轮复习 第五章 平面向量、复数 5.4 平面向量的应用 第1课时 平面向量在几何中的应用教师用书1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角).3.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的投影是向量.( × )(3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) (4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )1.(教材改编)已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+-2=22,|AC →|=16+64=45,|BC →|=36+36=62, ∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.2.已知在△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD →|等于( ) A .6 B .5 C .4D .3答案 D解析 在△ABC 中,由余弦定理可得AB 2+AC 2-2AB ·AC ·cos A =BC 2,又AB →·AC →=|AB →|·|AC →|·cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC →=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →|=3,故选D.3.(2017·浙江名校协作体联考)若向量a ,b 满足|a |=|2a +b |=2,则a 在b 方向上投影的最大值是( ) A. 3 B .- 3 C. 6 D .- 6答案 B解析 由题意得|2a +b |2=4|a |2+4|a||b |cos 〈a ,b 〉+|b |2=16+8|b |cos 〈a ,b 〉+|b |2=4,则cos 〈a ,b 〉=-|b |2-128|b |=-(|b |8+32|b |)≤-2|b |8·32|b |=-32,当且仅当|b |=23时等号成立,所以向量a 在向量b 方向上投影的最大值是|a |cos 〈a ,b 〉=- 3. 4.(2016·武汉模拟)平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是____________. 答案 x +2y -4=0解析 由OP →·OA →=4,得(x ,y )·(1,2)=4, 即x +2y =4.第1课时 平面向量在几何中的应用题型一 向量在平面几何中的应用 命题点1 向量和平面几何知识的综合例1 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. 答案 (1)12(2)5解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝ ⎛⎭⎪⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .则D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ), PA →=(2,-y ),PB →=(1,a -y ),则PA →+3PB →=(5,3a -4y ), 即|PA →+3PB →|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a . 因此当y =34a 时,|PA →+3PB →|2取最小值25.故|PA →+3PB →|的最小值为5. 命题点2 三角形的“四心”例2 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心 答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究1.在本例中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则如何选择?答案 A解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.2.在本例中,若动点P 满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则如何选择? 答案 D解析 由条件,得AP →=λ(AB →|AB →|cos B +AC →|AC →|cos C ),从而AP →·BC →=λ(AB →·BC →|AB →|cos B +AC →·BC →|AC →|cos C )=λ·|AB →|·|BC →-B|AB →|cos B +λ·|AC →|·|BC →|cos C |AC →|cos C=0,所以AP → ⊥BC →,则动点P 的轨迹一定通过△ABC 的垂心. 命题点3 平面向量数量积与余弦定理例3 (2016·杭州二模)在△ABC 中,AB =8,AC =6,AD 垂直BC 于点D ,E ,F 分别为AB ,AC 的中点,若DE →·DF →=6,则BC 等于( )A .213B .10C .237D .14答案 A解析 由题意,知DE =AE ,DF =AF , ∵DE →·DF →=|DE →|·|DF →|·cos∠EDF =|DE →|·|DF →|·|DE →|2+|DF →|2-|EF →|22|DE →|·|DF →|=|AE →|2+|AF →|2-|EF →|22=16+9-|EF →|22=6,∴|EF →|=13,∴BC =213.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.(1)在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰非等边三角形 D .三边均不相等的三角形(2)(2016·宁波八校联考)在△ABC 中,AB →=(2,3),AC →=(1,2),则△ABC 的面积为________.答案 (1)A (2)1-32解析 (1)AB→|AB →|,AC→|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的角平分线.