2020-2021西安铁一中分校初一数学下期末第一次模拟试题(含答案)
2020-2021西安市初一数学下期末试卷带答案
2020-2021西安市初一数学下期末试卷带答案一、选择题1.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 3.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多4.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A .(﹣26,50)B .(﹣25,50)C .(26,50)D .(25,50) 5.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间6.在实数0,-π,3,-4中,最小的数是( )A .0B .-πC .3D .-4 7.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50° 8.不等式组1212x x +>⎧⎨-≤⎩的解集是( ) A .1x < B .x ≥3 C .1≤x ﹤3 D .1﹤x ≤39.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°10.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 11.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角12.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)二、填空题13.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.14.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.15.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.16.已知方程x m ﹣3+y 2﹣n =6是二元一次方程,则m ﹣n =_____.17.已知关于x 的不等式组40339ax x +<⎧⎨-<⎩恰好有2个整数解,则整数a 的值是___________. 18.若关于x 的不等式组0532x m x +<⎧⎨-⎩无解,则m 的取值范围是_____. 19.在平面直角坐标系xOy 中,若(4,9)P m m --在y 轴上,则线段OP 长度为________.20.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.三、解答题21.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .22.(1)(感知)如图①,//AB CD ,点E 在直线AB 与CD 之间,连接AE 、CE ,试说明AEC A DCE ∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E 作//EF AB .1A ∴∠=∠( ),//AB CD (已知),EF //AB (辅助线作法),//EF CD ∴( ),2DCE ∴∠=∠( ),12AEC ∠=∠+∠,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)23.快递公司准备购买机器人来代替人工分拣已知购买- 台甲型机器人比购买-台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型、乙型机器人每台每小时分拣快递分别是1200件、1000件,该公司计划最多用41万元购买8台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?24.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为______ ;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______ .25.解不等式-3+3+1 21-3-18-xxx x ⎧≥⎪⎨⎪<⎩()【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x ,y 满足254()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩, 解得:22x y =⎧⎨=⎩, 故选C .【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.2.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 3.C解析:C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.4.C解析:C【解析】【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数). 故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.5.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B .【点睛】是解题关键.6.D解析:D【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-4的大小,∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.7.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.8.D解析:D【解析】【分析】【详解】解:1212xx+>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3,所以解集为:1<x≤3;故选D.解析:D【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D .【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.10.C解析:C【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.11.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角, 同旁内角,解题关键在于掌握各性质定义.12.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.二、填空题13.a=-1或a=-7【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a的值即可【详解】解:∵点P到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.14.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=解析:48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=48(cm 2)故答案为48 cm 2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.15.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩【解析】【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==. 故答案为510x y ⎧⎨⎩==. 【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.16.3【解析】试题分析:先根据二元一次方程的定义得出关于mn 的方程求出mn 的值再代入m-n 进行计算即可∵方程xm-3+y2-n=6是二元一次方程∴m -3=1解得m=4;2-n=1解得n=1∴m -n=4-解析:3【解析】试题分析:先根据二元一次方程的定义得出关于m 、n 的方程,求出m 、n 的值,再代入m-n 进行计算即可.∵方程x m-3+y 2-n =6是二元一次方程,∴m-3=1,解得m=4;2-n=1,解得n=1,∴m-n=4-1=3.考点:二元一次方程的定义.17.【解析】【分析】首先确定不等式组的解集先利用含a 的式子表示根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解:解得不等式组的解集为:且∵不等式组只有2 解析:4-,3-【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:解得不等式组40339ax x +<⎧⎨-<⎩的解集为: 4-<x<4a 且a<0 ∵不等式组只有2个整数解∴不等式组的整数解是:2,3 ∴41-2a≤< ∴-4a<2≤-,∵a 为整数∴整数a 的值是-4, -3故答案为:4-,3-【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键18.m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集根据不等式组无解即可确定出m 的范围【详解】解不等式x+m <0得:x <﹣m 解不等式5﹣3x≤2得:x≥1∵不等式组无解∴﹣m≤1则m≥﹣1故答解析:m ≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集,根据不等式组无解,即可确定出m 的范围.【详解】解不等式x +m <0,得:x <﹣m ,解不等式5﹣3x ≤2,得:x ≥1,∵不等式组无解,∴﹣m ≤1,则m ≥﹣1,故答案为:m ≥﹣1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.19.5【解析】【分析】先根据在轴上计算出m 的值根据纵坐标的绝对值即是线段长度可得到答案【详解】∵在轴上∴横坐标为0即解得:故∴线段长度为故答案为:5【点睛】本题只要考查了再y 轴的点的特征(横坐标为零)在 解析:5【解析】【分析】先根据(4,9)P m m --在y 轴上,计算出m 的值,根据纵坐标的绝对值即是线段OP 长度可得到答案.【详解】∵(4,9)P m m --在y 轴上,∴横坐标为0,即40m -=,解得:4m =,故(0,5)P -,∴线段OP 长度为|5|5-=,故答案为:5.【点睛】本题只要考查了再y 轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.20.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF 然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC 沿BC 方向平移2个单位得到△DEF∴AD=CF=1AC=DF∴四边形ABFD解析:10【解析】【分析】根据平移的性质可得AD=CF=1,AC=DF ,然后根据四边形的周长的定义列式计算即可得解.【详解】∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+1+1=10.故答案为10.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.三、解答题21.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD∥EG,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.【详解】证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)22.(1)见解析;(2)证明见解析;(3)70°.【解析】【分析】(1)根据平行线的性质、平行公理的推论和等量代换依次解答即可;EF AB,根据平行线的性质、平行公理的推论解答即可;(2)如图④,过点E作//(3)由(2)题的结论可求出∠AEC的度数,进而可得答案.【详解】EF AB,解:(1)证明:如图①,过点E作//A∴∠=∠(两直线平行,内错角相等),1AB CD(已知),EF//AB(辅助线作法),//∴(平行于同一条直线的两直线互相平行),//EF CD∴∠=∠(两直线平行,内错角相等),2DCE12∠=∠+∠,AEC∴∠=∠+∠ (等量代换);AEC A DCE(2)证明:如图④,过点E 作//EF AB ,180A AEF ∴∠+∠=︒(两直线平行,同旁内角互补),//AB CD (已知),//EF AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),180C CEF ∴∠+∠=︒(两直线平行,同旁内角互补),180180360A AEC C A AEF CEF C ∴∠+∠+∠=∠+∠+∠+∠=︒+=︒;(3)解:由(2)题的结论知:360A AEC C ∠+∠+∠=︒,∴360360*********AEC A C ∠=︒-∠-∠=︒-︒-︒=︒,∴∠MEC =180AEC ︒-∠=70°. 故答案为:70°. 【点睛】本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.23.(1)6万元、4万元 (2)甲、乙型机器人各4台【解析】【分析】(1)设甲型机器人每台的价格是x 万元,乙型机器人每台的价格是y 万元,根据“购买一台甲型机器人比购买一台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买a 台甲型机器人,则购买(8-a )台乙型机器人,根据总价=单价×数量结合总费用不超过41万元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再结合a 为整数可得出共有几种方案,逐一计算出每一种方案的每小时的分拣量,通过比较即可找出使得每小时的分拣量最大的购买方案.【详解】解:(1) 设甲型机器人每台价格是x 万元,乙型机器人每台价格是y 万元,根据题意的: 22324x y x y =+⎧⎨+=⎩解得:64x y =⎧⎨=⎩答:甲、乙两种型号的机器人每台价格分别是6万元、4万元:(2)设该公可购买甲型机器人a 台,乙型机器人()8a -台,根据题意得:()64841a a +-≤解得: 4.5a ≤ a 为正整数∴a=1或2或3或4当1a =,87a -=时.每小时分拣量为:12001100078200⨯+⨯=(件);当2a =,86a -=时.每小时分拣量为:12002100068400⨯+⨯=(件);当3a =,85a -=时.每小时分拣量为:12003100058600⨯+⨯=(件);当4a =,84a -=时.每小时分拣量为:12004100048800⨯+⨯=(件);∴该公司购买甲、乙型机器人各4台,能使得每小时的分拣量最大.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)(﹣3,2)(2)见解析(3)(a ﹣3,b+2)【解析】试题分析:(1)根据坐标系可得B 点坐标,再根据关于y 轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A 、B 、C 三点平移后的对应点位置,然后再连接即可;(3)根据△AOB 的平移可得P 的坐标为(a ,b ),平移后横坐标﹣3,纵坐标+2. 解:(1)B 点关于y 轴的对称点坐标为(﹣3,2),故答案为(﹣3,2);(2)如图所示:(3)P 的坐标为(a ,b )平移后对应点P 1的坐标为(a ﹣3,b+2).故答案为(a ﹣3,b+2).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.25.﹣2<x≤1.【解析】【分析】【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可.试题解析:331(1)213(1)8(2) xxx x-⎧++⎪⎨⎪--<-⎩,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.。
2020-2021西安铁一中分校初一数学下期中第一次模拟试题(含答案)
6.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
A. B. C. D.
7.下列命题中,是真命题的是()
A.在同一平面内,垂直于同一直线的两条直线平行
B.相等的角是对顶角
C.两条直线被第三条直线所截,同旁内角互补
D.过一点有且只有一条直线与已知直线平行
8.在平面直角坐标中,点M(-2,3)在()
解析:
【解析】
【分析】
根据平方根的定义即可求解.
【详解】
若一个数的平方等于5,则这个数等于: .
故答案为: .
【点睛】
此题主要考查平方根的定义,解题的关键是熟知平方根的性质.
14.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x-1<4+解得:9
2.A
解析:A
【解析】
【分析】
根据点A在x轴的下方,y轴的右侧,可知点A在第四象限,根据到x轴的距离是3,到y轴的距离是2,可确定出点A的横坐标为2,纵坐标为-3,据此即可得.
【详解】
∵点A在x轴的下方,y轴的右侧,
∴点A的横坐标为正,纵坐标为负,
∵到x轴的距离是3,到y轴的距离是2,
∴点A的横坐标为2,纵坐标为-3,
解析: ;
【解析】
分析:将x看作已知数求出y即可.
详解:方程3x+5y-3=0,
解得:y= .
故答案为 .
点睛:此题考查了解二元一次方程,来自题的关键是将x看作已知数求出y.
