高中数学新学案同步 必修1人教A版 全国通用版 第二章 基本初等函数 疑难规律方法 第二章
新人教A版高中数学必修1第二章基本初等函数Iword学案
§对数函数2.对数与对数运算1.对数的概念一般地,如果a x=N (a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.说明:(1)实质上,上述对数表达式,不过是指数函数y=a x的另一种表达形式,例如:34=81与4=log381这两个式子表达是同一关系,因此,有关系式a x=N⇔x=log a N,从而得对数恒等式:a log a N=N.(2)“log”同“+”“×”“”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.(3)根据对数的定义,对数log a N(a>0,且a≠1)具有下列性质:①零和负数没有对数,即N>0;②1的对数为零,即log a1=0;③底的对数等于1,即log a a=1.2.对数的运算法则利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.(1)基本公式①log a(MN)=log a M+log a N (a>0,a≠1,M>0,N>0),即正数的积的对数,等于同一底数的各个因数的对数的和.②log a MN=log a M-log a N(a>0,a≠1,M>0,N>0),即两个正数的商的对数,等于被除数的对数减去除数的对数.③log a M n=n·log a M (a>0,a≠1,M>0,n∈R),即正数的幂的对数等于幂的底数的对数乘以幂指数.(2)对数的运算性质注意点①必须注意M>0,N>0,例如log a[(-3)×(-4)]是存在的,但是log a(-3)与log a(-4)均不存在,故不能写成log a[(-3)×(-4)]=log a(-3)+log a(-4).②防止出现以下错误:log a(M±N)=log a M±log a N,log a(M·N)=log a M·log a N,log a M N=log a Mlog a N,log a M n =(log a M )n . 3.对数换底公式在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底公式:log b N =log c Nlog c b(b >0,且b ≠1;c >0,且c ≠1;N >0).证明 设log b N =x ,则b x =N .两边取以c 为底的对数,得x log c b =log c N .所以x =log c N log c b ,即log b N =log c Nlog c b.换底公式体现了对数运算中一种常用的转化,即将复杂的或未知的底数转化为已知的或需要的底数,这是数学转化思想的具体应用.由换底公式可推出下面两个常用公式:(1)log b N =1log N b 或log b N ·log N b =1 (N >0,且N ≠1;b >0,且b ≠1);(2)log bn N m =mnlog b N (N >0;b >0,且b ≠1;n ≠0,m ∈R ).题型一 正确理解对数运算性质对于a >0且a ≠1,下列说法中,正确的是( )①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2.A .①与③B .②与④C .②D .①、②、③、④解析 在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立. 在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立. 答案 C点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件,使用运算性质时,应牢记公式的形式及公式成立的条件.题型二 对数运算性质的应用求下列各式的值:(1)2log 32-log 3329+log 38-5log 53;(2)lg25+23lg8+lg5·lg20+(lg2)2;(3)log 52·log 79log 513·log 734.分析 利用对数的性质求值,首先要明确解题目标是化异为同,先使各项底数相同,才能使用性质,再找真数间的联系,对于复杂的真数,可以先化简再计算.解 (1)原式=2log 32-(log 332-log 39)+3log 32-3 =2log 32-5log 32+2+3log 32-3=-1.(2)原式=2lg5+2lg2+lg 102·lg(2×10)+(lg2)2=2lg(5×2)+(1-lg2)·(lg2+1)+(lg2)2 =2+1-(lg2)2+(lg2)2=3.(3)∵log 52·log 79log 513·log 734=12log 52·2log 73-log 53·13log 74=-lg2lg5·lg3lg7lg3lg5·13·lg4lg7=-32.点评 对数的求值方法一般有两种:一种是将式中真数的积、商、幂、方根利用对数的运算性质将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.题型三 对数换底公式的应用计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).分析 由题目可获取以下主要信息:本题是一道对数化简求值题,在题目中各个对数的底数都各不相同.解答本题可先通过对数换底公式统一底数再进行化简求值. 解 方法一 原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55 =⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.方法二 原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125 =⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.点评 方法一是先将括号内换底,然后再将底统一;方法二是在解题方向还不清楚的情况下,一次性地统一为常用对数(当然也可以换成其他非1的正数为底),然后再化简.上述方法是不同底数对数的计算、化简和恒等证明的常用方法.已知log (x +3)(x 2+3x )=1,求实数x 的值.错解 由对数的性质可得x 2+3x =x +3. 解得x =1或x =-3.错因分析 对数的底数和真数必须大于0且底数不等于1,这点在解题中忽略了.正解 由对数的性质知⎩⎪⎨⎪⎧x 2+3x =x +3,x 2+3x >0,x +3>0且x +3≠1.解得x =1,故实数x 的值为1.对数的定义及其性质是高考中的重要考点之一,主要性质有:log a 1=0,log a a =1,a log a N =N (a >0,且a ≠1,N >0).1.(上海高考)方程9x -6·3x -7=0的解是________. 解析 ∵9x -6·3x -7=0,即32x -6·3x -7=0 ∴(3x -7)(3x +1)=0 ∴3x =7或3x =-1(舍去) ∴x =log 37. 答案 log 372.(辽宁高考)设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=____. 解析 g ⎝⎛⎭⎫12=ln 12<0,g ⎝⎛⎭⎫ln 12=eln 12=12, ∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=12. 答案 121.对数式log (a -3)(7-a )=b ,实数a 的取值范围是( )A .(-∞,7)B .(3,7)C .(3,4)∪(4,7)D .(3,+∞) 答案 C解析 由题意得⎩⎪⎨⎪⎧a -3>0,a -3≠1,7-a >0,解得3<a <7且a ≠4.2.设a =log 32,则log 38-2log 36用a 表示的形式是( )A .a -2B .3a -(1+a )2C .5a -2D .-a 2+3a -1 答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1) =3a -2(a +1)=a -2. 3.log 56·log 67·log 78·log 89·log 910的值为( ) A .1 B .5 C D .1+lg2 答案 C解析 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5.4.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1)D .(1,+∞) 答案 C解析 由题意,得⎩⎪⎨⎪⎧0<a <1,2a >1,∵a >0,a ≠1,log a (a 2+1)<log a 2a ,∴0<a <1.∴12<a <1.5.已知函数f (x )=a x -1+log a x (a >0,a ≠1)在[1,3]上最大值与最小值之和为a 2,则a 的值为( )A .4 C .3答案 D6.若方程(lg x )2+(lg7+lg5)lg x +lg7·lg5=0的两根为α,β,则αβ等于( ) A .lg7·lg5 B .lg35 C .35 答案 D解析 ∵lg α+lg β=-(lg7+lg5)=-lg35=lg 135∴α·β=135.7.已知f (log 2x )=x ,则f ⎝⎛⎭⎫12=________. 答案 2解析 令log 2x =12,则212=x ,∴f ⎝⎛⎭⎫12=212= 2. 8.log (2-1)(2+1)=________. 答案 -1解析 log 2-1(2+1)=log 2-1(2+1)(2-1)2-1=log (2-1)12-1=-1.9.已知lg2= 0,lg3= 1,lg x =-2+ 1,则x =________. 答案解析 ∵lg2= 0,lg3= 1,而 0+ 1= 1,∴lg x =-2+lg2+lg3, 即lg x =lg10-2+lg6.∴lg x =lg(6×10-2),即x =6×10-2=.10.(1)已知lg x +lg y =2lg(x -2y ),求log 2xy的值;(2)已知log 189=a,18b =5,试用a ,b 表示log 365. 解 (1)lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0. 即(x -y )(x -4y )=0,解得x =y 或x =4y , 又∵⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,∴x >2y >0,∴x =y ,应舍去,取x =4y .则log 2x y =log 24y y =log 24=lg4lg 2=4.(2)∵18b =5,∴log 185=b, 又∵log 189=a , ∴log 365=log 185lg 1836=blog 18(18×2)=b 1+log 182=b 1+log 18189=b 1+(1-log 189)=b2-a .11.设a,b,c均为不等于1的正数,且a x=b y=c z,1x+1y+1z=0,求abc的值.解令a x=b y=c z=t (t>0且t≠1),则有1x =log t a,1y=log t b,1z=log t c,又1 x +1y+1z=0,∴log t abc=0,∴abc=1.12.已知a,b,c是△ABC的三边,且关于x的方程x2-2x+lg(c2-b2)-2lg a+1=0有等根,试判定△ABC的形状.解∵关于x的方程x2-2x+lg(c2-b2)-2lg a+1=0有等根,∴Δ=0,即4-4[lg(c2-b2)-2lg a+1]=0.即lg(c2-b2)-2lg a=0,故c2-b2=a2,∴a2+b2=c2,∴△ABC为直角三角形.2.对数与对数运算(一)学习目标1.理解对数的概念,能进行指数式与对数式的互化.2.了解常用对数与自然对数的意义.3.理解对数恒等式并能用于有关对数的计算.自学导引1.如果a(a>0且a≠1)的b次幂等于N,就是a b=N,那么数b叫做以a为底N的对数,记作b=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质有:(1)1的对数为零;(2)底的对数为1;(3)零和负数没有对数.3.通常将以10为底的对数叫做常用对数,以e为底的对数叫做自然对数,log10N可简记为lg N,log e N简记为ln N.4.若a>0,且a≠1,则a b=N等价于log a N=b.5.对数恒等式:a log a N=N(a>0且a≠1).一、对数式有意义的条件例1 求下列各式中x 的取值范围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.分析 由真数大于零,底数大于零且不等于1可得到关于x 的不等式(组),解之即可. 解 (1)由题意有x -10>0,∴x >10,即为所求.(2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2. (3)由题意有⎩⎪⎨⎪⎧(x -1)2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.点评 在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.变式迁移1 在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <5 C .2<a <3或3<a <5 D .3<a <4 答案 C解析 由题意得⎩⎪⎨⎪⎧5-a >0a -2>0a -2≠1,∴2<a <5且a ≠3.二、对数式与指数式的互化例2 将下列对数形式化成指数形式或将指数形式转化为对数形式:(1)54=625; (2)log 128=-3;(3)⎝⎛⎭⎫14-2=16; (4)log 101 000=3. 分析 利用a x =N ⇔x =log a N 进行互化. 解 (1)∵54=625,∴log 5625=4.(2)∵log 128=-3,∴⎝⎛⎭⎫12-3=8. (3)∵⎝⎛⎭⎫14-2=16,∴log 1416=-2. (4)∵log 101 000=3,∴103=1 000.点评 指数和对数运算是一对互逆运算,在解题过程中,互相转化是解决相关问题的重要途径.在利用a x=N ⇔x =log a N 进行互化时,要分清各字母分别在指数式和对数式中的位置.变式迁移2 将下列对数式化为指数式求x 值:(1)log x 27=32; (2)log 2x =-23;(3)log 5(log 2x )=0; (4)x =log 2719;(5)x =log 1216.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log 5(log 2x )=0,得log 2x =1,∴x =21=2.(4)由x =log 2719,得27x =19,即33x =3-2,∴x =-23.(5)由x =log 1216,得⎝⎛⎭⎫12x =16,即2-x =24, ∴x =-4.三、对数恒等式的应用例3 (1)a log a b ·log b c ·log c N 的值(a ,b ,c ∈R +,且不等于1,N >0);(2)412(log 29-log 25).解 (1)原式=(a log a b )log b c ·log c N =b log b c ·log c N =(b log b c )log c N =c log c N =N .(2)原式=2(log 29-log 25)=2log 292log 25=95.点评 对数恒等式a log a N =N 中要注意格式:(1)它们是同底的;(2)指数中含有对数形式;(3)其值为真数.