2019年七年级数学下册第4章《因式分解4.3用乘法公式分解因式二》练习(含答案) 浙教版
浙教版七年级下数学第四章因式分解好题精选及答案
浙教版七年级下数学第四章因式分解好题精选题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共15小题)1.下列因式分解正确的是()A.4m2﹣4m+1=4m(m﹣1)B.a3b2﹣a2b+a2=a2(ab2﹣b)C.x2﹣7x﹣10=(x﹣2)(x﹣5)D.10x2y﹣5xy2=5xy(2x﹣y)2.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)3.多项式x2+7x﹣18因式分解的结果是()A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)4.若关于x的多项式x2﹣px﹣6含有因式x﹣2,则实数p的值为()A.﹣5 B.5 C.﹣1 D.15.化简:,结果是()A.B.C.D.6.下列各式:①4x2﹣y2;②2x4+8x3y+8x2y2;③a2+2ab﹣b2;④x2+xy﹣6y2;⑤x2+2x+3其中不能分解因式的有()A.1个B.2个C.3个D.4个7.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n 是一个完全立方数(即n=a3,a是正整数),则.正确的个数为()A.1个B.2个C.3个D.4个8.若x3+2x2﹣mx+n可以分解为(x+2)2(x﹣2),则m,n的值分别是()A.m=4,n=8 B.m=﹣4,n=8 C.m=4,n=﹣8 D.m=﹣4,n=﹣89.下列多项式已经进行了分组,能接下去分解因式的有()(1)(m3+m2﹣m)﹣1;(2)﹣4b2+(9a2﹣6ac+c2);(3)(5x2+6y)+(15x+2xy);(4)(x2﹣y2)+(mx+my)A.1个B.2个C.3个D.4个10.将多项式x﹣x3因式分解正确的是()A.x(1﹣x2)B.x(x2﹣1)C.x(1+x)(1﹣x)D.x(x+1)(x﹣1)11.若关于x的多项式x2+mx+1可分解成(x+n)2,则n等于()A.±1 B.1 C.﹣1 D.212.如图,长方形的长、宽分别为a、b,且a比b大5,面积为10,则a2b﹣ab2的值为()A.60 B.50 C.25 D.1513.小强是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:南、爱、我、济、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.济南游C.我爱济南D.美我济南14.下列关于x的二次三项式在实数范围内不能够因式分解的是()A.x2﹣3x+2 B.x2﹣x+1 C.2x2﹣xy﹣y2D.x2+3xy+y215.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为()A.25 B.20 C.15 D.10第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共9小题)16.因式分解:1﹣4a2=.17.将几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式例如,由图(1)可得等式:x2+(p+q)x+pq=(x+p)(x+q).将图(2)所示的卡片若干张进行拼图,可以将二次三项式a2+3ab+2b2分解因式为.18.已知xy=,x+y=5,则2x3y+4x2y2+2xy3=.19.已知a=2018x+2017,b=2018x+2018,c=2018x+2019,则多项式a2+b2+c2﹣ab﹣bc﹣ac=.20.已知m2+m﹣1=0,则m3+2m2+1=.21.多项式x2﹣4x+m分解因式的结果是(x+3)(x﹣n),则=.22.已知a,b,c是△ABC的三边,且a4﹣a2c2=b4﹣b2c2,那么△ABC的形状是.23.因式分解:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.24.分解因式:x3+3x2﹣4=.评卷人得分三.解答题(共16小题)25.分解因式:(1)m2﹣4mn+4n2(2)2x2﹣18.26.分解因式(1)﹣3x3﹣6x2y﹣3xy2;(2)(a2+9)2﹣36a2(3)25m2﹣(4m﹣3n)2;(4)(x2﹣2x)2﹣2(x2﹣2x)﹣3.27.问题背景:对于形如x2﹣120x+3600这样的二次三项式,可以直接用完全平方公式将它分解成(x ﹣60)2,对于二次三项式x2﹣120x+3456,就不能直接用完全平方公式分解因式了.此时常采用将x2﹣120x加上一项602,使它与x2﹣120x的和成为一个完全平方式,再减去602,整个式子的值不变,于是有:问题解决:(1)请你按照上面的方法分解因式:x2﹣40x+351;(2)已知一个长方形的面积为a2+8ab+12b2,宽为a+2b,求这个长方形的长.28.定义:任意两个数a,b,按规则c=﹣a+b得到一个新数c,称所得的新数c为数a,b的“机智数”.(1)若a=1,b=2,直接写出a,b的“机智数”c;(2)如果,a=m2+2m+1,b=m2+m,求a,b的“机智数”c;(3)若(2)中的c值为一个整数,则m的整数值是多少?29.阅读题.材料一:若一个整数m能表示成a2﹣b2(a,b为整数)的形式,则称这个数为“完美数”.例如,3=22﹣12,9=32﹣02,12=42﹣22,则3,9,12都是“完美数”;再如,M=x2+2xy=(x+y)2﹣y2,(x,y是整数),所以M也是”完美数”.材料二:任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数,且p≤q).如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并且规定F (n)=.例如18=1×18=2×9=3×6,这三种分解中3和6的差的绝对值最小,所以就有F (18)==.请解答下列问题:(1)8(填写“是”或“不是”)一个完美数,F(8)=.(2)如果m和n都是”完美数”,试说明mn也是完美数”.(3)若一个两位数n的十位数和个位数分别为x,y(1≤x≤y≤9),n为“完美数”且x+y能够被8整除,求F(n)的最大值.30.如图,在一块边长为a米的正方形空地的四角均留出一块边长为b(b<)米的正方形修建花坛,其余的地方种植草坪.(1)用代数式表示草坪的面积;(2)先对上述代数式进行因式分解再计算当a=15,b=2.5时草坪的面积.31.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”(1)28和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?32.因式分解:(1)x2y﹣2xy2+y3(2)4ax2﹣48ax+128a;(3)(x2+16y2)2﹣64x2y233.在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K 是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.34.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.35.一个能被11整除的自然数称为“一心一意数”,它的特征是去掉个位数字后,得到一个新数,新数减去原数的个位数字的差能被11整除,若所得差仍然较大不易判断,则可以再把差去掉个位数字,继续进行下去,直到容易判断为此,如:42581去掉个位是4258,4258减去1的差是4257,4257去掉个位后是425,425减去7的差是418,418去掉个位8后是41,41减去8的差是33,显然33能被11整除,所以42581是“一心一意数”.(1)请用上述规律判断2018和20180116是否是“一心一意数”;(2)一个能被66整除的自然数称为“祥和数”,已知一个四位“祥和数”(千位数字是a,十位数字是b,百位数字和个位数字都是c,0<a≤9,0≤b≤9,0≤c≤9),求的值.36.阅读下面材料:小明遇到这样一个问题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.小明发现,可以设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴利用方程组可以解决.请回答:另一个因式为,m的值为;参考小明的方法,解决下面的问题:已知二次三项式2x2+3x﹣k有一个因式是(x﹣4),求另一个因式以及k的值.37.我们把能被13整除的数称为“超越数”,已知一个正整数,把其个位数字去掉,再将余下的数加上个位的4倍,如果和是13的倍数,则原数一定是“超越数”.如果数字仍然太大不能直接观察出来,就重复上述过程,直到清晰判断为止.如:1131:113+4×1=117,117÷13=9,所以1131是“超越数”;又如:3292:329+4×2=337,33+4×7=61,因为61不能被13整除,所以3292不是“超越数”.(1)请判断42356是否为“超越数”(填“是”或“否”),若+4c=13k(k为整数),化简除以13的商(用含字母k的代数式表示).(2)一个四位正整数N=,规定F(N)=|a+d2﹣bc|,例如:F(4953)=|4+32﹣5×9|=32,若该四位正整数既能被13整除,个位数字是5,且a=c,其中1≤a≤4.求出所有满足条件的四位正整数N中F(N)的最小值.38.如图1所示,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a,b的代数式表示S1=,S2=;(2)写出利用图形的面积关系所揭示的公式:;(3)利用这个公式说明216﹣1既能被15整除,又能被17整除.39.发现与探索.(1)根据小明的解答(图1)将下列各式因式分解①a2﹣12a+20②(a﹣1)2﹣8(a﹣1)+7③a2﹣6ab+5b2(2)根据小丽的思考(图2)解决下列问题.①说明:代数式a2﹣12a+20的最小值为﹣16.②请仿照小丽的思考解释代数式﹣(a+1)2+8的最大值为8,并求代数式﹣a2+12a﹣8的最大值.40.计算(ax+b)(cx+d)=acx2+adx+bcx+bd=acx2+(ad+bc)x+bd,倒过来写可得:acx2+(ad+bc)x+bd=(ax+b)(cx+d).我们就得到一个关于的二次三项式的因式分解的一个新的公式.我们观察公式左边二次项系数为两个有理数的乘积,常数项也为两个有理数的乘积,而一次项系数恰好为这两对有理数交叉相乘再相加的结果.这种因式分解的方法叫十字交叉相乘法.如图1所示.示例:例如因式分解:12x2﹣5x﹣2解:由图2可知:12x2﹣5x﹣2=(3x﹣2)(4x+1)请根据示例,对下列多项式因式分解:①2x2+7x+6②6x2﹣7x﹣3参考答案与试题解析一.选择题(共15小题)1.D 2.B 3.D 4.C 5.A 6.B 7.C 8.C 9.B 10.C 11.A 12.B 13.C 14.B15.A 二.填空题(共9小题)16.(1﹣2a)(1+2a)17.(a+b)(2a+b),18.﹣25 19.3 20.2 21.﹣3 22.等腰三角形或直角三角形.23.(a+1)100 .24.(x﹣1)(x+2)2.三.解答题(共16小题)25.解:(1)m2﹣4mn+4n2=(m﹣2n)2;(2)2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).26.解:(1)﹣3x3﹣6x2y﹣3xy2;=﹣3x(x2+2xy+y2)=﹣3x(x+y)2;(2)(a2+9)2﹣36a2=(a2+9+6a)(a2+9﹣6a)=(a+3)2(a﹣3)2;(3)25m2﹣(4m﹣3n)2=(5m)2﹣(4m﹣3n)2,=(5m+4m﹣3n)(5m﹣4m+3n)=3(3m﹣n)(m+3n);(4)(x2﹣2x)2﹣2(x2﹣2x)﹣3=(x2﹣2x﹣3)(x2﹣2x+1)=(x﹣3)(x+1)(x﹣1)2.27.解:(1)x2﹣40x+351=x2﹣40x+400﹣49=(x﹣20)2﹣49=(x﹣20+7)(x﹣20﹣7)=(x﹣13)(x﹣27);(2)∵一个长方形的面积为a2+8ab+12b2,宽为a+2b,∴这个长方形的长为:==a+6b,即这个长方形的长是a+6b.28.解:(1)∵a=1,b=2,c=,∴c==,即a,b的“机智数”c是;(2)∵a=m2+2m+1,b=m2+m,c=,∴c=﹣(m2+2m+1)+(m2+m)=﹣m;(3)∵c=﹣(m2+2m+1)+(m2+m)=﹣m,c=﹣m为一个整数,∴m=1或m=﹣1(舍去),即m的整数值是1.29.解:(1)∵8=32﹣12,∴8是一个完美数,∵8=1×8=2×4,∴F(8)==,故答案为:是,;(2)设m=a2﹣b2,n=c2﹣d2,其中a,b,c,d均为整数,则mn=(a2﹣b2)(c2﹣d2),=a2c2﹣a2d2﹣b2c2+b2d2,=(a2c2+2abcd+b2d2)﹣(a2d2+2abcd+b2c2),=(ac+bd)2﹣(ad+bc)2,∵a,b,c,d均为整数,∴ac+bd与ad+bc也是整数,即mn是“完美数”.(3)∵x+y能够被8整除,且1≤x≤y≤9,x,y都是整数,∴x+y=8或16,∴n=79或97或88或71或17或26或62或35或53或44,∵n为“完美数”,∴n为79或97或88或71或17或35或53或44,其中,79=1×79,F(79)=,97=1×97,F(97)=,88=1×88=2×44=4×22=11×8,F(88)=,71=1×71,F(71)=,17=1×17,F(17)=,35=1×35=5×7,F(35)=,53=1×53,F(53)=,44=1×44=2×22=4×11,F(44)=,∴F(n)的最大值是.故答案为:.30.解:(1)剩余部分的面积为(a2﹣4b2)平方米;(2)当a=15,b=2.5时,a2﹣4b2=(a+2b)(a﹣2b)=(15+5)(15﹣5)=200(平方米).31.解:(1)∵28=82﹣62,2020=5062﹣5042,∴28和2020是“和谐数”;(2)∵(2k+2)2﹣(2k)2=4(2k+1),∴两个连续偶数构成的“和谐数”是4的倍数.32.解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)4ax2﹣48ax+128a=4a(x2﹣12x+32)=4a(x﹣4)(x﹣8);(3)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.33.(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.34.解:(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814、211428;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,解得,p=﹣3,q=1,r=7,∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴,得,即m的值是56,n的值是17.35.解:(1)2018去掉个位是201,208减去8的差是200,200去掉个位后是20,20减去0的差是20,20显然不能被11整除,所以2018不是“一心一意数”;20180116去掉个位是2018011,2018011减去6的差是2018005,2018005去掉个位后是201800,201800减去5的差是201795,201795去掉个位5后是20179,20179减去5的差是20174,20174去掉个位是2017,2017减去4的差是2013,2013去掉个位后是201,201减去3的差是198,显然198能被11整除,所以20180116是“一心一意数”;(2)∵是祥和数∴是66的倍数,即也是2的倍数,也是11的倍数.∴c是偶数∵能被11整除的正整数特征被11整除的数的特征是奇位数之和与偶位上的数之和的差能被11整除∴a+b﹣2c=11k且0<a≤9,0≤b≤9,0≤c≤9∴a+b﹣2c=11,0≤a+b≤18∴c=2,则a+b=15∴=36.解:解方程组得:,即另一个因式为x﹣7,m=﹣21;设二次三项式2x2+3x﹣k的另一个因式为2x+a,则2x2+3x﹣k=(x﹣4)(2x+a),2x2+3x﹣k=2x2+(a﹣8)x﹣4a,所以,解得:a=11,k=44,即另一个因式是2x+11,k=44,故答案为:x﹣7,﹣21.37.解:(1)∵4235+4×6=4259且4259不能整除13∴4235不是超越数.∵+4c=13k∴10a+b+4c=13k∴10a+b=13k﹣4c∵=100a+10b+c=10(10a+b)+c=130k﹣40c+c=130k﹣39c=13(10k﹣3c)∴=10k﹣3c(2)由题意得d=5,a=c,∴N=1000a+100b+10c+5∵N能被13整除∴设100a+10b+c+4×5=13k∴101a+10b+20=13k,且a正整数,b,k为非负整数,1≤a≤4∴a=2,b=9,k=24 或a=3,b=8,k=31,或a=4,b=7,k=38∴F(N)=|2+25﹣18|=9,或F(N)=|3+25﹣24|=4,或F(N)=|4+25﹣28|=1∴F(N)最小值为1.38.解:(1)图1用大正方形的边长为a,小正方形的边长为b,故阴影部分面积为a2﹣b2,图2用长方形的长为(a+b),宽为(a﹣b),故阴影部分面积为(a+b)(a﹣b);故答案是:a2﹣b2;(a+b)(a﹣b);(2)观察图1和图2中阴影部分面积是相等的,故a2﹣b2=(a+b)(a﹣b);(3)216﹣1=(28﹣1)(28+1)=(24﹣1)(24+1)(28+1)=15×17×(28+1)因为28+1是整数,故216﹣1既能被15整除,又能被17整除.39.解:(1)根据小明的解答将下列各式因式分解①a2﹣12a+20解原式=a2﹣12a+36﹣36+20=(a﹣6)2﹣42=(a﹣10)(a﹣2②(a﹣1)2﹣8(a﹣1)+12解原式=(a﹣1)2﹣8(a﹣1)+16﹣16+12=(a﹣5)2﹣22=(a﹣7)(a﹣3)③a2﹣6ab+5b2解原式=a2﹣6ab+9b2﹣9b2+5b2=(a﹣3b)2﹣4b2=(a﹣5b)(a﹣b)(2)①说明:代数式a2﹣12a+20的最小值为﹣16.a2﹣12a+20解原式=a2﹣12a+36﹣36+20=(a﹣6)2﹣16∵无论a取何值(a﹣6)2都≥0∴代数式(a﹣6)2﹣16≥﹣16,∴a2﹣12a+20的最小值为﹣16.②∵无论a取何值﹣(a+1)2≤0∴代数式﹣(a+1)2+8小于等于8,则﹣(a+1)2+8的最大值为8.﹣a2+12a﹣8.解原式=﹣(a2﹣12a+8)=﹣(a2﹣12a+36﹣36+8)=﹣(a﹣6)2+36﹣8=﹣(a﹣6)2+28∵a取何值﹣(a﹣6)2≤0,∴代数式﹣(a﹣6)2+28≤28∴﹣a2+12a﹣8的最大值为28.40.解:由题意可知:①2x2+7x+6=(x+2)(2x+3)②6x2﹣7x﹣3=(2x﹣3)(3x+1)。
2019年春七年级数学下册第4章因式分解4.3第1课时用平方差公式分解因式练习新版浙教版