16.2﹣【解析】【分析】设点C表示的数是x再根据中点坐标公式即可得出x的值【详解】解:设点C表示的数是x∵数轴上表示1的对应点分别为点A点B点A是BC的中点∴=1解得x=2﹣故答案为2﹣【点评】本题考查
西安铁一中分校七年级数学下册期末试卷选择题汇编精选模拟考试试题
一、选择题1.如图,点A表示的数可能是()A.21+B.6C.11D.17答案:C解析:C【分析】先确定点A表示的数在3、4之间,再根据夹逼法逐项判断即得答案.【详解】解:点A表示的数在3、4之间,A、因为122<<,所以2213<+<,故本选项不符合题意;B、因为469<<,故本选项不符合题意;<<,所以263C、因为91116<<,所以3114<<,故本选项符合题意;D、因为161725<<,所以4175<<,故本选项不符合题意;故选:C.【点睛】本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键.,运动到2.如图,一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(00)(0)1,,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10),,,,…,且每秒移→→→→动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9)B.(9,0)C.(0,8)D.(8,0)答案:C解析:C【解析】【分析】由题目可以知道,质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n,n),用n2+n秒,这样可以先确定,第80秒钟时所在的点所在正方形,然后就可以进一步推得点的坐标.【详解】质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n ,n ),用n 2+n 秒,∵当n=8时,n 2+n=82+8=72,∴当质点运动到第72秒时到达(8,8),∴质点接下来向左运动,运动时间为80-72=8秒,∴此时质点的横坐标为8-8=0,∴此时质点的坐标为(0,8),∴第80秒后质点所在位置的坐标是(0,8),故选C.【点睛】本题考查了规律题——点的坐标,解决本题的关键是读懂题意,并总结出一定的规律,难度较大.3.如图,平面内有五条直线 1l 、2l 、3l 、4l 、5l ,根据所标角度,下列说法正确的是( )A .12l l //B .23//l lC .13//l lD .45//l l答案:D解析:D【分析】根据平行线的判定定理进行逐个选项进行分析即可得到答案.【详解】解:如图所示∵∠PHD =92°∴∠GHD =180°-∠PHD =88°∵∠CDK =88°∴∠GHD =∠CDK∴l 4∥l 5(同位角相等,两直线平行),所以D 选项正确∴∠BCG =∠F GV =93°∵∠ABF ≠∠BCG∴l 1与l 2不平行,所以A 选项错误;又∵∠CGH =93°,∠DHP =92°,∴∠CGH ≠∠DHP∴l 2与l 3不平行,所以B 选项错误;∵∠IBC +∠BDK =88°+88°≠180°∴l 1与l 3不平行,所以C 选项错误;故选D.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行.4.在平面直角坐标系中,任意两点A (1x ,1y ),B (2x ,2y ),规定运算:①A ⊕B=(12x x +,12y y +);②A ⊗B=1212x x y y +;③当12x x =且12y y =时,A=B ,有下列四个命题:(1)若A (1,2),B (2,﹣1),则A ⊕B=(3,1),A ⊗B=0; (2)若A ⊕B=B ⊕C ,则A=C ;(3)若A ⊗B=B ⊗C ,则A=C ; (4)对任意点A 、B 、C ,均有(A ⊕B )⊕C=A ⊕(B ⊕C )成立,其中正确命题的个数为( )A .1个B .2个C .3个D .4个答案:C解析:C【详解】试题分析:(1)A ⊕B=(1+2,2﹣1)=(3,1),A ⊗B=1×2+2×(﹣1)=0,所以(1)正确;(2)设C (3x ,3y ),A ⊕B=(12x x +,12y y +),B ⊕C=(23x x +,23y y +),而A ⊕B=B ⊕C ,所以12x x +=23x x +,12y y +=23y y +,则13x x =,13y y =,所以A=C ,所以(2)正确;(3)A ⊗B=1212x x y y +,B ⊗C=2323x x y y +,而A ⊗B=B ⊗C ,则1212x x y y +=2323x x y y +,不能得到13x x =,13y y =,所以A≠C ,所以(3)不正确;(4)因为(A ⊕B )⊕C=(123x x x ++,123y y y ++),A ⊕(B ⊕C )=(123x x x ++,123y y y ++),所以(A ⊕B )⊕C=A ⊕(B ⊕C ),所以(4)正确.故选C .考点:1.命题与定理;2.点的坐标.5.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P 1(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,这样依次得到各点.若A 2021的坐标为(﹣3,2),设A 1(x ,y ),则x +y 的值是( )A .﹣5B .3C .﹣1D .5答案:C解析:C【分析】列出部分A n 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A 2021的坐标为(﹣3,2),找出A 1的坐标,由此即可得出x 、y 的值,二者相加即可得出结论.【详解】解:∵A 2021的坐标为(﹣3,2),根据题意可知:A 2020的坐标为(﹣3,﹣2),A 2019的坐标为(1,﹣2),A 2018的坐标为(1,2),A 2017的坐标为(﹣3,2),…∴A 4n +1(﹣3,2),A 4n +2(1,2),A 4n +3(1,﹣2),A 4n +4(﹣3,﹣2)(n 为自然数).∵2021=505×4•••1,∵A 2021的坐标为(﹣3,2),∴A 1(﹣3,2),∴x +y =﹣3+2=﹣1.故选:C .【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.6.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则运动到第2021秒时,点P 所处位置的坐标是( )A .(2020,﹣1)B .(2021,0)C .(2021,1)D .(2022,0) 答案:C解析:C【分析】 根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P 的坐标.【详解】半径为1个单位长度的半圆的周长为:1212ππ⨯⨯=,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度, ∴点P 1秒走12个半圆, 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0),…,可得移动4次图象完成一个循环,∵2021÷4=505…1,∴点P 运动到2021秒时的坐标是(2021,1),故选:C .【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.7.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( ) A .M N < B .M N >C .M ND .M N ≥ 答案:B解析:B【分析】设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可. 【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++, ∴1p q x -=,∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•;()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•; ∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •-=201910x x •>;∴M N >;故选:B.【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.8.设记号*表示求a 、b 算术平均数的运算,即*2a b a b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ). ①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+;③*()(*)(*)a b c a b a c +=+;④()()**22a a b c b c +=+. A .①②③ B .①②④ C .①③④ D .②④答案:B解析:B【详解】①中(*)2b c a b c a ++=+,()*()22a b a c b c a b a c a ++++++==+,所以①成立; ②中*()2a b c a b c +++=,()*2a b c a b c +++=,所以②成立; ③中()()*(*)*222a b a c b c a b a c a a b c ++++=+=+=+,所以③不成立; ④中(*)2a b a b c c ++=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立. 故选B. 9.已知边长为a 的正方形面积为8,则下列关于a 的说法中,错误的是( )A .a 是无理数B .a 是8的算术平方根C .a 满足不等式组2030a a ->⎧⎨-<⎩D .a 的值不能在数轴表示 答案:D解析:D【分析】根据题意求得a ,根据无理数的定义,算术平方根的定义,无理数的估算,实数与数轴一一对应逐项分析判断即可【详解】解:根据题意,28a =,则a =A.a 是无理数,故该选项正确,不符合题意;B. a 是8的算术平方根,故该选项正确,不符合题意;C. 48<23<,则a 满足不等式组2030a a ->⎧⎨-<⎩,故该选项正确,不符合题意;D. a 的值能在数轴表示,故该选项不正确,符合题意;故选D【点睛】本题考查了无理数的定义,算术平方根的定义,无理数的估算,实数与数轴一一对应,是解题的关键.无理数的定义:“无限不循环的小数是无理数”, 平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根. 10.若29x =,|y |=7,且0x y ->,则x +y 的值为( )A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣10 答案:B解析:B【分析】先根据平方根、绝对值运算求出,x y 的值,再代入求值即可得.【详解】解:由29x =得:3x =±, 由7y =得:7y =±,0x y ->,x y ∴>,37x y =-⎧∴⎨=-⎩或37x y =⎧⎨=-⎩, 则3(7)10x y +=-+-=-或3(7)4x y +=+-=-,故选:B .【点睛】本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键.11.下列命题是真命题的有( )个①两个无理数的和可能是无理数;②两条直线被第三条直线所截,同位角相等;③同一平面内,垂直于同一条直线的两条直线互相平行;④过一点有且只有一条直线与已知直线平行;⑤无理数都是无限小数.A .2B .3C .4D .5答案:B解析:B【分析】分别根据无理数的定义、同位角的定义、平行线的判定逐个判断即可.【详解】解:①两个无理数的和可能是无理数,比如:π+π=2π,故①是真命题;②两条直线被第三条直线所截,同位角不一定相等,故②是假命题;③同一平面内,垂直于同一条直线的两条直线互相平行,故③是真命题;④在同一平面内,过一点有且只有一条直线与已知直线平行,故④是假命题; ⑤无理数是无限不循环小数,都是无限小数,故⑤是真命题.故选:B【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定、无理数的定义,难度不大.12.如图,A 、B 、C 、D 是数轴上的四个点,其中最适合表示10的点是( )A .点AB .点BC .点CD .点D答案:D解析:D【分析】 根据10<4即可得到答案.【详解】∵9<10<16, ∴10<4, ∴10的点是点D ,故选:D .【点睛】此题考查利用数轴表示实数,实数的大小比较,正确比较实数是解题的关键.13.正整数n 小于100,并且满足等式236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,例如:[][]1.5122==,,则满足等式的正整数的个数为( )A .2B .3C .12D .16 答案:D解析:D【分析】利用不等式[x ]≤x 即可求出满足条件的n 的值.【详解】解:若2n ,3n ,6n 有一个不是整数, 则22n n ⎡⎤⎢⎥⎣⎦<或者33n n ⎡⎤⎢⎥⎣⎦<或者66n n ⎡⎤⎢⎥⎣⎦<, ∴][][236236n n n n n n n ⎡⎤++++=⎢⎥⎣⎦<, ∴2n ,3n ,6n 都是整数,即n 是2,3,6的公倍数,且n <100, ∴n 的值为6,12,18,24,......96,共有16个,故选:D.【点睛】本题主要考查不等式以及取整,关键是要正确理解取整的定义,以及[x]≤x<[x]+1式子的应用,这个式子在取整中经常用到.14.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是()A.-130 B.-131 C.-132 D.-133答案:C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;第三行:239=;第四行:2416=;……第n行:2n;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C.【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.15.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是( )A.(44,5) B.(5,44) C.(44,6) D.(6,44)答案:A解析:A【解析】【分析】要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动…(44,44)点处粒子运动了44×45=1980分钟!此时粒子会将向下移动,进而得出答案.【详解】粒子所在位置与运动时间的情况如下:位置:(1,1),运动了2=1×2(分钟),方向向左;位置:(2,2),运动了6=2×3(分钟),方向向下;位置:(3,3),运动了12=3×4(分钟),方向向左;位置:(4,4),运动了20=4×5(分钟),方向向下,由上式规律,到(44,44)处时,粒子运动了44×45=1980(分钟),方向向下,故到2019分钟,须由(44,44)再向下运动2019-1980=39(分钟),所以在第2019分钟时,这个粒子的纵坐标为44-39=5,所以其坐标为(44,5),故选A.【点睛】本题考查了点的坐标的确定.本题也是一个阅读理解并猜想规律的题目,解答此题的关键是总结规律首先确定点所在的大致位置,然后就可以进一步推得点的坐标.16.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为()A.﹣40 B.﹣32 C.18 D.10答案:D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D.【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.17.设n 为正整数,且n <65<n+1,则n 的值为( ) A .5 B .6 C .7 D .8答案:D解析:D【分析】首先得出64<65<81,进而求出65的取值范围,即可得出n 的值.【详解】解:∵64<65<81,∴8<65<9,∵n <65<n+1,∴n=8,故选;D .【点睛】此题主要考查了估算无理数,得出64<65<81是解题关键.18.如图,直线//AB CD ,点E ,F 分别在直线.AB 和直线CD 上,点P 在两条平行线之间,AEP ∠和CFP ∠的角平分线交于点H ,已知78P ∠=︒,则H ∠的度数为( )A .102︒B .156︒C .142︒D .141︒答案:D解析:D【分析】过点P 作PQ ∥AB ,过点H 作HG ∥AB ,根据平行线的性质得到∠EPF =∠BEP +∠DFP =78°,结合角平分线的定义得到∠AEH +∠CFH ,同理可得∠EHF =∠AEH +∠CFH .【详解】解:过点P 作PQ ∥AB ,过点H 作HG ∥AB ,//AB CD ,则PQ ∥CD ,HG ∥CD ,∴∠BEP =∠QPE ,∠DFP =∠QPF ,∵∠EPF =∠QPE +∠QPF =78°,∴∠BEP +∠DFP =78°,∴∠AEP +∠CFP =360°-78°=282°,∵EH 平分∠AEP ,HF 平分∠CFP ,∴∠AEH +∠CFH =282°÷2=141°,同理可得:∠EHF =∠AEH +∠CFH =141°,故选D .【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.19.为了亮化某景点,石家庄市在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转,B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°,B 灯先转动2秒,A 灯才开始转动,当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是( )A .1或6秒B .8.5秒C .1或8.5秒D .2或6秒 答案:C解析:C【分析】设A 灯旋转的时间为t 秒,求出t 的取值范围为016t <≤,再分①06t <≤,②612t <≤和③1216t <≤三种情况,先分别求出MAM '∠和PBP '∠的度数,再根据平行线的性质可得MAM PBP ''∠=∠,由此建立方程,解方程即可得.