变式迁移3 计算:3log 35+(3)log 315.解 原式=5+312log 315=5+(3log 315)12=5+15=655.1.一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b =N ,那么b 叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.2.利用a b =N ⇔b =log a N (其中a >0,a ≠1,N >0)可以进行指数与对数式的互化. 3.对数恒等式:a log a N =N (a >0且a ≠1).一、选择题1.下列指数式与对数式互化不正确的一组是( ) A .100=1与lg1=0B .27-13=13与log 2713=-13C .log 312=9与912=3D .log 55=1与51=5 答案 C2.指数式b 6=a (b >0,b ≠1)所对应的对数式是( )A .log 6a =aB .log 6b =aC .log a b =6D .log b a =6 答案 D3.若log x (5-2)=-1,则x 的值为( ) -2 +2-2或5+2 D .2- 5 答案 B4.如果f (10x )=x ,则f (3)等于( ) A .log 310 B .lg3 C .103 D .310 答案 B解析 方法一 令10x =t ,则x =lg t , ∴f (t )=lg t ,f (3)=lg3.方法二 令10x =3,则x =lg3,∴f (3)=lg3.5.21+12·log 25的值等于( )A .2+ 5B .2 5C .2+52D .1+52答案 B解析 21+12log 25=2×212log 25=2×2log 2512=2×512=2 5.二、填空题6.若5lg x =25,则x 的值为________. 答案 100解析 ∵5lg x =52,∴lg x =2,∴x =102=100.7.设log a 2=m ,log a 3=n ,则a 2m +n 的值为________. 答案 12解析 ∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =a 2m ·a n =(a m )2·a n =22×3=12. 8.已知lg6≈ 2,则 2≈________. 答案 600解析 2≈102×10lg6=600. 三、解答题9.求下列各式中x 的值(1)若log 3⎝⎛⎭⎫1-2x 9=1,则求x 值; (2)若log 2 003(x 2-1)=0,则求x 值. 解 (1)∵log 3⎝⎛⎭⎪⎫1-2x 9=1,∴1-2x 9=3∴1-2x =27,即x =-13 (2)∵log 2 003(x 2-1)=0 ∴x 2-1=1,即x 2=2 ∴x =±210.求x 的值:(1)x =log224;(2)x =log 93;(3)x =71-log 75; (4)log x 8=-3;(5)log 12x =4.解 (1)由已知得:⎝⎛⎭⎫22x =4,∴2-12x =22,-x2=2,x =-4.(2)由已知得:9x =3,即32x =312.∴2x =12,x =14.(3)x =7÷7log 75=7÷5=75.(4)由已知得:x -3=8, 即⎝⎛⎭⎫1x 3=23,1x =2,x =12. (5)由已知得:x =⎝ ⎛⎭⎪⎫124=116.2.2.1 对数与对数运算(二)学习目标1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.自学导引1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么, (1)log a (MN )=log a M +log a N ;(2)log a MN=log a M -log a N ;(3)log a M n =n log a M (n ∈R ).2.对数换底公式:log a b =log c blog c a.一、正确理解对数运算性质例1 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( ) ①log a x · log a y =log a (x +y ); ②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .A .0个B .1个C .2个D .3个 答案 A解析 对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的. 点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件. 变式迁移1 若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x答案 A二、对数运算性质的应用例2 计算:(1)log 535-2log 573+log 57-;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)错误!; (4)(lg5)2+lg2·lg50. 分析 利用对数运算性质计算.解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2=lg 2(lg2+lg5)+1-lg 2=lg 2+1-lg 2=1.(3)原式=32lg3+3lg2-32lg3+2lg2-1=3lg3+6lg2-32(lg3+2lg2-1)=32.(4)原式=(lg5)2+lg2·(lg2+2lg5)=(lg5)2+2lg5·lg2+(lg2)2=(lg5+lg2)2=1.点评 要灵活运用有关公式.注意公式的正用、逆用及变形使用. 变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64. 解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7)=1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=[log 262+log 62·log 6(3×6)]÷log 622 =log 62(log 62+log 63+1)÷(2log 62)=1.三、换底公式的应用例3 (1)设3x =4y =36,求2x +1y的值;(2)已知log 189=a,18b=5,求log 3645. 解 (1)由已知分别求出x 和y . ∵3x =36,4y =36, ∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y =log 364, ∴2x +1y =2log 363+log 364 =log 36(32×4)=log 3636=1. (2)∵log 189=a,18b =5,∴log 185=b .∴log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a .点评 指数式化为对数式后,两对数式的底不同,但式子两端取倒数后,利用对数的换底公式可将差异消除.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 1227=a ,求log 616的值.解 (1)利用换底公式,得lg4lg3·lg8lg4·lg mlg8=2,∴lg m =2lg3,于是m =9.(2)由log 1227=a ,得3lg32lg2+lg3=a ,∴lg3=2a lg23-a ,∴lg3lg2=2a3-a .∴log 616=4lg2lg3+lg2=42a 3-a +1=4(3-a )3+a.1.对于同底的对数的化简常用方法是:(1)“收”,将同底的两对数的和(差)化成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对于常用对数的化简要充分利用“lg5+lg2=1”来解题. 3.对于多重对数符号对数的化简,应从内向外逐层化简求值.一、选择题1.lg8+3lg5的值为( )A .-3B .-1C .1D .3 答案 D解析 lg8+3lg5=lg8+lg53=lg1 000=3. 2.已知lg2=a ,lg3=b ,则log 36等于( )答案 B解析 log 36=lg6lg3=lg2+lg3lg3=a +bb.3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg ab 2的值等于( ) A .2 C .4答案 A解析 由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,∴⎝⎛⎭⎫lg ab 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b=22-4×12=2.4.若=1 000,=1 000,则1x -1y等于( )B .3C .-13D .-3答案 A解析 由指数式转化为对数式:x = 000,y = 000, 则1x -1y =log 1 -log 1 =log 1 00010=13. 5.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 005)=8,则f (x 21)+f (x 22)+…+f (x 22 005)的值等于( )A .4B .8C .16D .2log a 8答案 C解析 因为f (x )=log a x ,f (x 1x 2…x 2 005)=8,所以f (x 21)+f (x 22)+…+f (x 22 005) =log a x 21+log a x 22+…+log a x 22 005=2log a |x 1|+2log a |x 2|+…+2log a |x 2 005| =2log a |x 1x 2…x 2 005|=2f (x 1x 2…x 2 005)=2×8=16. 二、填空题6.设lg2=a ,lg3=b ,那么lg 错误!=__________.答案 a +2b -12解析 lg 错误!=错误!=错误!lg 错误!=错误!lg 错误! =12(lg2+lg9-1)=12(a +2b -1). 7.若log a x =2,log b x =3,log c x =6,则log abc x 的值为____. 答案 1解析 log abc x =1log x abc =1log x a +log x b +log x c∵log a x =2,log b x =3,log c x =6∴log x a =12,log x b =13,log x c =16,∴log abc x =112+13+16=11=1.8.已知log 63= 1,log 6x = 9,则x =________. 答案 2解析 由log 63+log 6x = 1+ 9=1.得log 6(3x )=1.故3x =6,x =2. 三、解答题9.求下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)(lg5)2+2lg2-(lg2)2.解 (1)方法一 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5=12(lg2+lg5) =12lg10=12. 方法二 原式=lg 427-lg4+lg7 5=lg 42×757×4=lg(2·5)=lg 10=12.(2)方法一 原式=(lg5+lg2)(lg5-lg2)+2lg2=lg10·lg 52+lg4=lg ⎝⎛⎭⎫52×4=lg10=1. 方法二 原式=(lg10-lg2)2+2lg2-lg 22 =1-2lg2+lg 22+2lg2-lg 22=1.10.若26a =33b =62c ,求证:1a +2b =3c .证明 设26a =33b =62c =k (k >0),那么 ⎩⎪⎨⎪⎧6a =log 2k ,3b =log 3k ,2c =log 6k ,∴⎩⎪⎨⎪⎧1a =6log 2k=6log k 2,1b =3log 3k =3log k3,1c =2log 6k =2log k6.∴1a +2b=6·log k 2+2×3log k 3 =log k (26×36)=6log k 6=3×2log k 6=3c,即1a +2b =3c. 2. 对数函数及其性质1.对数函数的概念形如y =log a x (a >0且a ≠1)的函数叫做对数函数. 对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y =log a x 中,log a x 前面的系数为1,自变量在真数的位置,底数a 必须满足a >0,且a ≠1;(3)以10为底的对数函数为y =lg x ,以e 为底的对数函数为y =ln x . 2.对数函数的图象及性质:a>10<a<1 图象性质函数的定义域为(0,+∞),值域为(-∞,+∞)函数图象恒过定点(1,0),即恒有log a1=0当x>1时,恒有y>0;当0<x<1时,恒有y<0当x>1时,恒有y<0;当0<x<1时,恒有y>0函数在定义域(0,+∞)上为增函数函数在定义域(0,+∞)上为减函数3.指数函数与对数函数的关系比较名称指数函数对数函数解析式y=a x (a>0,且a≠1)y=log a x(a>0,且a≠1) 定义域(-∞,+∞)(0,+∞)值域(0,+∞)(-∞,+∞)函数值变化情况a>1时,()()()⎪⎩⎪⎨⎧<<==>>1111xxxa x;0<a<1时,x()()()⎪⎩⎪⎨⎧<>==><1111xxxa xa>1时,log a x()()()⎪⎩⎪⎨⎧<<>==>>111xxx;0<a<1时,log a x()()()⎪⎩⎪⎨⎧<<>==><111xxx图象必过定点点(0,1)点(1,0)单调性a>1时,y=a x是增函数;0<a<1时,y=a x是减函数a>1时,y=log a x是增函数;0<a<1时,y=log a x是减函数图象y=a x的图象与y=log a x的图象关于直线y=x对称m(1)当(m-1)(n-1)>0,即m、n范围相同(相对于“1”而言),则log m n>0;(2)当(m-1)(n -1)<0,即m、n范围相反(相对于“1”而言),则log m n<0.有了这个规律,我们再判断对数值的正负就很简单了,如log 213<0,log 52>0等,一眼就看出来了!题型一 求函数定义域求下列函数的定义域:(1)y =log 3x -12x +3x -1; (2)y =11-log a (x +a ) (a >0,a ≠1).分析 定义域即使函数解析式有意义的x 的范围. 解 (1)要使函数有意义,必须{2x +3>0,x -1>0,3x -1>0,3x -1≠1同时成立,解得⎩⎨⎧x >-32,x >1,x >13,x ≠23. ∴x >1. ∴定义域为(1,+∞).(2)要使原函数有意义,需1-log a (x +a )>0,即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba ,logb a ,log a b 的大小.(1)解析 ∵log 34>1,0<log 43<1,log 4334=log 43⎝⎛⎭⎫43-1=-1, ∴log 34>log 43>log 4334.答案 B(2)解 ∵b >a >1,∴0<ab<1.∴log a a b <0,log b ba∈(0,1),log b a ∈(0,1).又a >b a >1,且b >1,∴log b ba<log b a ,故有log a a b <log b ba<log b a <log a b .点评 比较对数的大小,一般遵循以下几条原则:①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较. ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限内)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限内,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限内)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限内,图象越靠近x 轴的对数函数的底数越小.已知log a 12<1,那么a 的取值范围是________.分析 利用函数单调性或利用数形结合求解.解析 由log a 12<1=log a a ,得当a >1时,显然符合上述不等式,∴a >1;当0<a <1时,a <12,∴0<a <12. 故a >1或0<a <12.答案 a >1或0<a <12点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1; (2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x -log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围.解要使不等式2x<logax 在x ∈⎪⎭⎫ ⎝⎛21,0时恒成立,即函数y=logax 的图象在⎪⎭⎫ ⎝⎛21,0内恒在函数y=2x 图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减. 又loga21>2=log 2a a ,∴a2>21,即a>2221⎪⎭⎫ ⎝⎛.∴所求的a 的取值范围为2221⎪⎭⎫⎝⎛<a<1.点评 原问题等价于当x ∈⎪⎭⎫⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫⎝⎛.那么a 是大于a 0还是小于a 0才满足呢?可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f (x )=lg(ax 2+2x +1),若f (x )的值域是R ,求实数a 的取值范围.错解 ∵f (x )的值域是R , ∴ax 2+2x +1>0对x ∈R 恒成立, 即{ a >0Δ<0⇔{a >04-4a <0⇔a >1.错因分析 出错的原因是分不清定义域为R 与值域为R 的区别. 正解 函数f (x )=lg(ax 2+2x +1)的值域是R⇔真数t =ax 2+2x +1能取到所有的正数.当a =0时,只要x >-12,即可使真数t 取到所有的正数,符合要求;当a ≠0时,必须有{ a >0Δ≥0⇔{a >04-4a ≥0⇔0<a ≤1. ∴f (x )的值域为R 时,实数a 的取值范围为[0,1].本节内容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(广东高考)已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅解析 由题意知M ={x |x <1},N ={x |x >-1}. 故M ∩N ={x |-1<x <1}. 答案 C2.(湖南高考)下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 32解析 ∵y =log 2x 在(0,+∞)上是增函数, ∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数,∴log 32<log 33=1.∴log 32<log 23<log 25. 答案 A3.(全国高考)若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <b C .b <a <c D .b <c <a解析 ∵1e <x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0. ∴a -b =t -2t =-t >0.∴a >b . c -a =t 3-t =t (t 2-1)=t (t +1)(t -1),又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a . ∴c >a >b . 答案 C1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1} D .∅ 答案 C2.已知函数f (x )=lg 1-x 1+x,若f (a )=12,则f (-a )等于( )B .-12C .-2D .2答案 B解析 f (-a )=lg 1+a1-a =-lg ⎝ ⎛⎭⎪⎫1+a 1-a -1=-lg 1-a 1+a=-f (a )=-12.3.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b 答案 A解析 因为a =log 23>1,b =log 3 2<1,所以a >b ;又因为2>3,则log 32>log 33=12,而log 42=log 22=12,所以b >12,c =12,即b >c .从而a >b >c .4.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上是减函数B .奇函数,在区间(0,+∞)上是增函数C .偶函数,在区间(-∞,0)上是增函数D .偶函数,在区间(-∞,0)上是减函数 答案 D解析 已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数.又当x >0时,|x |=x ,即函数y =lg|x |在区间(0,+∞)上是增函数.又f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上是减函数.5.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象只可能为( )答案 A解析 方法一 若0<a <1,则曲线y =a x 下降且过(0,1),而曲线y =-log a x 上升且过(1,0);若a >1,则曲线y =a x 上升且过(0,1),而曲线y =-log a x 下降且过(1,0).只有选项A 满足条件.方法二 注意到y =-log a x 的图象关于x 轴对称的图象的表达式为y =log a x ,又y =log a x 与y =a x 互为反函数(图象关于直线y =x 对称),则可直接选定选项A.6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)内的每一个x 值都有f (x )>0,则实数a 的取值范围为( )A .(0,+∞)答案 D 解析 已知-1<x <0,则0<x +1<1,又当-1<x <0时,都有f (x )>0,即0<x +1<1时都有f (x )>0,所以0<2a <1,即0<a <12.7.若指数函数f (x )=a x (x ∈R )的部分对应值如下表:x -2 0 2 f (x ) 1则不等式log a (x -1)<0答案 {x |1<x <2}解析 由题可知a =,∴(x -1)<0, ∴(x -1)<,解得x <2,又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}.8.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________.答案 12解析 若a >1,则函数y =log a x 在区间[1,2]上为增函数,其值域不可能为[-1,0]; 故0<a <1,此时当x =2时,y 取最小值-1,即log a 2=-1,得a -1=2,所以a =12.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log ax ,x ≥1是实数集R 上的减函数,那么实数a 的取值范围为__________.答案 ⎣⎡⎭⎫17,13解析 函数f (x )为实数集R 上的减函数,一方面,0<a <1且3a -1<0,所以0<a <13,另一方面,由于f (x )在R 上为减函数, 因此应有(3a -1)×1+4a ≥log a 1,即a ≥17.因此满足题意的实数a 的取值范围为17≤a <13.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值. 解 ∵f (x )的定义域为[1,4], ∴g (x )的定义域为[1,2].∵g (x )=f 2(x )+f (x 2)=(1+log 2x )2+(1+log 2x 2) =(log 2x +2)2-2, 又1≤x ≤2,∴0≤log 2x ≤1. ∴当x =1时,g (x )min =2;当x =2时,g (x )max =7.学习目标1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质定义y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过点(1,0),即log a1=0函数值特点x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0]对称性函数y=log a x与y=log1a x的图象关于x轴对称对数函数y=log a x(a>0且a≠1)和指数函数y=a x_(a>0且a≠1)互为反函数.一、对数函数的图象例1 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A.101,53,34,3B .53,101,34,3 C .101,53,3,34D .53,101,3,34答案 A解析 方法一 因为对数的底数越大,函数的图象越远离y 轴的正方向,所以C1,C2,C3,C4的a 值依次由大到小,即C1,C2,C3,C4的a 值依次为101,53,34,3. 方法二过(0,1)作平行于x 轴的直线,与C1,C2,C3,C4的交点的横坐标为(a1,1),(a2,1),(a3,1),(a4,1),其中a1,a2,a3,a4分别为各对数的底,显然a1>a2>a3>a4,所以C1,C2,C3,C4的底值依次由大到小.点评 函数y=logax (a>0,且a ≠1)的底数a 的变化对图象位置的影响如下:①上下比较:在直线x=1的右侧,底数大于1时,底数越大,图象越靠近x 轴;底数大于0且小于1时,底数越小,图象越靠近x 轴.②左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的对数函数的底数越大. 变式迁移1 借助图象比较m ,n 的大小关系: (1)若logm5>logn5,则m n ; (2)若>,则m n. 答案 (1)< (2)>二、求函数的定义域例2 求下列函数的定义域:(1)y =3log 2x ; (2)y =4x -3); (3)y =log (x +1)(2-x ).分析 定义域即使函数解析式有意义的x 的范围.解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}. (2)要使函数y =4x -3)有意义,必须(4x -3)≥0=,∴0<4x -3≤1.解得34<x ≤1.∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1.(3)由⎩⎪⎨⎪⎧ x +1>0x +1≠12-x >0,得⎩⎨⎧x >-1x ≠0,x <2即0<x <2或-1<x <0, 所求定义域为(-1,0)∪(0,2).点评 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移2 求y =log a (4x -3)(a >0,a ≠1)的定义域. 解 log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1, ∴4x -3≥1,x ≥1. 当0<a <1时,(*)可化为 log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1.综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1.三、对数函数单调性的应用例3 比较大小: (1)与;(2)log 35与log 64.分析 从比较底数、真数是否相同入手. 解 (1)考查对数函数y =在(0,+∞)内是减函数,∵<2,∴和log 64的底数和真数都不相同,找出中间量“搭桥”,再利用对数函数的单调性,即可求解.∵log 35>log 33=1=log 66>log 64, ∴log 35>log 64.点评 比较两个对数值的大小,常用方法有:①底数相同真数不同时,用函数的单调性来比较;②底数不同而真数相同时,常借助图象比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.变式迁移3 比较下列各组中两个值的大小: (1)log 0.52.7,; (2)log 34,log 65; (3)log a π,log a e (a >0且a ≠1).解 (1)∵0<<1,∴对数函数y =在(0,+∞)上是减函数. 又∵<,∴log 0.52.7>在(0,+∞)上是增函数,∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数, ∴log 65<log 66=1. ∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数. ∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数. ∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ; 当0<a <1时,log a π<log a e.例4 若-1<log a 34<1,求a 的取值范围.分析 此不等式为对数不等式且底数为参数.解答本题可根据对数函数的单调性转化为一般不等式求解,同时应注意分类讨论.解 -1<log a 34<1⇔log a 1a <log a 34<log a a .当a >1时,1a <34<a ,∴a >43.当0<a <1时,1a >34>a ,∴0<a <34.∴a 的取值范围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞. 点评 (1)解对数不等式问题通常转化为不等式组求解,其依据是对数函数的单调性. (2)解决与对数函数相关的问题时要遵循“定义域优先”原则. (3)若含有字母,应考虑分类讨论.变式迁移4 已知log a (2a +1)<log a 3a <0,求a 的取值范围. 解 log a (2a +1)<log a 3a <0(*)当a >1时,(*)可化为⎩⎨⎧0<2a +1<10<3a <12a +1<3a ,解得⎩⎪⎨⎪⎧-12<a <00<a <13a >1,∴此时a 无解.当0<a <1时,(*)可化为⎩⎨⎧2a +1>13a >12a +1>3a,解得⎩⎨⎧a >0a >13a <1,∴13<a <1. 综上所述,a 的取值范围为⎝⎛⎭⎫13,1.1.求对数函数定义域要注意底数中是否含有自变量,此时底数大于0且不等于1.2.应用对数函数的图象和性质时要注意a>1还是0<a<1。
高中数学新学案同步 必修1人教A版 全国通用版 第二章 基本初等函数 2.2 对数函数 2.2.1 第1课时
解
因为 log (
x,
解答
反思与感悟
要求对数的值,设对数为某一未知数,将对数式化为
指数式,再利用指数幂的运算性质求解.