4.3 用乘法公式分解因式第1课时用平方差公式分解因式知识点1平方差公式分解因式把乘法公式(a+b)(a-b)=a2-b2反过来,得a2-b2=(a+b)(a-b).两个数的平方差,等于这两个数的和与这两个数的差的积.我们可以运用这个公式对某些多项式进行分解因式,这种方法叫运用平方差公式法.1.把下列多项式分解因式:(1)x2-36;(2)36-25y2;(3)(x+p)2-(x+q)2.一提公因式与平方差公式综合运用把下列各式分解因式:(1)18a2-8b2;(2)a5-81ab4.[归纳总结] (1)用平方差公式分解因式的条件:①二次(能写成平方的形式);②异号.(2)对于多项式中的两部分不是很明显的平方形式,应先变形为平方形式,再运用公式进行因式分解,以免出现16a2-9b2=(16a+9b)·(16a-9b)的错误.(3)还要注意不要出现分解后又乘开的现象.(4)因式分解应遵循:一提二公式.同时因式分解需彻底.二尝试用平方差公式进行简便运算教材作业题第3题变式题用简便方法计算:(1)3142-2142;(2)3.14×752-3.14×252.探究三平方差公式分解因式的应用教材补充题如图4-3-1所示,在半径为R的大圆内部挖去四个半径为r的小圆.(1)用含R,r的式子表示剩余部分的面积S;(2)当R=35 cm,r=12.5 cm时,应用分解因式的知识计算剩余部分的面积(结果保留π).图4-3-1[反思] 判断下列分解因式的过程是否正确,若不正确,请改正.①4a2-1=(4a-1)(4a+1);②(x-y)2-4x2=x2-2xy+y2-4x2=-3x2-2xy+y2.1.下列各式中,不能用平方差公式分解因式的是( )A.-m4-n4B.-16x2+y2C.1.21-a2D.9a2-64b22.将整式9-x2分解因式的结果是( )A.(3-x)2B.(3+x)(3-x)C.(9-x)2D.(9+x)(9-x)3.将多项式x3-xy2分解因式,结果正确的是( )A.x(x2-y2) B.x(x-y)2C.x(x+y)2D.x(x+y)(x-y)4.已知-(2a-b)(2a+b)是下列一个多项式分解因式的结果,则这个多项式是( )A.4a2-b2B.4a2+b2C.-4a2-b2D.-4a2+b25.观察下面4个分解因式的过程:(1)(x-3)2-y2=x2-6x+9-y2;(2)a2-4b2=(a+4b)(a-4b);(3)4x6-1=(2x3+1)(2x3-1);(4)m4n2-9=(m2n+3)(m2n-3);(5)-a2-b2=(-a+b)(-a-b).其中正确的有( )A.1个B.2个C.3个D.4个6.某同学粗心大意,在分解因式时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A.8,1 B.16,2C.24,3 D.64,8二、填空题7.xx·嘉兴、舟山分解因式:a2-9=__________.8.xx·长沙分解因式:x2y-4y=________.9.xx·荆门分解因式:(m+1)(m-9)+8m=________.10.xx·株洲因式分解:x2(x-2)-16(x-2)=____________________.11.已知58-1能被20~30之间的两个整数整除,则这两个整数是________.三、解答题12.分解因式:(1)a3-16a;(2)16(a+b)2-9(a-b)2;(3)m4(m-2)+16(2-m).13.用简便方法计算:(1)6.42-3.62;(2)1.42×16-2.22×4.14.设n是整数,用因式分解的方法说明:(2n+1)2-25能被4整除.n(m>2n)的小正方形.(1)用含m,n的式子表示剩余部分的面积S;(2)当m=13.2厘米,n=3.4厘米时,利用分解因式计算剩余部分的面积.图4-3-2详解详析【预习效果检测】1.解:(1)x2-36=x2-62=(x+6)(x-6).(2)36-25y2=62-(5y)2=(6+5y)(6-5y).(3)(x+p)2-(x+q)2=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).【重难互动探究】例1[解析] 分解因式时,要先观察多项式,有公因式的要先提取公因式再考虑是否符合公式.解:(1)18a2-8b2=2(9a2-4b2)=2(3a+2b)(3a-2b).(2)a5-81ab4=a(a4-81b4)=a(a2+9b2)(a2-9b2)=a(a2+9b2)(a+3b)(a-3b).例2解:(1)原式=(314+214)×(314-214)=52800.(2)原式=3.14×(752-252)=3.14×(75+25)×(75-25)=15700.例3[解析] 剩余部分的面积为大圆面积减去四个小圆的面积.解:(1)剩余部分的面积为S=πR2-4πr2=π(R2-4r2)=π(R+2r)(R-2r).(2)当R=35 cm,r=12.5 cm时,S=π(R+2r)(R-2r)=π(35+2×12.5)×(35-2×12.5)=π·60×10=600π(cm2).【课堂总结反思】[反思] 两个均不正确.改正:①4a2-1=(2a)2-12=(2a-1)(2a+1).②(x-y)2-4x2=(x-y)2-(2x)2=(x-y-2x)·(x-y+2x)=-(x+y)(3x-y).【作业高效训练】[课堂达标]1.A 2.B3.[解析] D x3-xy2=x(x2-y2)=x(x+y)(x-y).4.D 5.B 6.B7.[答案] (a+3)(a-3)8.[答案] y(x+2)(x-2)9.[答案] (m-3)(m+3)10.[答案] (x-2)(x-4)(x+4)11.[答案] 26,24[解析] 58-1=(54+1)(52+1)(52-1),因为52+1=26,52-1=24,所以这两个数是26,24. 12.解:(1)原式=a(a+4)(a-4).(2)原式=(7a+b)(a+7b).(3)原式=m4(m-2)-16(m-2)=(m-2)(m4-16)=(m-2)(m2+4)(m2-4)=(m-2)(m2+4)(m+2)(m-2)=(m-2)2(m+2)(m2+4).13.[解析] 利用平方差公式简化计算过程.解:(1)6.42-3.62=(6.4+3.6)(6.4-3.6)=10×2.8=28.(2)1.42×16-2.22×4=(1.4×4)2-(2.2×2)2=5.62-4.42=(5.6+4.4)(5.6-4.4)=10×1.2=12.14.解:原式=(2n+1)2-52=(2n+1+5)(2n+1-5)=(2n+6)(2n-4)=4(n+3)(n-2),即(2n+1)2-25能被4整除.[数学活动][解析] 剩余部分的面积为大正方形的面积减去四个小正方形的面积.解:(1)S=m2-4n2=(m+2n)(m-2n).(2)当m=13.2厘米,n=3.4厘米时,S=(m+2n)(m-2n)=(13.2+3.4×2)(13.2-3.4×2)=20×6.4=128(厘米2).所以剩余部分的面积为128平方厘米.。
第4章 因式分解 浙教版数学七年级下册单元练习卷(含答案)
2023年浙教版数学七年级下册《因式分解》单元练习卷一、选择题1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21D.a2+4a﹣21=(a+2)2﹣252.把多项式(m+1)(m-1)+(m-1)分解因式,一个因式是(m-1),则另一个因式是( )A.m+1B.2mC.2D.m+23.观察下面算962×95+962×5的解题过程,其中最简单的方法是( )A.962×95+962×5=962×(95+5)=962×100=96200B.962×95+962×5=962×5×(19+1)=962×(5×20)=96200C.962×95+962×5=5×(962×19+962)=5×(18278+962)=96200D.962×95+962×5=91390+4810=962004.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5aB.(x+y)2C.5(x+y)2D.5a(x+y)25.若实数a,b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.506.把多项式4a2﹣1因式分解,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)27.把代数式ax2﹣4ax+4a因式分解,下列结果中正确的是( )A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)8.△ABC的三边长分别a,b,c,且a+2ab=c+2bc,则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形9.计算(﹣2)2025+22024等于()A.22025B.﹣22025C.﹣22024D.2202410.多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c的值为()A.0B.10C.12D.2211.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为( )A.0B.1C.5D.1212.已知a=2025x+2024,b=2025x+2025,c=2025x+2026,那么a2+b2+c2—ab-bc -ca的值等于( )A.0B.1C.2D.3二、填空题13.若x2﹣ax﹣1可以分解为(x﹣2)(x+b),则a________ ,b=________.14.﹣xy2(x+y)3+x(x+y)2的公因式是;15.已知a=2,x+2y=3,则3ax+6ay=.16.已知ab=2,a-2b=-3,则a3b-4a2b2+4ab3的值为________.17.将x n+3-x n+1因式分解,结果是18.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3-xy2,取x=27,y=3时,用上述方法产生的密码是:(写出一个即可).三、解答题19.因式分解:2x2﹣8x20.因式分解:2x3(a-1)+8x(1-a).21.因式分解:3x3+6x2y﹣3xy2.22.因式分解:x n+4-169x n+2 (n是自然数);23.已知x2+x=6,将下式先化简,再求值:x(x2+2)-x(x+1)2+3x2-7的值.24.给出三个多项式:2a2+3ab+b2,3a2+3ab,a2+ab,请你任选两个进行加(或减)法运算,再将结果分解因式.25.仔细阅读下面例题,解答问题:例题,已知二次三项式x 2-4x +m 有一个因式是(x +3),求另一个因式以及m 的值.解:设另一个因式为(x +n),得x 2-4x +m=(x +3)(x +n),则x 2-4x +m=x 2+(n +3)x +3n.∴⎩⎨⎧n +3=-4,m =3n , 解得n=-7,m=-21,∴另一个因式为(x -7),m 的值为-21.问题:仿照以上方法解答下面问题:已知二次三项式3x 2+5x -m 有一个因式是(3x -1),求另一个因式以及m 的值.26.先阅读下列材料,再解答下列问题:材料:因式分解:(x +y)2+2(x +y)+1.解:将“x +y”看成整体,令x +y=A ,则原式=A 2+2A +1=(A +1)2.再将“A”还原,得原式=(x +y +1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x -y)+(x -y)2=_______________;(2)因式分解:(a +b)(a +b -4)+4;(3)求证:若n 为正整数,则式子(n +1)(n +2)(n 2+3n)+1的值一定是某一个整数的平方.答案1.B.2.D3.A4.D5.A6.B7.A8.B9.C10.C11.C12.D13.答案为:3 2;12.14.答案为:x(x+y)2;15.答案为:1816.答案为:1817.答案为:x n-1(x+1)(x-1);18.答案为:273024或27243019.解:原式=2x2﹣8x=2x(x﹣4);20.解:原式=2x(a-1)(x-2)(x+2).21.解:原式=﹣3x(x﹣y)2.22.解:原式=x n+2(x+13)(x-13).23.解:原式=-1.24.解:本题答案不唯一;选择加法运算有以下三种情况:(2a2+3ab+b2)+(3a2+3ab)=5a2+6ab+b2=(a+b)(5a+b);(2a2+3ab+b2)+(a2+ab)=3a2+4ab+b2=(a+b)(3a+b);(3a2+3ab)+(a2+ab)=4a2+4ab=4a(a+b).选择减法运算有六种情况,选三种供参考:(2a 2+3ab +b 2)-(3a 2+3ab)=b 2-a 2=(b +a)(b -a); (2a 2+3ab +b 2)-(a 2+ab)=a 2+2ab +b 2=(a +b)2;(3a 2+3ab)-(a 2+ab)=2a 2+2ab =2a(a +b).25.解:设另一个因式为(x +n),则3x 2+5x -m=(3x -1)(x +n).则3x 2+5x -m=3x 2+(3n -1)x -n.∴⎩⎨⎧3n -1=5,-n =-m ,解得n=2,m=2,∴另一个因式为(x +2),m 的值为2.26.解:(1)(x -y +1)2;(2)令A=a +b ,则原式变为A(A -4)+4=A 2-4A +4=(A -2)2,故(a +b)(a +b -4)+4=(a +b -2)2.(3)证明:(n +1)(n +2)(n 2+3n)+1=(n 2+3n)[(n +1)(n +2)]+1 =(n 2+3n)(n 2+3n +2)+1=(n 2+3n)2+2(n 2+3n)+1=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n)+1的值一定是某一个整数的平方.。
浙教版七(下)数学第4章《因式分解》 4.3 用乘法公式分解因式 第2课时校本作业(含答案)
4.3 用乘法公式分解因式(第2课时)课堂笔记两数的平方和,加上(或者减去)这两数的积的 倍,等于这两数和(或者差)的平方. 即a 2+2ab +b 2=(a +b )2; a 2-2ab +b 2=(a -b )2.注意:一般地,利用公式a 2-b 2=(a -b )(a +b ),或a 2±2ab +b 2=(a ±b )2把一个多项式分解因式的方法,叫做公式法. 公式中的a ,b 可以是数,也可以是整式.分层训练A 组 基础训练1. 下列各式是完全平方式的是( )A. x 2-x +1B. 4x 2+4xy +1C. x 2+xy +41y 2 D. x 2-4xz +z 2 2. (长春中考)把多项式x 2-6x +9分解因式,结果正确的是( )A . (x -3)2B . (x -9)2C . (x +3)(x -3) D. (x +9)(x -9)3. 若等式x 2-x +k =(x -21)2成立,则k 的值是( ) A. 21 B. -41 C. 41 D. ±41 4. 把代数式ax 2-4ax +4a 分解因式,下列结果中正确的是( )A. a (x -2)2B. a (x +2)2C. a (x -4)2D. a (x +2)(x -2)5. 如果A (5a +2b )=25a 2+20ab +4b 2,则A 等于( )A. 5a +2bB. 5a -2bC. 5a +2ab +2bD. a 2-2b 26. 已知正方形的面积是(16-8x +x 2)cm 2(x >4),则正方形的周长是( )A .(4-x )cmB .(x -4)cmC .(16-4x )cmD .(4x -16)cm7. 下列多项式中,①x 2+2xy +4y 2;②a 2-2a +3;③41x 2-xy +y 2;④m 2-(-n )2可以进行因式分解的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个8. 分解因式,若5a 2+ma +51=5(a -51)2,则m 的值是( ) A. -2B. 2C. 52D. -529. 在括号内填入适当的数或单项式.(1)9a 2-( )+b 2=( -b )2;(2)x 4+4x 2+( )=( )2;(3)p 2-3p +( )=(p - )2;(4)(a -b )2-2(a -b )+1=( -1)2.10. 多项式a 3c -4a 2bc +4ab 2c 因式分解的结果是 .11. 若x =156,y =144,则多项式21x 2+xy +21y 2= . 12. 填空:(1)分解因式:x 2-4x +4= .(2)4x 2 +9y 2=( )2.(3)若4x 2+mx +25是一个完全平方式,则实数m = .(4)分解因式:x 3+2x 2+x = .(5)分解因式:a 2-2ab +b 2-1= .13. 多项式9x 2+1加上一个单项式后,使它能成为一个多项式的完全平方,那么加上的单项式可以是 (填上一个你认为正确的即可).14. 把下列各式分解因式:(1)x 2+8x +16; (2)-4x 2+12xy -9y 2; (3)94m 2+34mn +n 2;(4)a 3+2a 2+a ; (5)(a +b )2-18(a +b )+81; (6)(x 2+2x )2+2(x 2+2x )+1.15. 利用因式分解计算下列各式:(1)872+87×26+132; (2)20182-4034×2018+20172.B 组 自主提高16. 把下列各式分解因式:(1)3x 2-12xy +12y 2; (2)a 2-ab +41b 2; (3)-2x 3+24x 2-72x ;(4)9(p -q )2-6p +6q +1; (5)(x 2-7)2-4(x 2-7)+4.17. (1)已知b -a =-3,ab =-2,求-21a 3b +a 2b 2-21ab 3的值.(2)已知x 2+y 2-2x +6y +10=0,求x +y 的值.C组综合运用18.问题背景:对于形如x2-120x+3600这样的二次三项式,可以直接用完全平方公式将它分解成(x-60)2,对于二次三项式x2-120x+3456,就不能直接用完全平方公式分解因式了.此时常采用将x2-120x加上一项602,使它与x2-120x的和成为一个完全平方式,再减去602,整个式子的值不变,于是有:x2-120x+3456=x2-2×60x+602-602+3456=(x-60)2-144=(x-60)2-122=(x-60+12)(x-60-12)=(x-48)(x-72).问题解决:(1)请你按照上面的方法分解因式:x2-140x+4756;(2)已知一个长方形的面积为a2+8ab+12b2,长为a+2b,求这个长方形的宽.参考答案【课堂笔记】2【分层训练】1—5. CACAA 6—8. DBA9. (1)6ab 3a (2)4 x 2+2 (3)49 23 (4)a -b 10. ac (a -2b )211. 4500012. (1)(x -2)2 (2)±12xy 2x ±3y (3)±20(4)x (x +1)2 (5)(a -b +1)(a -b -1)13. 6x 或-6x 或481x 4 14. (1)(x +4)2 (2)-(2x -3y )2 (3)(32m +n )2 (4)a (a +1)2 (5)(a +b -9)2 (6)(x +1)415. (1)10000 (2)116. (1)原式=3(x 2-4xy +4y 2)=3(x -2y )2(2)原式=a 2-2·a ·21b +(21b )2=(a -21b )2 (3)原式=-2x (x 2-12x +36)=-2x (x -6)2(4)原式=9(p -q )2-6(p -q )+1=[3(p -q )-1]2=(3p -3q -1)2(5)原式=(x 2-7-2)2=(x 2-9)2=[(x +3)(x -3)]2 =(x +3)2(x -3)217. (1)-21a 3b +a 2b 2-21ab 3=-21ab (a 2-2ab +b 2)=-21ab (a -b )2=9 (2)由题意,得(x 2-2x +1)+(y 2+6y +9)=0,(x -1)2+(y +3)2=0. ∵(x -1)2与(y +3)2的值都是非负数,∴(x -1)2=0且(y +3)2=0,∴x =1,y =-3,∴x +y =-2.18. (1)x 2-140x +4756=x 2-2×70x +702-702+4756=(x -70)2-144=(x -70)2-122=(x -70+12)(x -70-12)=(x -58)(x -82)(2)∵a 2+8ab +12b 2=a 2+2×a ×4b +(4b )2-(4b )2+12b 2=(a +4b )2-4b 2=(a +4b +2b )(a +4b -2b )=(a +2b )(a +6b ),∴长为a +2b 时这个长方形的宽为a +6b.。
【最新】浙教版七年级数学下册第四章《4.3用乘法公式分解因式(2)》公开课课件1
a2 +2ab +b2; a2 - 2ab +b2
2.填写下表(若某一栏不适用,请填入“不适用”)
多项式
x 2 6x 9 4y 2 4y 1
1 4a 2
x2 1x 1 24
1m m2 4
4y2 12xy 9x 2
是否是完全 平方式
是 是 不是 不是
是
是
表示成(a+b)2或 (a-b)2的形式
1、用简便方法计算 (1)49.92+9.98 +0.12 (2)9 9992 +19 999 2、因式分解 (1)(4a2+1)2-16a2 (2)(a 2-2)2-4 (a2-2)+4
(1)形如_a__2___2_a__b___b_2___形式的两次三项式
可以用完全平方公式分解因式。
(2)因式分解通常先考虑__提_取__公__因__式__法___方法。 再考虑 公式法 _____________ 方法。 (3)因式分解要__彻__底_____
第4章 因式分解
把下列各式分解因式
(1) - ax4+ax2 (2)16m4-n4 首项有负常提负
各项有公先提公 分解因式要彻底
a2−b2 = (a+b)(a−b)
把下列多项式因式分解:
4a2 +12ab +9b2
如图,用一张正方形纸片甲、两张长方形 纸片乙、一张正方形纸片丙拼成一个大正 方形丁.
(1)用一个多项式
表示图形丁的面积; b 乙
丙
(2)用整式积表示 图丁的面积;
a
(3)根据(1)(2)所得 到的结果,写一个表 示因式分解的等式.
甲
乙
a
b
丁
用乘法公式分解因式-完整版课件
解:设狄摩根年龄为x岁,弟弟为y岁,由题意得, x2-y2=141,因式分解(x+y)(x-y)=3×47, ∵x,y为正整数且x>y,
x y 47, ∴ x y 3,
x 25,
∴
y
22.
答:狄摩根今年25岁,他弟弟为22岁.
注意点:(1)一般地,如果一个多项式可以转化为 a2-b2的形式,那么这个多项式就可以用平方差公式 分解因式. (2)多项式的因式分解要分解到不能再分 解为止.
平方差公式的应用 例2 英国数学家狄摩根(De Morgan, 1806-1871) 在青年时代,曾有人问他:“您今年多大年纪?” 狄摩根想了想说:“今年,我的年龄和我弟弟年 龄的平方差是141,你能算出我的年龄和我弟弟 的年龄吗?”你能算出来吗?
注意点:利用年龄为非负整数解是解决问题的关键.