【详解】解:设A 灯旋转的时间为t 秒,A 灯光束第一次到达AN 所需时间为180630︒=︒秒,B 灯光束第一次到达BQ 所需时间为1801810︒=︒秒, B 灯先转动2秒,A 灯才开始转动,0182t ∴<≤-,即016t <≤,由题意,分以下三种情况:①如图,当06t <≤时,//AM BP '',30,10(2)MAM t PBP t ''∴∠=︒∠=︒+,//,//MN PQ AM BP '',1,1MAM PBP ''∴∠=∠∠=∠,MAM PBP ''∴∠=∠,即3010(2)t t ︒=︒+,解得1t =,符合题设;②如图,当612t <≤时,//AM BP '',18030(6)36030,10(2)MAM t t PBP t ''∴∠=︒-︒-=︒-︒∠=︒+,//,//MN PQ AM BP '',2180,2180MAM PBP ''∴∠+∠=︒∠+∠=︒,MAM PBP ''∴∠=∠,即3603010(2)t t ︒-︒=︒+,解得8.5t =符合题设;③如图,当1216t <≤时,//AM BP '',30(12)30360,10(2)MAM t t PBP t ''∴∠=︒-=︒-︒∠=︒+,同理可得:MAM PBP ''∠=∠,即3036010(2)t t ︒-︒=︒+,解得1916t =>,不符题设,舍去;综上,A 灯旋转的时间为1秒或8.5秒,故选:C .【点睛】本题考查了平行线的性质、一元一次方程的几何应用等知识点,正确求出时间t 的取值范围,并据此分三种情况讨论是解题关键.20.如图,已知//AB CD ,M 为平行线之间一点连接AM ,CM ,N 为AB 上方一点,连接AN ,CN ,E 为NA 延长线上一点.若AM ,CM 分别平分BAE ∠,DCN ∠,则M ∠与N ∠的数量关系为( ).A .90M N ∠-∠=︒B .2180M N ∠-∠=︒C .180M N ∠+∠=︒D .2180M N ∠+∠=︒答案:B解析:B【分析】过点M 作//MO AB ,过点N 作//NP AB ,则//////MO AB CD NP ,根据平行线的性质可得12AMC ∠=∠+∠,223CNE ∠=∠-∠,318021∠=︒-∠,即可得出结论.【详解】解:过点M 作//MO AB ,过点N 作//NP AB ,//AB CD ,//////MO AB CD NP ∴,1AMO ∴∠=∠,OMC MCD ∠=∠, AM ,CM 分别平分BAE ∠,DCN ∠,21BAE ∴∠=∠,22NCD ∠=∠,2MCD ∠=∠,12AMC ∴∠=∠+∠,//CD NP ,22PNC NCD ∴∠=∠=∠,223CNE ∴∠=∠-∠,//NP AB ,318021NAB ∴∠=∠=︒-∠,22(18021)2(12)1802180CNE AMC ∴∠=∠-︒-∠=∠+∠-︒=∠-︒,2180AMC CNE ∴∠-∠=︒,故选:B .【点睛】本题考查了平行线的性质,邻补角的定义,解题的关键是熟练掌握平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等. 21.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂直为点O ,∠BOD =50°,则∠COE =( )A.30°B.140°C.50°D.60°答案:B解析:B【详解】试题解析:EO⊥AB,∴∠=AOE90,∠=∠=50,AOC BODCOE AOC AOE∴∠=∠+∠=+=5090140.故选B.OP QR ST下列各式中正确的是()22.如图,////A.123180∠+∠+∠=B.12390∠+∠-∠= C.12390∠-∠+∠=D.231180∠+∠-∠=答案:D解析:D【详解】试题分析:延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故选D.考点:平行线的性质.23.直线//AB CD ,直线EF 与AB ,CD 分别交于点E ,F ,EG EF ⊥.若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒答案:B解析:B【分析】由对顶角相等得∠DFE =55°,然后利用平行线的性质,得到∠BEF =125°,即可求出2∠的度数.【详解】解:由题意,根据对顶角相等,则155DFE ∠=∠=︒,∵//AB CD ,∴180DFE BEF ∠+∠=︒,∴18055125BEF ∠=︒-︒=︒,∵EG EF ⊥,∴90FEG ∠=︒,∴21259035∠=︒-︒=︒;故选:B .【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出125BEF ∠=︒.24.下列几个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A .1个B .2个C .3个D .4答案:B解析:B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.25.如图,直线//a b ,三角板的直角顶点在直线b 上,已知125∠=︒,则2∠等于( ).A .25°B .55°C .65°D .75°答案:C解析:C【分析】利用平行线的性质,可证得∠2=∠3,利用已知可证得∠1+∠3=90°,求出∠3的度数,进而求出∠2的度数.【详解】解:如图∵a //b∴∠2=∠3,∵∠1+∠3=180°-90°=90°∴∠3=90°-∠1=90°-25°=65°∴∠2=65°.故选C .【点睛】本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键. 26.下列命题是真命题的有( )(1)相等的角是对顶角;(2)两条直线被第三条直线所截,同位角相等;(3)在同一平面内,过两点有且只有一条直线与已知直线垂直;(4)经过直线外一点,有且只有一条直线与已知直线平行;(5)一个角的余角一定大于这个角.A .0个B .1个C .2个D .3个答案:B解析:B【分析】根据对顶角与同位角的定义、垂线的性质、平行公理、余角的定义逐个判断即可得.【详解】解:(1)相等的角不一定是对顶角,则原命题是假命题;(2)两条平行线被第三条直线所截,同位角相等,则原命题是假命题;(3)在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题; (4)经过直线外一点,有且只有一条直线与已知直线平行,则原命题是真命题;(5)一个角的余角不一定大于这个角,如70︒角的余角等于20︒,则原命题是假命题; 综上,是真命题的有1个,故选:B .【点睛】本题考查了对顶角与同位角的定义、垂线的性质、平行公理、余角,熟练掌握各定理与性质是解题关键.27.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 答案:D解析:D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE ∥CD∴∠ 2+∠C =180°,∠ 3+∠D =180°∵∠ 2=50°,∠ 3=120°∴∠C =130°,∠D =60°又∵BE ∥AF ,∠ 1=40°∴∠A =180°-∠ 1=140°,∠F =∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.28.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9答案:C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C.【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.29.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( )A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩ 答案:A解析:A【详解】根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A . 30.已知2,4,6a b c -,且12a b c -=-,则12abc =( )A .48-B .24-C .24D .48答案:B解析:B【分析】由12a b c -=-可得12a c b +=+,而根据2,4,6a b c -,可得8a c +≤,128b +≥,由此确定a 、b 、c 的取值,进而求解.【详解】解:∵12a b c -=-,∴12a c b +=+,又∵2,4,6a b c -,∴8a c +≤,128b +≥,∴8a c +=,128b +=,∴=2a ,=4b -,=6c , ∴()11246=2422abc =⨯⨯-⨯-. 故选B .【点睛】本题综合考查了不等式性质和代数式求值;解题关键是根据a 、b 、c 的取值范围求出a 、b 、c 的值.31.若关于x 的不等式132(2)x a x x >-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( ) A .12a ≤≤ B .12a ≤< C .12a << D .2a <答案:B解析:B【分析】首先解不等式组确定不等式组的解集,然后根据不等式组有四个整数解即可得到关于a 的不等式组,求得a 的值.【详解】解:()1322x a x x >-⎧⎪⎨+⎪⎩①②, 解①得:1x a >-,解②得:4x ,则不等式组的解集是:14a x -<.不等式组有四个整数解,则是1,2,3,4.则011a -<.解得:12a <.故选:B .【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.32.若整数a 使关于x 的不等式组125262x x x a++⎧≤⎪⎨⎪->⎩至少有4个整数解,且使关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,那么所有满足条件的整数a 的值的和是( ). A .-3 B .-4 C .-10 D .-14答案:D解析:D【分析】根据不等式组求出a 的范围,然后再根据关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数得到26a -=-或12-,从而确定所有满足条件的整数a 的值的和.【详解】 解:125262x x x a++⎧⎪⎨⎪->⎩, 不等式组整理得:22x x a ⎧⎨>+⎩, 由不等式组至少有4个整数解,得到21a +<-,解得:3a <-,解方程组206ax y x y +=⎧⎨+=⎩,得12262x a a y a ⎧=-⎪⎪-⎨⎪=⎪-⎩, 又关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数, 26a ∴-=-或12-,解得4a =-或10a =-,∴所有满足条件的整数a 的值的和是14-.故选:D .【点睛】本题考查解一元一次不等式组,学生的计算能力以及推理能力,解题的关键是根据不等式组以及二元一次方程组求出a 的范围,本题属于中等题型.33.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( ) A .6<m <7 B .6≤m <7 C .6≤m ≤7 D .6<m ≤7 答案:D解析:D【分析】首先确定不等式组的解集,先利用含m 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m 的不等式,从而求出m 的范围.【详解】解:0(1)721(2)x m x -<⎧⎨-≤⎩由(1)得,x <m ,由(2)得,x ≥3,故原不等式组的解集为:3≤x <m ,∵不等式组的正整数解有4个,∴其整数解应为:3、4、5、6,∴m 的取值范围是6<m ≤7.故选:D .【点睛】本题考查不等式组的整数解问题,利用数轴就能直观的理解题意,列出关于m 的不等式组,再借助数轴做出正确的取舍.34.关于x 的不等式组0321x a x -≤⎧⎨+>-⎩的整数解共有4个,则a 的取值范围( ) A .3a = B .23a << C .23a ≤< D .23a <≤ 答案:C解析:C【分析】分别求出每一个不等式的解集,根据不等式组的整数解的个数可得答案.【详解】解不等式x-a≤0得x≤a ,解不等式3+2x >-1得x >-2,∵不等式组的整数解共有4个,∴这4个整数解为-1、0、1、2,则2≤a <3,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.35.若实数x 和y 满足x >y ,则下列式子中错误的是( )A .x +1>y +1B .2x -6>2y -6C .-3x >-3yD .-3x <-3y 答案:C解析:C【分析】直接利用不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;分别分析得出答案.【详解】解:A .∵x >y ,∴x +1>y +1,故此选项不合题意;B .∵x >y ,∴2x >2y ,∴2x −6>2y −6,故此选项不合题意;C .∵x >y ,∴−3x <−3y ,故此选项符合题意;D .∵x >y ,∴-3x <-3y ,故此选项不合题意; 故选:C .【点睛】本题主要考查了不等式的性质,掌握不等式的基本性质是解题关键.36.若关于x 的不等式0ax b ->的解集是12x <,则关于x 的不等式bx a <的解集是( ) A .2x <- B .2x < C .2x >- D .2x >答案:D解析:D【分析】由题意可知,a 、b 均为负数,且可得a =2b ,把a =2b 代入bx <a 中,则可求得bx <a 的解集.【详解】由0ax b ->得:ax b >∵不等式0ax b ->的解集为12x <∴a <0 ∴12b x a <= ∴a =2b∴b <0由bx a <,得2bx b <∵b <0∴x >2故选:D .【点睛】本题考查了解一元一次不等式,关键是由条件确定字母a 的符号,从而确定a 与b 的关系,易出现错误的地方是求bx <a 的解集时,忽略b 的符号,从而导致结果错误.37.某班数学兴趣小组对不等式组2x x a >⎧⎨≤⎩讨论得到以下结论: ①若a =5,则不等式组的解集为2<x ≤5;②若a =1,则不等式组无解;③若不等式组无解,则a 的取值范围为a ≤2;④若不等式组有且只有两个整数解,则a 的值可以为5.1,以上四个结论,正确的序号是( )A .①②③B .①③④C .①②④D .①②③④ 答案:A解析:A【分析】将5a =和1a =代入不等式组,再根据口诀可得出不等式解集情况,从而判断①②;由不等式组无解,并结合大大小小的口诀可得a 的取值范围,此时注意临界值;由不等式组只有2个整数解可得a 的取值范围,从而判断④.【详解】解:①若a =5,则不等式组为25x x >⎧⎨⎩,此不等式组的解集为2<x ≤5,此结论正确; ②若a =1,则不等式组为21x x >⎧⎨⎩,此不等式组无解,此结论正确; ③若不等式组无解,则a 的取值范围为a ≤2,此结论正确;④若不等式组有且只有两个整数解,则4≤a <5,a 的值不可以为5.1,此结论错误; 故选:A .【点睛】本题主要考查一元一次不等式组的整数解,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.38.一个物体在天平上两次称重的情况如图所示,则这个物体的质量的取值范围在数轴上表示正确的是( )A .B .C .D .答案:C【分析】根据已知可看出物体质量的取值范围,再在数轴上表示.【详解】有已知可得,设物体的质量为xg ,则40<x <50在数轴表示为故选C【点睛】考核知识点:在数轴表示不等式组的解集.利用数轴表示不等式的解集是关键. 39.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17D .18答案:B解析:B【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比.【详解】解:根据题意、结合图形可得:330433a b a a b+=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩, ∴阴影部分面积223()310300=-=⨯=a b ,整个图形的面积304304151800=⨯=⨯⨯=a ,∴阴影部分面积与整个图形的面积之比300118006==,。
2020-2021西安铁一中分校初一数学下期末第一次模拟试题(含答案)参考资料
25. 点 C , B 分别在直线 MN , PQ 上,点 A 在直线 MN , PQ 之间, MN / / PQ .
(1)如图 1,求证: A MCA PBA ;
(2)如图 2,过点 C 作 CD // AB ,点 E 在 PQ 上, ECM
10 的取值范围是解题关键.
5.B
解析: B 【解析】 分析:先根据平行线的性质得出∠ 2+∠ BAD =180°,再根据垂直的定义求出∠ 详解:∵直线 a∥ b,∴∠ 2+∠BAD =180°.
∵ AC⊥AB 于点 A,∠ 1=34 °,∴∠ 2=180 °﹣ 90°﹣ 34°=56 °. 故选 B.
a、 b 的值.
x a 2 0①
1b
解:
,由①得, x> 2﹣ a,由②得, x<
,
2x b 1 0②
2
故不等式组的解集为; ∵原不等式组的解集为
2﹣ a<x< 1 b , 2
0< x< 1,
∴2﹣ a=0, 1
b
=1,解得 a=2, b=1 .
2
故选 A .
10.D
解析: D
【解析】
【分析】
根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得
3. 1 的平方根是 (
)
16
1
A.±
2
1
B.±
4
1
C.