跟踪训练4 计算:(1)log927;
解 设x=log927,则9x=27,32x=33,
3 ∴x=2.
(2)log 4 3 81;
( 4 3)x 81,3 34 , 解 设x = log 4 3 81, 则
A.log2a=b B.log2b=a
D.logb2=a
解析 logba=2,故选C.
解析
答案
1 1 1 6 -2 (2)将 3 =9,2 =64化为对数式.
解
1 1 1 1 1 6 -2 6. 3 =9可化为 log39=-2;2 =64可化为 log 1 2 64
解 1 log264=-6;
解答
(3)3a=27; 解 log327=a;
1 m (4) =5.73. 3
解
log 1 5.73=m.
3
解答
反思与感悟 指数式化为对数式,关键是弄清指数式各部位的去向:
跟踪训练3 (1)如果a=b2 (b>0,b≠1),则有 C.logba=2 √
3
4
5
答案
2.若logax=1,则 A.x=1 C.x=a √ B.a=1 D.x=10
1
2
3
4
5
答案
3.下列指数式与对数式互化不正确的一组是
A.e =1 与 ln 1=0
0
1 1 1 B. 8 =2与 log82=-3
-
1 3
C.log 9=2 与 9 √
3
1 2
高中数学新学案同步 必修1人教A版 全国通用版 第二章 基本初等函数 2.1 指数函数 2.1.1(一)
解
a-3a2-9= a-32a+3=|a-3| a+3,
要使|a-3| a+3=(3-a) a+3成立,
a-3≤0, 需 解得 a∈[-3,3]. a+3≥0,
解答
反思与感悟
对于 a,当 n 为偶数时,要注意两点:(1)只有 a≥0 才有
n n n
意义;(2)只要 a有意义, a必不为负.
2
2 2 3
(3)( a-1) + 1-a + 1-a3.
解 由题意知a-1≥0,即a≥1.
原式=a-1+|1-a|+1-a=a-1+a-1+1-a=a-1.
解答
反思与感悟
n a ≥0 ,
n
n 为奇数时
n n= a
a n =a , a 为任意实数均可; n 为偶数时, a 为任意实数 a 均有意义, 且 an
跟踪训练 1
若 a2-2a+1=a-1,求 a 的取值范围.
解
∵ a -2a+1=|a-1|=a-1,
2
∴a-1≥0,∴a≥1.
解答
类型二 利用根式的性质化简或求值
例2
4
化简:
4
(1) 3-π ;
解
4
3-π4=|3-π|=π-3.
解答
(2) a-b2(a>b);
解
a-b =|a-b|=a-b.
3
解
3
1,a≤1, 3 4 a + 1-a =a+|1-a|= 2a-1,a>1.
4
解答
类型三 有限制条件的根式的化简
例3
解
设-3<x<3,求 x2-2x+1- x2+6x+9的值.
原式= x-12- x+32=|x-1|-|x+3|,
人教A版高中数学必修一第二章 基本初等函数(I)学案
【三维设计】高中数学第二章基本初等函数(I)学案新人教A版必修12.1指数函数2.1.1 指数与指数幂的运算第一课时根式[提出问题](1)若x2=9,则x是9的平方根,且x=±3;(2)若x3=64,则x是64的立方根,且x=4;(3)若x4=81,则x是81的4次方根,且x=±3;(4)若x5=-32,则x是-32的5次方根,且x=-2.问题1:观察(1)(3),你认为正数的偶次方根都是两个吗?提示:是.问题2:一个数的奇次方根有几个?提示:1个.问题3:由于22=4,小明说,2是4的平方根;小李说,4的平方根是2,你认为谁说的正确?提示:小明.[导入新知]根式及相关概念(1)a的n次方根定义:如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.(2)a的n次方根的表示:n 为偶数±na[0,+∞)(3)根式:式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. [化解疑难]根式记号的注意点(1)根式的概念中要求n >1,且n ∈N *.(2)当n 为大于1的奇数时,a 的n 次方根表示为na (a ∈R );当n 为大于1的偶数时,na (a ≥0)表示a 在实数范围内的一个n 次方根,另一个是-n a ,从而⎝⎛⎭⎫±n a n =a .根式的性质[提出问题] 问题1:⎝⎛⎭⎫323,⎝⎛⎭⎫3-23,⎝⎛⎭⎫424分别等于多少?提示:2,-2,2.问题2:3-23,323, 4-24,424分别等于多少?提示:-2,2,2,2.问题3:等式a 2=a 及(a )2=a 恒成立吗?提示:当a ≥0时,两式恒成立;当a <0时,a 2=-a ,(a )2无意义. [导入新知]根式的性质(1)(na )n=a (n 为奇数时,a ∈R ;n 为偶数时,a ≥0,且n >1). (2)nan=⎩⎪⎨⎪⎧a n 为奇数,且n >1,|a |n 为偶数,且n >1.(3)n0=0.(4)负数没有偶次方根. [化解疑难](na )n与na n的区别(1)当n 为奇数,且a ∈R 时,有na n=(na )n=a ; (2)当n 为偶数,且a ≥0时,有na n=(na )n=a .根式的概念[例1] (1)下列说法:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,n a 对任意a ∈R 都有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中说法正确的序号为________.(2)若31a -3有意义,则实数a 的取值范围是________. [解析] (1)①16的4次方根应是±2;②416=2,所以正确的应为③④.(2)要使31a -3有意义,则a -3≠0,即a ≠3. ∴a 的取值范围是{a |a ≠3}. [答案] (1)③④ (2){a |a ≠3} [类题通法]判断关于n 次方根的结论应关注两点(1)n 的奇偶性决定了n 次方根的个数;(2)n 为奇数时,a 的正负决定着n 次方根的符号. [活学活用]已知m 10=2,则m 等于( ) A.102B .-102 C.210D .±102解析:选D ∵m 10=2,∴m 是2的10次方根. 又∵10是偶数,∴2的10次方根有两个,且互为相反数. ∴m =±102.[例2] 化简: (1)nx -πn(x <π,n ∈N *);(2)4a 2-4a +1⎝ ⎛⎭⎪⎫a ≤12.[解] (1)∵x <π,∴x -π<0, 当n 为偶数时,n x -πn=|x -π|=π-x ; 当n 为奇数时,nx -πn=x -π.综上,nx -πn=⎩⎪⎨⎪⎧π-x , n 为偶数,n ∈N *,x -π, n 为奇数,n ∈N *.(2)∵a ≤12,∴1-2a ≥0.∴4a 2-4a +1=2a -12=|2a -1|=1-2a .[类题通法]根式化简应注意的问题(1)⎝⎛⎭⎫n a n已暗含了n a 有意义,据n 的奇偶性不同可知a 的取值范围.(2)na n中的a 可以是全体实数,na n的值取决于n 的奇偶性. [活学活用] 求下列各式的值: (1)8x -28;(2)3-22+(31-2)3.解:(1)8x -28=|x -2|=⎩⎪⎨⎪⎧x -2,x ≥2,2-x ,x <2.(2)因为3-22=12-22+(2)2=(2-1)2, 所以3-22+(31-2)3=2-12+1-2=2-1+1-2=0.条件根式的化简[例3] (1)若xy ≠0,则使4x 2y 2=-2xy 成立的条件可能是( )A .x >0,y >0B .x >0,y <0C .x ≥0,y ≥0D .x <0,y <0(2)设-3<x <3,求x 2-2x +1-x 2+6x +9的值. (1)[解析] ∵4x 2y 2=2|xy |=-2xy , ∴xy ≤0.又∵xy ≠0,∴xy <0,故选B. [答案] B (2)[解] 原式=x -12-x +32=|x -1|-|x +3|.∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2. 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2-3<x <1,-41≤x <3.[类题通法]有条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.[活学活用]若n <m <0,则m 2+2mn +n 2-m 2-2mn +n 2等于( ) A .2m B .2n C .-2mD .-2n解析:选C 原式=m +n2-m -n2=|m +n |-|m -n |,∵n <m <0,∴m +n <0,m -n >0, ∴原式=-(m +n )-(m -n )=-2m .5.忽略n的范围导致式子na n a∈R化简出错[典例] 化简31+23+41-24=________.[解析] 31+23+41-24=(1+2)+|1-2|=1+2+2-1=2 2.[答案] 2 2[易错防范]1.本题易忽视41-24>0,而误认为41-24=1-2而导致解题错误.2.对于根式na n的化简一定要注意n为正奇数还是正偶数,因为na n=a(a∈R)成立的条件是n为正奇数,如果n为正偶数,那么na n=|a|.[活学活用]当a,b∈R时,下列各式恒成立的是( )A.(4a-4b)4=a-bB.(4a+b)4=a+bC.4a4-4b4=a-bD.4a+b4=a+b解析:选B 当且仅当a=b≥0时,(4a-4b)4=a-b;当且仅当a≥0,b≥0时,4a4-4b4=a-b;当且仅当a+b≥0时,4a+b4=a+b.由于a,b符号未知,因此选项A,C,D均不一定恒成立.选项B中,由4a+b可知a+b≥0,所以(4a+b)4=a+b.故选B.[随堂即时演练]1.化简1-2x2⎝ ⎛⎭⎪⎫x >12的结果是( ) A .1-2x B .0 C .2x -1 D .(1-2x )2解析:选C ∵1-2x2=|1-2x |,x >12,∴1-2x <0, ∴1-2x2=2x -1.2.下列式子中成立的是( ) A .a -a =-a 3B .a -a =-a 3C .a -a =--a 3D .a -a =a 3解析:选C 要使a -a 有意义,则a ≤0, 故a -a =-(-a )-a =--a2-a =--a 3,故选C.3.