例1 分解因式:9x2-4y2. 错答:原式=(9x+4y)(9x-4y). 正答:原式=(3x+2y)(3x-2y). 错因:对平方差公式a2-b2=(a+b)(a-b),a、b未理解Байду номын сангаас其含义. 公式中的a、b应分别为3x、2y.
例2 分解因式:64y2-16. 错答:原式=(8y+4)(8y-4). 正答:原式=16(4y2-1)=16(2y+1)(2y-1). 错因:如果多项式中有公因式,应先提取公因式.
第4章 因式分解 4.3 用乘法公式分解因式(第1课时)
用平方差公式分解因式 例1 把下列各式分解因式: (1)x2-9y2; (2)16x4-y4; (3)(x+2y)2-(x-3y)2; (4)m2(16x-y)+n2(y-16x).
【新浙教版】七年级数学下册第四章因式分解4.3《用乘法公式分解因式二》练习(含答案)
4.3 用乘法公式分解因式(二)A 组1.填空:(1)分解因式:x 2-4x +4=(x -2)2.(2)分解因式:4a 2-4a +1=(2a -1)2.(3)若4x 2+mx +25是一个完全平方式,则实数m =±20.(4)分解因式:2x 2-4x +2=2(x -1)2.(5)分解因式:x 3+2x 2+x =x(x +1)2.2.下列多项式中,不能用完全平方公式分解因式的是(C )A. m +1+m 24B. -x 2+2xy -y 2C. -a 2+14ab +49b 2D. n 29-23n +1 3.把多项式x 2-6x +9分解因式,结果正确的是(A )A. (x -3)2B. (x -9)2C. (x +3)(x -3)D. (x +9)(x -9)4.分解因式:(1)x 2-x +14. 【解】原式=x 2-2·x ·12+⎝ ⎛⎭⎪⎫122 =⎝⎛⎭⎪⎫x -122. (2)a 2-12ab +116b 2.【解】原式=a 2-2·a ·14b +⎝ ⎛⎭⎪⎫14b 2 =⎝⎛⎭⎪⎫a -14b 2. (3)9m 2-6mn +n 2.【解】原式=(3m )2-2·(3m )·n +n 2=(3m -n )2.5.把下列各式分解因式:(1)3x 2-12xy +12y 2.【解】原式=3(x 2-4xy +4y 2)=3(x -2y )2.(2)-2x 3+24x 2-72x .【解】原式=-2x (x 2-12x +36)=-2x (x -6)2.(3)(a +b )2-12(a +b )-36.【解】原式=[(a +b )-6]2=(a +b -6)2.(4)2m 2+2m +12. 【解】原式=2⎝⎛⎭⎪⎫m 2+m +14 =2⎝⎛⎭⎪⎫m +122. 6.用简便方法计算:(1)9992+2×999+1.【解】原式=9992+2×999×1+12=(999+1)2=10002=1000000.(2)552-110×45+452.【解】原式=552-2×55×45+452=(55-45)2=102=100.B组7.若(x2+y2)(x2+y2-2)=8,则x2+y2的值为__4__.【解】∵(x2+y2)(x2+y2-2)=8,∴(x2+y2)2-2(x2+y2)=8,(x2+y2)2-2(x2+y2)+1=9,∴(x2+y2-1)2=9,∴x2+y2-1=3或x2+y2-1=-3,∴x2+y2=4或x2+y2=-2.∵x2+y2≥0,∴x2+y2=4.8.分解因式:(1)(a2+1)2-4a2.【解】原式=(a2+1+2a)(a2+1-2a)=(a+1)2(a-1)2.(2)81+x4-18x2.【解】原式=x4-18x2+81=(x 2)2-2·x 2·9+92=(x 2-9)2=[(x +3)(x -3)]2=(x +3)2(x -3)2.9.(1)已知x 2+4x +y 2+2y +5=0,求x y 的值.【解】x 2+4x +y 2+2y +5=0,x 2+4x +4+y 2+2y +1=0,(x +2)2+(y +1)2=0,∴x +2=0且y +1=0,∴x =-2,y =-1,∴x y =(-2)-1=-12. (2)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3的值.【解】a 3b +2a 2b 2+ab 3=ab (a 2+2ab +b 2)=ab (a +b )2=2×32=18.10.阅读材料,并回答问题:分解因式:x 2-120x +3456.分析:由于常数项数值较大,可以把x 2-120x +3456变为平方差的形式进行分解,这样就简便易行.解:x 2-120x +3456=x 2-2×60x +3600-3600+3456=(x -60)2-144=(x-60)2-122=(x-60+12)(x-60-12)=(x-48)(x-72).请按照上面方法分解因式:x2-16x-561.【解】x2-16x-561=x2-16x+64-64-561=(x-8)2-625=(x-8)2-252=(x-8+25)(x-8-25)=(x+17)(x-33).11.已知(a+2b)2-2a-4b+1=0,求(a+2b)2018的值.【解】∵(a+2b)2-2a-4b+1=0,∴(a+2b)2-2(a+2b)+1=0,∴(a+2b-1)2=0,∴a+2b-1=0,∴a+2b=1,∴(a+2b)2018=12018=1.数学乐园12.阅读材料,并回答问题:分解因式:x4+4.分析:这个二项式既无公因式可提,也不能直接利用乘法公式,怎么办呢?19世纪的法国数学家苏菲·热门抓住了该式只有两项,且都是数或式的平方和的形式的特点,添加了一项4x2组成完全平方公式,然后将4x2减去,即可得x4+4=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)·(x2-2x+2).人们为了纪念苏菲·热门给出的这一解法,就把它叫做“热门定理”.请你依照苏菲·热门的做法,将下面各式分解因式:(1)x4+4y4. (2)x2-2ax-b2-2ab.【解】(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+2y2)2-(2xy)2=(x2+2y2+2xy)(x2+2y2-2xy).(2)x2-2ax-b2-2ab=x2-2ax+a2-a2-2ab-b2=(x-a)2-(a+b)2=[(x-a)+(a+b)][(x-a)-(a+b)]=(x+b)(x-2a-b).。
最新苏科版七年级数学下册《因式分解》复习练习
初一下数学复习因式分解一.因式分解-提公因式法1.把下列各式分解因式:(1)ax﹣ay+az;(2)6a2b﹣15ab2+30a2b2;(3)10a(x﹣y)2﹣5b(y﹣x);(4)x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a).2.因式分解:(x+1)(x+3)﹣33.(2019秋•徐汇区校级期中)(x﹣3y)(x﹣y)﹣(﹣x﹣y)24.因式分解:2m(a﹣b)﹣3n(b﹣a)5.(2019春•大丰区期末)因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y ﹣x)6.(2018秋•如皋市期中)因式分解:(1)x2﹣10x (2)﹣8ax2+16axy﹣8ay2 6.(2017春•天宁区校级月考)因式分解:2x2﹣4x.8.(2017春•滨海县期末)因式分解:(1)3a(x﹣y)﹣5b(y﹣x)(2)x6﹣x2y4.9.分解因式:3x(a﹣b)﹣6y(b﹣a)二.因式分解-运用公式法10.分解因式:(1)16x2﹣8xy+y2;(2)a2(x﹣y)﹣b2(x﹣y).11.(2019春•泰兴市期中)因式分解.(1)4x2﹣9y2 (2)x2+2xy+2y212.分解因式:(a2+1)2﹣4a2.13.(2018春•江宁区校级月考)分解因式.(1)(m+1)(m﹣9)+8m (2)(x2﹣x)2﹣(x﹣1)214.(2018春•工业园区期末)分解因式:x4﹣2x2+1.三.提公因式法与公式法的综合运用15.(2020春•灌云县期中)因式分解:(1)2m(a﹣b)﹣3n(b﹣a)(2)8a2﹣2b2 (3)4+12(x﹣y)+9(x﹣y)216.(2019秋•崇川区校级期末)分解因式:(1)4x2y﹣9y (2)(a2+4)2﹣16a217.因式分解(1)4a2﹣9;(2)3ax2+6axy+3ay2.18.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.19.(2020春•东台市期中)因式分解①2x2﹣8 ②x3﹣2x2y+xy2 ③(x2+4)2﹣16x2.20.因式分解:(1)x2﹣4;(2)x3﹣2x2+x.四.因式分解-分组分解法21.分解因式:x2+y2+2xy﹣1.22.(2018春•玄武区校级期中)因式分解(1)m2(x﹣2)+m(2﹣x)(2)(x+y)2﹣4(x+y﹣1);(3)(x2+y2)2﹣4x2y2;(4)x3+x2y﹣xy2﹣y3.23.(2018秋•启东市期中)分解因式(1)16﹣a4 (2)y3﹣6xy2+9x2y(3)(m+n)2﹣4m(m+n)+4m2 (4)9﹣a2+4ab﹣4b224.(2017秋•海安县月考)因式分解:(1)a4﹣16 (2)x2﹣2xy+y2﹣9 (3)n2(m﹣2 )+(2﹣m )25.(2017春•苏州期中)分解因式:(1)2a3﹣8a (2)4a(x﹣y)﹣2b(y﹣x)(4)(x2+4)2﹣16x2 (4)2xy﹣x2+1﹣y2.26.(2017春•江阴市校级月考)因式分解(1)x3﹣4x (2)﹣2a2+4a﹣2(3)x2﹣5x﹣6 (4)x2﹣4y2+x+2y.五.因式分解-十字相乘法等27.(2019春•常熟市期末)将下列各式分解因式:(1)x2﹣5x﹣6;(2)8x2﹣8x+2;(3)a2(x﹣y)+b2(y﹣x).28.(2019春•相城区期中)将下列各式分解因式(1)9x2﹣25 (2)x4y4﹣8x2y2+16 (3)a2(x﹣y)﹣b2(x﹣y)(4)x2﹣xy﹣6y229.(2019春•吴江区期中)分解因式:(1)ax2﹣6ax+9a (2)(m+1)(m﹣9)+8m (3)a4+3a2﹣430.(2019春•丹阳市期中)分解因式(1)6xz﹣9xy (2)8a3﹣8a2+2a(3)2ax2﹣18a3 (4)x2﹣4x﹣1231.(2019春•常熟市期中)分解因式:(1)3a2﹣6a+3;(2)a2﹣ab﹣6b2;(3)9a2(2x﹣y)+(y﹣2x)32.(2019春•太仓市期中)把下列各式分解因式(1)x4﹣81 (2)x2﹣x﹣2 (3)2x2y﹣8xy+8y33.分解因式:(a2+a)2﹣8(a2+a)+12.34.(2018春•玄武区校级月考)分解下列因式(1)a2(x﹣y)+b2(y﹣x)(2)16x4﹣8x2y2+y4 (3)(x2+4)2﹣16x2(4)36(a+b)2﹣4(a﹣b)2 (5)x2﹣6x﹣1635.(2018春•常熟市期末)将下列各式分解因式(1)3x(a﹣b)﹣9y(b﹣a);(2)a2﹣4a﹣12;(3)81x4﹣72x2y2+16y436.(2018春•相城区期中)将下列各式分解因式:(1)2ax2﹣8a (2)x2﹣6xy+5y2(3)(2m﹣n)2﹣6n(2m﹣n)+9n2 (4)a2﹣b2+2b﹣1初一下期中复习因式分解答案一.因式分解-提公因式法1.(1)ax﹣ay+az=a(x﹣y+z);(2)6a2b﹣15ab2+30a2b2=3ab(2a﹣5b+10ab);(3)10a(x﹣y)2﹣5b(y﹣x)=10a(x﹣y)2+5b(x﹣y)=5(x﹣y)[2a(x﹣y)+b]=5(x﹣y)(2ax﹣2ay+b);(4)x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a)=x(a﹣x)(a﹣y)﹣y(a ﹣x)(a﹣y)=(a﹣x)(a﹣y)(x﹣y).2.(x+1)(x+3)﹣3=x2+4x+3﹣3=x2+4x=x(x+4),3.(x﹣3y)(x﹣y)﹣(﹣x﹣y)2=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).4.2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n).5.3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)=3x2(x﹣2y)﹣18x(x ﹣2y)+27(x﹣2y)=3(x﹣2y)(x2﹣6x+9)=3(x﹣2y)(x﹣3)2.6.(1)x2﹣10x=x(x﹣10);(2)﹣8ax2+16axy﹣8ay2=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.7.2x2﹣4x=2x(x﹣2).8.(1)3a(x﹣y)﹣5b(y﹣x)=(x﹣y)(3a+5b)(2)x6﹣x2y4=x2(x4﹣y4)=x2(x2﹣y2)(x2+y2)=x2(x﹣y)(x+y)(x2+y2)9.3x(a﹣b)﹣6y(b﹣a)=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y).二.因式分解-运用公式法10.(1)16x2﹣8xy+y2=(4x﹣y)2(2)a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b).11.(1)4x2﹣9y2=(2x+3y)(2x﹣3y)(2)x2+2xy+2y2=(x2+4xy+4y2)=(x+2y)2.12.(a2+1)2﹣4a2.=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.13.(1)(m+1)(m﹣9)+8m=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3);(2)(x2﹣x)2﹣(x﹣1)2=(x2﹣x+x﹣1)(x2﹣x﹣x+1)=(x+1)(x﹣1)(x﹣1)2=(x+1)(x﹣1)3.14.x4﹣2x2+1=(x2﹣1)2=(x+1)2(x﹣1)2.三.提公因式法与公式法的综合运用15.(1)2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n)(2)8a2﹣2b2=2(4a2﹣b2)=2(2a+b)(2a﹣b)(3)4+12(x﹣y)+9(x﹣y)2=[2+3(x﹣y)]2=(2+3x﹣3y)2 16.(1)4x2y﹣9y=y(4x2﹣9)=y(2x+3)(2x﹣3)(2)(a2+4)2﹣16a2=(a2+4﹣4a)(a2+4+4a)=(a+2)2(a﹣2)217.(1)4a2﹣9=(2a+3)(2a﹣3)(2)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)218.(1)9ax2﹣ay2=a(9x2﹣y2)=a(3x+y)(3x﹣y)(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)219.①2x2﹣8=2(x2﹣4)=2(x﹣2)(x+2)②x3﹣2x2y+xy2═x(x2﹣2xy+y2)=x(x﹣y)2③(x2+4)2﹣16x2=(x2+4x+4)(x2﹣4x+4)=(x+2)2(x﹣2)2 20.(1)x2﹣4=(x+2)(x﹣2);(2)x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.四.因式分解-分组分解法21.x2+y2+2xy﹣1=(x+y)2﹣1=(x+y﹣1)(x+y+1).22.(1)m2(x﹣2)+m(2﹣x)=m2(x﹣2)﹣m(x﹣2)=(x﹣2)(m2﹣m)=m(x﹣2)(m﹣1);(2)(x+y)2﹣4(x+y﹣1)=(x+y)2﹣4(x+y)+4=(x+y﹣2)2;(3)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2;(4)x3+x2y﹣xy2﹣y3=x2(x+y)﹣y2(x+y)=(x+y)(x2﹣y2)=(x+y)2(x﹣y).23.(1)16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(2)y3﹣6xy2+9x2y=y(y2﹣6xy+9x2)=y(y﹣3x)2(3)(m+n)2﹣4m(m+n)+4m2=(m+n﹣2m)2=(n﹣m)2 (4)9﹣a2+4ab﹣4b2=9﹣(a﹣2b)2=(3﹣a+2b)(3+a﹣2b)24.(1)a4﹣16=(a2+4)(a2﹣4)=(a2+4)(a+2)(a﹣2)(2)x2﹣2xy+y2﹣9=(x﹣y)2﹣32=(x﹣y+3)(x﹣y﹣3)(3)n2(m﹣2 )+(2﹣m )=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1)25.(1)2a3﹣8a=2a(a2﹣4)=2a(a+2)(a﹣2);(2)4a(x﹣y)﹣2b(y﹣x)=2(x﹣y)(2a+b);(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)2xy﹣x2+1﹣y2=1﹣(x﹣y)2=(1+x﹣y)(1﹣x+y).26.(1)x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2)(2)﹣2a2+4a﹣2=﹣2(a2﹣2a+1)=﹣2(a﹣1)2(3)x2﹣5x﹣6=(x﹣6)(x+1)(4)x2﹣4y2+x+2y=(x+2y)(x﹣2y)+(x+2y)=(x+2y)(x﹣2y+1)五.因式分解-十字相乘法等27.(1)x2﹣5x﹣6=(x﹣6)(x+1)(2)8x2﹣8x+2=2(4x2﹣4x+1)=2(2x﹣1)2(3)a2(x﹣y)+b2(y﹣x)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b)28.(1)9x2﹣25=(3x+5)(3x﹣5)(2)x4y4﹣8x2y2+16=(x2y2﹣4)2=(xy+2)2(xy﹣2)2(3)a2(x﹣y)﹣b2(x﹣y)=(a2﹣b2)(x﹣y)=(a+b)(a﹣b)(x﹣y)(4)x2﹣xy﹣6y2=(x﹣3y)(x+2y)29.(1)ax2﹣6ax+9a=a(x2﹣6x+9)=a(x﹣3)2;(2)(m+1)(m﹣9)+8m=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m ﹣3);(3)a4+3a2﹣4=(a2﹣1)(a2+4)=(a﹣1)(a+1)(a2+4).30.(1)6xz﹣9xy=3x(2z﹣3y)(2)8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2(3)2ax2﹣18a3=2a(x2﹣9a2)=2a(x+3a)(x﹣3a)(4)x2﹣4x﹣12=(x﹣6)(x+2)31.(1)3a2﹣6a+3=3(a2﹣2a+1)=3(a﹣1)2;(2)a2﹣ab﹣6b2=(a﹣3b)(a+2b);(3)9a2(2x﹣y)+(y﹣2x)=9a2(2x﹣y)﹣(2x﹣y)=(2x﹣y)(9a2﹣1)=(2x﹣y)(3a+1)(3a﹣1).32.(1)x4﹣81=(x2+9)(x2﹣9)=(x2+9)(x+3)(x﹣3);(2)x2﹣x﹣2=(x+1)(x﹣2);(3)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.33.(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a ﹣1)(a+3)(a﹣2).34.(1)a2(x﹣y)+b2(y﹣x)=a2(x﹣y)﹣b2(x﹣y)=(a2﹣b2)(x﹣y)=(x﹣y)(a+b)(a﹣b);(2)16x4﹣8x2y2+y4=(4x2﹣y2)2=(2x+y)2(2x﹣y)2;(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)36(a+b)2﹣4(a﹣b)2=(6a+6b)2﹣(2a﹣2b)2=(6a+6b+2a ﹣2b)(6a+6b﹣2a+2b)=(8a+4b)(4a+8b)=16(2a+b)(a+2b);(5)x2﹣6x﹣16=(x﹣8)(x+2).35.(1)3x(a﹣b)﹣9y(b﹣a)=3x(a﹣b)+9y(a﹣b)=3(a﹣b)(x+3y);(2)a2﹣4a﹣12=(a﹣6)(a+2);(3)81x4﹣72x2y2+16y4=(9x2﹣4y2)2=(3x+2y)2(3x﹣2y)2.36.(1)2ax2﹣8a=2a(x2﹣4)=2a(x+2)(x﹣2);(2)x2﹣6xy+5y2=(x﹣y)(x﹣5y);(3)(2m﹣n)2﹣6n(2m﹣n)+9n2=(2m﹣n﹣3n)2=4(m﹣2n)2;(4)a2﹣b2+2b﹣1=a2﹣(b﹣1)2=(a+b﹣1)(a﹣b+1).。
浙教版七(下)数学第4章《因式分解》 4.3 用乘法公式分解因式 第1课时校本作业(含答案)