4
1
D.
2
4. 估计 10 +1 的值应在(
)
A.3 和 4 之间
B. 4 和 5 之间
2020-2021七年级数学下期末第一次模拟试卷(含答案)
2020-2021七年级数学下期末第一次模拟试卷(含答案)一、选择题1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm2.下面不等式一定成立的是( ) A .2a a < B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >3.2-的相反数是( ) A .2-B .2C .12D .12-4.若|321|20x y x y --++-=,则x ,y 的值为( ) A .14x y =⎧⎨=⎩B .2x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩ 5.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角6.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°7.不等式组3(1)112123x x x x -->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .8.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)9.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-110.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限. A .一 B .二 C .三 D .四 11.过一点画已知直线的垂线,可画垂线的条数是( ) A .0B .1C .2D .无数12.若x <y ,则下列不等式中不成立的是( ) A .x 1y 1-<-B .3x 3y <C .x y 22< D .2x 2y -<-二、填空题13.已21x y =⎧⎨=-⎩是关于x 、y 的二次元方程39ax y +=的解,则a 的值为___________14.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.15.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N (下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴ AB ∥ ( ) ∴∠BAE= ( 两直线平行,内错角相等 ) 又∵∠1=∠2∴∠BAE ﹣∠1= ﹣∠2即∠MAE= ∴ ∥NE ( ) ∴∠M=∠N ( )16.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向 右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.17.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).18.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____. 19.对一个实数x 技如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x 的取值范围是__________.20.已知方程1(2)(3)5m n m xn y --+-=是二元一次方程,则mn =_________;三、解答题21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m =___________,n =_____________; (2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?22.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样) (1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案.23.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元. (1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?24.如图,已知在ABC ∆中,FG EB P ,23∠∠=,说明180EDB DBC ∠+∠=︒的理由.解:∵FG EB P (已知),∴_________=_____________(____________________). ∵23∠∠=(已知),∴_________=_____________(____________________). ∴DE BC ∥(___________________).∴180EDB DBC ∠+∠=︒(_________________________).25.已知AB CD ∥,CE 平分ACD ∠,交AB 于点E ,128∠=︒,求A ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD =BE =3,DF =AC ,DE =AB ,EF =BC ,所以: 四边形ABFD 的周长为: AB +BF +FD +DA=AB +BE +EF +DF +AD =AB +BC +CA +2AD =20+2×3 =26. 故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.D解析:D 【解析】 【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】A. 当0a ≤时,2aa ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误;C. 若a b >,当0c d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确; 故选D .主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.B解析:B 【解析】 【分析】根据相反数的性质可得结果. 【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B . 【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .4.D解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=, ∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.5.A解析:A 【解析】 【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 6.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.B解析:B【解析】【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可.【详解】解:3(1)112123x xx x-->-⎧⎪⎨--≤⎪⎩①②,解不等式①得:x<2,解不等式②得:x≥-1,在数轴上表示解集为:,故选:B. 【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.8.A解析:A 【解析】 【分析】根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系进行解答即可. 【详解】解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1).故选:A . 【点睛】考查坐标问题,关键是根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系解答.9.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:212x ±==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.10.B解析:B 【解析】 【分析】由点P 在x 轴上求出a 的值,从而得出点Q 的坐标,继而得出答案. 【详解】∵点P (a ,a-1)在x 轴上, ∴a-1=0,即a=1, 则点Q 坐标为(-1,2), ∴点Q 在第二象限, 故选:B . 【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.11.B解析:B 【解析】 【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答. 【详解】在平面内,过一点有且只有一条直线与已知直线垂直, 故选:B 【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.12.D解析:D 【解析】 【分析】利用不等式的基本性质判断即可.【详解】若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则x2<y2,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选D.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题13.6【解析】【分析】把x与y的值代入方程组求出a的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】【分析】把x与y的值代入方程组求出a的值,代入原式计算即可求出值.【详解】解:把21xy=⎧⎨=-⎩,代入得239a-=,解得:6a=故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.14.40【解析】根据平行线的性质先求出∠BEF和∠CE F的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.15.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠AEN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析【解析】【分析】由已知易得AB∥CD,则∠BAE=∠AEC,又∠1=∠2,所以∠MAE=∠AEN,则AM∥EN,故∠M=∠N.【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∠BAE=∠AEC(两直线平行,内错角相等)又∵∠1=∠2,∴∠BAE−∠1=∠AEC−∠2,即∠MAE=∠NEA,∴AM∥EN,(内错角相等,两直线平行)∴∠M=∠N(两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.16.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+E G+OE=A′D′+CD=1+1=2即可解析:2【解析】【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【详解】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为2.17.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m -2=0即m=2∴P(50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上, ∴m-2=0,即m=2, ∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 18.3【解析】解:由题意可得:①-②得:4m+2n=6故2m +n=3故答案为3 解析:3【解析】解:由题意可得:3731m n n m +=⎧⎨-=⎩①②,①-②得:4m +2n =6,故2m +n =3. 故答案为3. 19.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)-解析:822x <≤【解析】【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可.【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190,解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190,解得:x≤22;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190,解得:x >8;综上可得:8<x≤22.故答案为:8<x≤22.【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.20.-2【解析】【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn 的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-2解析:-2【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,列出方程组求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵方程1(2)(3)5m n m x n y --+-=是二元一次方程, ∴11m -=且m-2≠0,n=1,∴m=-2,n=1,∴mn =-2.故答案为:-2.【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.三、解答题21.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m ,用支付宝人数除以总人数可得其百分比n 的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,支付宝的人数所占百分比n%=35100100%⨯=35%,所以n=35, 故答案为:100,35;(2)网购人数为:100×15%=15人,微信对应的百分比为:40100%40%100⨯=,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.22.(1)每本文学名著45元,每本自然科学书20元;(2)方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【解析】【分析】(1)设每本文学名著x元,每本自然科学书y元,根据题意列出方程组解答即可;(2)根据学校要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,列出不等式组,解答即可.【详解】解:(1)设每本文学名著x元,每本自然科学书y元,可得:305023502020500x yx y+=⎧⎨-=⎩,解得:4520xy=⎧⎨=⎩.答:每本文学名著45元,每本自然科学书20元;(2)设学校要求购买文学名著z本,自然科学书为(z+30)本,根据题意可得:30804520(30)2400z zz z++⎧⎨++⎩…„,解得:36025z13≤≤,因为x取整数,所以x 取25,26,27;方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【点睛】此题主要考查了二元一次方程组的应用,一元一次不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.23.(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【解析】【分析】设要购买轿车x 辆,则要购买面包车(10-x )辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x 的取值范围,最后根据x 的值列出不同方案.【详解】(1)设购买轿车x 辆,那么购买面包车(10-x )辆.由题意,得7x +4(10-x )≤55,解得x ≤5.又因为x ≥3,所以x 的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元; 方案三的日租金为5×200+5×110=1550(元)>1500元. 所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【点睛】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x 的一元一次不等式;(2)求出三种购买方案的日租金24.1∠;2∠;两直线平行,同位角相等;1∠;3∠;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】先根据FG ∥EB 得出12∠=∠,进而推导出13∠=∠,证明DE ∥BC ,从而得出同旁内角互补.【详解】解:∵FG ∥EB (已知),∴12∠=∠(两直线平行,同位角相等).∵23∠∠=(已知),∴13∠=∠(等量代换).∴DE ∥BC (内错角相等,两直线平行).∴180EDB DBC ∠+∠=︒(两直线平行,同旁内角互补).【点睛】本题考查平行线的性质和证明,需要注意仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.124A ∠=︒.【解析】【分析】首先根据角平分线的性质可得∠ACE=∠DCE ,再根据平行线的性质可得∠AEC=∠ECD ,∠A+∠ACD=180°,进而得到∠A 的度数.【详解】解:∵CE 平分∠ACD 交AB 于E ,∴∠ACD=2∠DCE ,∵AB ∥CD ,128∠=︒∴∠ECD=128∠=︒,∴∠ACD=56°,∵AB ∥CD ,∴180********A ACD ∠=︒-∠=︒-︒=︒.【点睛】此题考查平行线的性质,解题关键是掌握平行线的性质定理.。