因为(AB →|AB →|+AC→|AC →|)·BC →=0,所以∠BAC 的角平分线垂直于BC ,所以AB=AC .又AB→|AB →|·AC→|AC →|=⎪⎪⎪⎪⎪⎪⎪⎪AB →|AB →|·⎪⎪⎪⎪⎪⎪⎪⎪AC →|AC →|·cos∠BAC =12, 所以cos∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形.(2)cos∠BAC =AB →·AC→|AB →||AC →|=2+615, ∴sin∠BAC =2-315,∴S △ABC =12|AB →|·|AC →|·sin∠BAC =1-32.题型二 向量在解析几何中的应用 命题点1 向量与解析几何知识的综合例4 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x=___________.答案 (1)2x +y -3=0 (2)± 3 解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k2=3,得k =±3,即yx=± 3. 命题点2 轨迹问题例5 已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC →-12PQ →)=0.(1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任意一条直径,求PE →·PF →的最值. 解 (1)设P (x ,y ),则Q (8,y ). 由(PC →+12PQ →)·(PC →-12PQ →)=0,得|PC →|2-14|PQ →|2=0,即(x -2)2+y 2-14(x -8)2=0,化简得x 216+y 212=1.∴点P 在椭圆上,其方程为x 216+y 212=1. (2)∵PE →=PN →+NE →,PF →=PN →+NF →, 又NE →+NF →=0.∴PE →·PF →=PN →2-NE →2=x 2+(y -1)2-1 =16(1-y 212)+(y -1)2-1=-13y 2-2y +16=-13(y +3)2+19.∵-23≤y ≤2 3.∴当y =-3时,PE →·PF →的最大值为19, 当y =23时,PE →·PF →的最小值为12-4 3. 综上,PE →·PF →的最大值为19;PE ·PF 的最小值为12-4 3.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.(1)(2016·合肥模拟)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)·PC →的最小值为________.(2)(2016·温州一模)如图,已知F 1,F 2为双曲线C :x 2a2-y 2b2=1(a >0,b >0)的左,右焦点,点P 在第一象限,且满足|F 2P →|=a ,(F 1P →+F 1F 2→)·F 2P →=0,线段PF 2与双曲线C 交于点Q ,若F 2P →=5F 2Q →,则双曲线C 的渐近线方程为( )A .y =±55x B .y =±12xC .y =±32x D .y =±33x 答案 (1)-92(2)B解析 (1)∵圆心O 是直径AB 的中点, ∴PA →+PB →=2PO →,∴(PA →+PB →)·PC →=2PO →·PC →, ∵PO →与PC →共线且方向相反,∴当大小相等时,PO →·PC →最小.由条件知,当PO =PC =32时,最小值为-2×32×32=-92.(2)由(F 1P →+F 1F 2→)·F 2P →=0,可得|F 1P →|=|F 1F 2→|=2c ,则点P (x ,y )(x >0,y >0)满足⎩⎪⎨⎪⎧x +c 2+y 2=4c 2,x -c2+y 2=a 2,解得⎩⎪⎨⎪⎧x =c -a 24c,y =a 16c 2-a24c.又F 2P →=5F 2Q →,解得Q (c -a 220c ,a 16c 2-a 220c),又Q 在双曲线C 上,代入双曲线方程化简得80c 4-168a 2c 2+85a 4=0,则(4c 2-5a 2)(20c 2-17a 2)=0,又c >a ,所以4c 2-5a 2=0,4(a 2+b 2)-5a 2=0,则a =2b ,则双曲线C 的渐近线方程为y=±b a x =±12x ,故选B.11.函数与方程思想在向量中的应用典例 (1)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于______.(2)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ=________.思想方法指导 求向量模的最值或范围问题往往将模表示成某一变量的函数,采用求函数值域的方法确定最值或范围;在向量分解问题中,经常需要用已知向量来表示其他向量,此时可通过三点共线建立向量之间的关系,比较基向量的系数建立方程组求解. 解析 (1)因为b ≠0,所以b =x e 1+y e 2,x ≠0或y ≠0. 当x =0,y ≠0时,|x ||b |=0;当x ≠0时,|b |2=(x e 1+y e 2)2=x 2+y 2+3xy , |x |2|b |2=x 2x 2+y 2+3xy =1y 2x 2+3·yx+1, 不妨设y x =t ,则|x |2|b |2=1t 2+3t +1,当t =-32时,t 2+3t +1取得最小值14, 此时|x |2|b |2取得最大值4,所以|x ||b |的最大值为2.综上,|x ||b |的最大值为2.(2)由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),得(μ2-1)AB →+λ2AD →+(λ2+μ2)AC →=0,得(μ2-1)AB →+λ2AD →+(λ2+μ2)(AD →+12AB →)=0,得(14λ+34μ-1)AB →+(λ+μ2)AD →=0.又因为AB →,AD →不共线,所以由平面向量基本定理得⎩⎪⎨⎪⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎪⎨⎪⎧λ=-45,μ=85.所以λ+μ=45.答案 (1)2 (2)451.