4.3 用乘法公式分解因式(第1课时)课堂笔记两个数的平方差,等于这两个数的与这两个数的的积. 即a2-b2=(a+b)(a-b). 分层训练A组基础训练1. 下列各式能用平方差公式分解因式的是()A. 2x2+y2B. -x2+y2C. -x2-y2D. x3+(-y)22. 把多项式-4n2+m2分解因式,其结果正确的是()A. (m+2n)(m-2n)B. (m+2n)2C. (m-2n)2D. (2n+m)(2n-m)3. 下列因式分解中,正确的有()①4x2-1=(4x+1)(4x-1)②m2-n2=(m+n)(m-n)③-16+9x2=(4+3x)(-4+3x)④a2+(-b)2=(a+b)(a-b)A. ①②B. ②③C. ③④D. ①④4. 在一个边长为12.75cm的正方形内挖去一个边长为7.25cm的正方形,则剩下部分的面积是()A.11cm2B.20cm2C.110cm2D.200cm25. (金华中考)把代数式2x2-18分解因式,结果正确的是()A. 2(x2-9)B. 2(x-3)2C. 2(x+3)(x-3)D. 2(x+9)(x-9)6. 下列各式不是多项式x3-x的因式的是()A. xB. 3x-1C. x-1D. x+17.小敏是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:乡、爱、我、家、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A. 我爱美B. 家乡游C. 爱我家乡D. 美我家乡8.小华在抄因式分解的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,且能利用平方差公式分解因式,他抄到作业本上的式子是x□-4y2(□表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种9. 填空:(1)36x 2y 2-49a 2=( )2-( )2;(2)-4n 2+m 2=( )2-( )2;(3)m 4- =(m 2+5)(m 2- ).10. (杭州中考)若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 (写出一个即可).11. 已知x +y =2,则x 2-y 2+4y = .12. 分解因式:9x 2(a -b )+y 2(b -a )= .13. 把下列各式分解因式:(1)1-16x 2;(2)-n 2+0.81m 2; (3)925x 2-64y 2;(4)(a +b )2-4; (5)4m 2-(m +n )2. (6)a 4-b 4;(7)x 3y 2-x 3; (8)25(m +n )2-81(m -n )2.14. 用简便方法计算:(1)552- 452; (2)9941×10043;(3)已知a +2b =5,a -2b =3,求5a 2-20b 2的值.B组自主提高15. 两个偶数的平方差,一定是()A. 2B. 4C. 8D. 4的倍数16. 如图,某筑路工程队需要一种空心混凝土管道,它的规格是:内径d=120cm,外径D=150cm,长L=200cm. 利用分解因式计算:浇筑一节这样的管道需要多少立方米的混凝土(π取3.14,结果精确到0.1m3).17. 阅读题:我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1)即1,原式的值不变,而且还使整个算式能运用平方差公式计算,解答过程如下:原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=…=264-1.你能用上述方法算出下列式子的值吗?请试试看.(3+1)(32+1)(34+1)(38+1)(316+1).C组综合运用18.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为.参考答案【课堂笔记】和 差【分层训练】1—6. BABCC 6. B7. C 【点拨】原式=(x 2-y 2)(a 2-b 2)=(x +y )(x -y )(a +b )(a -b ). ∵x +y ,x -y ,a +b ,a -b 四个代数式分别对应我、爱、家、乡,∴结果呈现的密码信息可能是“爱我家乡”.8. D9. (1)6xy 7a (2)m 2n (3)25 510. 答案不唯一,如-1,-4等11. 412. (a -b )(3x +y )(3x -y )13. (1)(1+4x )(1-4x ) (2)(0.9m +n )(0.9m -n )(3)(35x +8y )(35x -8y ) (4)(a +b +2)(a +b -2) (5)(3m +n )(m -n ) (6)(a -b )(a +b )(a 2+b 2)(7)x 3(y +1)(y -1) (8)4(7m -2n )(7n -2m )14. (1)1000 (2)9999167 (3)75 15. D16. 所需混凝土为[π(2D )2-π(2d )2]L =πL (2D -2d )(2D +2d )≈3.14×200(75-60)(75+60)=1271700(cm 3)=1.2717(m 3)≈1.3(m 3). 所以浇筑一节这样的管道需要1.3立方米的混凝土.【点拨】混凝土的立方数即为图中阴影部分的体积,亦即大圆柱体与小圆柱体的体积差.17. 原式=21(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=21(32-1)(32+1)(34+1)(38+1)(316+1)=…=21×(332-1)=21332 . 18. (1)36是“和谐数”,2016不是“和谐数”. 理由如下:36=102-82,2016=1008×2;(2)∵两个连续偶数为2k +2和2k (k 为自然数),∵(2k +2)2-(2k )2=(2k +2+2k )(2k +2-2k )=(4k+2)×2=4(2k+1),∵4(2k+1)能被4整除,∴“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”之和,S=(22-02)+(42-22)+(62-42)+…+(502-482)=502=2500. 故答案:2500.。
2022年最新浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析)
初中数学七年级下册第四章因式分解章节练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列各式由左到右的变形中,属于因式分解的是( )A.﹣a 2﹣ab ﹣ac =﹣a (a +b +c )B.x 2+x +1=(x +1)2﹣x C.(x +2)(x ﹣1)=x 2+x ﹣2 D.a 2+b 2=(a +b )2﹣2ab 2、下列各式中,正确的因式分解是( )A.2222()()a b ab c a b c a b c -+-=+---B.2()()()(1)x y x y x y x y ----=---+C.2()3()(23)()a b a b a a a b -+-=+-D.222422(222)(1)x x y x y x y ++-=+++-3、下列各式中,因式分解正确的是( )A.()22121x x x x ++=++B.()()22a b a b a b +=+-C.()222412923a ab b a b ++=+D.()231x x x x -=- 4、下列各式中,能用完全平方公式因式分解的是( )A.2161x +B.221x x +-C.214x x -+D.2224a ab b +-5、下列各式从左到右的变形是因式分解的是( )A.ax +bx +c =(a +b )x +cB.(a +b )(a ﹣b )=a 2﹣b 2C.(a +b )2=a 2+2ab +b 2D.a 2﹣5a ﹣6=(a ﹣6)(a +1) 6、下列各式从左到右的变形,因式分解正确的是( )A.x 2+4=(x +2)2B.x 2﹣10x +16=(x ﹣4)2C.x 3﹣x =x (x 2﹣1)D.2xy +6y 2=2y (x +3y )7、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x ﹣1,a ﹣b ,3,x 2+1,a ,x +1分别对应下列六个字:化,爱,我,数,学,新,现将3a (x 2﹣1)﹣3b (x 2﹣1)因式分解,结果呈现的密码信息可能是( )A.我爱学B.爱新化C.我爱新化D.新化数学 8、下面的多项式中,能因式分解的是( )A.2m ﹣2B.m 2+n 2C.m 2﹣nD.m 2﹣n +1 9、下列各式从左到右的变形,属于因式分解的是( )A.ab +bc +b =b (a +c )+bB.a 2﹣9=(a +3)(a ﹣3) C.(a ﹣1)2+(a ﹣1)=a 2﹣a D.a (a ﹣1)=a 2﹣a 10、下列各式中从左到右的变形,是因式分解的是( )A.2x x x =⋅B.()()()()a x y b y x x y a b ---=-+C.()()2224a a a +-=-D.()222241221x y xy xy x y +-=+-11、下列式子的变形是因式分解的是( )A.() m x y mx my +=+B.()22 21441x x x -=-+ C.()()2 1343x x x x ++=++ D.()3 11x x x x x -=+-()12、下列多项式中,能用平方差公式进行因式分解的是( )A.222a ab b ++B.22a b --C.22a b +D.22a b -13、已知222(3)x ax b x -+=-,则22b a - 的值是( )A.72-B.45-C.45D.7214、下列等式从左到右的变形,属于因式分解的是( )A.x 2+2x ﹣1=(x ﹣1)2B.(a +b )(a ﹣b )=a 2﹣b 2C.x 2+4x +4=(x +2)2D.ax 2﹣a =a (x 2﹣1) 15、下列等式中,从左到右的变形是因式分解的是( )A.2x (x ﹣1)=2x 2﹣2xB.4m 2﹣n 2=(4m +n )(4m ﹣n ) C.﹣x 2+2x =﹣x (x ﹣2) D.x 2﹣2x +3=x (x ﹣2)+3 二、填空题(10小题,每小题4分,共计40分)1、边长为a 、b 的长方形,它的周长为14,面积为10,则22a b ab +的值为__.2、小明将(2020x +2021)2展开后得到a 1x 2+b 1x +c 1;小红将(2021x ﹣2020)2展开后得到a 2x 2+b 2x +c 2,若两人计算过程无误,则c 1﹣c 2的值是__________.3、若20182019a x =+,20182020b x =+,20182021c x =+,则多项式222a b c ab ac bc ++---的值为______________.4、若多项式x 2+ax +b 可分解为(x +1)(x +4),则a =________,b =________.5、因式分解:22416a b _______.6、如果9x y +=,3x y -=,那么222x 2y -的值为______.7、已知a =2b ﹣5,则代数式a 2﹣4ab +4b 2﹣5的值是_____.8、请从24a ,2()x y +,16,29b 四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_____________________.9、因式分解:256x x --=______.10、分解因式:3mn 2﹣12m 2n =___.三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1)2a 2b ﹣8ab 2+8b 3.(2)a 2(m ﹣n )+9(n ﹣m ).(3)81x 4﹣16.(4)(m 2+5)2﹣12(m 2+5)+36.2、如果一个正整数的各位数字都相同,我们称这样的数为“同花数”,比如:3,22,666,8888,对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“异花数”.将一个“异花数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为()F n .如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132.这三个新三位数的和()213321132666F n =++=,是一个“同花数”.(1)计算:()432F ,()716F ,并判断它们是否为“同花数”;(2)若a 是“异花数”,证明:()F a 等于a 的各数位上的数字之和的111倍;(2)若“数”10010n p q =++(中p 、q 都是正整数,19p ≤≤,19q ≤≤),且()F n 为最大的三位“同花数”,求n 的值.3、(1)因式分解:()()29x m n n m -+-(2)解方程组:92153410x y x y +=⎧⎨+=⎩---------参考答案-----------一、单选题1、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A 、把一个多项式转化成了几个整式的积,故A 符合题意;B 、没把一个多项式转化成几个整式积,故B 不符合题意;C 、是整式的乘法,故C 不符合题意;D 、没把一个多项式转化成几个整式积,故D 不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.2、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2222()()a b ab c a b c a b c -+-=-+--,故此选项不合题意;B .2()()()(1)x y x y x y x y ----=---+,故此选项符合题意;C .()()()()2323a b a b a a a b -+-=--,故此选项不合题意;D .()()222422211x x y x y x y ++-=+++-,故此选项不合题意;故选:B .【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.3、C【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2221(1)x x x ++=+,故此选项不合题意;B .22a b +,无法分解因式,故此选项不合题意;222.4129(23)C a ab b a b ++=+,故此选项符合题意;D .32(1)(1)(1)x x x x x x x -=-=-+,故此选项不合题意;故选:C .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.4、C【分析】根据完全平方公式的特点判断即可;【详解】2161x +不能用完全平方公式,故A 不符合题意;221x x +-不能用完全平方公式,故B 不符合题意;221142x x x ⎛⎫-+=- ⎪⎝⎭,能用完全平方公式,故C 符合题意;22+-不能用完全平方公式,故D不符合题意;a ab b24故答案选C.【点睛】本题主要考查了因式分解公式法的判断,准确判断是解题的关键.5、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.6、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4≠(x+2)2,因式分解错误,故此选项不符合题意;B 、x 2-10x +16≠(x -4)2,因式分解错误,故此选项不符合题意;C 、x 3-x =x (x 2-1)=x (x +1)(x -1),因式分解不彻底,故此选项不符合题意;D 、2xy +6y 2=2y (x +3y ),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.7、C【分析】把所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:()()223131a x b x --- ()()231x a b =--()()()311x x a b =+--,∵x ﹣1,a ﹣b ,3,x 2+1,a ,x +1分别对应下列六个字:化,爱,我,数,学,新,∴结果呈现的密码信息可能是:我爱新化,故选:C .【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.8、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m﹣2=2(m﹣1),故本选项符合题意;B、m2+n2,不能因式分解,故本选项不合题意;C、m2﹣n,不能因式分解,故本选项不合题意;D、m2﹣n+1,不能因式分解,故本选项不合题意;故选A.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.9、B【分析】根据因式分解的定义逐项排查即可.【详解】解:根据因式分解的定义可知:A、C、D都不属于因式分解,只有B属于因式分解.故选B.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.10、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x x x =⋅,单项式不能因式分解,故此选项不符合题意;B.()()()()a x y b y x x y a b ---=-+,是因式分解,故此选项符合题意;C.()()2224a a a +-=-,是整式计算,故此选项不符合题意;D.()222241221x y xy xy x y +-=+-,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.11、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,由此结合选项即可作出判断.【详解】解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、右边不是整式积的形式,不是因式分解,故本选项错误;D 、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,属于基础题.12、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、a2+2ab+b2是三项,不能用平方差公式进行因式分解.B、−a2−b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2+b2两平方项符号相同,不能用平方差公式进行因式分解;D、a2−b2符合平方差公式的特点,能用平方差公式进行因式分解;故选:D.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2−b2=(a+b)(a−b).13、D【分析】直接利用完全平方公式:a2±2ab+b2=(a±b)2,得出a,b的值,进而得出答案.【详解】解:∵x2﹣2ax+b=(x﹣3)2=x2﹣6x+9,∴﹣2a=﹣6,b=9,解得:a=3,故b2﹣a2=92﹣32=72.故选:D.【点睛】此题主要考查了公式法分解因式,正确记忆完全平方公式是解题关键.14、C【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】A. x2+2x﹣1≠(x﹣1)2,故A不符合题意;B. a2﹣b2=(a+b)(a﹣b),故B不符合题意;C. x2+4x+4=(x+2)2,是因式分解,故C符合题意;D. ax2﹣a=a(x2﹣1)=a(x+1)(x-1),分解不完全,故D不符合题意;故选:C.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义.15、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x﹣1)=2x2﹣2x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2﹣n2=(2m+n)(2m﹣n),故此选项不符合题意;C.﹣x2+2x=﹣x(x﹣2),把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;D.x2﹣2x+3=x(x﹣2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.二、填空题1、70【分析】直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可.【详解】解:依题意:2a+2b=14,ab=10,则a+b=7∴a2b+ab2=ab(a+b)=70;故答案为:70【点睛】此题主要考查了提取公因式法分解因式,正确得出a+b和ab的值是解题关键.2、4041【分析】根据(2020x+2021)2=(2020x)2+2×2021×2020x+20212得到c1=20212,同理可得c2=20202,所以c1-c2=20212-20202,进而得出结论.【详解】解:∵(2020x+2021)2=(2020x)2+2×2021×2020x+20212,∴c1=20212,∵(2021x-2020)2=(2021x)2-2×2020×2021x+20202,∴c2=20202,∴c1-c2=20212-20202=(2021+2020)×(2021-2020)=4041,故答案为:4041.【点睛】本题主要考查了完全平方公式,平方差公式,解决本题的关键是要熟悉公式的结构特点.3、3【分析】将多项式多项式a2+b2+c2﹣ab﹣bc﹣ac分解成12[(a﹣b)2+(a﹣c)2+(b﹣c)2],再把a,b,c代入可求.【详解】解:20182019201820201a b x x-=+--=-;20182020201820211b c x x-=+--=-;20182019201820212a c x x-=+--=-;∵a2+b2+c2﹣ab﹣bc﹣ac=12(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=12[(a﹣b)2+(a﹣c)2+(b﹣c)2],∴a2+b2+c2﹣ab﹣bc﹣ac=12(1+4+1)=3;故答案为:3.【点睛】本题考查了因式分解的应用,关键是将多项式配成完全平方形式.4、5 4【分析】把(x+1)(x+4)展开,合并同类项,可确定a、b的值.【详解】解:∵(x+1)(x+4),=244x x x+++,=254x x ++,∴54a b ==,;故答案为:5,4.【点睛】本题考查了因式分解和多项式乘多项式,解题关键是熟练运用多项式的乘法法则进行计算,取得字母的值.5、422a b a b【分析】先提公因式4,再利用平方差公式分解.【详解】解:22416a b -=2244a b=422a b a b故答案为:422a b a b .【点睛】本题考查提公因式法和公式法进行因式分解,掌握提平方差公式是解题关键.6、54【分析】先利用平方差公式分解因式,再代入求值,即可.【详解】解:222x 2y -=()222x y -=()()2x y x y +-=2×9×3=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.7、20【分析】将a =2b -5变为a -2b =-5,再根据完全平方公式分解a 2-4ab +4b 2-5=(a -2b )2-5,代入求解.【详解】解:∵a =2b -5,∴a -2b =-5,∴a 2-4ab +4b 2-5=(a -2b )2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.8、4a 2-16=4(a -2)(a +2)【分析】任选两式作差,例如,4a 2-16,运用平方差公式因式分解,即可解答.【详解】解:根据平方差公式,得,4a 2-16,=(2a )2-42,=(2a -4)(2a +4),=4(a -2)(a +2)故4a 2-16=4(a -2)(a +2),故答案为:4a 2-16=4(a -2)(a +2).【点睛】本题考查了运用平方差公式因式分解:把一个多项式化为几个整式的积的形式;属于基础题. 9、()()16x x +-【分析】根据十字相乘法分解即可.【详解】解:256x x --=()()16x x +-,故答案为:()()16x x +-.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题的关键.10、3mn (n -4m )【分析】根据提公因式法进行分解即可.【详解】3mn 2-12m 2n =3mn (n -4m ).故答案为:3mn (n -4m ).【点睛】本题考查了因式分解,掌握提公因式法分解因式是解题的关键.三、解答题1、(1)2b(a-2b) 2;(2)(m﹣n)( a+3)(a-3);(3)(3x+2)(3x-2)(9x2+4);(4)(m+1)2(m-1)2【分析】(1)先提取2b,再利用完全平方公式分解因式即可;(2)先提取(m﹣n),再利用平方差公式分解因式即可;(3)利用平方差公式分解因式,即可;(4)先用完全平方公式分解因式,再用平方差公式分解因式即可.【详解】解:(1)原式=2b(a2-4ab+4b2)=2b(a2-4ab+4b2)=2b(a-2b) 2;(2)原式=a2(m﹣n)-9(m﹣n)=(m﹣n)( a2-9)=(m﹣n)( a+3)(a-3);(3)原式=(9x2﹣4)(9x2+4)=(3x+2)(3x-2)(9x2+4);(4)原式=[(m2+5)-6]2=(m2-1)2=(m+1)2(m-1)2.【点睛】本题主要考查分解因式,熟练掌握提取公因式法和公式法分解因式,是解题的关键.2、(1)(432)F 是同花数;(716)F 不是同花数;(2)见解析;(3)n 为162或153或135或126【分析】(1)由“同花数”定义,计算即可得到答案;(2)百位数的表示方法;(2)由“异花数”的定义,()F n 为最大的三位“称心数”得()999F n =且19p q ++=,计算n 的值为162或153或135或126.【详解】解:(1)(432)342234423999F =++=,(432)F ∴是同花数;(716)1676177611554F =++=,(716)F ∴不是同花数;(2)若a 是“异花数”10010a b c d ∴=++,(其中,,b c d 均为小于10的正整数),[]()100()10()()111()F a b c d b c d b c d b c d ∴=++++++++=++,()F a ∴等于a 的各数位上的数字之和的111; (3)异花数” 10010n p q =++,100110n p q ∴=⨯++,又19p ,19(q p ,q 为正整数),()F n 为最大的三位“同花数”,()999F n ∴=且19p q ++=,p ∴、q 取值如下:62p q =⎧⎨=⎩或53p q =⎧⎨=⎩或35p q =⎧⎨=⎩或26p q =⎧⎨=⎩, 由上可知符合条件三位“异花数”n 为162或153或135或126.【点睛】本题考查了新定义问题,解题的关键是读懂新定义“同花数”和“异花数”.3、(1)()()()33m n x x -+-;(2)4332x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】(1)先提公因式()m n -,再利用平方差公式即可;(2)利用加减消元法先消去x ,求出y ,再将y 的值代入求出x ,进而确定方程组的解即可.【详解】解:(1)原式2()9()x m n m n =---2()(9)m n x =--()(3)(3)m n x x =-+-;(2)92153410x y x y +=⎧⎨+=⎩①②, ②3⨯-①得,1015y =,32y ∴=, 把32y =代入②得. 3610x +=,43x ∴=, ∴原方程组的解为4332x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查提公因式法、公式法分解因式,二元一次方程组的解,掌握平方差公式的结构特征以及二元一次方程组的解法是正确解答的关键.。