2020-2021学年陕西省西安市碑林区铁一中学七年级(下册)期末数学试卷
2020-2021学年陕西省西安市碑林区铁一中学七年级(下)期末数学试卷一、选择(每小题3分,共30分)1.下列计算正确的是()A.a5+a5=a10B.4b2=(2b)2C.x2•x3=x6D.(x2)3=x52.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.线段C.角D.直角三角形3.已知∠a=25,则∠a的补角的度数是()A.65°B.75°C.155°D.165°4.适合下列条件的△ABC中不是直角三角形的为()A.∠A=∠B=2∠C B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=90°﹣∠B5.一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅匀后随机地从中摸出一个球是绿球的概率是()A.B.C.D.6.如图所示,已知AB∥EF,CD⊥BC于点C,若∠D=92°,则下列成立的是()A.∠E=20°B.∠E=∠B C.∠E﹣∠B=2°D.∠E+∠B=38°7.一辆公交车从青龙寺站出发,加速行驶后开始匀速行驶,过了一段时间,公交车到达下一车站,乘客上、下车之后,公交车驶出车站后继续匀速行驶,下面的哪一幅图可以近似地刻画出公交车在这段时间内的速度变化情况()A.B.C.D.8.m2+n2=1,(m+n)2=2,则mn的值是()A.B.C.1D.29.如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点G处,点B落在点H处,若∠1=50°,则图中∠2的度数为()A.100°B.105°C.110°D.115°10.如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P,且与AB垂直,若AD=8,则点P 到BC的距离是()A.3B.4C.5D.6二、填空题(每题3分,共18分)11.生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为.12.若m=n+2,则2m+2n=.13.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠2=59°,则∠1=.14.一只小狗在如图所示的方砖上走来走去,最终停在阴影方砖上的概率是.15.等腰三角形的一个角是70°,则它的一腰上的高与底边的夹角是.16.如图,在R△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,AD是△ABC的角平分线,若P、Q分别是AD和AC边上的动点,则PC+PQ的最小值是.三、解答(共52分)17.计算:(1)()﹣1+(﹣1)2021﹣(π﹣3.14)0;(2)(2x2y)3•(7xy2)÷(14x4y3);(3)b(6a2﹣4ab2﹣a)÷ab.18.先化简后求值:(x+3)2﹣(x﹣4)(x+4),其中x=﹣2.19.尺规作图(不写作法,请保留作图痕迹)已知:如图△ABC,求作:在BC边上求作点D,使得S△ABD=S△ACD.20.如图,CF⊥AB于F,ED⊥AB于D,∠1=∠2,求证:FG∥BC.21.为了提高身体素质,小明假期为自己制定了慢跑锻炼计划.某天小明从家出发沿友谊路慢跑,已知他离家的距离x(km)与时间t(分钟)之间的关系如图,根据图像回答下列问题:(1)小明离开家的最远距离是千米,他在120分钟内共跑了千米;(2)小明在这次慢跑过程中,停留所用的时间为分钟,跑到最远距离用了分钟;(3)小明在这段时间内慢跑的最快速度是每小时千米.22.代数式a2±2ab+b2称为完全平方式.(1)若4a2+ka+9是完全平方式,那么k=;(2)已知x、y满足x2+y2+=2x+y,求x和y的值.23.同学们学习了全等三角形,知道其重要应用是通过全等三角形证明角相等或边相等,进而求角度或边长.有些题目不能直接得全等三角形时,需要根据条件购造全等三角形,当遇到等腰直角三角形时我们可以利用两条相等的腰及顶角90°,来构造全等的两个直角三角形,从而解决问题.(1)发现,如图1,已知等腰直角△ABC,点P是边AB上一点,过点A作CP的垂线交CP延长线于点E,过点B作CP的垂线,垂足为点F,若BF=7,AE=3,则EF=;(2)探索:如图2,已知等腰直角△ABC,点E是内部一点,且CE=4,AE垂直CE,连接BE,求△BCE的面积;(3)应用:如图3,已知钝角三角形ABC(∠ACB>90°),∠A=45°,以BC为边在直线BC与点A 同侧的位置作等腰直角△BCD,过点D作DE垂直AB,垂足为点E,则线段AE与线段BE有怎样的数量关系呢?并请说明由.。
2020-2021学年陕西省西安市七年级(下)期末数学试卷(含解析)
2020-2021学年陕西省西安市七年级(下)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.观察下列几何图形,既是轴对称图形又是中心对称图形的是()A. B.C. D.2.下列事件是必然事件的是()A. 人掷一枚质地均匀的硬币10次,一定有5次正面朝上B. 从一副扑克牌中抽出一张恰好是黑桃C. 任意一个三角形的内角和等于180°D. 打开电视,正在播广告3.下面四个图形中,线段BD是△ABC其中一条边上的高,正确的是()A. B.C. D.4.在圆的面积公式S=πR2中,常量与变量分别是()A. 2是常量,S、π、R是变量B. π是常量,S、R是变量C. 2是常量,R是变量D. 2是常量,S、R是变量5.如图所示,AB,CD,AE和CE均为笔直的公路,已知AB//CD,AE与AB的夹角∠BAE为32°,若线段CF与EF的长度相等,则CD与CE的夹角∠DCE为()A. 58°B. 32°C. 16°D. 15°6.下列运算正确的是()A. √81=±9B. (a2)3(−a2)=a8C. 3√−27=−3D. (a−b)2=a2−b27.下列长度的三条线段能组成三角形的是()A. 4、5、6B. 2、4、7C. 8、10、20D. 5、15、88.如图所示,在等边△ABC中,点A.E分别为边BC、AB上,且BD=AE,AD与CE交于点F,则∠DFC的度数为()A. 60。
B. 45。
C. 40。
D. 30。
9.在数学活动课上,小明提出这样一个问题:如右图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB的度数是()A. 65°B. 55°C. 45°D. 35°10.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A. 景点离小明家180千米B. 小明到家的时间为17点C. 返程的速度为60千米每小时D. 10点至14点,汽车匀速行驶二、填空题(本大题共4小题,共12.0分)11.一种细菌的半径是0.00003厘米,数据0.00003用科学记数法表示为______.12.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD与CE交于点F,请你添加一个适当的条件:______ (答案不唯一),使△ADB≌△CEB.13.某学校准备购买某种树苗,有A,B,C三家公司出售.查阅有关信息:A,B,C三家公司生产该树苗的成活频率分别稳定在0.902,0.913,0.899,该学校选择成活概率大的树苗,应该选择购买______公司.14.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是______.三、计算题(本大题共1小题,共6.0分)15.计算题(1)20−(+18)+|−5|+(−25)(2)(−12+23−14)×(−24)(3)−32+1÷4×14−|−114|×(−0.5)2(4)先化简,再求值:x2−(5x2−4y)+3(x2−y),其中x=−1,y=2.四、解答题(本大题共10小题,共73.0分)16.在实数范围内,对于任意实数m,n(m≠0))规定一种新运算:m⊗n=m n+mn−3.例如:4⊗2=42+4×2−3=21.若x⊗2=12,求x的值.17.如图,BD,CE分别是△ABC的高,BD和CE相交于O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由;(3)若∠A=55°,∠ACB=65°,求∠3,∠4和∠5的度数.18.如图,以BD为直径的⊙O经过点A.连接AB、AD(AB>AD).(1)尺规作图:在BD的延长线上作出点C,使∠CAD=∠ABD;(要求保留作图痕迹,不写作法)(2)请判断直线AC与⊙O的位置关系,并说明理由.19.如图所示,已知BE平分∠ABC,∠1=∠2,求证:∠AED=∠C.完善以下推理过程.证明:∵BE平分∠ABC,∴∠1=∠3(______ ).又∵∠1=∠2(已知),∴______ =______ (等量代换),∴______ //______ (______ )∴∠AED=∠C(______ ).20.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫格点,△ABC的每个顶点都在格点上.(1)将△ABC向左平移4个单位长度,得到△A1B1C1,画出△A1B1C1,并写出C1点的坐标.(2)在平面直角坐标系中,△A2B2C2与△ABC关于原点O成中心对称,请画出△A2B2C2.(3)在x轴上是否存在点P,使PA+PC的长度最短?如果存在,请在平面直角坐标系中作出点P,并保留作图痕迹,若不存在,请说明理由.21.如图,要测量湖两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点D、C,使CD=CB,再过D点作BF的垂线,在此直线上取一点E,使E、C、A三点在一条直线上,这时测得ED的长度就是AB的长度,试予以证明.(要求写出已知、求证、证明)22.某中学选拔一名青年志愿者:经笔试、面试,结果小明和小丽并列第一.评委会决定通过抓球来确定人选.规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个绿球,小明先取出一个球,记住颜色后放回,然后小丽再取出一个球.若两次取出的球都是红球,则小明胜出;若两次取出的球是一红一绿,则小丽胜出.你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析.23.某校八年级学生小丽、小强和小红到某超市参加了牡公实践活动.在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克.如图所示是他们在活动结束后的对话:(1)求每天的销售量y(千克)与销售单价x(元)之间的函数关系式;(2)该超市销售这种水果每天获取的利润为1040元.那么销售单价为多少元?24.你能求(x−1)(x2019+x2018+x2017+⋯+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.①(x−1)(x+1)=x2−1②(x−1)(x2+x+1)=x3−1③(x−1)(x3+x2+x+1)=x4−1…由此我们可以得到:(x−1)(x2019+x2018+x2017+⋯+x+1)=______.请你利用上面的结论,再完成下面两题的计算:(1)(−2)99+(−2)98+(−2)97+⋯+(−2)+1;(2)若x3+x2+x+1=0,求x2020的值.25.已知BD⊥AC,CF⊥AB,垂足分别是D、点E,BD和CF相交于点F,BF=CF,求证:点F在∠BAC的平分线上(10分)答案和解析1.【答案】C【解析】解:∵等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C.根据等腰三角形,平行四边形、矩形、圆的性质即可判断.本题考查中心对称图形、轴对称图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.【答案】C【解析】解:A、人掷一枚质地均匀的硬币10次,一定有5次正面朝上是随机事件;B、从一副扑克牌中抽出一张恰好是黑桃是随机事件;C、任意一个三角形的内角和等于180°是必然事件;D、打开电视,正在播广告是随机事件;故选:C.根据事件的分类对各选项进行逐一分析即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】D【解析】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.根据高的画法知,过点B作AC边上的高,垂足为D,其中线段BD是△ABC的高.本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4.【答案】B【解析】解:∵在圆的面积公式S=πR2中,S与R是改变的,π是不变的;∴变量是S、R,常量是π.故选:B.根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.本题考查了常量与变量的知识,属于基础题,变量是指在程序的运行过程中随时可以发生变化的量.5.【答案】C【解析】解:∵AB//DC,∴∠DFE=∠BAE=32°,又∵CF=EF,∠DFE=16°,∴∠DCE=12故选:C.利用平行线的性质得出∠BAF=∠DFE,再利用等腰三角形的性质得到∠FCE=∠E,进而得出答案.此题主要考查了平行线的性质以及等腰三角形的性质,正确把握平行线的性质是解题关键.6.【答案】C【解析】解:A、√81=9,故本选项不合题意;B、(a2)3(−a2)=a6⋅(−a2)=−a8,故本选项不合题意;3=−3,故本选项符合题意;C、√−27D、(a−b)2=a2−2ab+b2,故本选项不合题意.故选:C.分别根据算术平方根的定义,幂的乘方与积的乘方以及同底数幂的乘法法则,立方根的定义以及完全平方公式逐一判断即可.本题主要考查了算术平方根,完全平方公式,同底数幂的乘法以及幂的乘方,熟记相关公式与运算法则是解答本题的关键.7.【答案】A【解析】解:A、4+5>6,能组成三角形,故此选项符合题意;B、2+4<7,不能组成三角形,故此选项不符合题意;C、8+10<20,不能组成三角形,故此选项不符合题意;D、5+8<15,不能组成三角形,故此选项不符合题意;故选:A.利用三角形的三边关系可得答案.此题主要考查了三角形的三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.【答案】A【解析】考查等边三角形的性质和三角形全等的判定,先证明△ABD≌△CAE(SAS)得到∠ACE=∠BAD,又∠DFC=∠DAC+∠ACE所以∠DFC=∠DAC+∠BAD=∠BAC=60°.故选:A.9.【答案】D【解析】解:过点E作EF⊥AD,垂足为F.∵∠C=90°,∠CED=35°,∴∠CDE=55°.