若x >3,则x 2-6x +9-|2-x |=________. 解析:x 2-6x +9-|2-x |=x -32-|2-x |=|x -3|-|2-x |=x -3-(x -2)=-1.答案:-1 4.化简(a -1)2+1-a2+31-a3=________.解析:由根式a -1有意义可得a -1≥0,即a ≥1, ∴原式=(a -1)+(a -1)+(1-a )=a -1. 答案:a -15.已知a <b <0,n >1,n ∈N *,化简na -bn+na +bn.解:∵a <b <0,∴a -b <0,a +b <0.当n 是奇数时,原式=(a -b )+(a +b )=2a ; 当n 是偶数时,原式=|a -b |+|a +b | =(b -a )+(-a -b )=-2a . ∴na -bn+na +bn=⎩⎪⎨⎪⎧2a ,n 为奇数,-2a ,n 为偶数.[课时达标检测]一、选择题1.4a -2+(a -4)0有意义,则a 的取值范围是( ) A .a ≠2 B .a ≥2C .a ≠4D .2≤a <4或a >4解析:选D 要使原式有意义,只需⎩⎪⎨⎪⎧a -2≥0,a -4≠0,即a ≥2且a ≠4.2.3-63+45-44+35-43的值为( ) A .-6 B .25-2 C .2 5D .6解析:选A 3-63=-6,45-44=|5-4|=4-5, 35-43=5-4,∴原式=-6+4-5+5-4=-6. 3.化简x +32-3x -33得( ) A .6 B .2xC .6或-2xD .6或2x 或-2x解析:选C 注意开偶次方根要加绝对值,x +32-3x -33=|x +3|-(x -3)=⎩⎪⎨⎪⎧6,x ≥-3,-2x ,x <-3,故选C.4.7+43+7-43等于( ) A .-4B .2 3C .-2 3D .4解析:选D7+43+7-43=2+32+2-32=(2+3)+(2-3)=4.5.已知二次函数y =ax 2+bx +0.1的图象如图所示,则4a -b4的值为( )A .a +bB .-(a +b )C .a -bD .b -a解析:选D 由图象知a (-1)2+b ×(-1)+0.1<0,∴a <b ,∴4a -b4=|a -b |=b -a .二、填空题6.设m <0,则(-m )2=________. 解析:∵m <0,∴-m >0,∴(-m )2=-m . 答案:-m7.若x 2-8x +16=x -4,则实数x 的取值范围是________. 解析:∵x 2-8x +16=x -42=|x -4|又x 2-8x +16=x -4, ∴|x -4|=x -4,∴x ≥4. 答案:x ≥48.设f (x )=x 2-4,若0<a ≤1,则f ⎝⎛⎭⎪⎫a +1a =________.解析:f ⎝⎛⎭⎪⎫a +1a =⎝ ⎛⎭⎪⎫a +1a 2-4=a 2+1a2-2=⎝ ⎛⎭⎪⎫a -1a 2=⎪⎪⎪⎪⎪⎪a -1a , 由于0<a ≤1,所以a ≤1a,故f ⎝ ⎛⎭⎪⎫a +1a =1a-a .答案:1a-a9.写出使下列等式成立的x 的取值范围:(1)3⎝ ⎛⎭⎪⎫1x -33=1x -3; (2)x -5x 2-25=(5-x )x +5.解:(1)要使3⎝ ⎛⎭⎪⎫1x -33=1x -3成立,只需x -3≠0即可, 即x ≠3. (2)x -5x 2-25=x -52x +5.要使x -52x +5=(5-x )x +5成立,只需⎩⎪⎨⎪⎧x +5≥0,x -5≤0,即-5≤x ≤5.10.化简(a-1)2+1-a2+7a-17.解:由题意可知a-1有意义,∴a≥1.∴原式=(a-1)+|1-a|+(a-1)=a-1+a-1+a-1=3a-3.第二课时指数幂及运算分数指数幂的意义[提出问题]问题1:判断下列运算是否正确.(1) 5a10=5a25=a2=a4105(a>0);(2)3a12=3a43=a4=a123(a>0).提示:正确.问题2:能否把4a3,3b2,4c5写成下列形式:4a3=a 34(a>0);3b2=b 23(b>0);4c5=c 54(c>0).提示:能.[导入新知]分数指数幂的意义(1)规定正数的正分数指数幂的意义是:a mn=na m(a>0,m,n∈N*,且n>1).(2)规定正mn数的负分数指数幂的意义是:amn=1anm)=1na m(a>0,m,n∈N*,且n>1).(3)0的正分数指数幂等于0,0的负分数指数幂无意义.[化解疑难]对分数指数幂的理解(1)指数幂a m n 不可以理解为m n个a 相乘,它是根式的一种新写法.在定义的规定下,根式与分数指数幂是表示相同意义的量,只是形式上不同而已,这种写法更便于指数运算,所以分数指数幂与根式可以相互转化;(2)通常规定分数指数幂的底数a >0,但要注意在像(-a )14=4-a 中的a ,则需要a ≤0.有理指数幂的运算性质[导入新知]有理数指数幂的运算性质(1)a r a s=ar +s(a >0,r ,s ∈Q );(2)(a r )s =a rs(a >0,r ,s ∈Q ); (3)(ab )r=a r·b r(a >0,b >0,r ∈Q ). [化解疑难]有理指数幂的运算性质的理解与巧记(1)有理数指数幂的运算性质是由整数指数幂的运算性质推广而来,可以用文字语言叙述为:①同底数幂相乘,底数不变,指数相加;②幂的幂,底数不变,指数相乘;③积的幂等于幂的积.(2)有理数指数幂的运算性质中幂指数运算法则遵循:乘相加,除相减,幂相乘.根式与分数指数幂的互化[例1] (1)下列根式与分数指数幂的互化正确的是( ) A .-x =(-x )12(x >0) B.6y 2=y 13(y <0) C .x34=41x3(x >0)D .x13-=-3x (x ≠0)(2)用分数指数幂的形式表示下列各式. ①a 2·a (a >0); ②a a (a >0);③⎝⎛⎭⎪⎫4b -2323- (b >0);④y 2xx 3y 3y 6x 3(x >0,y >0). (1)[解析] -x =-x 12(x >0); 6y 2=[(y )2] 16=-y 13(y <0);x 34-=(x -3) 14=4⎝ ⎛⎭⎪⎫1x 3(x >0); x13-=⎝ ⎛⎭⎪⎫1x 13=31x (x ≠0). [答案] C(2)[解] ①a 2·a =a 2·a 12=a 2+12=a 52. ② a a =a ·a 12= a 32=⎝⎛⎭⎫a 3212=a 32.③原式=⎣⎡⎦⎤()b 23-1423-=b212343⎛⎫-⨯⨯- ⎪⎝⎭=b 19. ④法一:从外向里化为分数指数幂.y 2xx 3y 3y 6x 3=⎝⎛⎭⎪⎫y 2xx 3y3y 6x 312=⎣⎢⎡⎦⎥⎤y 2x ⎝ ⎛⎭⎪⎫x 3y 3y 6x 31212 =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y 2x ⎣⎢⎡⎦⎥⎤x 3y ⎝ ⎛⎭⎪⎫y 6x 3 1212 =⎝ ⎛⎭⎪⎫y 2x 12·⎝ ⎛⎭⎪⎫x 3y 14·⎝ ⎛⎭⎪⎫y 6x 3112=y x12·x 34y14·y 12x14=x 34·y 23x 34·y14=y 54.法二:从里向外化为分数指数幂.y 2xx 3y 3y 6x 3=y 2xx 3y ⎝ ⎛⎭⎪⎫y 6x 3 13=y 2x x 3y ·y 2x=y 2xx 2·y 12=⎝ ⎛⎭⎪⎫y2x ·xy 1212=y 54.[类题通法]根式与分数指数幂的互化技巧(1)在解决根式与分数指数幂互化的问题时,关键是熟记根式与分数指数幂的转化式子:amn=na m和am n-=1am n=1na m,其中字母a 要使式子有意义.(2)将含有多重根号的根式化为分数指数幂的途径有两条:一是由里向外化为分数指数幂;二是由外向里化为分数指数幂.[活学活用]将下列根式化为分数指数幂的形式: (1) 1a1a(a >0);(2)13x ·5x 22(x >0); (3) ab3ab 5(a >0,b >0).解:(1)原式=1a ⎝ ⎛⎭⎪⎫1a 12=⎝ ⎛⎭⎪⎫1a 32=⎝ ⎛⎭⎪⎫1a 34=a 34-. (2)原式=13x ·⎝⎛⎭⎫x 252=13x ·x 45=13x95=1⎝⎛⎭⎫x 9513=1x35=x35-.(3)原式=[ab 3(ab 5) 12]12=[a ·a 12b 3(b 5) 12]12=⎝⎛⎭⎫a 32b11212=a 34b 114.指数幂的运算[例2] 计算下列各式:(1)⎝ ⎛⎭⎪⎫2350+2-2×⎝ ⎛⎭⎪⎫21412--0.010.5; (2)0.06413--⎝ ⎛⎭⎪⎫-780+[(-2)3] 43-+16-0.75; (3)⎝ ⎛⎭⎪⎫14 12-·4ab -130.1-2a 3b -312(a >0,b >0).[解] (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+16-110=1615. (2)原式=0.4-1-1+(-2)-4+2-3=52-1+116+18=2716.(3)原式=412·432100·a 32·a 32-·b 32-·b 32=425a 0b 0=425.[类题通法]利用指数幂的运算性质化简求值的方法(1)进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.(2)在明确根指数的奇偶(或具体次数)时,若能明确被开方数的符号,则可以对根式进行化简运算.(3)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示. [活学活用] 计算下列各式的值: (1)0.02713--⎝ ⎛⎭⎪⎫-17-2+⎝ ⎛⎭⎪⎫27912-()2-10; (2)⎝ ⎛⎭⎪⎫8125 13--⎝ ⎛⎭⎪⎫-350+160.75+0.2512; (3)⎝ ⎛⎭⎪⎫14-2+3+23-2-1.030×⎝ ⎛⎭⎪⎫-623. 解:(1)原式=⎝ ⎛⎭⎪⎫271 00013--⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45. (2)原式=52-1+1634+0.5=52-1+8+0.5=10.