2019-2020学年浙教版数学七年级第二学期 第4章 因式分解单元测试题及答案
第4章因式分解.第Ⅰ卷(选择题共30分)一、选择题(本题有10小题,每小题3分,共30分)1.下列等式从左到右的变形是因式分解的是( )A.6a3b=3a2·2abB.(x+2)(x-2)=x2-4C.2x2+4x-3=2x(x+2)-3D.ax-ay=a(x-y)2.下列各多项式中,能用公式法分解因式的是( )A.a2-b2+2ab B.a2+b2+abC.4a2+12a+9 D.25n2+15n+93.计算101×1022-101×982的结果是( )A.404 B.808C.40400 D.808004.下列因式分解正确的是( )A.2x2-2=2(x+1)(x-1)B.x2+2x-1=(x-1)2C.x2+1=(x+1)2D.x2-x+2=x(x-1)+25.把多项式m2(a-2)+m(2-a)分解因式,结果正确的是( )A.m(a-2)(m+1) B.m(a-2)(m-1)C.m(2-a)(m-1) D.m(2-a)(m+1)6.把x2+3x+c分解因式得x2+3x+c=(x+1)(x+2),则c的值为( )A.2 B.3C.-2 D.-37.若多项式x2+mx+9能用完全平方公式分解因式,则m的值为( )A.3 B.±3C.±6 D.68.小明在抄分解因式的题目时,不小心漏抄了二项式x2-□y2(“□”表示漏抄的式子)中y2前的式子,且该二项式能分解因式,那么他漏抄在作业本上的式子不可能是下列中的( )A.x B.4C.-4 D.99.下列关于2300+(-2)301的计算结果正确的是( )A.2300+(-2)301=(-2)300+(-2)301=(-2)601B.2300+(-2)301=2300-2301=2-1C.2300+(-2)301=2300-2301=2300-2×2300=-2300D.2300+(-2)301=2300+2301=260110.如果x2+x-1=0,那么代数式x3+2x2-7的值为( )A.6 B.8C.-6 D.-8第Ⅱ卷 (非选择题 共90分)二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:x 2+6x =________.12.分解因式:3x 2-18x +27=____________.13.填空:x 2-x +____________=⎝ ⎛⎭⎪⎫x -122; 14x 4+() +49y 2=()2.14.一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含有x 的整式表示它的宽为________米.15.若多项式x 2-mx +n(m ,n 是常数)分解因式后,其中一个因式是x -3,则3m -n 的值为________.16.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的长方形可拼成一个正方形(如图1所示),从而可得到的因式分解的公式为__________________________.图1三、解答题(本题有8小题,共66分) 17.(8分)分解因式:(1)a 2-6a +9; (2)9a 2+12ab +4b 2;(3)(y +2x)2-(x +2y)2;(4)(x +y)2+2(x +y)+1.18.(6分)用简便方法计算:1.42×16-2.22×4.19.(6分)已知a-2b=12,ab=2,求-a4b2+4a3b3-4a2b4的值.20.(8分)分解因式x2+ax+b时,甲看错a的值,分解的结果是(x+6)(x-1),乙看错b的值,分解的结果是(x-2)(x+1),求a+b的值.21.(8分)如图2,在边长为a厘米的正方形的四个角各剪去一个边长为b厘米的小正方形.(1)用代数式表示剩余部分的面积;(2)当a=8.68,b=0.66时,求剩余部分的面积.图222.(10分)已知x3+y3=(x+y)(x2-xy+y2)称为立方和公式,x3-y3=(x-y)(x2+xy +y2)称为立方差公式,据此,试将下列各式分解因式:(1)a3+8;(2)27a3-1.23.(10分)由多项式的乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)尝试分解因式:x2+6x+8=(x+________)(x+________);(2)应用请用上述方法解方程:x2-3x-4=0.24.(10分)设a1=32-12,a2=52-32,…,a n=(2n+1)2-(2n-1)2 (n为大于0的自然数).(1) 探究a n是不是8的倍数,并用文字语言表述你所获得的结论;(2) 若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n是完全平方数(不必说明理由).详解详析1.D 2.C 3.D 4.A 5.B 6.A 7.C 8.C 9.C 10.C11.x(x+6) 12.3(x-3)213.14±23x2y12x2±23y14.(x-3)15.[答案] 9[解析] 设另一个因式为x+a,则(x+a)(x-3)=x2+(-3+a)x-3a,∴-m=-3+a,n=-3a,∴m=3-a,∴3m-n=3(3-a)-(-3a)=9-3a+3a=9.故答案为9.16.a2+2ab+b2=(a+b)217.解:(1)a2-6a+9=(a-3)2.(2)9a2+12ab+4b2=(3a+2b)2.(3)(y+2x)2-(x+2y)2=[(y+2x)+(x+2y)][(y+2x)-(x+2y)]=(3x+3y)(x-y)=3(x+y)(x-y).(4)原式=(x+y+1)2.18.解:1.42×16-2.22×4=1.42×42-2.22×22=(1.4×4)2-(2.2×2)2=5.62-4.42= (5.6+4.4)×(5.6-4.4)=10×1.2=12.19.∵a-2b=12,ab=2,∴-a4b2+4a3b3-4a2b4=-a2b2(a2-4ab+4b2)=-a2b2(a-2b)2=-22(12)2=-1.20.解:甲分解因式得x2+ax+b=(x+6)(x-1)=x2+5x-6,由于甲看错a的值,∴b=-6.乙分解因式得x2+ax+b=(x-2)(x+1)=x2-x-2,由于乙看错b的值,∴a=-1. ∴a+b=-7.21.解:(1)剩余部分的面积为(a2-4b2)平方厘米.(2)a2-4b2=(a+2b)(a-2b)=(8.68+2×0.66)×(8.68-2×0.66)=10×7.36=73.6(厘米2).答:当a=8.68,b=0.66时,剩余部分的面积为73.6平方厘米.22.解:(1)a3+8=(a+2)(a2-2a+4).(2)27a3-1=(3a-1)(9a2+3a+1).23.解:(1)2 4(2)x2-3x-4=(x-4)(x+1)=0,所以x-4=0或x+1=0,即x=4或x=-1.24.解:(1)∵a n=(2n+1)2-(2n-1)2=[(2n+1)+(2n-1)][(2n+1)-(2n-1)]=(2n+ 1+2n-1)(2n+1-2n+1)=8n.∵n为大于0的自然数,∴a n是8的倍数,这个结论用语言表述为:两个连续奇数的平方差是8的倍数.(2)a2=16,a8=64,a18=144,a32=256.当n为一个完全平方数的2倍时,a n是完全平方数.。
浙江省各地浙教版数学七年级下册期末试题选编第4章因式分解练习题(Word版含解析)
浙教版数学七年级下册第4章:因式分解练习题一、单选题1.(·七年级期末)下列由左到右的变形,属于因式分解的是( )A .(x +2)(x ﹣2)=x2﹣4B .x2﹣4=(x +2)(x ﹣2)C .x2﹣4+3x=(x +2)(x ﹣2)+3xD .x2+4x ﹣2=x (x +4)﹣22.(·七年级期末)对于①2(2)(1)2x x x x +-=+-,①4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,①是乘法运算D .①是乘法运算,①是因式分解3.(鄞州·七年级期末)下列等式从左到右的变形,属于因式分解是( )A .()2244a y a ay -=-B .()23131x x x x +-=+-C .222(412923)x xy y x y -+=-D .()2222x y x y xy +=+- 4.(嘉兴·七年级期末)下列由左边到右边的变形中,属于因式分解的是( )A .(a +1)(a ﹣1)=a 2﹣1B .a 2﹣6a +9=(a ﹣3)2C .a 2+2a +1=a (a +2)+1D .a 2﹣5a =a 2(1﹣5a) 5.(·七年级期末)下列各式由左边到右边的变形中,是因式分解的是( )A .322()x xy x x y -=-B .2221(1)x x x ---=-+C .244(4)4x x x x +-=+-D .22242(2)x xy y x y ++=+6.(·七年级期末)下列等式从左到右的变形,属于因式分解是( )A .a (4﹣y 2)=4a ﹣ay 2B .﹣4x 2+12xy ﹣9y 2=﹣(2x ﹣3y )2C .x 2+3x ﹣1=x (x +3)﹣1D .x 2+y 2=(x +y )2﹣2xy7.(·七年级期末)下列各式中,没有公因式的是( )A .3x ﹣2与6x 2﹣4xB .ab ﹣ac 与ab ﹣bcC .2(a ﹣b )2与3(b ﹣a )3D .mx ﹣my 与ny ﹣nx8.(·七年级期末)多项式322236312m n m n m n --+分解因式时应提取的公因式为( )A .3mnB .23m n -C .23mnD .223m n -9.(·七年级期末)若多项式23322212164x y x y x y -++分解因式,其中一个因式是224x y -,则另一个因式是( )A .341y x +-B .341y x --C .341y x -+D .34y x -10.(·七年级期末)把多项式29a a -分解因式,结果正确的是( )A .(9)a a -B .(3)(3)a a +-C .(3)(3)a a a +-D .(9)a a -- 11.(·七年级期末)把代数式()22a b a b --+分解因式,下列结果中正确的是( )A .()()21a b a b -+-B .()()21a b a b ---C .()()221a b a b -+-D .()2)1(2a b a b ---12.(·七年级期末)下列因式分解正确的是( )A .222(1)a a a a -=-B .22(2)a ab a a b --=--C .333()a b a b -+=-+D .23(3)a ab a a b +=+13.(·杭州外国语学校七年级期末)多项式x 2﹣4xy ﹣2y +x +4y 2分解因式后有一个因式是x ﹣2y ,另一个因式是( )A .x +2y +1B .x +2y ﹣1C .x ﹣2y +1D .x ﹣2y ﹣114.(·七年级期末)已知a b c 、、是自然数,且满足234192a b c ⨯⨯=,则a b c ++的取值不可能是( ) A .5 B .6 C .7 D .815.(·七年级期末)下列多项式中,含有因式(1)y +的多项式是( )A .2223y xy x --B .22(1)(1)y y +--C .22(1)(1)y y +--D .2(1)2(1)1y y ++++16.(拱墅·七年级期末)因式分解:x 2﹣4y 2=( )A .(x +2y )(x ﹣2y )B .(2x +y )(2x ﹣y )C .(x +2y )(2x ﹣y )D .(2x +y )(x ﹣2y )17.(北仑·七年级期末)整式n 2﹣1与n 2+n 的公因式是( )A .nB .n 2C .n +1D .n ﹣118.(·七年级期末)若a +b =3,则2a 2+4ab +2b 2-6的值是( )A .12B .6C .3D .019.(·七年级期末)若多项式x 4+mx 3+nx ﹣16含有因式(x ﹣2)和(x ﹣1),则mn 的值是( ) A .100 B .0 C .﹣100 D .5020.(吴兴·七年级期末)下列式子直接能用完全平方公式进行因式分解的是( ).A .21681a a ++B .239a a -+C .2441a a +-D .2816a a -- 二、填空题21.(·七年级期末)若多项式21mx n -可分解因式118833x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭,则m =_______,n =_______. 22.(·七年级期末)下列各式从左到右是因式分解的是_______.①()()2339x x x +-=-; ①()222211x x x ++=++; ①212(3)(4)x x x x --=+-; ①2232(2)()x xy y x y x y ++=++; ①22112m m m m ⎛⎫++=+ ⎪⎝⎭; ①()3322()a b a b a ab b -=-++. 23.(东阳·七年级期末)分解因式:23m m -=________.24.(乐清·七年级期末)因式分解:x 2﹣2x=_______.25.(·七年级期末)因式分解:()()2a b b a ---=_______;26.(鄞州·七年级期末)因式分解:22a a -=_____.27.(温州·七年级期末)因式分解:m 2+2m =_________.28.(·七年级期末)分解因式:22x y xy -=_______.29.(吴兴·七年级期末)分解因式:34x x -=______.30.(·七年级期末)因式分解:24x -=__________.31.(越城·七年级期末)分解因式:x 2-9=______.32.(南浔·七年级期末)分解因式:24m -=_____.33.(嘉兴·七年级期末)因式分解:a 3-a =______.34.(·七年级期末)若多项式429n n k ++可化为()2a b +的形式,则单项式k 可以是__________. 35.(拱墅·七年级期末)分解因式:3a 3﹣6a 2+3a =_______.36.(·七年级期末)因式分解:2a 1-= .37.(·浦江县教育研究和教师培训中心七年级期末)因式分解:225a -=_________.38.(江干·七年级期末)分解因式:2a ax -=__________.三、解答题39.(鄞州·七年级期末)因式分解:(1)224a b -(2)2269x xy y -+-40.(·七年级期末)已知a ﹣b =7,ab =﹣12.(1)求a 2b ﹣ab 2的值;(2)求a 2+b 2的值;(3)求a +b 的值;41.(宁波·七年级期末)因式分解:(1)232ab a b a b -+-;(2)2()x y x y --+.42.(长兴·七年级期末)因式分解:(1)216a -;(2)32288x x x -+-43.(·七年级期末)分解因式(1)21b -+ (2)3269x x x -+ (3)229()16()x y x y +--(4)2()4()a x y y x -+- (5)432235x x x -- (6)22144a b ab --+44.(慈溪·七年级期末)(1)计算:()()32128164x x x x -+÷. (2)因式分解:322321218x y x y xy -+.45.(拱墅·七年级期末)计算:(1)a 4÷a 5•(3a 3)2;(2)20212﹣20192(利用因式分解计算).46.(·淳安县教育发展研究中心七年级期末)因式分解:(1)222a ab b -+(2)282x -47.(上虞·七年级期末)因式分解:(1)224x y(2)32296a a b ab -+48.(·七年级期末)分解因式(1)22x xy - (2)222x xy y -+ (3)322484x x y xy -+(4)22(22)(4)a a +-+ (5)2318x x -- (6)26135x x --(7)()222625y y -- (8)-+-222a 2ab b c 49.(上城·七年级期末)分解因式(1)a 2﹣6ab +9b 2;(2)a 2b ﹣16b .50.(·七年级期末)简便计算(1)221.2229 1.3334⨯-⨯ (2)2220220219698⨯++51.(·杭州外国语学校七年级期末)阅读理解:在教材中,我们有学习到2222()a ab b a b -+=-,又因为任何实数的平方都是非负数,所以2()0a b -≥,即222a b ab +≥.例如,比较整式24x +和4x 的大小关系,因为2244(2)0x x x +-=-≥,所以244x x +≥请类比以上的解题过程,解决下列问题:【初步尝试】比较大小:21x +______2x ;9-_____26x x -【知识应用】比较整式225210x xy y ++和2(2)x y -的大小关系,并请说明理由.【拓展提升】比较整式2222a ab b -+和12a -的大小关系,并请说明理由. 52.(·七年级期末)材料一:一个正整数x 能写成22x ab =-(a ,b 均为正整数,且a b ),则称x 为“雪松数”,a ,b 为x 的一个平方差分解,在x 的所有平方差分解中,若22a b +最大,则称a ,b 为x 的最佳平方差分解,此时()22F x a b =+.例如:222475=-,24为雪松数,7和5为24的一个平方差分解,22223297,3262=-=-,因为22229762+>+,所以9和7为32的最佳平方差分解,()223297F =+.材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”,例如4334,5665均为“南麓数”.根据材料回答:(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;(2)试说明10不是雪松数;(3)若一个数t 既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t 的一个平方差分解,请求出所有满足条件的数t .53.(·七年级期末)因为223(3)(1)x x x x +-=+-,这说明多项式223x x +-有一个因式为1x -,我们把1x =代入此多项式发现1x =能使多项式223x x +-的值为0,利用上述阅读材料求解:(1)若3x -是多项式212x kx ++的一个因式,求k 的值;(2)若()3x -和()4x -是多项式3212x mx x n +++的两个因式,试求m ,n 的值;(3)在(2)的条件下,把多项式3212x mx x n +++因式分解.54.(宁波·七年级期末)阅读理解并解答:【方法呈现】(1)我们把多项式222a ab b ++及222a ab b -+叫做完全平方式.在运用完全平方公式进行因式分解时,关键是判断这个多项式是不是一个完全平方式,同样地,把一个多项式进行局部因式分解可以来解决代数式值的最小( 或最大)问题.例如:()()2222321212x x x x x ++=+++=++, ()210x +≥,()2122x +∴+≥.则这个代数式223x x ++的最小值是__________,这时相应的x 的值是__________.【尝试应用】(2)求代数式21410x x 的最小(或最大)值,并写出相应的x 的值.【拓展提高】(3)将一根长300cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和有最小(或最大)值?若有,求此时这根铁丝剪成两段后的长度及这两个正方形面积的和;若没有,请说明理由.55.(镇海·七年级期末)阅读下列材料:对于多项式x 2+x ﹣2,如果我们把x =1代入此多项式,发现x 2+x ﹣2的值为0,这时可以确定多项式中有因式(x ﹣1);同理,可以确定多项式中有另一个因式(x +2),于是我们可以得到:x 2+x ﹣2=(x ﹣1)(x +2).