(2015·安徽)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC →答案 D解析 在△ABC 中,由BC →=AC →-AB →=2a +b -2a =b ,得|b |=2.又|a |=1,所以a·b =|a||b |cos 120°=-1,所以(4a +b )·BC →=(4a +b )·b =4a·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC →,故选D.2.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0, 即AC →·(BC →+BA →+CA →)=0, 2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.3. 如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A .a -12bB.12a -b C .a +12bD.12a +b 答案 D解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .4.已知点A (-2,0),B (3,0),动点P (x ,y )满足PA →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线答案 D解析 ∵PA →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴PA →·PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6,即点P 的轨迹是抛物线.5.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( ) A .2 B .3 C.1728 D.10答案 B解析 设点A 的坐标为(a 2,a ),点B 的坐标为(b 2,b ),直线AB 的方程为x =ty +m ,与抛物线y 2=x 联立得y 2-ty -m =0,故ab =-m ,由OA →·OB →=2得a 2b 2+ab =2,故ab =-2或ab =1(舍去),所以m =2,所以△ABO 的面积等于12m |a -b |=|a -b |=|a +2a |,△AFO 的面积等于12×14|a |=|a |8,所以△ABO 与△AFO 的面积之和等于|98a |+|2a |≥2 98|a |×2|a |=3,当且仅当98|a |=2|a |,即|a |=43时“=”成立,故选B.6. 在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图).若光线QR 经过△ABC 的重心,则AP 等于( )A .2B .1 C.83 D.43答案 D解析 分别以AB ,AC 所在直线为x 轴,y 轴建立平面直角坐标系,则A (0,0),B (4,0),C (0,4),得△ABC 的重心D (43,43),设AP =x ,从而P (x,0),x ∈(0,4),由光的几何性质可知点P 关于直线BC ,AC 的对称点P 1(4,4-x ),P 2(-x,0)与△ABC 的重心D (43,43)共线,所以4343+x =43--x 43-4,解得x =43.7.(2016·杭州模拟)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为______. 答案3解析 ∵|a +b |2-|a -b |2=4a·b =4|a ||b |cos π3=4>0,∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a·b =3, ∴|a -b |= 3.8.已知点D 为△ABC 所在平面上一点,且满足AD →=15AB →-45CA →,若△ACD 的面积为1,则△ABD的面积为________. 答案 4解析 由AD →=15AB →-45CA →,得5AD →=AB →+4AC →, 所以AD →-AB →=4(AC →-AD →), 即BD →=4DC →.所以点D 在边BC 上,且|BD →|=4|DC →|, 所以S △ABD =4S △ACD =4.9.已知直线2x +y +2=0与x 轴,y 轴的交点分别为A ,B ,椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1和上顶点D ,若BF 1→·AD →=0,则该椭圆的离心率e =________.答案255解析 因为直线2x +y +2=0与x 轴,y 轴的交点分别为A ,B , 所以A (-1,0),B (0,-2),易知F 1(-c,0),D (0,b ), 所以BF 1→=(-c,2),AD →=(1,b ). 因为BF 1→·AD →=0,所以-c +2b =0,所以b c =12,即a 2-c 2c 2=12, 所以a 2c 2=54,所以该椭圆的离心率e =c a =255.10.若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________.答案 [π6,5π6]解析 如图,向量α与β在单位圆O 内,因为|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,故以向量α,β为边的三角形的面积为14,故β的终点在如图的线段AB 上(α∥AB →,且圆心O 到线段AB 的距离为12),因此夹角θ的取值范围为[π6,5π6].11.(2016·嘉兴第二次教学测试) 如图,设正△BCD 的外接圆O 的半径为R (12<R <33),点A在BD 下方的圆弧上,则(AO →-AB →|AB →|-AD →|AD →|)·AC →的最小值为________.答案 -12解析 因为(AO →-AB →|AB →|-AD →|AD →|)·AC →=(AO →-AC →|AC →|)·AC →=12|AC →|2-|AC →|=12(|AC →|-1)2-12,因为3R ≤|AC →|≤2R ,而12<R <33,所以当|AC →|=1时,取到最小值-12.12. 如图,已知△ABC 的面积为14 cm 2,D ,E 分别为边AB ,BC 上的点,且AD ∶DB =BE ∶EC =2∶1,求△APC 的面积.