∵DE平分∠ADC,∴∠EDF=55°.∴∠CDA=110°.∵∠B=∠C=90°,∴AB//CD.∴∠CDA+∠DAB=180°.∴∠DAB=70°.∵DE 平分∠CDA ,EF ⊥AD ,EC ⊥DC ,∴EF =EC .∵E 是BC 的中点,∴EF =BE .在Rt △AEF 和Rt △AEB 中,{EF =BE AE =AE, ∴Rt △AEF≌Rt △AEB .∴∠EAF =∠EAB .∴∠EAB =12∠DAB =12×70°=35°. 故选:D .过点E 作EF ⊥AD ,垂足为F.由三角形的内角和定理求得∠CDE =55°,由角平分线的定义可知∠CDA =110°,由平行线的判定定理可知AB//CD ,由平行线的性质可求得∠DAB =70°,由角平分线的性质可知EF =EC ,于是得到EF =BE ,根据HL 可证明Rt △AEF≌Rt △AEB ,从而得到∠EAB =12∠DAB =35°.本题主要考查的是角平分线的性质、全等三角形的性质和判定、平行线的性质和判定、三角形的内角和定理,由角平分线的性质证得EF =EC 是解题的关键. 10.【答案】D【解析】解:A 、由纵坐标看出景点离小明家180千米,故A 正确;B 、由纵坐标看出返回时1小时行驶了180−120=60千米,180÷60=3,由横坐标看出14+3=17,故B 正确;C 、由纵坐标看出返回时1小时行驶了180−120=60千米,故C 正确;D 、由纵坐标看出10点至14点,路程不变,汽车没行驶,故D 错误;故选:D .根据函数图象的纵坐标,可判断A ;根据函数值与自变量的对应关系,可判断B ;根据函数图象的纵坐标,可得返回的路程,根据函数图象的横坐标,可得返回的时间,根据路程与时间的关系,可判断C ;根据函数图象的纵坐标,可判断D .本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间是解题关键.11.【答案】3×10−5【解析】解:0.00003=3×10−5.故答案是:3×10−5.绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【答案】AB=BC【解析】解:添加AB=BC.∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB,在△ADB和△CEB中,{∠ADB=∠CEB ∠B=∠BAB=BC,∴△ADB≌△CEB(AAS).故答案为AB=BC.要使△ADB≌△CEB,已知∠B为公共角,∠BEC=∠BDA,具备了两组角对应相等,故添加AB=BC或BE=BD或EC=AD后可分别根据AAS、ASA、AAS能判定△ADB≌△CEB.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.添加条件时,要首选明显的、简单的,由易到难.13.【答案】B【解析】解:因为A,B,C三家公司生产该树苗的成活频率分别稳定在0.902,0.913,0.899,所以选择成活概率大的树苗,应该选择购买B公司,故答案为:B根据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率解答即可.本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.【答案】80°【解析】解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°−∠CAD−∠ADC=180°−50°−50°=80°.故答案为:80°.先根据线段垂直平分线的性质得出CD=BD,由三角形外角的性质得出∠ADC的度数,再根据三角形内角和定理即可得出结论.本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15.【答案】解:(1)20−(+18)+|−5|+(−25)=20−18+5−25=−18;(2)(−12+23−14)×(−24)=12×24−23×24+14×24=12−16+6 =2;(3)−32+1÷4×14−|−114|×(−0.5)2=−9+116−54×14=−914;(4)x2−(5x2−4y)+3(x2−y)=x2−5x2+4y+3x2−3y=−x2+y,当x=−1,y=2时,原式=−1+2=1.【解析】此题考查了有理数混合运算、整式的加减−化简求值,熟练掌握运算法则是解本题的关键,属于基础题.(1)、(2)、(3)根据有理数混合运算的法则计算即可;(4)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.16.【答案】解:由题意得:x⊗2=x2+2x−3=12,∴x2+2x−15=0,(x−3)(x+5)=0,解得:x1=3,x2=−5.【解析】直接利用运算法则计算得出答案.此题主要考查了一元二次方程的解法以及实数运算,正确运用公式计算是解题关键.17.【答案】解:(1)∵BD,CE分别是△ABC的高,∴∠ADB=∠CDB=∠AEC=∠BEC=90°,∴图中有6个直角三角形,分别为△ABD、△CBD、△ACE、△BCE、△OBE、△OCD;(2)图中有与∠2相等的角为∠1,理由如下:∵∠2+∠A=90°,∠1+∠A=90°,∴∠1=∠2;(3)∵∠CDB=90°,∠ACB=65°,∴∠3=90°−∠ACB=90°−65°=25°,∵∠A=55°,∠ACB=65°,∴∠ABC=180°−∠A−∠ACB=180°−55°−65°=60°,∵∠BEC=90°,∴∠4=90°−∠ABC=30°,∴∠5=∠BOC=180°−∠3−∠4=180°−25°−30°=125°.【解析】(1)由题意得出∠ADB=∠CDB=∠AEC=∠BEC=90°,进而得出结论;(2)由直角三角形的性质即可得出答案;(3)由直角三角形的性质和三角形内角和定理进行推理计算即可.本题考查了直角三角形的性质以及三角形内角和定理;熟练掌握直角三角形的性质和三角形内角和定理是解题的关键.18.【答案】解:(1)如图,点C即为所求作.(2)AC是⊙O的切线.理由:由作图可知,AC⊥OA,∴AC是⊙O的切线.【解析】(1)连接OA,过点A作AC⊥OA交BD于点C,点C即为所求作.(2)根据作图可知AC⊥OA,可得结论.本题考查作图−复杂作图,圆周角定理,直线与圆的位置关系等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.【答案】角平分线定义;∠2;∠3;DE;BC;内错角相等,两直线平行;两直线平行,同位角相等【解析】【分析】本题主要考查了平行线的性质与判定有关知识,先根据等量代换,得出∠2=∠3,再根据平行线的判定,得出DE//BC,最后根据平行线的性质,得出∠AED=∠C.【解答】证明:∵BE平分∠ABC,∴∠1=∠3(角平分线定义),又∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴DE//BC(内错角相等,两直线平行),∴∠AED=∠C(两直线平行,同位角相等).故答案为角平分线定义,∠2,∠3,DE,BC,内错角相等,两直线平行,两直线平行,同位角相等.20.【答案】解:(1)如图,△A 1B 1C 1即为所求,C 1点的坐标(1,1).(2)如图,△A 2B 2C 2即为所求.(3)如图,点P 即为所求.【解析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.(2)作点B 关于x 轴的对称点B′,连接AB′交x 轴于点P ,连接PB ,此时PA +PB 的值最小.本题考查作图−旋转变换,轴对称最短问题等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】已知:BC =CD ,DE ⊥BC ,AB ⊥BC ,求证:AB =DE ,证明:∵DE ⊥BC ,AB ⊥BC ,∴∠B =∠D =90°,BC =CD ,∠ACB =∠ECD ,即{∠B =∠D =90°BC =CD ∠ACB =∠ECD∴△ABC≌△EDC(ASA),∴AB =DE .【解析】由对顶角相等,两个直角相等及BD =CD ,可以判断两个三角形全等;所以AB =DE .此题主要考查了全等三角形的应用,解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系,做题时要认真观察图形,根据已知选择方法.22.【答案】解:如图所示:一共9种情况,其中两次取出的球都是红球的可能性是49;两次取出的球是一红一绿的可能性是49.故这个规则对双方公平.【解析】直接利用树状图法列举出所有的可能,注意小明摸出一个球,记下颜色后放回搅动,然后小丽再取出一个球,再分别求出两次取出的球都是红球,两次取出的球是一红一绿的可能性,再比较即可求解.此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.23.【答案】解:(1)设每天的销售量y(千克)与销售单价x(元)之间的函数关系式为y =kx +b(k ≠0),将(10,300),(13,240)代入y =kx +b ,得:{10k +b =30013k +b =240, 解得:{k =−20b =500, ∴每天的销售量y(千克)与销售单价x(元)之间的函数关系式为y =−20x +500. ∵y >200,∴−20x +500>200,∴x <15.∵该水果的进价为8元/千克,∴8≤x <15.∴每天的销售量y(千克)与销售单价x(元)之间的函数关系式为y =−20x +500(8≤x <15).(2)依题意,得:(x −8)(−20x +500)=1040,整理,得:x 2−33x +252=0,解得:x 1=12,x 2=21.∵8≤x <15,∴x =12.答:销售单价为12元/千克.【解析】(1)根据点的坐标,利用待定系数法可求出每天的销售量y(千克)与销售单价x(元)之间的函数关系式,结合进价及每天的销售量,即可得出x 的取值范围;(2)根据总利润=每千克的利润×销售数量,即可得出关于x 的一元二次方程,解之即可得出x 的值,结合(1)中x 的取值范围,即可确定结论.本题考查了一元二次方程的应用、一次函数图象上点的坐标特征以及待定系数法求一次函数解析式,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)找准等量关系,正确列出一元二次方程.24.【答案】x2020−1【解析】解:(x−1)(x2019+x2018+x2017+⋯+x+1)=x2020−1;故答案为:x2020−1;(1)(−2)99+(−2)98+(−2)97+⋯+(−2)+1=(−2−1)⋅(−2)99+(−2)98+⋯+(−2)+1−3=(−2)100−1−3=1−21003;(2)∵(x−1)(x3+x2+x+1)=x4−1,x3+x2+x+1=0,∴x4=1,则x=±1,∵x3+x2+x+1=0,∴x<0,∴x=−1,∴x2020=1.归纳总结得到一般性规律,写出即可;(1)原式变形后,利用得出的规律计算即可求出值;归纳总结得到一般性规律,写出即可;(2)根据(x−1)(x3+x2+x+1)=x4−1,代入已知可得x的值,根据x3+x2+x+ 1=0,x2≥0,得x<0,可得x=−1,代入可得结论.此题考查了平方差公式,以及规律型:数字的变化类,熟练掌握平方差公式是解本题的关键.25.【答案】∵BD⊥AC,CF⊥AB,∴∠CDF=∠BEF,在△CDF和△BEF中,∵∠CDF=∠BEF,∠BFE=∠CFD,BF=CF,∴△CDF≌△BEF(AAS)∴DF=EF∵BD⊥AC,CF⊥AB∴由角平分线性质可知,点F在∠BAC的平分线上。
西安铁一中分校人教版七年级下册数学期末试卷
25.定义:对于任何数 ,符号 表示不大于 的最大整数.
(1)
(2)如果 ,求满足条件的所有整数 。
26.(1)已知 ,求 的值.
(2)已知等腰△ABC的三边长为 ,其中 满足:a2+b2=6a+12b-45,求△ABC的周长.
西安铁一中分校人教版七年级下册数学期末试卷
一、选择题
1.若 ,那么 、 、 三数的大小为().
A. B. C. D.
2.如图,能判断AB∥CE的条件是( )
A.∠A=∠ECDB.∠A=∠ACEC.∠B=∠BCAD.∠B=∠ACE
3.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )
②若3是底,则腰是6,6.
3+6>6,符合条件.成立.
∴C=3+6+6=15.
故选B.
考点:等腰三角形的性质.
6.C
解析:C
【分析】
运用多项式乘法法则对各个算式进行计算,再确定答案.
【详解】
解:A.原式=x2﹣2x+1,
B.原式=﹣(x﹣1)2=﹣x2+2x﹣1;
C.(x+1)(x﹣1)=x2﹣1;
14.一个多边形的内角和与外角和之差为720 ,则这个多边形的边数为______.
15.已知 ,则 的值是____.
16.计算: =.
17.已知一个多边形的每个外角都是24°,此多边形是_________边形.
18.若 是二元一次方程2x﹣3y﹣5=0的一组解,则4a﹣6b=_____.
19.把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有_____种.
2020-2021学年陕西省西安市七年级(下)期末数学试卷及参考答案
.
三、解答题(共 11 小题,计 78 分解答应写出过程) 15.(5 分)化简:6x2y(﹣2xy+y3)÷xy2. 16.(5 分)如图,是边长为 1 的正方形网格,△ABC 的顶点均在格点上,画出△ABC 关于
直线 DE 对称的△A1B1C1.
17.(5 分)如图,已知△ABC,利用尺规在 AC 边上求作一点 D,连接 BD,BD 平分∠ABC.(保 留作图痕迹,不写作法)
砖组成,小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域
中灰色部分的概率,P(乙)表示小球停留在乙区域中灰色部分的概率,下列说法中正确
的是( )
A.P(甲)<P(乙)
B.P(甲)>P(乙)
C.P(甲)=P(乙)
D.P(甲)与 P(乙)的大小关系无法确定
10.(3 分)如图,点 B、C、E、在同一直线上,△ABC 与△CDE 为等腰三角形,CA=CB,
2020-2021 学年陕西省西安市七年级(下)期末数学试卷
一、选择题(共 10 小题,每小题 3 分,计 30 分每小题只有一个选项是符合题意的 1.(3 分)计算(﹣1)0﹣2﹣3 正确的是( )
A.﹣
B.
C.6
D.7
2.(3 分)下列四个图形中,是轴对称图形的是( )
A.
B.
C.
D.
3.(3 分)一个不透明的袋子里装有黄、白、红三种颜色的球,摇匀后每次随机从袋中摸出
第 4页(共 6 页)
21.(7 分)在高铁站广场前有一块长为(2a+b)米,宽为(a+b)米的长方形空地(如图).计 划在中间留两个长方形喷泉(图中阴影部分),两喷泉及周边留有宽度为 b 米的人行通道. (1)请用代数式表示广场面积并化简. (2)请用代数式表示两个长方形喷泉(图中阴影部分)的面积并化简.
西安市铁一中学人教版七年级数学下册期末试卷及答案
解:A、 无法合并,故A选项错误;
B、 无法合并,故B选项错误;
C、 ,故C选项正确;
D、 ,故D选项错误.
故选:C
【点睛】
此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.
3.B
解析:B
【解析】
∠1与它的同位角相等,它的同位角+∠2=45°
22.如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,若∠A=65°,∠B=45°,求∠AGD的度数.
23.先化简,再求值:(2a﹣b)2﹣(a+1﹣b)(a+1+b)+(a+1)2,其中a= ,b=﹣2.
24.阅读理解并解答:
为了求1+2+22+23+24+…+22009的值.
可令S=1+2+22+23+24+…+22009
13.不等式 的非负整数解是______.
14.若把代数式 化为 的形式,其中 、 为常数,则 ______.
15.已知关于x的不等式组 无解,则a的取值范围是________.
16. =______.
17.计算: =____________.
18.已知(a+b)2=7,a2+b2=5,则ab的值为_____.
10.若关于 的一元一次不等式组 无解,则 的取值范围是( )
A. B. C. D.
二、填空题
11.新型冠状肺炎病毒(COVID﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____.