又如:对于多项式2x 2﹣3x ﹣2,发现当x =2时,2x 2﹣3x ﹣2的值为0,则多项式2x 2﹣3x ﹣2有一个因式(x ﹣2),我们可以设2x 2﹣3x ﹣2=(x ﹣2)(mx +n ),解得m =2,n =1,于是我们可以得到:2x 2﹣3x ﹣2=(x ﹣2)(2x +1).请你根据以上材料,解答以下问题:(1)当x = 时,多项式8x 2﹣x ﹣7的值为0,所以多项式8x 2﹣x ﹣7有因式 ,从而因式分解8x 2﹣x ﹣7= ;(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式,请你尝试用试根法分解多项式:①3x 2+11x +10;①x 3﹣21x +2056.(·七年级期末)已知三个实数a 、b 与c ,22,2M a b N ab =+=.(1)请判断M 与N 的大小,并说明理由;(2)请根据(1)的结论,求22223y x x y++的最小值(其中x ,y 均为正数),并说明理由; (3)请判断222a b c ab ac bc ++---的符号(其中a ,b ,c 为互不相等的实数)并说明理由.57.(·七年级期末)如图所示,将一张长方形纸板按图中虚线裁剪成16块,若图中①①①都是剪成边为a 的大正方形,①①①都是剪成边长为b 的小正方形,剩下的都是剪成边长分别为a 、b 的小长方形.(1)观察图形,可以发现多项式223103a ab b ++可以因式分解为______________.(2)若每块小长方形的的面积为210cm ,六个正方形的面积之和为287cm ,试求图中所有裁剪线(虚线部分)长之和.58.(·七年级期末)(1)已知3221-可以被10到20之间的两个整数整除,求这两个整数.(2)已知关于x 的多项式223x x k +-有一个因式是()25x -,求实数k 的值.59.(·七年级期末)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如,2420=-,22221242,2064=-=-,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?60.(·七年级期末)如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.例如:22831=-,321653=-,222475=-,则8、16、24这三个数都是奇特数.(1)32是奇特数吗?若是,表示成两个连续奇数的平方差形式.(2)设两个连续奇数是21n -和21n (其中n 取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?61.(·七年级期末)(1)已知二次三项式22x x k ++有一个因式是()23x -,求另一个因式及k 的值. (2)设y kx =,是否存在实数k ,使得代数式()()()434x y x y x x y --+-能化简为2x ?若能,请求出所有满足条件的k的值,若不能,请说明理由.参考答案:1.B【详解】分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 详解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、是因式分解,故本选项正确.C 、右边不是整式积的形式,不是因式分解,故本选项错误;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选B.点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.2.D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;①4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,①因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.3.C【分析】根据因式分解的定义逐项分析即可.【详解】解:A 、B 、D 的右边不是几个整式积的形式,故不是因式分解;C 是因式分解. 故选C .【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解. 4.B【分析】根据因式分解的定义逐个判断即可.【详解】解:A.由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.由左边到右边的变形属于因式分解,故本选项符合题意;C.由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式的右边不是整式的积的形式,即由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.B【分析】分解因式就是把一个多项式化为几个整式的积的形式,据此即可得答案.【详解】A.x3-xy2=x(x+y)(x-y),故该选项变形错误,不符合题意,B.22---=-+,变形正确,是因式分解,符合题意,x x x21(1)C.244(4)4+-=+-,不是整式的积的形式,不是因式分解,不符合题意,x x x xD.222x xy y x y++≠+,故该选项变形错误,不符合题意,42(2)故选B.【点睛】本题考查了因式分解的意义.这类问题的关键在于能否正确应用分解因式的定义来判断;同时还要注意变形是否正确.6.B【分析】根据因式分解的意义,可得答案.【详解】解:A.属于整式乘法运算,不属于因式分解;B.﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2,属于因式分解;C.右边不是几个整式积的形式,不属于因式分解;D.右边不是几个整式积的形式,不属于因式分解.故选:B.【点睛】本题考查了因式分解的意义,利用因式分解的意义是解题关键.7.B【分析】根据公因式的定义逐一分析即可.【详解】解:A 、6x 2﹣4x =2x (3x ﹣2),3x ﹣2与6x 2﹣4x 有公因式(3x ﹣2),故本选项不符合题意;B 、ab ﹣ac =a (b ﹣c )与ab ﹣bc =b (a ﹣c )没有公因式,故本选项符合题意;C 、2(a ﹣b )2与3(b ﹣a )3有公因式(a ﹣b )2,故本选项不符合题意;D 、mx ﹣my =m (x ﹣y ),ny ﹣nx =﹣n (x ﹣y ),mx ﹣my 与ny ﹣nx 有公因式(x ﹣y ),故本选项不符合题意.故选:B .【点睛】本题考查了公因式,熟悉因式分解是解题的关键.8.B【分析】找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【详解】解:多项式-6m 3n -3m 2n 2+12m 2n 3应提取的公因式为-3m 2n .故选:B .【点睛】本题主要考查公因式的确定,熟练掌握找公因式的要点是解题的关键.9.B【分析】将多项式因式分解,即可得到结果.【详解】解:①23322212164x y x y x y -++=()224431x y x y --+-①另一个因式是431x y -+-,故选:B .【点睛】此题主要考查了因式分解,熟练应用提公因式法解题关键.10.A【分析】直接提取公因式a ,进而分解因式得出答案.【详解】解:a 2-9a =a (a -9).故选:A .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11.D【分析】添加括号,再提公因式a -b 即可分解.【详解】解:()22a b a b --+=()()22a b a b ---=()()21a b a b ---⎡⎤⎣⎦=()()221a b a b ---故选:D .【点睛】本题考查运用提公因式法进行因式分解的能力,正确找到公因式是解此类题的关键. 12.D【分析】用提公因式法逐个因式分解即可选出正确答案.【详解】解:A .2a 2-a =a (2a -1),故A 错误,B .-a 2-2ab =-a (a +2b ),故B 错误,C .-3a +3b =-3(a -b ),故C 错误,D .a 2+3ab =a (a +3b ),故D 正确.故选:D .【点睛】本题考查因式分解,利用提公因式法逐个因式分解即可,有负号的因式分解时注意符号的变化.13.C【分析】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x 2﹣4xy ﹣2y +x +4y 2=(x 2﹣4xy +4y 2)+(x ﹣2y )=(x ﹣2y )2+(x ﹣2y )=(x ﹣2y )(x ﹣2y +1).故选:C .【点睛】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x-2y ),将其当成整体提出,进而得到答案.14.D【分析】将原式变形为()223192a c b +⨯=,因式中含有3,所以得到61923=64=2÷,而62不能被3整除,所以得到()262323a c b +⨯=⨯,解得b=1,a+2c=6,进而得到7a b c c ++=-,根据三个数均为自然数,解得03c ≤≤,此时分类讨论a 和c 的值即可求解.【详解】原式=()223192a c b +⨯=①式中有乘数3的倍数①61923=64=2÷①62不能被3整除①原式中只能有1个3①原式化为()262323a c b +⨯=⨯①261a c b +=⎧⎨=⎩①7a b c c ++=-①a b c 、、是自然数①620700a c c c =-≥⎧⎪-≥⎨⎪≥⎩解得03c ≤≤当0c 时,6a =,得7a b c ++=;当1c =时,4a =,得6a b c ++=;当2c =时,2a =,得5a b c ++=;当3c =时,0a =,得4a b c ++=;故选D .【点睛】本题考查了乘方的应用,同底数幂乘法的应用,因式分解,重点是掌握相关运算法则. 15.C【详解】分析: 应先对所给的多项式进行因式分解,根据分解的结果,然后进行判断.详解: A、y2-2xy-3x2=(y-3x)(y+x),故不含因式(y+1).B、(y+1)2-(y-1)2=[(y+1)-(y-1)][(y+1)+(y-1)]=4y,故不含因式(y+1).C、(y+1)2-(y2-1)=(y+1)2-(y+1)(y-1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选C点睛: 本题主要考查公因式的确定,先因式分解,再做判断,在解题时,仅看多项式的表面形式,不能做出判断.16.A【分析】直接运用平方差公式进行因式分解.【详解】x2-4y2=(x+2y)(x-2y)故选A.【点睛】本题考查了平方差公式分解因式,熟记公式结构是解题的关键.平方差公式:a2-b2=(a+b)(a-b).17.C【分析】先把两个多项式分别分解因式,再根据公因式的定义可得答案.【详解】解:n2﹣1=(n+1)(n﹣1),n2+n=n(n+1),所以整式n2﹣1与n2+n的公因式是(n+1),故选:C.【点睛】本题考查的是提公因式法,公式法分解因式,掌握公因式的含义是解题的关键.18.A【分析】先将2a2+4ab+2b2分解因式,然后将a+b=3整体代入进行计算即可得.【详解】①a+b=3,①2a2+4ab+2b2-6=2(a2+2ab+b2)-6=2(a+b )2-6=2×32-6=12,故选A.【点睛】本题考查了因式分解的应用以及代数式求值,熟练掌握因式分解的方法以及整体代入思想是解题的关键.19.C【分析】【详解】解:设x 4+mx 3+nx -16=(x -1)(x -2)(x 2+ax +b ),则x 4+mx 3+nx -16=x 4+(a -3)x 3+(b -3a +2)x 2+(2a -3b )x +2b .比较系数得:a -3=m ,b -3a +2=0,2a -3b =n ,2b =-16解得:a =-2,b =-8,m =-5,n =20所以mn =-5×20=-100.故选C .20.A【详解】分析:其中两项能够写成两个数或式平方和的形式,另一项是这两个数(或式)的积的2倍;完全平方公式:a 2±2ab+b 2=(a±b )2,判断即可.详解:A.16a 2+8a+1=(4a+1)2,能用完全平方公式分解因式,符合题意;B.2a 3a 9-+,不能用完全平方公式分解因式,不合题意;C 2.4a 4a 1+-,不能用完全平方公式因式分解因式,不合题意;D.2a 8a 16--,不能用完全平方公式分解因式,不合题意;故选A.点睛:本题主要考查完全平方公式的运用,熟练掌握完全平方公式的形式是解题的关键. 21. 64 9【分析】 利用平方差公式可得21118864339x x x ⎛⎫⎛⎫-+=- ⎪⎪⎝⎭⎝⎭,进而可得答案. 【详解】解:①多项式21mx n -可分解因式118833x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭, ①21118864339x x x ⎛⎫⎛⎫-+=- ⎪⎪⎝⎭⎝⎭,①m =64,n =9.故答案为:64,9.【点睛】此题主要考查了因式分解,关键是掌握平方差公式:a 2-b 2=(a +b )(a -b ).22.①①①【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:①()()2339x x x +-=-是整式的乘法,不是因式分解,故不符合题意;①()222211x x x ++=++右边不是几个整式的积的形式,不是因式分解,故不符合题意; ①212(3)(4)x x x x --=+-是因式分解,故符合题意;①2232(2)()x xy y x y x y ++=++是因式分解,故符合题意; ①22112m m m m ⎛⎫++=+ ⎪⎝⎭等号不成立,不是因式分解,故不符合题意; ①()3322()a b a b a ab b -=-++是因式分解,故符合题意;故答案为:①①①.【点睛】此题考查了因式分解.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.23.(3)m m -【详解】【分析】用提取公因式法即可得到结果.【解答】原式=()3m m -. 故答案为()3m m -【点评】考查提取公因式法因式分解,解题的关键是找到公因式.24.x (x ﹣2)【详解】原式提取x 即可得到结果.原式=x (x ﹣2),考点:因式分解-提公因式法25.(a-b )(a-b+1)【分析】原式变形后,提取公因式即可得到结果.解:原式=(a -b )2+(a -b )=(a -b )(a -b +1),故答案为(a -b )(a -b +1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键. 26.()2a a -【详解】原式=()2a a -27.(2)m m +【分析】根据提公因式法因式分解即可.【详解】22(2)m m m m +=+.故答案为:(2)m m +.【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.28.()xy x y -【详解】分析:提取公因式xy 即可.详解:()22x y xy xy x y -=-. 故答案为()xy x y -.点睛: 本题考查了因式分解的意义,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;①公式法;①十字相乘法;①分组分解法. 因式分解必须分解到每个因式都不能再分解为止.29.x (x +2)(x ﹣2).【详解】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.30.(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-31.(x +3)(x -3)x 2-9=(x+3)(x-3),故答案为(x+3)(x-3).32.(2)(2)m m +-【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.33.a (a -1)(a + 1)【详解】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a 3-a,=a (a 2-1),=a (a+1)(a-1).34.36n 或36n -或814或636n 【分析】根据完全平方公式展开式的首、末两项是平方项,并且首末两项的符号相同;中间项是首末两项的底数的积的2倍,对多项式进行分类讨论,分别求出k 即可.【详解】解:①当4n 和29n 作为平方项,k 作为乘积项,则多项式429n n k ++可化为:()223±n n ,即42224329(3)69++=±=±+n n k n n n n n , ①36=±k n ;①当4n 和k 作为平方项,29n 作为乘积项,则多项式429n n k ++可化为:(22n k ,即4222429()2++=+=++n n k n k n kn k , ①229=kn n ,解得:814=k ; ①当29n 和k 作为平方项,4n 作为乘积项,则多项式429n n k ++可化为:(23+n k ,即42229(39++==++n n k n k n kn k ,①46=kn n ,解得:636=n k ; 故答案为:36n 或36n -或814或636n . 【点睛】此题考查了运用完全平方公式分解因式.掌握完全平方公式()2222a b a ab b ±=±+和分类讨论是解此题的关键.35.3a (a ﹣1)2.【分析】先提取公因式,然后利用完全平方公式因式分解即可.【详解】解:3a 3﹣6a 2+3a =3a (a 2﹣2a+1)=3a (a ﹣1)2.故答案为:3a (a ﹣1)2.【点睛】此题考查的是因式分解,掌握提取公因式法和完全平方公式因式分解是解决此题的关键. 36.()()a 1a 1+-【分析】直接应用平方差公式即可求解.()()2a 1a 1a 1-=+-. 【详解】()()2a 1a 1a 1-=+-.【点睛】本题考查因式分解,熟记平方差公式是关键.37.(5)(5)a a -+【分析】直接运用平方差公式进行分解即可.【详解】解:225a -=225a -=(5)(5)a a -+故答案为:(5)(5)a a -+【点睛】此题考查了运用平方差公式分解因式,熟练掌握因式分解的方法是解本题的关键. 38.()()11a x x +-【分析】利用提公因式及平方差公式进行因式分解即可.【详解】解:()()()22111a ax a x a x x -=-=+-;故答案为()()11a x x +-.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.39.(1)(2)(2)a b a b +-;(2)()23x y --.【分析】(1)利用平方差公式进行因式分解,即可得到答案;(2)先提公因式,然后运用完全平方公式因式分解即可.【详解】(1)解:224a b - (2)(2)a b a b =+-;(2)解:2269x xy y -+-229)(6x xy y =--+()23x y =--; 【点睛】本题考查了公式法因式分解,解题的关键是熟练掌握因式分解的方法进行解题. 40.(1)-84 ;(2) 25; (3)1或-1【分析】(1)直接提取公因式ab,进而分解因式得出答案;(2)直接利用完全平方公式进而求出答案;(3)直接利用(2)中所求,结合完全平方公式求出答案.【详解】(1)①a−b=7,ab=−12,①a 2b ﹣ab 2=ab(a−b)=−12×7=−84;(2)①a−b=7,ab=−12,①()2a b -=49,①a 2+b 2−2ab=49,①a 2+b 2=25;(3)①a 2+b 2=25,①()2a b +=25+2ab=25−24=1,①a+b=±1.【点睛】此题考查因式分解-提公因式法、完全平方公式,解题关键在于掌握因式分解的综合运用. 41.(1)2(1)ab a --;(2)()(1)x y x y ---【分析】(1)直接提取公因式ab -,再利用完全平方差公式即可;(2)直接提取公因式()x y -即可.【详解】解:(1)原式()212ab a a =--+ 2(1)ab a =--(2)原式2()()x y x y =---()(1)x y x y =---【点睛】本题考查了提取公因式和公式法的综合运用因式分解,解题的关键是:掌握相关法则. 42.(1)()()44a a +-;(2)()222x x -- 【分析】(1)直接运用平方差公式进行分解即可;(2)先提取公因式2x -,然后运用完全平方公式因式分解即可.【详解】解:(1)原式=()()44a a +- ;(2)原式=()2244x x x --+=()222x x --.【点睛】本题考查了公式法因式分解以及提公因式法因式分解,熟练掌握乘法公式的结构特点是解本题的关键.43.(1)()()11b b +-;(2)()23x x -;(3)()()77x y y x --;(4)()()()22a a x y +--;(5)()()257x x x +-;(6)()()2121a b a b -+-++【分析】(1)利用平方差公式分解即可;(2)首先提取公因式x ,进而利用完全平方公式分解即可;(3)利用平方差公式分解即可;(4)首先提取公因式x -y ,进而利用平方差公式分解即可;(5)首先提取公因式x 2,进而利用平方差公式分解即可;(6)先分组,利用完全平方公式分解,再利用平方差公式分解.【详解】解:(1)21b -+=()()11b b +-;(2)3269x x x -+=()269x x x -+=()23x x -;(3)229()16()x y x y +--=[][]3()4()3()4()x y x y x y x y ++-+--=()()33443344x y x y x y x y ++-+-+=()()77x y y x --;(4)2()4()a x y y x -+-=()()24a x y --=()()()22a a x y +--;(5)432235x x x --=()22235x x x --=()()257x x x +-;(6)22144a b ab --+=()22144a b ab -+-=()212a b --=()()2121a b a b -+-++【点睛】此题主要考查了公式法以及提取公因式法、分组分解法分解因式,正确应用乘法公式是解题关键.44.(1)2324x x -+;(2)()223xy x y -【分析】(1)把多项式的每一项分别除以单项式4,x 从而可得答案;(2)先提取公因式2,xy - 再按照完全平方公式分解因式即可得到答案.【详解】解:(1)原式=()()()3212484164x x x x x x ÷-÷+÷ 2324x x =-+(2)原式=()22269xy x xy y --+()223xy x y =- 【点睛】本题考查的是多项式除以单项式,综合提公因式与公式法分解因式,掌握整式的除法运算,分解因式的方法与步骤是解题的关键.45.(1)59a ;(2)8080【分析】(1)直接利用幂的混合运算计算求解;(2)利用平方差公式因式分解后计算求解.