解 设AB →=a ,BC →=b 为一组基底, 则AE →=a +23b ,DC →=13a +b .因为点A ,P ,E 与D ,P ,C 分别共线, 所以存在λ和μ使AP →=λAE →=λa +23λb ,DP →=μDC →=13μa +μb .又AP →=AD →+DP →=(23+13μ)a +μb ,所以⎩⎪⎨⎪⎧λ=23+13μ,23λ=μ,解得⎩⎪⎨⎪⎧λ=67,μ=47.所以S △PAB =47S △ABC =14×47=8(cm 2),S △PBC =(1-67)·S △ABC =14×17=2(cm 2),于是S △APC =14-8-2=4(cm 2).13.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程. 解 设M (x ,y )为所求轨迹上任一点, 设A (a ,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ), 由PA →·AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →,得(x -a ,y )=-32(-x ,b -y )=⎝ ⎛⎭⎪⎫32x ,32y -b , ∴⎩⎪⎨⎪⎧x -a =32x ,y =32y -32b ,∴⎩⎪⎨⎪⎧a =-x2,b =y3.∵b >0,∴y >0,把a =-x2代入①,得-x2(x +x2)+3y =0,整理得y =14x 2(x ≠0).∴动点M 的轨迹方程为y =14x 2(x ≠0).。

2018版高考数学(文)(人教A版)大一轮复习配套讲义:第五章 平面向量含解析

2018版高考数学(文)(人教A版)大一轮复习配套讲义:第五章 平面向量含解析

第1讲平面向量的概念及线性运算最新考纲 1.了解向量的实际背景;2。

理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6。

了解向量线性运算的性质及其几何意义.知识梳理1。

向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为零的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±a|a|平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02。

向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a。

(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差a-b=a+(-b)数乘求实数λ与向量a的积的运(1)|λa|=|λ||a|;(2)当λ>0时,λaλ(μa)=λμa;(λ+μ)a=λa+μa;算的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.诊断自测1。

判断正误(在括号内打“√”或“×")精彩PPT展示(1)零向量与任意向量平行.()(2)若a∥b,b∥c,则a∥c。

()(3)向量错误!与向量错误!是共线向量,则A,B,C,D四点在一条直线上.( )(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.( )(5)在△ABC中,D是BC中点,则错误!=错误!(错误!+错误!).( )解析(2)若b=0,则a与c不一定平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(浙江专用)2018版高考数学大一轮复习 第五章 平面向量、复数5.3 平面向量的数量积教师用书1.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是[0,π]. 2.平面向量的数量积3.平面向量数量积的性质设a ,b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 (1)e ·a =a ·e =|a |cos θ. (2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a ||b |; 当a 与b 反向时,a ·b =-|a ||b |.特别地,a ·a =|a |2或|a |(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a ||b |.4.平面向量数量积满足的运算律 (1)a·b =b·a ;(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c .5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离AB =|AB →|x 2-x 12+y 2-y 12.(3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.(4)若a ,b 都是非零向量,θ是a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 【知识拓展】1.两个向量a ,b 的夹角为锐角⇔a·b >0且a ,b 不共线; 两个向量a ,b 的夹角为钝角⇔a·b <0且a ,b 不共线. 2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a·b +b 2. (3)(a -b )2=a 2-2a·b +b 2. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( √ )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (3)由a ·b =0可得a =0或b =0.( × ) (4)(a ·b )c =a (b ·c ).( × )(5)两个向量的夹角的范围是[0,π2].( × )1.(教材改编)已知向量a =(2,1),b =(-1,k ),a·(2a -b )=0,则k 等于( ) A .-12 B .6 C .