2020年西安市初一数学下期末第一次模拟试题带答案
2020年西安市初一数学下期末第一次模拟试题带答案一、选择题1.下列各式中计算正确的是( )A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55ab > D .-3a >-3b3.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >4.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩ 5.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩ 8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .3210.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5C .7D .9 11.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,4 12.过一点画已知直线的垂线,可画垂线的条数是( ) A .0 B .1 C .2D .无数 二、填空题13.若方程33x x m +=-的解是正数,则m 的取值范围是______.14.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°15.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).16.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____. 17.若a ,b 均为正整数,且a >7,b <32,则a +b 的最小值是_______________.18.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.19.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.20.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.三、解答题21.如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F ,12∠=∠.(1)试说明DG BC P 的理由;(2)如果54B ∠=︒,且35ACD ∠=︒,求3∠的度数.22.ABC V 与111A B C △,在平面直角坐标系中的位置如图所示,(1)分别写出下列各点的坐标:A ;B ;C ;(2)111A B C △由ABC V 经过怎样的平移得到?(3)若点P x y (,)是ABC V 内部一点,则111A B C △内部的对应点1P 的坐标为____________;(4)求ABC V 面积.23.一个工程队原定在10天内至少要挖土600m 3,在前两天一共完成了120m 3,由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m 3?24.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 220a b b --=.()1则C 点的坐标为______;A 点的坐标为______.()2已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由.()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.25.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A 93=,此选项错误错误,不符合题意;B 2(3)3-=,此选项错误错误,不符合题意;C 33(3)3-=-,此选项错误错误,不符合题意;D 3=,此选项正确,符合题意;故选:D .【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 3.D解析:D【解析】【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若ab >,当0cd =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.4.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.解:∵实数x ,y 满足254()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩, 解得:22x y =⎧⎨=⎩, 故选C .【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.5.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.6.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 7.D【解析】分析:先根据非负数的性质列出关于x、y的二元一次方程组,再利用加减消元法求出x的值,利用代入消元法求出y的值即可.详解:∵32120x y x y--++-=,∴321020 x yx y--⎧⎨+-⎩==将方程组变形为32=1=2x yx y-⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11 xy=⎧⎨=⎩.故选:D.点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.8.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9.A解析:A分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=VV(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.10.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.12.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.二、填空题13.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考解析:m>-3【解析】【分析】首先解方程,利用m表示出x的值,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.【详解】+=-x x m332x=3+m,根据题意得:3+m >0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质解析:57°.【解析】【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°. 【点睛】本题考查平行线的性质及三角形外角的性质.15.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m-2=0即m=2∴P (50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上, ∴m-2=0,即m=2, ∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 16.3【解析】解:由题意可得:①-②得:4m+2n=6故2m +n=3故答案为3 解析:3【解析】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n =3.故答案为3.17.4【解析】【分析】先估算的范围然后确定ab的最小值即可计算a+b的最小值【详解】∵<<∴2<<3∵a>a为正整数∴a的最小值为3∵<<∴1<<2∵b <b为正整数∴b的最小值为1∴a+b的最小值为3+解析:4【解析】【分析】的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】∴2<3,∵a,a为正整数,∴a的最小值为3,∴1<2,∵b,b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.18.a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.19.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E ∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∵l 1//l 2,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.20.(±30)【解析】解:若x 轴上的点P 到y 轴的距离为3则∴x=±3故P 的坐标为(±30)故答案为:(±30)解析:(±3,0)【解析】解:若x 轴上的点P 到y 轴的距离为3,则3x =,∴x =±3.故P 的坐标为(±3,0).故答案为:(±3,0).三、解答题21.(1)见解析;(2)371∠=︒【解析】【分析】(1)由CD ⊥AB ,EF ⊥AB 即可得出CD ∥EF ,从而得出∠2=∠BCD ,再根据∠1=∠2即可得出∠1=∠BCD ,依据“内错角相等,两直线平行”即可证出DG ∥BC ;(2)在Rt △BEF 中,利用三角形内角和为180°即可算出∠2度数,从而得出∠BCD 的度数,再根据BC ∥DE 即可得出∠3=∠ACB ,通过角的计算即可得出结论.【详解】(1)证明:∵CD AB ⊥,EF AB ⊥,∴CD EF P ,∴2BCD ∠=∠,∵12∠=∠,∴1BCD ∠=∠,∴DG BC P ;(2)解:在Rt △BEF 中,∠B=54°,∴∠2=180°-90°-54°=36°,∴∠BCD=∠2=36°.又∵BC ∥DG ,3353671ACB ACD BCD ︒︒︒∴∠=∠=∠+∠=+=【点睛】本题考查了平行线的判定与性质,解题的关键是:(1)找出∠1=∠BCD ;(2)找出∠3=∠ACB=∠ACD+∠BCD .本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角证出两直线平行是关键.22.(1)()54,,()35,,()22,;(2)见解析;(3)1P (x -4,y -3);(4)72【解析】【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A 、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点1P 的坐标; (4)利用△ABC 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)()5,4;()3,5;()2,2;(2)由ABC V 先向下平移3个单位长度再向左平移4个单位长度得到.(3)1P (x -4,y -3);(4)1117331323122222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△ 【点睛】此题考查平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.23.80m 3【解析】试题分析:设以后几天内,平均每天要挖掘xm 3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600-120)m 3的土方,根据题意可得不等式,解不等式即可.试题解析:设平均每天挖土x m 3,由题意得:(10﹣2﹣2)x ≥600﹣120,解得:x ≥80.答:平均每天至少挖土80m 3.点睛:本题考查了一元一次不等式的应用,关键是弄清题意,清楚600m 3的土方到底要用几天干完.24.(1)()2,0;()0,4 ;(2)1;(3)2.【解析】分析:(1)根据绝对值和算术平方根的非负性,求得a ,b 的值即可;(2)先得出CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC∠∠∠+进行计算即可.详解:(1+|b ﹣2|=0,∴a ﹣2b =0,b ﹣2=0,解得:a =4,b =2,∴A (0,4),C (2,0);(2)由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒,∴0<t ≤2时,点Q 在线段AO 上,即 CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,∴1111222212222DOP D DOQ D S OP y t t S OQ x t t =⋅=-⨯=-=⋅=⨯⨯=V V (),. ∵S △ODP =S △ODQ ,∴2﹣t =t ,∴t =1; (3)OHC ACE OEC∠∠∠+的值不变,其值为2. ∵∠2+∠3=90°. 又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124421421414OHC ACE OEC ∠∠∠∠∠∠∠∠∠∠∠∠∠+++++===++().点睛:本题主要考查了坐标与图形性质,解决问题的关键值作辅助线构造平行线.解题时注意:任意一个数的绝对值都是非负数,算术平方根具有非负性,非负数之和等于0时,各项都等于0.25.(1)有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【解析】【分析】设要购买轿车x辆,则要购买面包车(10-x)辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x的取值范围,最后根据x的值列出不同方案.【详解】(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【点睛】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金。
西安铁一中分校七年级下册数学期末试卷真题汇编[解析版]
西安铁一中分校七年级下册数学期末试卷真题汇编[解析版]一、解答题1.如图1,AB //CD ,点E 、F 分别在AB 、CD 上,点O 在直线AB 、CD 之间,且100EOF ∠=︒.(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.2.已知,AB ∥CD ,点E 在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E . (1)如图1,求证:HG ⊥HE ;(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.3.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.问题解决:(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P 在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系;(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC 的度数.4.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).5.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.二、解答题6.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°,求∠APC 的度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质来求∠APC . (1)按小明的思路,易求得∠APC 的度数为 度;(2)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP =∠α,∠BCP =∠β.试判断∠CPD 、∠α、∠β之间有何数量关系?请说明理由; (3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.7.如图所示,已知//AM BN ,点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C 、D ,且60CBD ∠=︒ (1)求A ∠的度数.(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P 运动到使ACB ABD =∠∠时,求ABC ∠的度数.8.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.9.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论.10.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.三、解答题11.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.12.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒; (2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.13.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”; (2)在图2中,若∠B=96°,∠C=100°,求∠P 的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间存在着怎样的数量关系(用α、β表示∠P ),并说明理由; (4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .14.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.15.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、解答题1.(1) ;(2)的值为40°;(3). 【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解; (2)过点M 作MK ∥AB ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM 解析:(1)260BEO DFO ∠+∠=︒ ;(2)EMN FNM ∠-∠的值为40°;(3)53.【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解;(2)过点M 作MK ∥A B ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM =∠OEM =x ,∠CFN =∠OFN =y ,由∠BEO +∠DFO =260°可求x -y =40°,进而求解;(3)设直线FK 与EG 交于点H ,FK 与AB 交于点K ,根据平行线的性质即三角形外角的性质及50FMN ENM ∠-∠=︒,可得50KFD AEG ∠-∠=︒,结合260AEG n OEG DFK n OFK BEO DFO ∠=∠=∠∠+∠=︒,,,可得11180100AEG AEG KFD KFD n n ∠+∠+︒-∠-∠=︒,即可得关于n 的方程,计算可求解n 值. 【详解】证明:过点O 作OG ∥AB ,∵AB ∥CD , ∴AB ∥OG ∥CD ,∴180180BEO EOG DFO FOG ∠+∠=︒∠+∠=︒,,∴360BEO EOG DFO FOG ∠+∠+∠+∠=︒, 即360BEO EOF DFO ∠+∠+∠=︒, ∵∠EOF =100°,∴∠260BEO DFO +∠=︒;(2)解:过点M 作MK ∥AB ,过点N 作NH ∥CD ,∵EM 平分∠BEO ,FN 平分∠CFO , 设BEM OEM x CFN OFN y ∠=∠=∠=∠=,, ∵260BEO DFO ∠+∠=︒∴21802260BEO DFO x y ∠+∠=+︒-=︒, ∴x -y =40°,∵MK ∥AB ,NH ∥CD ,AB ∥CD , ∴AB ∥MK ∥NH ∥CD ,∴EMK BEM x HNF CFN y KMN HNM ∠=∠=∠=∠=∠=∠,,, ∴EMN FNM EMK KMN HNM HNF ∠+∠=∠+∠-∠+∠() x KMN HNM y =+∠-∠-=x -y =40°,故EMN FNM ∠-∠的值为40°;(3)如图,设直线FK 与EG 交于点H ,FK 与AB 交于点K ,∵AB ∥CD ,∴AKF KFD ∠=∠,∵AKF EHK HEK EHK AEG ∠=∠+∠=∠+∠, ∴KFD EHK AEG ∠=∠+∠, ∵50EHK NMF ENM ∠=∠-∠=︒, ∴50KFD AEG ∠=︒+∠, 即50KFD AEG ∠-∠=︒,∵AEG n OEG ∠=∠,FK 在∠DFO 内,DFK n OFK ∠=∠.∴1180180CFO DFK OFK KFD KFD n∠=︒-∠-∠=︒-∠-∠ ,1AEO AEG OEG AEG AEG n ∠=∠+∠=∠+∠,∵260BEO DFO ∠+∠=︒, ∴100AEO CFO ∠+∠=︒,∴11180100AEG AEG KFD KFD n n ∠+∠+︒-∠-∠=︒,即(180)1KFD AEG n ⎛⎫⎪⎝∠⎭+-∠︒=, ∴115080n ⎛⎫⎪⨯⎭︒︒⎝+=, 解得53n = . 经检验,符合题意, 故答案为:53.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.2.(1)见解析;(2)见解析;(3)40° 【分析】(1)根据平行线的性质和判定解答即可;(2)过点H 作HP ∥AB ,根据平行线的性质解答即可; (3)过点H 作HP ∥AB ,根据平行线的性质解答即可.解析:(1)见解析;(2)见解析;(3)40° 【分析】(1)根据平行线的性质和判定解答即可;(2)过点H 作HP ∥AB ,根据平行线的性质解答即可; (3)过点H 作HP ∥AB ,根据平行线的性质解答即可. 【详解】证明:(1)∵AB ∥CD , ∴∠AFE =∠FED , ∵∠AGH =∠FED ,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∠BGH,∴∠BGM=∠HGM=12∵EM平分∠HED,∠HED,∴∠HEM=∠DEM=12∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=12∠AFE,即1(18010)132x x︒-=,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.3.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=12∠BAP,∠DCQ=12∠PCD,∴∠BAQ+∠DCQ=12(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.4.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF ∥CD ,∴∠FED =∠D ,∴∠BED =∠BEF +∠FED =∠B +∠D ;故答案为:∠B ;EF ;CD ;∠D ;(2)①如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 5.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B ,∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE=a,则∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∠DBC=a+45°∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=12又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.二、解答题6.(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠A解析:(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.