(3)原式=42+3+223-2-1×⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫32 123=16+5+26+346=21+114 6.4.含附加条件的幂的求值问题[典例] (12分)已知x +y =12,xy =9,且x <y ,求: (1)x 12+y 12; (2)x 12-y 12; (3)x -y . [解题流程]求x 12+y 12,x 12-y 12,x-y 的值,应建立其与x +y 及xy 的关系后求解1将x12+y12,x12-y12平方后即可建立其与x +y 及xy 的关系;,2可利用平方差公式将x -y 分解成x 12+y 12x 12-y12求解x 12+y122=x +y +2xy↓x 12-y122=x +y -2xy↓ (x -y =x122-y122=x 12+y122=x 12+y12x 12-y12[规范解答](1)⎝⎛⎭⎫x 12+y 122=x +y +2xy =18,(2分) ∴x 12+y 12=3 2.(4分)(2)⎝⎛⎭⎫x 12-y 122=x +y -2xy =6,(6分)又x <y ,∴x 12-y 12=- 6.(8分)(3)x -y =⎝⎛⎭⎫x 122-⎝⎛⎭⎫y 122=⎝⎛⎭⎫x 12+y 12⎝⎛⎭⎫x 12-y 12 (10分)=32×(-6)=-3×212×212×312=-6 3.(12分)[名师批注]由x 与x 12,y 与y 12都具有平方关系,故可先求⎝⎛⎭⎫x 12+y 122,然后求x 12+y 12的值,解题时常因找不到此关系而使问题不能得以正确求解.易忽视条件x <y ,而得出错误答案.此处巧妙利用了12的结论使问题得以解决.[活学活用]已知a +a -1=5,求下列各式的值; (1)a 2+a -2; (2)a 12-a12-.解:(1)法一:由a +a -1=5两边平方得:a 2+2aa -1+a -2=25,即:a 2+a -2=23;法二:a 2+a -2=a 2+2aa -1+a -2-2aa -1=(a +a -1)2-2=25-2=23;(2)∵(a 12-a 12-)2=a +a -1-2=5-2=3,∴|a 12-a12-|= 3.∴a 12-a 12-=± 3.[随堂即时演练]1.若2<a <3,化简2-a2+43-a4的结果是( )A .5-2aB .2a -5C .1D .-1解析:选C 由于2<a <3, 所以2-a <0,3-a >0, 所以原式=a -2+3-a =1. 2.(-2a 13b34-·(-a 12b13-)6÷(-3a 23b14-)等于( )A.23a 83b 52- B .-23a 83C .-23a 16b 56-D.23a 16b 52- 解析:选 A 原式=(-2)×(-1)6÷(-3)·(a 13b34-)·(a 3·b -2)÷(a 23b14-)=23a12+333-b312_44⎛⎫⎪⎝⎭--=23a 83b 52-注意符号不能弄错. 3.若10x=3,10y=4,则102x -y=________.解析:∵10x=3,∴102x=9, ∴102x -y=102x10y =94. 答案:944.化简3a a 的结果是________.解析: 3a a =()a a 13=⎝⎛⎭⎫a ·a 1213=⎝⎛⎭⎫a 3213=a 12.答案:a 125.计算(或化简)下列各式:(1)42+1·23-22·6423-;(2)a -ba 12+b12-a +b -2a 12·b12a 12-b12.解:(1)原式=(22)2+1·23-22·(26)23-=222+2·23-22·2-4=222+2+3-22-4=21=2.(2)原式=a 12+b12a 12-b12a 12+b12-a 12-b 122a 12-b12=a 12-b 12-⎝⎛⎭⎫a 12-b 12=0.[课时达标检测]一、选择题 1.a 3a ·5a 4(a >0)的值是( )A .1B .aC .a 15D .a 1710解析:选D 原式=a 3·a -12·a -45=a 3-12-45=a 1710.2.化简[3-52]34的结果为( ) A .5 B. 5 C .- 5 D .-5解析:选B [3-52]34=[(-5)23]34=512= 5. 3.⎝ ⎛⎭⎪⎫1120-(1-0.5-2)÷⎝ ⎛⎭⎪⎫27823的值为( ) A .-13B.13C.43D.73解析:选D 原式=1-(1-22)÷⎝ ⎛⎭⎪⎫322=1-(-3)×49=73.故选D.4.若a >1,b >0,a b +a -b =22,则a b -a -b等于( ) A. 6 B .2或-2 C .-2D .2解析:选D ∵a >1,b >0,∴a b>a -b,(a b-a -b )2=(a b +a -b )2-4=(22)2-4=4, ∴a b -a -b=2.5.设x ,y 是正数,且x y =y x,y =9x ,则x 的值为( ) A.19 B.43 C .1D.39解析:选B x 9x=(9x )x,(x 9)x=(9x )x, ∴x 9=9x .∴x 8=9.∴x =89=43. 二、填空题6.化简a 3b 23ab 2⎝ ⎛⎭⎪⎫a 14b 1243b a (a >0,b >0)的结果是________.解析:原式=a 3·b 2·a 13·b2312a ·b 2·a -13·b13=a 32+16-1+13·b 1+13-2-13=ab.答案:ab7.已知x =12(51n -5-1n ),n ∈N *,则(x +1+x 2)n的值为________.解析:因为1+x 2=14(52n +2+5-2n )=14(51n +5-1n )2,所以(x +1+x 2)n=⎣⎢⎡⎦⎥⎤1251n -5-1n +1251n +5-1n n =⎝ ⎛⎭⎪⎫51n n =5.答案:58.设a 2=b 4=m (a >0,b >0),且a +b =6,则m 等于________. 解析:∵a 2=b 4=m (a >0,b >0),∴a =m 12,b =m 14,a =b 2.由a +b =6得b 2+b -6=0,解得b =2或b =-3(舍去). ∴m 14=2,m =24=16. 答案:16 三、解答题 9.化简求值:(1)⎝ ⎛⎭⎪⎫2790.5+0.1-2+⎝ ⎛⎭⎪⎫21027-23-3π0+3748;(2)⎝ ⎛⎭⎪⎫-338-23+(0.002)-12-10(5-2)-1+(2-3)0;(3)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (4)23a ÷46a ·b ×3b 3.解:(1)原式=⎝ ⎛⎭⎪⎫25912+10.12+⎝ ⎛⎭⎪⎫6427-23-3+3748=53+100+916-3+3748=100. (2)原式=(-1)-23×⎝ ⎛⎭⎪⎫338-23+⎝ ⎛⎭⎪⎫1500-12-105-2+1=⎝ ⎛⎭⎪⎫278-23+(500)12-10(5+2)+1=49+105-105-20+1=-1679. (3)原式=-4a-2-1b -3+1÷(12a -4b -2c )=-13a -3-(-4)b -2-(-2)c -1=-13ac -1=-a 3c .(4)原式=2a 13÷(4a 16b 16)×(3b 32)=12a 13-16b -16·3b 32=32a 16b 43. 10.已知a =3,求11+a 14+11-a 14+21+a12+41+a 的值.解:11+a 14+11-a 14+21+a12+41+a=2⎝ ⎛⎭⎪⎫1+a 14⎝ ⎛⎭⎪⎫1-a 14+21+a 12+41+a=21-a 12+21+a12+41+a =41-a121+a12+41+a=41-a +41+a =81-a2=-1. 2.1.2 指数函数及其性质 第一课时 指数函数及其性质指数函数的定义[提出问题]观察下列从数集A 到数集B 的对应: ①A =R ,B =R ,f :x →y =2x;②A =R ,B =(0,+∞),f :x →y =⎝ ⎛⎭⎪⎫12x.问题1:这两个对应能构成函数吗? 提示:能.问题2:这两个函数有什么特点? 提示:底数是常数,指数是自变量. [导入新知]指数函数的定义函数y =a x(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R . [化解疑难]指数函数的概念中规定a >0且a ≠1的原因(1)若a =0,则当x >0时,a x=0;当x ≤0时,a x无意义.(2)若a <0,则对于x 的某些数值,可使a x 无意义.如(-2)x,这时对于x =14,x =12,…,在实数范围内函数值不存在.(3)若a =1,则对于任何x ∈R ,a x=1,是一个常量,没有研究的必要性.为了避免上述各种情况的发生,所以规定a>0,且a≠1.在规定以后,对于任何x∈R,a x都有意义,且a x>0.[提出问题]问题1:试作出函数y=2x(x∈R)和y=(12)x(x∈R)的图象.提示:问题2:两函数图象有无交点?提示:有交点,其坐标为(0,1).问题3:两函数的定义域是什么?值域是什么?单调性如何?提示:定义域都是R;值域都是(0,+∞);函数y=2x是增函数,函数y=⎝⎛⎭⎪⎫12x是减函数.[导入新知]指数函数的图象和性质R[化解疑难]透析指数函数的图象与性质(1)当底数a 大小不确定时,必须分a >1和0<a <1两种情况讨论函数的图象和性质. (2)当a >1时,x 的值越小,函数的图象越接近x 轴;当0<a <1时,x 的值越大,函数的图象越接近x 轴.(3)指数函数的图象都经过点(0,1),且图象都在第一、二象限.指数函数的概念[例1] (1)①y =2·3x;②y =3x +1;③y =3x ;④y =x 3.其中,指数函数的个数是( ) A .0 B .1 C .2D .3(2)函数y =(a -2)2a x是指数函数,则( ) A .a =1或a =3 B .a =1 C .a =3D .a >0且a ≠1[解析] (1)①中,3x的系数是2,故①不是指数函数; ②中,y =3x +1的指数是x +1,不是自变量x ,故②不是指数函数;③中,y =3x,3x的系数是1,幂的指数是自变量x ,且只有3x一项,故③是指数函数; ④中,y =x 3中底数为自变量,指数为常数,故④不是指数函数.