【详解】解(1)4532(3)a a a ÷⋅4569a a a =÷⋅4569a a -=⋅4569a -+=59a =.(2)2220212019-(20212019)(20212019)=+-40402=⨯8080=.【点睛】本题考查了幂的混合运算、利用平方差公式因式分解求值,解题的关键是:掌握相关的运算法则及公式.46.(1)2()a b -;(2)2(2)(2)x x -+【分析】(1)直接用完全平方公式分解即可;(2)先提取公因式2,再用平方差公式分解【详解】解:(1)2222()a ab b a b -+=-;;(2)()228224x x -=- 2(2)(2)x x =-+.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;①公式法;①十字相乘法;①分组分解法. 因式分解必须分解到每个因式都不能再分解为止.47.(1)()()22x y x y +-;(2)()23a a b -. 【分析】(1)利用平方差公式进行因式分解即可;(2)先提公因式,然后利用完全平方公式进因式分解即可.【详解】解:(1)22224(2)(2)(2)x y x y x y x y ;(2)232222(96)(963)=-+=--+a a ab b a b a a b b a a .【点睛】本题主要考查了多项式的因式分解,解题的关键是熟练掌握各种因式分解的方法,并会根据多项式的特征选取合适的方法,还要注意要分解彻底.48.(1)()2x x y -;(2)()2x y -;(3)()24x x y -;(4)()()322a a +-;(5)()()36x x +-;(6)()()2531x x -+;(7)()()()()6116y y y y --++;(8)()()a b c a b c -+--【分析】(1)直接提公因式x 即可分解;(2)直接利用完全平方公式分解即可;(3)先提公因式4x ,再利用完全平方公式分解即可;(4)利用平方差公式分解即可;(5)利用十字相乘法分解即可;(6)利用十字相乘法分解即可;(7)先利用平方差公式分解,再再利用十字相乘法分解;(8)先分组,利用完全平方公式分解,再利用平方差公式分解.【详解】解:(1)22x xy -=()2x x y -;(2)222x xy y -+=()2x y -;(3)322484x x y xy -+=()2242x x xy y -+ =()24x x y -;(4)22(22)(4)a a +-+=()()224224a a a a ++++--=()()322a a +-;(5)2318x x --=()()36x x +-;(6)26135x x --=()()2531x x -+;(7)()222625y y -- =()()226565y y y y -+--=()()()()6116y y y y --++;(8)-+-222a 2ab b c=()22a b c --=()()a b c a b c -+--【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.49.(1)(a -3b )2;(2)b (a +4)(a -4)【分析】(1)用完全平方公式分解即可;(2)先提公因式,再用平方差公式分解因式.【详解】解:(1)原式=a 2-6ab +(3b )2=(a -3b )2;(2)原式=b (a 2-16)=b (a +4)(a -4).【点睛】本题考查了用完全平方公式、提公因式、平方差公式进行因式分解,熟悉以上因式分解的方法是解题关键.50.(1)6.332;(2)90000【分析】(1)先利用同底数幂的乘法变形,再利用平方差公式计算;(2)利用完全平方公式变形计算.【详解】解:(1)221.2229 1.3334⨯-⨯=22221.2223 1.3332⨯-⨯=()()221.2223 1.3332⨯-⨯=223.666 2.666-=()()3.666 2.666 3.666 2.666+-=6.332;(2)2220220219698+⨯++=2220222029898+⨯⨯+=()220298+=90000【点睛】本题考查了同底数幂的乘法,平方差公式,完全平方公式,计算时注意乘法公式的应用. 51.[初步尝试]≥,≤;[知识应用]225210x xy y ++≥2(2)x y -;[拓展提升]221222a ab b a ≥-+-【分析】[初步尝试]两式相减,仿照题干中的方法比较即可;[知识应用]两式相减,将结果因式分解,再比较即可;[拓展提升]两式相减,利用完全平方公式变形,再比较即可.【详解】解:[初步尝试]()221210x x x +-=-≥, ①21x +≥2x ;()()222696930x x x x x ---=-+=-≥, ①9-≤26x x -;[知识应用]2225(20)12x xy y x y +-+-=2222542104x y xy x xy y -+++-=2269xy x y ++=()23x y +≥0①225210x xy y ++≥2(2)x y -;[拓展提升]221222a ab b a ⎛⎫-+- ⎝-⎪⎭ =221222a ab b a --++ =22211122222a a a ab b +-+-+ =()()22211144222a a a ab b -+-++=()()22111222a a b +--当a =1,b =12时,原式=0, ①()()22111222a a b +--≥0, ①221222a ab b a ≥-+-.【点睛】此题考查了因式分解的应用,非负数的性质,以及整式的混合运算,熟练掌握公式和运算法则是解本题的关键.52.(1)22112113=-,224073=-;(2)见解析;(3)2772,5445【分析】(1)根据雪松数的特征即可得到结论;(2)根据题意即可得到结论;(3)设(t abba a =,b 均为正整数,且09)a b <≠,另一个“南麓数”为(t mnnm m '=,n 均为正整数,且09)n m <<,根据“南麓数”的特征即可得到结论.【详解】解:(1)由题意可得:22112113=-,224073=-; (2)若10是“雪松数”,则可设2210(a b a -=,b 均为正整数,且)a b ≠,则()()10a b a b +-=,又1025101=⨯=⨯, a ,b 均为正整数,a b a b ∴+>-,∴52a b a b +=⎧⎨-=⎩,或101a b a b +=⎧⎨-=⎩, 解得:7232a b ⎧=⎪⎪⎨⎪=⎪⎩或11292a b ⎧=⎪⎪⎨⎪=⎪⎩, 与a ,b 均为正整数矛盾,故10不是雪松数;(3)设(t abba a =,b 均为正整数,且09)a b <≠,另一个“南麓数”为(t mnnm m '=,n 均为正整数,且09)n m <<,则2222(10)(10)99()99()()t m n n m m n m n m n =+-+=-=+-,99()()1000100101001110m n m n a b b a a b ∴+-=+++=+, 整理得()()109a b m n m n a b ++-=++,。
2019年春七年级数学下册第4章因式分解4.3第2课时用完全平方公式分解因式课件浙教版
4.3 用乘法公式分解因式
勤反思
小结
完 全 平 方 公 式
特征
运用完全平方公式分解因式
运用完全平方公式简化运算
4.3 用乘法公式分解因式
反思
判断下面分解因式的过程是否正确,若不正确,请改正.
a3b-2a2b+ab=ab(a2-2a+1).
解:不正确.改正:a3b-2a2b+ab=ab(a2-2a+1)=ab(a-1)2.
4.3 用乘法公式分解因式
筑方法
类型一 用完全平方公式分解因式
例1 教材例3变式题用完全平方公式进行因式分解:
(1)9m2+24mn+16n2;(2)(x2-4x+4)-4(x-2)+4.
解: (1)9m2+24mn+16n2=(3m+4n)2.
(2)(x2-4x+4)-4(x-2)+4=(x-2)2-4(x-2)+4=(x-2-2)2=(x-4)2.
解:(1)x3-2x2+x=x(x2-2x+1)=x(x-1)2. (2)16a4-8a2+1=(4a2)2-2×4a2×1+12=(4a2-1)2=(2a+1)2(2a-1)2.
4.3 用乘法公式分解因式
【归纳总结】因式分解的一般步骤 (1)观察多项式是否存在公因式; (2)若提取公因式后的式子是两项或三项,则考虑是否符合平 方差公式或完全平方公式的特点; (3)检查每个因式是否分解彻底.
第4章
4.3
分解因式
用乘法公式分解因式
第4章 因式分解
第2课时
用完全平方公式 分解因式
学知识 筑方法
勤反思
4.3 用乘法公式分解因式
学知识
知识2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.
平方和 ,加上(或者减去)这两数的积的2倍,等于这两数 即两数的________
浙教版2019年七年级数学下册第4章因式分解4.3第2课时用完全平方公式分解因式练习(含答案)
2.
2
当 x= 156,y= 144 时,
原式=
1 2×(156+ 144)
2 =45000.
[ 点评 ]
本题应先把
x2 的系数
1 2提出来,使其他各项的系数均为整数.
并且分解因式要分解到每个因
7
16.解:- a4b2+ 4a3b3- 4a2 b4=- a2b2(a 2- 4ab+4b2) =- a2b2(a - 2b) 2.
4.3 用乘法公式分解因式
第 2 课时 用完全平方公式分解因式
知识点 1 完全平方公式分解因式 由完全平方公式可得: a2+ 2ab+b2= (a + b) 2, a2- 2ab+ b2=(a - b) 2. 即两数的平方和,加上 ( 或者减去 ) 这两数的积的 2 倍,等于这两数和 ( 或者差 ) 的平方. 1.把下列各式分解因式: (1)a 2- 8a+ 16;
分解因式: x 4+4.
4
解: x + 4
=x 4+4x 2+ 4- 4x2
=(x 2+ 2) 2- 4x2
=(x 2+ 2x+ 2)(x 2- 2x+ 2) .
以上解法中,在 x 4+ 4 的中间加上一项,使得三项组成一个完全平方式,为了使原式的值保持不变,必须减
去同样的一项.按照这个思路,试把多项式
2
=(x - y- 5) . (4)(x 2+ 4) 2- 16x2 =(x 2+ 4+ 4x)(x 2+ 4- 4x) =(x + 2) 2(x -2) 2. (5) 原式= (x 2-2x+ 1) 2 =[(x - 1) 2] 2 =(x - 1) 4. 14.解: (1)96 2+96×8+ 16 =962+2×96×4+ 42 =(96 + 4) 2
第4章 因式分解 浙教版数学七年级下册基础练习题(含答案)
浙教版七下第四章习题一、单选题1、下列因式分解正确的是( )A.()322824x x x x -=-B.()()22444a b a b a b -=+-C.()()24422y y y y -+=+-D.()()25623x x x x ++=++2、在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是( )A.22()()a b a b a b +-=-B.22()()a b a b a b -=+-C.2222()a ab b a b ++=+D.222()2a b a ab b -=-+3、下列等式从左到右属于因式分解的是( )A.()22221xy x x y xy -=-B.()()25525m m m +-=-C.()()222211a a a -=+-D.()()24232n n n n +-=-++4、给出下列各式: ①21a +; ①222a ab b --; ①2a a -; ①221a a -+. 其中能在有理数范围内分解因式的有( )A.1 个B.2 个C.3 个D.4 个5、多项式xy x -的公因式是( )A.xB.1x -C.yD.xy6、计算20212020(2)(2)-+-的值是( )A.-2B.20202-C.20202D.27、在多项式32384a b a bc -中,各项的公因式是( )A.24abB.224a bC.34a bcD.34a b8、化简:()a b c d ---+的结果是( )A.a b c d --+B.a b c d ---+C.a b c d ++-D.a b c d -++-9、把多项式()()()111m m m +-+-提取公因式()1m -后,余下的部分是( )A.1m +B.2mC.2D.2m +10、下列多项式中,能运用平方差公式分解因式的是( )A.22a b +B.22a b -C.22a b --D.22a b -11、下列各式中,能用完全平方公式因式分解的是( )A.B. C.222510x y xy --+D.22255x y xy ++二、填空题12、分解因式:24n -=____________.13、因式分解:___________. 14、因式分解: 24ab a -=____________.15、因式分解:2a b a -=_____.16、分解因式:269x x -+=________.17、因式分解:()()269m n m n -+++=____________.18、若正方形的面积是(0x >,),则该正方形的边长为______________. 19、若把二次三项式228x ax +-分解因式,得到的结果是(4)(7)x x -+,则a 的值是_________.20、在括号内填上适当的因式:(1)24x x ++_______=(____________)2;(2)(__________)29n +=(________).221025x xy y +-222510x y xy -++224x y -2296x xy y ++0y >x +24m +2三、解答题21、连一连:228149x y -22142814a ab b -+3(2)x x -+ 236x x --214()a b - (97)(97)x y x y +-22、下列从左到右的变形中,哪些是因式分解?哪些不是?(1);(2)2(5)(5)25x x x +-=-;(3);(4)29613(32)1x x x x -+=-+;(5)211x x x x ⎛⎫+=+ ⎪⎝⎭. 23 、写出下列多项式各项的公因式:(1); (2)3222a x a y -;(3);(4)35()10()a b a b -+-.24、因式分解:(计算题专练)(1)ma mb + (2)236x -. (3)()()22y a b x b a -+-.(4)2()5()m a c a c --- (5); (6);(7) . (8); (9)4416x y -.2(1)m m +322m m m ++22446x y x xy =⋅223(3)(1)x x x x +-=+-2326x x +23222416m x n x -+269xy x y -2()()a b b a ---224()6()xy x y x y x y +-+22516x -(10)2ab a -; (11)()22214a a +-. (12)22344xy x y y --;(13)22x y ax ay ---. (14)244x x -+ (15)()()24a x y x y ---(16)43244x x x -+; (17)22(2)(2)x x y x -+-. (18)229a b -;(19)22242a ab b -+. (20)24ax ay -; (21)()()1124x x +++.(22)22312x y -. (25)36mx my -; (24)3269y y y ++.(25)321025a b a b ab -+-; (26)()()2294a x y b y x -+-.(27)2144x x ++; (28)2242025a ab b -+;(29)29()42()49a b a b -+-+; (30)2(2)8x y xy -+.(31)25、利用因式分解计算:(1)22124252576⨯-⨯; (2)222020404020192019 ; -⨯+(3)222202420298298⨯+⨯⨯+⨯.26、利用因式分解计算:(1)226.4 3.6-; (2)22151019915⨯-⨯.27、若多项式2x ax b ++可分解因式为(1)(2)x x +-,试求a ,b 的值.28、已知多项式24x x m -+分解因式的结果为()(6)x a x +-,求2a m -的值.29、将2()()()x x y x y x x y +--+分解因式,并求当1x y +=,时此式子的值.30、两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(1)(9)x x --,另一位同学因看错了常数项而分解成2(2)(4)x x --,请将原多项式分解因式.31、阅读下列文字与例题.将一个多项式分组后,可用提公因式法或公式法继续分解的方法是分组分解法.例如: 12xy =①()()()()m a b n a b m n a b +++=++;②()222222121x y y x y y x ---=-++=-2(1)(1)(1)y x y x y +=++--.试用上述方法分解因式:(1)2436a b ma mb +--;(2).32、阅读下列材料:材料1:将一个形如2x px q ++的二次三项式因式分解时,如果能满足且p m n =+,则可以把2x px q ++因式分解成()()x m x n ++.(1)243(1)(3)x x x x ++=++;(2)2412(6)(2)x x x x --=-+.材料2:分解因式:2()2()1x y x y ++++.解:将“x y +”看成一个整体,令x y A +=,则原式221(1)A A +=+,再将“A ”还原,得原式2(1)x y =++.上述解题过程用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1把268x x -+分解因式;(2)结合材料1和材料2,解决下列问题:①分解因式:2()4()3x y x y -+-+;②分解因式:()2(2)223m m m m ++--. ()()am an bm bn am bm an bn +++=+++=222a ab ac bc b ++++q mn =参考答案1-5 D B C B A6-10 B D D D D 11、C 6、()20212020202202200200(2)(2212)(2)(2)=⨯-+=-=--+---. 12、(2)(2)n n +- 13、14、答案:()2244(2)(-2)a ab a a b b b -=-=+15、答案:(1)a ab - 16、答案:2(3)x -17、答案: 解析:原式222()2()33(3)m n m n m n =+-⋅+⋅+=+-.18、答案:3x y +解析:因为22296(3)x xy y x y ++=+,所以正方形的边长为.19、答案:3,.20、答案:(1)4,2;(2),21、答案:22、答案:(1)因式分解是针对多项式来说的,故(1)不是因式分解; ()()22x y x y +-()23m n +-3x y +22228(4)(7)7428328x ax x x x x x x x +-=-+=+--=+-3a ∴=12mn ±23m n±(2)等号右边不是整式积的形式,不是因式分解;(3)是因式分解;(4)等号右边不是整式积的形式,不是因式分解;(5)等号右边不是整式积的形式,不是因式分解. 故(1)(2)(4)(5)不是因式分解,(3)是因式分解.23、(1)22x (2)2a ;(3)28x -;(4)5()a b -.24、(1)()m a b +(2)()()66x x +-. (3)()()2y x a b --(4)()()25a c m --(5)原式3(2-3)xy x =.(6)原式2()()()(1)a b a b a b a b =-+-=--+.(7)原式2()[2()3]2()(2)xy x y x y x xy x y y x =+⋅+-=+-.(8)22225165(4)(54)(54)x x x x -=-=-+.(9).(10)()()11a b b +- (11)22(1)(1)a a +- (12)()22y x y -- (13)()()x y x y a +-- (14)()41x x -- (15)()(2)(2)x y a a -+-(16)22(21)x x - (17)(2)()()x x y x y -+-(18)()()33a b a b +- (19)()22a b -(20)22()()a x y x y +- (21)232x ⎛⎫+ ⎪⎝⎭ ()()()4422222216444(2)(2)x y x y x y x y x y x y -=+-=++-(22) (23)原式()32m x y =-; (24)原式()23y y =+. (25)321025a b a b ab -+-()21025ab a a -=-+()25ab a =--; (26)()()2294a x y b y x -+-()()2294a x y b x y =---()()2294x y a b =--()()()3232x y a b a b =--+.(27)22144(12)x x x ++=+.(28)22242025(25)a ab b a b -+=-.(29)2229()42()49[3()7](337)a b a b a b a b -+-+=-+=-+.(30)222222(2)844844(2)x y xy x xy y xy x xy y x y -+=-++=++=+(31)25、答案:(1)原式()222512476=⨯-()()322x y x y +-()269y y y =++25(12476)(12476)2520048240000.=⨯+⨯-=⨯⨯=(2)原式222220202202020192019(20202019)11=-⨯⨯+=-==(3)原式222(20298)2300290000180000.=⨯+=⨯=⨯= 26、(1).(2)()2222151019915151019915(10199)(10199)⨯-⨯=⨯-=⨯+⨯-=. 27、答案:解:由题意,得2(1)(2)x ax b x x ++=+-.而,所以222x ax b x x ++=--.比较两边系数,得1,2a b =-=-.解析:计算(1)(2)x x +-的结果中,x 的一次项系数为a ,常数项为b .28、答案:解:由题意得.64,6a m a ∴-=-=-,..29、答案:.当时,原式. 30、答案:设原多项式为(其中a ,b ,c 均为常数,且0abc ≠).一位同学因看错了一次项系数而分解成2(1)(9)x x --,()22220222029898=⨯+⨯⨯+226.4 3.6(6.4 3.6)(6.4 3.6)10 2.828-=+⨯-=⨯=1520026000⨯⨯=2(1)(2)2x x x x +-=--224()(6)(6)6x x m x a x x a x a -+=+-=+--2,12a m ∴==-2221216a m ∴-=⨯+=2()()()()[()]2()x x y x y x x y x x y x y x y xy x y +--+=+--+=-+11,2x y xy +==12()2112xy x y =-+=-⨯⨯=-2ax bx c ++,2a ∴=,,另一位同学因看错了常数项而分解成,,,原多项式为,将它分解因式,得.解析:因为含字母x 的二次三项式的一般形式为(其中a ,b ,c 均为常数,且),所以可设原多项式为.看错了一次项系数即将b 值看错,而a 与c 的值正确,根据因式分解与整式的乘法互为逆运算,可将运用多项式的乘法法则展开求出a 与c 的值;同样,看错了常数项即将c 值看错,而a 与b 的值正确,可将2(2)(4)x x --运用多项式的乘法法则展开求出b 的值,进而得出答案.31、答案:(1)(23)(46)a ma b mb =-+-(2)(23)a b m =+-.(2)()222()a ab b ac bc =++++2()()a b c a b =+++()()a b a b c =+++.222(1)(9)2(109)22018x x x x x x --=-+=-+18c =2(2)(4)x x --222(2)(4)2(68)21216x x x x x x --=-+=-+12b ∴=-∴221218x x -+222212182(69)2(3)x x x x x -+=-+=-2ax bx c ++0abc ≠2ax bx c ++2(1)(9)x x --2436a b ma mb +--(23)2(23)a m b m =-+-222a ab ac bc b ++++32、答案:(1)268(2)(4)x x x x -+=--.(2)①令x y A -=,则原式243(1)(3)A A A A =++=++, 所以2()4()3(1)(3)x y x y x y x y -+-+=-+-+. ②令22m m B +=,则原式2(2)323(1)(3)B B B B B B =--=--=+-, 所以原式()()2222123(1)(1)(3)m m m m m m m =+++-=+-+。