故答案为110°;(2)∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β-∠α,理由是:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE =∠β-∠α;当P在AB延长线时,∠CPD=∠α-∠β,理由是:如图5,过P作PE∥AD交CD于E,∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE -∠CPE =∠α-∠β.【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键.7.(1);(2)不变化,,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1)60A ∠=;(2)不变化,2APB ADB ∠=∠,理由见解析;(3)30ABC ∠=【分析】(1)结合题意,根据角平分线的性质,得ABN ∠;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得APB PBN ∠=∠,ADB DBN ∠=∠;结合角平分线性质,得2APB ADB ∠=∠,即可完成求解;(3)根据平行线的性质,得ACB CBN ∠=∠;结合ACB ABD =∠∠,推导得ABC DBN ∠=∠;再结合(1)的结论计算,即可得到答案.【详解】(1)∵BC ,BD 分别评分ABP ∠和PBN ∠, ∴1122CBP ABP DBP PBN ∠=∠∠=∠,, ∴2ABN CBD ∠=∠又∵60CBD ∠=,∴120ABN ∠=∵//AM BN ,∴180A ABN ∠+∠=∴60A ∠=;(2)∵//AM BN ,∴APB PBN ∠=∠,ADB DBN ∠=∠又∵BD 平分PBN ∠∴2PBN DBN ∠=∠,∴2APB ADB ∠=∠;∴APB ∠与ADB ∠之间的数量关系保持不变;(3)∵//AD BN ,∴ACB CBN ∠=∠又∵ACB ABD =∠∠,∴CBN ABD ∠=∠,∵ABC CBN ABD DBN ∠+∠=∠+∠∴ABC DBN ∠=∠由(1)可得60CBD ∠=,120ABN ∠= ∴()112060302ABC ∠=⨯-=. 【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.8.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC∠=∠,理由如下:DE BA,//∴∠=∠,EDF BFDDF CA,//∴∠=∠,BABFD C∴∠=∠;EDF BACDE BA,理由如下:(2)//如图,延长BA交DF于点O,DF CA,//∴∠=∠,BAC BOD∠=∠,EDF BAC∴∠=∠,EDF BOD//∴;DE BA(3)由题意,有以下两种情况:∠=∠,理由如下:①如图3-1,EDF BAC//DE BA,E EAF∴∠+∠=︒,180DF CA,//E EDF∴∠+∠=︒,180∴∠=∠,EAF EDF由对顶角相等得:BAC EAF∠=∠,∴∠=∠;EDF BAC②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.9.(1)136°;(2)∠AOG+∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ+∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ+∠PQF .解析:(1)136°;(2)∠AOG +∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ +∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ +∠PQF .【分析】(1)如图1,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后利用∠ACP +∠BCP =90°即可求得答案;(2)如图2,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后结合已知条件可得∠BCP =∠NEF ,然后利用∠ACP +∠BCP =90°即可得到结论;(3)分两种情况,如图3,当点P 在GF 上时,过点P 作PN ∥OG ,则NP ∥OG ∥EF ,根据平行线的性质可推出∠OPQ =∠GOP +∠PQF ,进一步可得结论;如图4,当点P 在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.10.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A (−2,0),B(2,0),C(2,2),即可计算出解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB ∥y 轴,BD ∥AC ,则∠CAB =∠ABD ,即∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,则BD ∥AC ∥EF ,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED =∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC 的解析式为y =12x +1,则G 点坐标为(0,1),然后利用S △PAC =S △APG +S △CPG 进行计算.【详解】解:(1)由题意知:a =−b ,a−b +4=0,解得:a =−2,b =2,∴ A (−2,0),B (2,0),C (2,2),∴S △ABC =1AB BC=42⋅; (2)∵CB ∥y 轴,BD ∥AC ,∴∠CAB =∠ABD ,∴∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED =∠1+∠2=12×90°=45°;(3)存在.理由如下:设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,把A (−2,0)、C (2,2)代入得: -2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =12x +1,∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1,∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.三、解答题11.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=12a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=12∠CAE,∠ACF=12∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB)=12∠B;(2)由(1)可得,∠F=12∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG,进而得到∠F+∠H=90°+12∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=12∠AGB,∠GAH=12∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣12(∠AGB+∠GAB)=180°﹣12(180°﹣∠ABG)=90°+12∠ABG,∴∠F+∠H=12∠ABC+90°+12∠ABG=90°+12∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.12.(1)110(2)(90 +n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90 +12n)(3)201712×90°+20182018212n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC +∠OCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB )=12(180°﹣n °)=90°﹣12n °,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12n °.故答案为:(90+12n );(3)由(2)得∠O =90°+12n °,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1, ∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB , ∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °, 同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °, ∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°. 13.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M 为交点的“8字形”有1个,以O 为交点的“8字形”有2个; (2)根据角平分线的定义得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M 为交点的“8字形”有1个,以O 为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠BAP ,∠BDP=∠CDP ,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,两等式相减得到∠C ﹣∠P=∠P ﹣∠B ,即∠P=(∠C+∠B ),然后把∠C=100°,∠B=96°代入计算即可;(3)与(2)的证明方法一样得到∠P=(2∠C+∠B ).(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.【详解】解:(1)在图2中有3个以线段AC为边的“8字形”,故答案为3;(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为360°.14.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.15.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AED∠=︒.EKD80【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。
陕西省西安铁一中分校2021-2022学年七年级下学期月考数学试题
陕西省西安铁一中分校2021-2022学年七年级下学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算3325a a 的结果是()A .610a B .910a C .37a D .67a 2.滴水的质量约0.0000512kg ,这个数据用科学记数法表示为()A .0.512×810-B .5.12×710-C .512×510-D .5.12×510-3.以下列长度的各组线段为边,能组成三角形的是()A .2cm ,3cm ,6cmB .3cm ,4cm ,8cmC .5cm ,6cm ,10cmD .5cm ,6cm ,11cm4.若x 2+mx ﹣12=(x +4)(x ﹣n ),则m 的值是()A .3B .﹣3C .1D .﹣15.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是()A .B .C .D .6.如图,直线a ∥b ,射线DC 与直线a 相交于点C ,过点D 作DE ⊥b 于点E ,已知∠1=35°,则∠2的度数为()A .115°B .125°C .155°D .165°7.如图,点D 、E 分别在线段BC AC 、上,连接AD BE 、.若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为()A .55︒B .60︒C .65︒D .70︒8.如图,图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法中错误的是()A .体育场离张强家2.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店1.5千米D .张强从早餐店回家的平均速度是3千米/小时9.下列说法中正确的个数有()①过一点有且只有一条直线与已知直线平行②两边一角分别相等的两个三角形全等③垂直于同一直线的两条直线平行④面积相等的两个等腰直角三角形全等⑤两条直线被第三条直线所截,所得的同位角相等A .1个B .2个C .3个D .4个10.如图,ABC 的面积为210cm ,BP 平分ABC ∠,AP BP ⊥于P ,连接PC ,则PBC 的面积为()A .24cmB .25cmC .26.5cmD .27cm 二、填空题三、解答题17.计算(1)()2234x x x ⋅+-(2)()(341224-⨯+-÷-(3)()3221393ab a b ⎛-÷-⋅ ⎝(4)()(22y x z x y -+--18.先化简,再求值:()()(223x y x y x ⎡--+⎣19.尺规作图20.某公交车每月的支出费用为4000元,每月的乘车人数收入费用-支出费用)y (元)的变化关系如表所示(每位乘客的公交票价是固定不变的).x (人)5001000150020002500y (元)3000-2000-1000-01000(1)观察表中数据可知,每月乘客量达到___________(2)当每月乘车人数为6000人时,每月利润为多少元21.已知:如图,BC EF ∥,AD BE =,BC EF =22.小明在一个半圆形的花园的周边散步,如图示的方向,依次匀速走完下列三条线路:回到出发点.小明离出发点的距离之间的图象如图2所示,请回答下列问题(圆周率(1)请直接写出:花园的半径是______米,小明的速度是______米/分,(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离为_________米②小明返回起点O 的时间为_________分钟.23.(1)问题背景.如图1,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E 、F 分别是线段BC 、线段CD 上的点.若2BAD EAF ∠∠=,试探究线段BE 、EF 、FD 之间的数量关系.小明同学探究此问题的方法是,延长FD 到点G .使DG BE =.连接AG ,先证明ABE ADG △≌△.再证明AEF AGF ≌,可得出结论,他的结论应是____________.(2)猜想论证.如图2,在四边形ABCD 中,AB AD =,180B ADC ∠+∠=︒,E 在线段BC 上、F 在线段CD 延长线上.若2BAD EAF ∠∠=,上述结论是否依然成立?若成立说明理由;若不成立,试写出相应的结论并给出你的证明.(3)拓展应用.如图3,在四边形ABCD 中,90BAC ∠=︒,45BDC ∠=︒,AD 平分BAC ∠,3AB =,4AC =,5BC =且180ABD CBD ∠+∠=︒,求四边形ABCD 的面积.。
2020-2021西安铁一中滨河学校初一数学下期末一模试卷(含答案)
2020-2021西安铁一中滨河学校初一数学下期末一模试卷(含答案)一、选择题1.如图,已知∠1=∠2,∠3=30°,则∠B的度数是( )A.20o B.30o C.40o D.60o2.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是() A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知是关于x,y的二元一次方程x-ay=3的一个解,则a的值为()A.1B.-1C.2D.-24.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2B.2C.3D.﹣35.若不等式组20{210x ax b+---><的解集为0<x<1,则a,b的值分别为( )A.a=2,b=1B.a=2,b=3C.a=-2,b=3D.a=-2,b=1 6.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个7.不等式组1212xx+>⎧⎨-≤⎩的解集是()A.1x<B.x≥3C.1≤x﹤3D.1﹤x≤3 8.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( ) A.3<x<5B.-5<x<3C.-3<x<5D.-5<x<-3 9.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A.≥-1 B.>1 C.-3<≤-1 D.>-3 10.下列说法正确的是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.11.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度12.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x xx x +-=的解为 ( ) A .1-2 B .2-2 C .1-212+或D .1+2或-1 二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.9的算术平方根是________.15.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°16.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.17.3a ,小数部分是b 3a b -=______.18.3的平方根是_________.19.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.20.关于x 的不等式111x -<-的非负整数解为________. 三、解答题 21.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线CD 上的一个动点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b 于点 C.如果∠1=34°,那么∠2 的度数为(
)
A.34°
B.56°
C.66°
D.146°
6.在平面直角坐标系中,若点 A(a,-b)在第一象限内,则点 B(a,b)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.如图,在下列给出的条件中,不能判定 AB∥DF 的是( )
坐标. 22.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷 调查,发出问卷 140 份,每位学生的家长 1 份,每份问卷仅表明一种态度.将回收的问卷 进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图. 学生家长对孩子使用手机的态度情况统计图
根据以上信息回答下列问题: (1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ; (2)把条形统计图补充完整; (3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共 1500 名学生,请估计该 校对孩子使用手机“管理不严”的家长大约有多少人?
子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索
去量竿,绳索比竿长 5 尺;如果将绳索对半折后再去量竿,就比竿短 5 尺.设绳索长 x 尺,
竿长 y 尺,则符合题意的方程组是________________________
19.比较大小: 2 3 ________ 13 .
24.如图,BCE、AFE 是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.
25.点 C , B 分别在直线 MN , PQ 上,点 A 在直线 MN , PQ 之间, MN / /PQ . (1)如图 1,求证: A MCA PBA; (2)如图 2,过点 C 作 CD//AB ,点 E 在 PQ 上, ECM ACD,求证: A ECN ; (3)在(2)的条件下,如图 3,过点 B 作 PQ 的垂线交 CE 于点 F , ABF 的平分线交 AC 于点 G ,若 DCE ACE , CFB 3 CGB ,求 A 的度数.
立.∴ B 90O ,③假设在 ABC 中, B 90O ,④由 AB AC ,得
B C 90O ,即 B C 180O .这四个步骤正确的顺序应是( )
A.③④②①
B.③④①②
C.①②③④
D.④③①②
二、填空题
13.不等式 7 x 1的正整数解为:______________.
14.若点 P(2−a,2a+5)到两坐标轴的距离相等,则 a 的值为____.
A.∠A+∠2=180° B.∠1=∠A
C.∠1=∠4
D.∠A=∠3
8.已知关于
x,y
的二元一次方程组
2ax by ax by 1
3
的解为
x y
1 1
,则
a﹣2b
的值是
()
A.﹣2
B.2
C.3
D.﹣3
x a 2>0
9.若不等式组{ 2
x
b
1<0
的解集为
0<x<1,则
a,b
的值分别为(
15.二项方程 2x3 54 0 在实数范围内的解是_______________
16.已知 a、b 满足(a﹣1)2+ b 2 =0,则 a+b=_____.
17.关于
x
的不等式组
3x 2x
5 3
2x a
2
有且仅有
4
个整数解,则
a
的整数值是
______________.
18.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿
)
A.a=2,b=1
B.a=2,b=3
C.a=-2,b=3 D.a=-2,b=1
10.点 P 为直线 m 外一点,点 A,B,C 为直线 m 上三点,PA=4cm,PB=5cm,PC=2cm,则点 P
到直线 m 的距离为( )
A.4cm
B.2cm;
C.小于 2cm
D.不大于 2cm
11.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距
20. 5 的绝对值是______.
三、解答题
21.作图题:如图,在平面直角坐标系 xOy 中, A(4,1) , B(1,1) , C(5,3)
(1)画出 ABC 的 AB 边上的高 CH; (2)将 ABC 平移到 DEF (点 D 和点 A 对应,点 E 和点 B 对应,点 F 和点 C 对 应),若点 D 的坐标为 (1, 0) ,请画出平移后的 DEF ; (3)若 M (3, 0) , N 为平面内一点,且满足 BCH 与 MND 全等,请直接写出点 N 的
3. 1 的平方根是( ) 16
A.± 1 2
B.± 1 4
C. 1 4
D. 1 2
4.估计 10 +1 的值应在( )
A.3 和 4 之间
B.4 和 5 之间
C.5 和 6 之间
D.6 和 7 之间
5.如图,直线 a∥b,直线 c 与直线 a、b 分别交于点 A、点 B,AC⊥AB 于点 A,交直线
23.已知 AB / /CD ,点 M 为平面内一点.
(1)如图 1, ABM 和 DCM 互余,小明说过 M 作 MP / / AB ,很容易说明 BM CM 。请帮小明写出具体过程; (2)如图 2, AB / /CD ,当点 M 在线段 AD 上移动时(点 M 与 A , D 两点不重合), 指出 BMC 与 ABM , DCM 的数量关系?请说明理由; (3)在(2)的条件下,若点 M 在 A , D 两点外侧运动(点 M 与 E , A , D 三点不重 合)请直接写出 BMC 与 ABM , DCM 的数量关系.
2020-2021 西安铁一中分校初一数学下期末第一次模拟试题(含答案)
一、选择题
1.已知二一次方程组
m 2n 2m n
4 3
,则
m+n
的值是(
A.1
B.0
C.-2
) D.-1
2.已知关于 x 的不等式组
的解中有 3 个整数解,则 m 的取值范围是( )
A.3<m≤4 B.4≤m<5 C.4<m≤5 D.4≤m≤5
离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上
各点连接的所有线段中,垂线段最短.其中正确的个数有( )
A.1 个
B.2 个
C.3 个
D.4 个
12.已知: ABC 中, AB AC ,求证: B 90O ,下面写出可运用反证法证明这个命
题的四个步骤:
①∴ A B C 180O ,这与三角形内角和为180O 矛盾,②因此假设不成