所以只有③是指数函数.(2)由指数函数定义知⎩⎪⎨⎪⎧a -22=1,a >0,且a ≠1,所以解得a =3.[答案] (1)B (2)C [类题通法]判断一个函数是否为指数函数的方法判断一个函数是否是指数函数,其关键是分析该函数是否具备指数函数三大特征: (1)底数a >0,且a ≠1. (2)a x的系数为1.(3)y =a x 中“a 是常数”,x 为自变量,自变量在指数位置上. [活学活用]下列函数中是指数函数的是________(填序号). ①y =2·(2)x;②y =2x -1;③y =⎝ ⎛⎭⎪⎫π2x ;④y =x x;⑤y =3-1x ;⑥y =x 13.解析:①中指数式(2)x的系数不为1,故不是指数函数;②中y =2x -1=12·2x,指数式2x的系数不为1,故不是指数函数;④中底数为x ,不满足底数是唯一确定的值,故不是指数函数;⑤中指数不是x ,故不是指数函数;⑥中指数为常数且底数不是唯一确定的值,故不是指数函数.故填③.答案:③[例2] (1)xa ,b ,c ,d 与1的大小关系为( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c (2)函数y =ax -3+3(a >0,且a ≠1)的图象过定点________.[解析] (1)由图象可知③④的底数必大于1,①②的底数必小于1.过点(1,0)作直线x =1,如图所示,在第一象限内直线x =1与各曲线的交点的纵坐标即为各指数函数的底数,则1<d <c ,b <a <1,从而可知a ,b ,c ,d 与1的大小关系为b <a <1<d <c .(2)法一:因为指数函数y =a x(a >0,且a ≠1)的图象过定点(0,1),所以在函数y =a x -3+3中,令x =3,得y =1+3=4,即函数的图象过定点(3,4).法二:将原函数变形,得y -3=ax -3,然后把y -3看作是(x -3)的指数函数,所以当x-3=0时,y -3=1,即x =3,y =4,所以原函数的图象过定点(3,4).[答案] (1)B (2)(3,4) [类题通法]底数a 对函数图象的影响(1)底数a 与1的大小关系决定了指数函数图象的“升降”:当a >1时,指数函数的图象“上升”;当0<a <1时,指数函数的图象“下降”.(2)底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.当a >b >1时,①若x >0,则a x >b x>1; ②若x <0,则1>b x>a x>0. 当1>a >b >0时,①若x >0,则1>a x>b x >0; ②若x <0,则b x>a x >1. [活学活用]若函数y =a x+(b -1)(a >0,且a ≠1)的图象不经过第二象限,则有( ) A .a >1且b <1 B .0<a <1且b ≤1 C .0<a <1且b >0D .a >1且b ≤0解析:选D 由指数函数图象的特征可知0<a <1时,函数y =a x+(b -1)(a >0,且a ≠1)的图象必经过第二象限,故排除选项B 、C.又函数y =a x+(b -1)(a >0,且a ≠1)的图象不经过第二象限,则其图象与y 轴的交点不在x 轴上方,所以当x =0时,y =a 0+(b -1)≤0,即b ≤0,故选项D 正确.与指数函数有关的定义域、值域问题[例(1)y =1-3x;(2)y =21x -4;(3)y =⎝ ⎛⎭⎪⎫23-|x |.[解] (1)要使函数式有意义,则1-3x≥0,即3x≤1=30, 因为函数y =3x在R 上是增函数,所以x ≤0, 故函数y =1-3x的定义域为(-∞,0]. 因为x ≤0,所以0<3x ≤1,所以0≤1-3x<1,所以1-3x ∈[0,1),即函数y =1-3x的值域为[0,1). (2)要使函数式有意义,则x -4≠0,解得x ≠4,所以函数y =21x -4的定义域为{x ∈R |x ≠4}.因为1x -4≠0,所以21x -4≠1,即函数y =21x -4的值域为{y |y >0且y ≠1}. (3)要使函数式有意义,则-|x |≥0,解得x =0,所以函数y =⎝ ⎛⎭⎪⎫23-|x |的定义域为{x |x=0}.而y =⎝ ⎛⎭⎪⎫23-|x |=⎝ ⎛⎭⎪⎫230=1,则函数y =⎝ ⎛⎭⎪⎫23-|x |的值域为{y |y =1}.[类题通法]指数型函数的定义域、值域的求法(1)求与指数函数有关的函数的定义域时,首先观察函数是y =a x 型还是y =a f (x )型,前者的定义域是R ,后者的定义域与f (x )的定义域一致,而求y =f ax型函数的定义域时,往往转化为解指数不等式(组).(2)求与指数函数有关的函数的值域时,在运用前面介绍的求函数值域的方法的前提下,要注意指数函数的值域为(0,+∞),切记准确运用指数函数的单调性.[活学活用]求函数y =⎝ ⎛⎭⎪⎫12x 2-2x -3的定义域和值域.解:定义域为R .∵x 2-2x -3=(x -1)2-4≥-4,∴⎝ ⎛⎭⎪⎫12x 2-2x -3≤⎝ ⎛⎭⎪⎫12-4=16.又∵⎝ ⎛⎭⎪⎫12x 2-2x -3>0,∴函数y =⎝ ⎛⎭⎪⎫12x 2-2x -3的值域为(0,16].5.利用换元法求函数的值域[典例] (12分)已知函数y =a 2x+2a x-1(a >0,且a ≠1),当x ≥0时,求函数f (x )的值域.[解题流程]求函数f x 的值域,应确定函数的类型1若令t =a x ,则原函数可变为y =t 2+2t -1,从而可利用二次函数的有关性质解决;2应明确换元后的定义域;3由于t =a xa >0,a ≠1,因此应分类确定t 的取值范围令t =a x―→分a >1和0<a <1两种情况,讨论t 的范围―→利用二次函数的知识求值域[随堂即时演练]1.已知1>n >m >0,则指数函数①y =m x,②y =n x的图象为( )解析:选C 由于0<m <n <1,所以y =m x与y =n x都是减函数,故排除A 、B ,作直线x =1与两个曲线相交,交点在下面的是函数y =m x 的图象,故选C.2.若函数y =(1-2a )x是实数集R 上的增函数,则实数a 的取值范围为( )A.⎝ ⎛⎭⎪⎫12,+∞ B .(-∞,0)C.⎝⎛⎭⎪⎫-∞,12D.⎝ ⎛⎭⎪⎫-12,12解析:选B 由题意知,此函数为指数函数,且为实数集R 上的增函数,所以底数1-2a >1,解得a <0.3.指数函数y =f (x )的图象过点(2,4),那么f (2)·f (4)=________. 解析:设f (x )=a x(a >0且a ≠1), 又f (2)=a 2=4,∴f (2)·f (4)=a 2·a 4=4·42=43=64. 答案:644.函数f (x )=⎝ ⎛⎭⎪⎫13x-1,x ∈[-1,2]的值域为________.解析:∵-1≤x ≤2,∴19≤⎝ ⎛⎭⎪⎫13x≤3.∴-89≤⎝ ⎛⎭⎪⎫13x-1≤2.∴值域为⎣⎢⎡⎦⎥⎤-89,2. 答案:⎣⎢⎡⎦⎥⎤-89,2 5.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域. 解:(1)因为函数图象过点(2,12),所以a2-1=12,则a =12. (2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1, 于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2].[课时达标检测]一、选择题1.下列函数中,指数函数的个数为( )①y =(12)x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =(12)2x -1.A .0个B .1个C .3个D .4个解析:选B 由指数函数的定义可判定,只有②正确. 2.函数y =(3-1)x在R 上是( ) A .增函数 B .奇函数 C .偶函数D .减函数解析:选D 由于0<3-1<1,所以函数y =(3-1)x在R 上是减函数,f (-1)=(3-1)-1=3+12,f (1)=3-1,则f (-1)≠f (1),且f (-1)≠-f (1),所以函数y =(3-1)x 不具有奇偶性.3.当x >0时,函数f (x )=(a 2-1)x的值总大于1,则实数a 的取值范围是( ) A .1<|a |< 2 B .|a |<1 C .|a |>1D .|a |> 2解析:选D 依题意得a 2-1>1,a 2>2,∴|a |> 2.4.函数y =xa x|x |(0<a <1)的图象的大致形状是( )解析:选D 当x >0时,y =a x(0<a <1),故去掉A 、B ,当x <0时,y =-a x,与y =a x(0<a <1,x <0)的图象关于x 轴对称,故选D.5.若a >1,-1<b <0,则函数y =a x+b 的图象一定在( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限 D .第一、二、四象限 解析:选A ∵a >1,且-1<b <0,故其图象如图所示.二、填空题6.给出函数f (x )=⎩⎪⎨⎪⎧2x, x ≥3,f x +1, x <3,则f (2)=________.解析:f (2)=f (3)=23=8. 答案:87.图中的曲线C 1,C 2,C 3,C 4是指数函数y =a x的图象,而a ∈{23,13,5,π},则图象C 1,C 2,C 3,C 4对应的函数的底数依次是________,________,________,________.解析:由底数变化引起指数函数图象变化的规律,在y 轴右侧,底大图高,在y 轴左侧,底大图低.则知C 2的底数<C 1的底数<1<C 4的底数<C 3的底数,而13<23<5<π,故C 1,C 2,C 3,C 4对应函数的底数依次是23,13,π, 5. 答案:23 13π 58.若x 1,x 2是方程2x=⎝ ⎛⎭⎪⎫12-1x +1的两个实数解,则x 1+x 2=________.解析:∵2x=⎝ ⎛⎭⎪⎫12-1x+1,∴2x=21x -1,∴x =1x-1,∴x 2+x -1=0. ∴x 1+x 2=-1. 