七年级数学下册期末复习四因式分解校本作业浙教版
期末复习四因式分解复习目标必备知识与防范点一、必备知识:1.把一个多项式化成几个,叫做因式分解.因式分解和整式乘法具有关系.2.一个多项式中每一项都含有,叫做这个多项式各项公因式.把该公因式提取出来进行因式分解方法,叫做.3.公式法分解因式a2-b2= ;a2±2ab+b2= .二、防范点:1.提取公因式法分解因式时提取公因式要彻底,并且注意不要漏项.2.因式分解要注意分解到底.例题精析考点一因式分解概念例1 (1)下列从左到右变形,属于因式分解是()A.(a+1)(a-1)=a2-1B. 2a-2b=2(a-b)C. a2-2a+1=a(a-2)+1D. a+2b=(a+b)+b(2)下列因式分解正确是()A. ab+ac+ad+1=a(b+c+d)+1B.(x+1)(x+2)=x2+3x+2C. a3+3a2b+a=a(a2+3ab+1)D. x2-y2=(x+y)(y-x)反思:因式分解是把多项式变成乘积形式,判断因式分解先要看是否符合形式,再判断运算正确性.考点二添括号例2 下列添括号错误是()A. 3-4x=-(4x-3)B.(a+b)-2a-b=(a+b)-(2a+b)C. -x2+5x-4=-(x2-5x+4)D. -a2+4a+a3-5=-(a2-4a)-(a3+5)反思:添括号和去括号类似,注意括号前为“-”号,括号里各项都要变号.考点三用提取公因式法、公式法分解因式例3 (1)在下面多项式中,能因式分解是()A. m2+n B. m2-m-1 C. m2-m+1 D. m2-2m+1(2)将下列多项式分解因式,结果中不含因式x-1是()A. x2-1 B. x(x-2)+(2-x)C. x2-2x+1D. x2+2x+1(3)已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c值为()A. b=3,c=-1 B.b=-6,c=2 C.b=-6,c=-4 D. b=-4,c=-6(4)因式分解:①7x2-63;②x3 -6x2+9x;③4(a-b)2-8a+8b;④a4-8a2b2+16b4.反思:分解因式时常先看有无公因式,再考虑能否使用公式法分解,并注意分解一定要进行到底.考点四因式分解应用例4 (1)对于任何整数,多项式(n+5)2-n2一定是()A. 2倍数B. 5倍数 C. 8倍数 D. n倍数(2)已知x+y=6,xy=4,则x2y+xy2值为.(3)已知正方形面积是9a2+6a+1(a>0),则该正方形边长是.(4)用简便方法计算:①20162-2015×2016;②0.932+2×0.93×0.07+0.072.反思:因式分解应用往往是利用因式分解进行求值,注意把各代数式进行因式分解即可.校内练习1.若a+b+1=0,则3a2+3b2+6ab值是()A. 1 B. -1 C. 3 D. -3 2. 9x3y2+12x2y2-6xy3公因式为.3.若关于x多项式x2-px-6含有因式x-3,则实数p= .4. 因式分解:16-8(x-y)+(x-y)2= .5. 因式分解:4xy2-4xy+x= .6. 将x2-2x-3因式分解结果是(x+1)(x+a),则a= .7. 简便计算:101×99= .8. 分解因式:(1)2a3-8a;(2)-3x2-12+12x;(3)(a+2b)2+6(a+2b)+9;(4)2(x-y)2-x+y;(5)(a2+4b2)2-16a2b2.9. 已知x2+5x-991=0,求x3+6x2-986x+1027值.10. 下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解过程.解:设x2-4x=y,则原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步).回答下列问题:(1)该同学第二步到第三步运用了因式分解()A. 提取公因式B. 平方差公式C. 两数和完全平方公式D. 两数差完全平方公式(2)该同学因式分解结果(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解最后结果:;(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行分解.参考答案期末复习四因式分解【必备知识与防范点】1. 整式积形式互逆2. 相同因式提取公因式法3. (a+b)(a-b)(a±b)2【例题精析】例1 (1)B (2)C例2 (1)D例3 (1)D (2)D (3)D(4)①7x2-63=7(x2-9)=7(x+3)(x-3)②x3-6x2+9x=x(x2-6x+9)=x(x-3)2③4(a-b)2-8a+8b=4(a-b)2-8(a-b)=4(a-b)(a-b-2)④a4-8a2b2+16b4=(a2-4b2)2=(a-2b)2(a+2b)2例4 (1)B (2)24 (3)3a+1(4)①20162-2015×2016=2016×(2016-2015)=2016②0.932+2×0.93×0.07+0.072=(0.93+0.07)2=1【校内练习】1. C2. 3xy23. 14. (4-x+y)25. x(2y-1)26. -37. 99998. (1)原式=2a(a2-4)=2a(a+2)(a-2).(2)原式=-3(x2-4x+4)=-3(x-2)2.(3)原式=[(a+2b)+3]2=(a+2b+3)2.(4)原式=2(x-y)2-(x-y)=(x-y)(2x-2y-1).(5)原式=(a2+4b2)2-(4ab)2=(a2+4b2+4ab)(a2+4b2-4ab)=(a+2b)2(a-2b)2.9. 原式=x3+5x2-991x+x2+5x-991+991+1027=x(x2+5x-991)+(x2+5x-991)+2018=2018.10. (1)C (2)不彻底(x-2)4 (3)设x2-2x=y,则原式=y (y+2)+1=y2+2y+1=(y+1)2=(x2-2x+1)2=[(x-1)2]2=(x -1)4.。
2019-2020初中数学七年级下册《因式分解》专项测试(含答案) (34)
2019-2020年七年级数学下册《整式的乘除》精选试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2分)把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是( )A .m+1B .2mC .2D .m+22.(2分)下列各式中从左到右的变形,是因式分解的是( )A .(a+3)(a-3)=a 2-9;B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x1) 3.(2分)下列各式能用完全平方公式分解因式的是( )A .229m n -B .2224p pq q -+C .2244x xy y --+ D .29()6()1m n m n +-++4.(2分)如果改动三项式2246a ab b -+中的某一项,能使它变为完全平方式,那么改动的办法是( )A .可以改动三项中的任意一项B .只能改动第一项C .只能改动第二项D .只能改动第三项5.(2分)416x -分解因式的结果是( )A .22(4)(4)x x -+B .2(2)(2)(4)x x x +-+C .3(2)(2)x x -+D .22(2)(2)x x -+6.(2分) 已知多项式22x bx c ++分解因式为2(3)(1)x x -+,则b ,c 的值为( )A .3b =,1c =-B .6b =-,2c =-C .6b =-,4c =-D .4b =-,6c =- 7.(2分)将x y xy x 332-+-分解因式,下列分组方法不当的是( )A .)3()3(2xy y x x -+-B .)33()(2x y xy x -+-C .y x xy x 3)3(2+--D .)33()(2y x xy x +-+-8.(2分)下列各多项式中,能用平方差公式分解因式的是( )A .22()x y --B .225x y --C .24x y -D .22()a b --+9.(2分)在多项式①2263a ab b ++;②221449m mn n -++;③21025a a -+;④2221ab a b +-;④6321y y -+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤二、填空题10.(2分) 已知一个长方形的面积为(2481a -)cm 2,它的长为(29a +)cm ,那么它的宽是 .11.(2分)在括号前面填上“+”或“-”号,使等式成立:(1)22)()(y x x y -=-;(2))2)(1()2)(1(--=--x x x x .12.(2分)若22(3)16x m x +-+是完全平方式,则m 的值等于 .13.(2分)写出下列各式分解因式时应提取的公因式:(1)ax ay -应提取的公因式是 ;(2)236x mx n -应提取的公因式是 ;(3)2x xy xz -+-应提取的公因式是 ;(4)322225520x y x y x y --应提取的公因式是 ;(5)()()a x y b x y +-+应提取的公因式是 .14.(2分)在下列各式从左到右的变形中,有三种情况:(A)整式乘法,(B)分解因式,(C)既非整式乘法又非分解因式;在括号里填上所属的情况代号.(1)224(23)(23)49a a a +-=- ( )(2)25(2)(1)3m m m m --=-+- ( )(3)4422()()()x y x y x y x y -=+-+ ( )(4)22211()2()x x x x +=++ ( )(5)22()a a b ab a a ab b --+=-+- ( )三、解答题15.(7分)用简便方法计算:57.6×1.6+28.8×36.8-14.4×80.16.(7分)先阅读下列材料,再分解因式:(1)要把多项式am an bm bn +++分解因式,可以先把它的前两项分成一组,提取公因式a ,再把它的后两项分成一组,并提出公因式b ,从而得到()()a m n b m n +++.这时,由于()a m n +与()b m n +又有公因式m n +,于是可提出公因式m n +,从而得()()m n a b ++.因此,有am an bm bn ÷++()()am an bm bn =+++()()a m n b m n =+++()()m n a b =++这种因式分解的方法叫做分组分解法. 如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(2)请用(1)中给出的方法分解因式:①2a ab ac bc -+-;②255m n mn m +--.17.(7分) 已知235237x y x y -=⎧⎨+=⎩,你能用两种不同的方法求出2249x y -的值吗?18.(7分)如图,某农场修建一座小型水库,需要一种空心混凝土管道,它的规格是:内直径d=5 cm ,外直径 D=75 cm ,长L=300cm .利用分解因式计算,浇制一节这样的管道需要多少立方米的混凝土? (π取 3. 14,结果保留两个有效数字)19.(7分)某大桥打下的一根用特殊材料制成的桩管(横截面如图所示),它的外半径为R(m),内半径为 r(m),用含 R ,r 的代数式表示桩管的横截面积,这个多项式 能分解因式吗?若R= 1.15 m ,r =0. 85m ,计算它的横截面面积. (结果保留 π)20.(7分) 已知22==+ab b a ,,求32232121ab b a b a ++的值.21.(7分)用简便方法计算:(1)2220092008-;(2)2199.919.98100++22.(7分)写一个多项式,再把它分解因式(要求:多项式含有字母m 和n ,系数、次数不限,并能先用提取公因式法再用公式法分解).23.(7分)阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法 次,结果是 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n (n 为正整数).24.(7分)化简,求值()()()()22222a b a b a ab b a b -÷++-+÷-,其中12a =,b=-2.25.(7分) 分解因式:(1)32228126a b ab c a b -+-;(2)3()9()a x y y x -+-;(3)2(23)23m n m n --+;(4)416mn m -26.(7分) 先化简,再求值:22[(37)(5)](424)a a a --+÷-,其中150a =27.(7分) 大正方形的周长比小正方形的周长长 96cm ,它们的面积相差 960cm 2. 求这两个正方形的边长.28.(7分)有个多项式,它的前后两项被墨水污染了看不清,已知它的中间项是12xy ,且每一项的系数均为整数,请你把前后两项补充完整,使它成为完全平方式,并将它进行因式分解.你有几种方法?试试看!多项式:■+12xy+■=( )229.(7分)不解方程组522008200833x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩,试求代数式229156x xy y --的值.30.(7分)若a ,b 互为相反数,求3223a a b ab b +++的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.C3.D4.A5.B6.D7.C8.D9.C 二、填空题10.29a -11.(1)+,(2)+12. 7 或一113.(1) a ;(2)3x ;(3)x -;(4)25x y ;(5)x y +14. (1)A ;(2);(3)B ;(4)C ;(5)B三、解答题15.016. (2))①()()a b a c -+,②()(5)m n m --17.3518.0.85m 319.0.6πm 220.4.21.(1) 4 Ol7;(2) 10 00022.)2)(2(42-+=-n n m m mn (答案不唯一) .23.(1)提取因公式, 2 (2)2004 ,2005)1(x + (3)1)1(++n x .24.原式=()25a b -=25.(1)222(463)ab a b b c a --+ (2)3()(3)x y a -- (3)(23)(231)m n m n ---(4) 2(41)(21)(21)m n n n ++- 26.21a -,2425-27.32cm ,8cm 28.2224129(23)x xy y x y ++=+或2221236(6)x xy y x y ++=+或2229124(32)x xy y x y ++=+或 22236121(61)x y xy xy ++=+或2221236(6)x y xy xy ++=+等29.530.0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3 用乘法公式分解因式(二)
A 组
1.填空:
(1)分解因式:x 2-4x +4=(x -2)2.
(2)分解因式:4a 2-4a +1=(2a -1)2.
(3)若4x 2+mx +25是一个完全平方式,则实数m =±20.
(4)分解因式:2x 2-4x +2=2(x -1)2.
(5)分解因式:x 3+2x 2+x =x(x +1)2.
2.下列多项式中,不能用完全平方公式分解因式的是(C )
A. m +1+m 24
B. -x 2+2xy -y 2
C. -a 2+14ab +49b 2
D. n 29-23
n +1 3.把多项式x 2
-6x +9分解因式,结果正确的是(A )
A. (x -3)2
B. (x -9)2
C. (x +3)(x -3)
D. (x +9)(x -9)
4.分解因式:
(1)x 2-x +14
. 【解】 原式=x 2-2·x ·12+⎝ ⎛⎭⎪⎫122
=⎝ ⎛⎭
⎪⎫x -122
. (2)a 2-12ab +116
b 2. 【解】 原式=a 2-2·a ·14b +⎝ ⎛⎭⎪⎫14b 2
=⎝ ⎛⎭
⎪⎫a -14b 2
. (3)9m 2-6mn +n 2.
【解】 原式=(3m )2-2·(3m )·n +n 2
=(3m -n )2.
5.把下列各式分解因式:
(1)3x 2-12xy +12y 2.
【解】 原式=3(x 2-4xy +4y 2)
=3(x -2y )2.
(2)-2x 3+24x 2-72x .
【解】 原式=-2x (x 2-12x +36)
=-2x (x -6)2.
(3)(a +b )2
-12(a +b )-36.
【解】 原式=[(a +b )-6]2
=(a +b -6)2.
(4)2m 2+2m +12
. 【解】 原式=2⎝ ⎛⎭⎪⎫m 2+m +14 =2⎝ ⎛⎭
⎪⎫m +122
. 6.用简便方法计算:
(1)9992+2×999+1.
【解】 原式=9992+2×999×1+12
=(999+1)2
=10002=1000000.
(2)552-110×45+452.
【解】 原式=552-2×55×45+452
=(55-45)2
=102=100.
B 组
7.若(x 2+y 2)(x 2+y 2-2)=8,则x 2+y 2的值为__4__.
【解】 ∵(x 2+y 2)(x 2+y 2-2)=8,
∴(x 2+y 2)2-2(x 2+y 2)=8,
(x 2+y 2)2-2(x 2+y 2)+1=9,
∴(x 2+y 2-1)2=9,
∴x 2+y 2-1=3或x 2+y 2-1=-3,
∴x 2+y 2=4或x 2+y 2=-2.
∵x 2+y 2≥0,∴x 2+y 2=4.
8.分解因式:
(1)(a 2+1)2-4a 2.
【解】 原式=(a 2+1+2a )(a 2+1-2a )
=(a +1)2(a -1)2.
(2)81+x 4-18x 2.
【解】 原式=x 4-18x 2+81
=(x 2)2-2·x 2·9+92
=(x 2-9)2
=[(x +3)(x -3)]2
=(x +3)2(x -3)2.
9.(1)已知x 2+4x +y 2+2y +5=0,求x y 的值.
【解】 x 2+4x +y 2+2y +5=0,
x 2+4x +4+y 2+2y +1=0,
(x +2)2+(y +1)2=0,
∴x +2=0且y +1=0,
∴x =-2,y =-1,
∴x y =(-2)-1=-12
. (2)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3
的值.
【解】 a 3b +2a 2b 2+ab 3=ab (a 2+2ab +b 2)
=ab (a +b )2=2×32=18.
10.阅读材料,并回答问题:
分解因式:x 2-120x +3456.
分析:由于常数项数值较大,
可以把x 2-120x +3456变为平方差的形式进行分解,这样就简便易行.
解:x 2-120x +3456
=x 2-2×60x +3600-3600+3456
=(x -60)2-144
=(x -60)2-122=(x -60+12)(x -60-12)
=(x -48)(x -72).
请按照上面方法分解因式:x 2-16x -561.
【解】 x 2-16x -561
=x 2-16x +64-64-561
=(x -8)2-625=(x -8)2-252
=(x -8+25)(x -8-25)
=(x +17)(x -33).
11.已知(a +2b )2-2a -4b +1=0,求(a +2b )2018的值.
【解】 ∵(a +2b )2-2a -4b +1=0,
∴(a +2b )2-2(a +2b )+1=0,
∴(a +2b -1)2=0,
∴a +2b -1=0,
∴a +2b =1,
∴(a +2b )2018=12018=1.
数学乐园
12.阅读材料,并回答问题:
分解因式:x 4+4.
分析:这个二项式既无公因式可提,也不能直接利用乘法公式,怎么办呢?19世纪的法国数学家苏菲·热门抓住了该式只有两项,且都是数或式的平方和的形式的特点,添加了
一项4x 2组成完全平方公式,然后将4x 2减去,即可得x 4+4=x 4+4x 2+4-4x 2=(x 2+2)2-(2x )2=(x 2+2x +2)·(x 2-2x +2).人们为了纪念苏菲·热门给出的这一解法,就把它叫做“热门定理”.
请你依照苏菲·热门的做法,将下面各式分解因式:
(1)x 4+4y 4. (2)x 2-2ax -b 2-2ab .
【解】 (1)x 4+4y 4=x 4+4x 2y 2+4y 4-4x 2y 2
=(x 2+2y 2)2-(2xy )2
=(x 2+2y 2+2xy )(x 2+2y 2-2xy ).
(2)x 2-2ax -b 2-2ab
=x 2-2ax +a 2-a 2-2ab -b 2
=(x-a)2-(a+b)2
=[(x-a)+(a+b)][(x-a)-(a+b)] =(x+b)(x-2a-b).。