-6 D .12答案 D解析 ∵2a -b =(4,2)-(-1,k )=(5,2-k ),由a ·(2a -b )=0,得(2,1)·(5,2-k )=0, ∴10+2-k =0,解得k =12.2.(2016·临安质检)已知向量a 与b 的夹角为30°,且|a |=1,|2a -b |=1,则|b |等于( ) A. 6 B. 5 C. 3 D. 2 答案 C解析 由题意可得a·b =|b |cos 30°=32|b |,4a 2-4a·b +b 2=1,即4-23|b |+b 2=1,由此求得|b |=3,故选C.3.(2016·温州调研)若平面四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是( ) A .直角梯形 B .矩形 C .菱形 D .正方形答案 C解析 由AB →+CD →=0得平面四边形ABCD 是平行四边形, 由(AB →-AD →)·AC →=0得DB →·AC →=0, 故平行四边形的对角线垂直, 所以该四边形一定是菱形,故选C.4.(2016·北京)已知向量a =(1,3),b =(3,1),则a 与b 夹角的大小为________. 答案π6解析 设a 与b 的夹角为θ,则cos θ=a·b |a ||b |=1×3+1×312+32·12+32=234=32, 又因为θ∈[0,π],所以θ=π6.题型一 平面向量数量积的运算例1 (1)(2016·天津)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58B.18C.14D.118(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________. 答案 (1)B (2)1 1解析 (1) 如图,由条件可知BC →=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →, 所以BC →·AF →=(AC →-AB →)·(12AB →+34AC →)=34AC →2-14AB →·AC →-12AB →2. 因为△ABC 是边长为1的等边三角形, 所以|AC →|=|AB →|=1,∠BAC =60°, 所以BC →·AF →=34-18-12=18.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1. 方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,∴DE →·CB →=|CB →|·1=1, 当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.思维升华 平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b =|a ||b |cos 〈a ,b 〉. (2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.(3)利用数量积的几何意义求解.(1)(2016·全国丙卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC 等于( )A .30° B.45° C.60° D.120°(2)(2015·天津)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE →=23BC →,DF →=16DC →,则AE →·AF →的值为________.答案 (1)A (2)2918解析 (1)∵|BA →|=1,|BC →|=1, cos∠ABC =BA →·BC→|BA →||BC →|=32,又∵0°≤∠ABC ≤180°,∴∠ABC =30°. (2)在等腰梯形ABCD 中,AB ∥DC ,AB =2,BC =1,∠ABC =60°,∴CD =1,AE →=AB →+BE →=AB →+23BC →,AF →=AD →+DF →=AD →+16DC →,∴AE →·AF →=⎝ ⎛⎭⎪⎫AB →+23BC →·⎝ ⎛⎭⎪⎫AD →+16DC →=AB →·AD →+AB →·16DC →+23BC →·AD →+23BC →·16DC →=2×1×cos60°+2×16+23×12×cos 60°+23×16×12×cos 120°=2918.题型二 平面向量数量积的应用 命题点1 求向量的模例2 (1)(2016·宁波模拟)已知平面向量a ,b 的夹角为π6,且|a|=3,|b |=2,在△ABC中,AB →=2a +2b ,AC →=2a -6b ,D 为BC 的中点,则|AD →|=________.(2)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案 (1)2 (2)7+1 解析 (1)因为AD →=12(AB →+AC →)=12(2a +2b +2a -6b ) =2a -2b ,所以|AD →|2=4(a -b )2=4(a 2-2b·a +b 2) =4×(3-2×2×3×cos π6+4)=4,所以|AD →|=2.(2)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1,知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆.又OA →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3), ∴|OA →+OB →+OD →|=x -2+y +32.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为-2++32=7,故x -2+y +32的最大值为7+1.即|OA →+OB →+OD →|的最大值是7+1. 命题点2 求向量的夹角例3 (1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________________.答案 (1)223 (2)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3 解析 (1)因为a 2=(3e 1-2e 2)2=9-2×3×2×12×cos α+4=9, 所以|a |=3,因为b 2=(3e 1-e 2)2=9-2×3×1×12×cos α+1=8, 所以|b |=22,又a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8,所以cos β=a ·b |a ||b |=83×22=223.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0, ∴4k -6-6<0, ∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3. 思维升华 平面向量数量积求解问题的策略(1)求两向量的夹角:cos θ=a·b|a||b |,要注意θ∈[0,π].(2)两向量垂直的应用:两非零向量垂直的充要条件是a ⊥b ⇔a·b =0⇔|a -b |=|a +b |. (3)求向量的模:利用数量积求解长度问题的处理方法有 ①a 2=a·a =|a |2或|a |=a·a . ②|a ±b |=a ±b2=a 2±2a·b +b 2.③若a =(x ,y ),则|a |=x 2+y 2.(1)(2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.(2)(2016·绍兴二模)已知单位向量a 和b 满足|a +b |=2|a -b |,则a 与b 夹角的余弦值为( ) A .-13B .-23C.13D.23(3)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6D .6答案 (1)9 (2)C (3)C解析 (1)因为OA →⊥AB →,所以OA →·AB →=0.所以OA →·OB →=OA →·(OA →+AB →)=OA →2+OA →·AB →=|OA →|2+0=32=9.(2)由|a |=|b |=1,|a +b |=2|a -b |, 得2+2a·b =2(1-2a·b +1), 即a·b =13,cos 〈a ,b 〉=a·b |a||b |=13.(3)∵AB →·AC →=-1,∴|AB →|·|AC →|·cos 120°=-1, 即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6,∴|BC →|min = 6.题型三 平面向量与三角函数例4 (2015·广东)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12, 所以sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.(1)已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝ ⎛⎭⎪⎫3π2,2π,且OA→⊥OB →,则tan α的值为( ) A .-43B .-45C.45D.34(2)已知向量a =(-12,32),OA →=a -b ,OB →=a +b ,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积为________. 答案 (1)A (2)1解析 (1)由题意知6sin 2α+cos α·(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0,上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎪⎫3π2,2π,则tan α<0,解得tan α=-43,故选A.(2)由题意得,|a |=1,又△OAB 是以O 为直角顶点的等腰直角三角形,所以OA →⊥OB →,|OA →|=|OB →|.由OA →⊥OB →得(a -b )·(a +b )=|a |2-|b |2=0,所以|a |=|b |, 由|OA →|=|OB →|得|a -b |=|a +b |,所以a·b =0. 所以|a +b |2=|a |2+|b |2=2,所以|OB →|=|OA →|=2,故S △OAB =12×2×2=1.5.利用数量积求向量夹角典例 已知直线y =2x 上一点P 的横坐标为a ,直线外有两个点A (-1,1),B (3,3).求使向量PA →与PB →夹角为钝角的充要条件. 错解展示现场纠错解 错解中,cos θ<0包含了θ=π,即PA →,PB →反向的情况,此时a =1,故PA →,PB →夹角为钝角的充要条件是0<a <2且a ≠1.纠错心得 利用数量积的符号判断两向量夹角的范围时,不要忽视两向量共线的情况.1.(2016·北师大附中模拟)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( )A .x =-12B .x =-1C .x =5D .x =0 答案 D2.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( )A .22+ 3B .2 3C .4D .12 答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos 60°=4+4+2×2×2×12=12,|a +b |=2 3. 3.(2016·山西四校联考)已知平面向量a ,b 满足a ·(a +b )=3,且|a |=2,|b |=1,则向量a 与b 夹角的正弦值为( ) A .-12 B .-32 C.12 D.32答案 D解析 ∵a ·(a +b )=a 2+a ·b =22+2×1×cos〈a ,b 〉=4+2cos 〈a ,b 〉=3,∴cos〈a ,b 〉=-12, 又〈a ,b 〉∈[0,π],∴sin〈a ,b 〉=1-cos 2〈a ,b 〉=32. 4. 在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.又E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝⎛⎭⎪⎫AC →+13CB →·⎝ ⎛⎭⎪⎫AB →+13BC → =⎝ ⎛⎭⎪⎫23AC →+13AB →·⎝ ⎛⎭⎪⎫13AC →+23AB → =29AC →2+29AB →2+59AB →·AC → =29×(1+4)+0=109.故选B. 5.(2016·驻马店质检)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0,即CB →·(AB →+AC →)=0,因为AB →-AC →=CB →,所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形,故选C.*6.若△ABC 外接圆的圆心为O ,半径为4,OA →+2AB →+2AC →=0,则CA →在CB →方向上的投影为( )A .4 B.15 C.7D .1 答案 C解析 如图所示,取BC 的中点D ,连接AD ,OD ,则由平面向量的加法的几何意义得AB →+AC →=2AD →.又由条件得,AB →+AC →=-12OA →=12AO →, 所以2AD →=12AO →,即4AD →=AO →,所以A ,O ,D 共线. 所以OA ⊥BC ,所以CD 为CA →在CB →方向上的投影.因为|AO →|=|CO →|=4,所以|OD →|=3,所以|CD →|= |OC →|2-|OD →|2=7.7.(2016·绍兴柯桥区二模)已知平行四边形ABCD 中,AC =3,BD =2,则AB →·AD →=________.答案 54解析 ▱ABCD 中,AC →=AB →+AD →,DB →=AB →-AD →,∴|AB →+AD →|=3,|AB →-AD →|=2,∴(AB →+AD →)2-(AB →-AD →)2=5,∴AB →·AD →=54. 8.在△ABC 中,AB →·BC →=3,△ABC 的面积S ∈[32,32],则AB →与BC →夹角的取值范围是________. 答案 [π6,π4] 解析 由三角形面积公式及已知条件知32≤S △ABC =12AB ·BC sin B ≤32, 所以3≤AB ·BC sin B ≤3, ①由AB →·BC →=3,知AB ·BC cos(π-B )=3,所以AB ·BC =-3cos B, 代入①得,3≤-3sin B cos B≤3, 所以-1≤tan B ≤-33,所以3π4≤B ≤5π6, 而AB →与BC →的夹角为π-B ,其取值范围为[π6,π4]. 9.(2017·临安中学调研)已知在直角三角形ABC 中,∠ACB =90°,AC =BC =2,点P 是斜边AB 上的中点,则CP →·CB →+CP →·CA →=________.答案 4解析 由题意可建立如图所示的坐标系,可得A (2,0),B (0,2),P (1,1),C (0,0),则CP →·CB→+CP →·CA →=CP →·(CB →+CA →)=2CP →2=4.10.(2015·杭州模拟)已知AB →⊥AC →,|AB →|=1t,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC →|AC →|,则PB →·PC →的最大值等于________. 答案 13解析 建立如图所示坐标系,则B ⎝ ⎛⎭⎪⎫1t ,0,C (0,t ),AB →=⎝ ⎛⎭⎪⎫1t ,0, AC →=(0,t ), AP →=AB→|AB →|+4AC →|AC →| =t ⎝ ⎛⎭⎪⎫1t ,0+4t(0,t )=(1,4),∴P (1,4),PB →·PC →=⎝ ⎛⎭⎪⎫1t -1,-4·(-1,t -4) =17-⎝ ⎛⎭⎪⎫1t +4t ≤17-21t·4t =13. 11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35. 因为0<A <π,所以sin A =1-cos 2A = 1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得asin A =b sin B, 则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,则B =π4. 由余弦定理得(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35, 解得c =1,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22. 12.(2017·杭州高三第一次质检)在△ABC 中,角A ,B ,C 所对的边分别记为a ,b ,c .若A =π6,(1+3)c =2b . (1)求C ;(2)若CB →·CA →=1+3,求a ,b ,c .解 (1)在△ABC 中,由正弦定理b sin B =csin C, 得(1+3)sin C =2sin B ,又因为2sin B =2sin(5π6-C )=cos C +3sin C , 所以sin C =cos C ,又C ∈(0,56π),所以C =π4. (2)因为CB →·CA →=22ab ,所以ab =2(1+3). 由正弦定理得2a =c ,由余弦定理c 2=a 2+b 2-2ab cos C ,得c 2=a 2+b 2-2ab =12c 2++324c 2-2(1+3) =3+32c 2-2(1+3), 解得c =2,所以a =2,b =1+ 3.*13.(2016·萧山中学模拟)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )(0≤θ≤π2). (1)若AB →⊥a ,且|AB →|=5|OA →|,求向量OB →;(2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解 (1)由题设知AB →=(n -8,t ),∵AB →⊥a ,∴8-n +2t =0.又∵5|OA →|=|AB →|,∴5×64=(n -8)2+t 2=5t 2,得t =±8.当t =8时,n =24;当t =-8时,n =-8,∴OB →=(24,8)或OB →=(-8,-8).(2)由题设知AC →=(k sin θ-8,t ),∵AC →与a 共线,∴t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ =-2k (sin θ-4k )2+32k. ∵k >4,∴0<4k<1, ∴当sin θ=4k 时,t sin θ取得最大值32k.由32k=4,得k =8, 此时θ=π6,OC →=(4,8), ∴OA →·OC →=(8,0)·(4,8)=32.。

相关文档
最新文档