答案:-1 三、解答题9.画出函数y =2|x |的图象,观察其图象有什么特征?根据图象指出其值域和单调区间. 解:当x ≥0时,y =2|x |=2x ;当x <0时,y =2|x |=2-x =(12)x .∴函数y =2|x |的图象如图所示,由图象可知,y =2|x |的图象关于y 轴对称,且值域是[1,+∞),单调递减区间是(-∞,0],单调递增区间是[0,+∞). 10.如果函数y =a 2x +2a x-1(a >0且a ≠1)在[-1,1]上的最大值为14,求a 的值. 解:函数y =a 2x+2a x -1=(a x +1)2-2,x ∈[-1,1].若a >1,则x =1时,函数取最大值a 2+2a -1=14,解得a =3.若0<a <1,则x =-1时,函数取最大值a -2+2a -1-1=14,解得a =13.综上所述,a =3或13.第二课时 指数函数及其性质的应用(习题课)1.指数函数的定义是什么?2.指数函数的定义域和值域分别是什么?3.指数函数y =a x(a >0,a ≠1)图象的位置与底数a 之间有什么关系?4.指数函数的单调性与底数之间有什么关系?利用指数函数的单调性比较大小[例1] (1)已知a =5-1,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.(2)比较下列各题中两个值的大小:①⎝ ⎛⎭⎪⎫57-1.8,⎝ ⎛⎭⎪⎫57-2.5;②⎝ ⎛⎭⎪⎫23-0.5,⎝ ⎛⎭⎪⎫34-0.5;③0.20.3,0.30.2. (1)[解析] 因为a =5-12∈(0,1),所以函数f (x )=a x在R 上是减函数.由f (m )>f (n )得m <n .[答案] m <n(2)[解] ①因为0<57<1,所以函数y =⎝ ⎛⎭⎪⎫57x在其定义域R 上单调递减,又-1.8>-2.5,所以⎝ ⎛⎭⎪⎫57-1.8<⎝ ⎛⎭⎪⎫57-2.5.②在同一平面直角坐标系中画出指数函数y =⎝ ⎛⎭⎪⎫23x 与y =⎝ ⎛⎭⎪⎫34x的图象,如图所示.当x =-0.5时,由图象观察可得⎝ ⎛⎭⎪⎫23-0.5>⎝ ⎛⎭⎪⎫34-0.5.③因为0<0.2<0.3<1,所以指数函数y =0.2x 与y =0.3x在定义域R 上均是减函数,且在区间(0,+∞)上函数y =0.2x 的图象在函数y =0.3x 的图象的下方,所以0.20.2<0.30.2.又根据指数函数y =0.2x 的性质可得0.20.3<0.20.2,所以0.20.3<0.30.2. [类题通法]三类指数式的大小比较问题(1)底数相同、指数不同:利用指数函数的单调性解决.(2)底数不同、指数相同:利用指数函数的图象解决.在同一平面直角坐标系中画出各个函数的图象,依据底数a 对指数函数图象的影响,按照逆时针方向观察,底数在逐渐增大,然后观察指数所取值对应的函数值即可.(3)底数不同、指数也不同:采用介值法(中间量法).取中间量1,其中一个大于1,另一个小于1;或者以其中一个指数式的底数为底数,以另一个指数式的指数为指数.比如,要比较a c 与b d 的大小,可取a d 为中间量,a c 与a d 利用函数的单调性比较大小,b d 与a d利用函数的图象比较大小.[活学活用]比较下列各题中两个值的大小: (1)3-1.8,3-2.5;(2)7-0.5,8-0.5;(3)6-0.8,70.7.解:(1)因为3>1,所以函数y =3x在定义域R 上单调递增,又-1.8>-2.5,所以3-1.8>3-2.5.(2)依据指数函数中底数a 对函数图象的影响,画出函数y =7x与y =8x的图象(图略),可得7-0.5>8-0.5.(3)因为1<6<7,所以指数函数y =6x与函数y =7x在定义域R 上是增函数,且6-0.8<1,70.7>1,所以6-0.8<70.7.[例2] (1)x 0.5(2)已知0.2x<25,求实数x 的取值范围.[解] (1)因为3>1,所以指数函数f (x )=3x在R 上是增函数. 由3x≥30.5,可得x ≥0.5,即x 的取值范围为[0.5,+∞). (2)因为0<0.2<1,所以指数函数f (x )=0.2x在R 上是减函数.又25=⎝ ⎛⎭⎪⎫15-2=0.2-2,所以0.2x <0.2-2,则x >-2,即x 的取值范围为(-2,+∞). [类题通法]解指数不等式应注意的问题(1)形如a x>a b的不等式,借助于函数y =a x的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如a x>b 的不等式,注意将b 转化为以a 为底数的指数幂的形式,再借助于函数y =a x的单调性求解.[活学活用] 如果a-5x>ax +7(a >0,且a ≠1),求x 的取值范围.解:①当a >1时,∵a -5x>ax +7,∴-5x >x +7,解得x <-76.②当0<a <1时,∵a-5x>ax +7,∴-5x <x +7解得x >-76.综上所述,当a >1时,x ∈(-∞,-76);当0<a <1时,x ∈(-76,+∞).指数函数性质的综合应用[例3] 已知函数f (x )=2x+2ax +b,且f (1)=52,f (2)=174.(1)求a ,b 的值;(2)判断f (x )的奇偶性并证明;(3)判断并证明函数f (x )在[0,+∞)上的单调性,并求f (x )的值域.[解] (1)∵⎩⎪⎨⎪⎧f1=52,f2=174,∴根据题意得⎩⎪⎨⎪⎧f1=2+2a +b=52,f2=22+22a +b=174,解得⎩⎪⎨⎪⎧a =-1,b =0.故a ,b 的值分别为-1,0.(2)由(1)知f (x )=2x +2-x,f (x )的定义域为R ,关于原点对称. 因为f (-x )=2-x+2x=f (x ),所以f (x )为偶函数.(3)设任意x 1<x 2,且x 1,x 2∈[0,+∞),则f (x 1)-f (x 2)=(2x 1+2-x 1)-(2x 2+2-x 2)=(2x 1-2x 2)+⎝⎛⎭⎪⎫12x 1-12x 2=(2x 1-2x 2)·2x 1+x 2-12x 1+x 2.因为x 1<x 2,且x 1,x 2∈[0,+∞),所以2x 1-2x 2<0,2x 1+x 2>1,所以2x 1+x 2-1>0,则f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以f (x )在[0,+∞)上为增函数.当x =0时,函数取得最小值,为f (0)=1+1=2,所以f (x )的值域为[2,+∞). [类题通法]解决指数函数性质的综合问题应关注两点(1)指数函数的单调性与底数有关,因此讨论指数函数的单调性时,一定要明确底数与1的大小关系.与指数函数有关的函数的单调性也往往与底数有关,其解决方法一般是利用函数单调性的定义.(2)指数函数本身不具有奇偶性,但是与指数函数有关的函数可以具有奇偶性,其解决方法一般是利用函数奇偶性的定义和性质.[活学活用]已知函数f (x )=2x-12x +1.(1)求证:f (x )是奇函数;(2)用单调性的定义证明:f (x )在R 上是增函数.证明:(1)f (x )的定义域是R ,对任意的x ∈R ,都有f (-x )=2-x-12-x +1=2-x-1·2x2-x +1·2x =1-2x1+2x =-2x-12x+1=-f (x ),所以f (x )是奇函数. (2)f (x )=2x-12x +1=2x+1-22x +1=1-22x +1(可以不分离常数,但分离常数后计算较简单).设x 1,x 2是R 上的任意两个值,且x 1<x 2,则f (x 1)-f (x 2)=(1-22x 1+1)-⎝ ⎛⎭⎪⎫1-22x 2+1=22x 2+1-22x 1+1=22x 1-2x 22x 1+12x 2+1. 因为x 1<x 2,所以2x 1<2x 2,2x 1+1>1,2x 2+1>1,所以2x 1-2x 2<0,则f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在R 上是增函数.6.警惕底数a 对指数函数单调性的影响[典例] 若指数函数f (x )=a x(a >0,a ≠1)在区间[1,2]上的最大值是最小值的2倍,则实数a 的值为________.[解析] 当0<a <1时,f (x )=a x为减函数,最小值为a 2,最大值为a ,故a =2a 2,解得a =12.当a >1时,f (x )=a x为增函数,最小值为a ,最大值为a 2.故a 2=2a ,解得a =2. 综上,a =12或a =2.[答案] 12或2[易错防范]1.解决上题易忽视对a 的讨论,错认为a 2=2a ,从而导致得出a =2的错误答案. 2.求函数f (x )=a x(a >0,a ≠1)在闭区间[s ,t ]上的最值,应先根据底数的大小对指数函数进行分类.当底数大于1时,指数函数为[s ,t ]上的增函数,最小值为a s,最大值为a t .当底数大于0小于1时,指数函数为[s ,t ]上的减函数,最大值为a s ,最小值为a t .[活学活用]f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值与最小值之和为6,则a =________.解析:由于a x(a >0,且a ≠1)在[1,2]上是单调函数,故其最大值与最小值之和为a 2+a =6,解得a =-3(舍去),或a =2,所以a =2.答案:2[随堂即时演练]1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)解析:选D 不等式2x +1<1=20,∵y =2x是增函数,∴x +1<0,即x <-1.2.已知三个数a =60.7,b =0.70.8,c =0.80.7,则三个数的大小关系是( ) A .a >b >c B .b >c >a C .c >b >aD .a >c >b解析:选D a =60.7>60=1,c =0.80.7>0.70.7>0.70.8=b ,且c =0.80.7<0.80=1,所以a >c >b . 3.不等式2x<22-3x的解集是________.解析:由2x <22-3x得x <2-3x ,即x <12,解集为{x |x <12}.答案:{x |x <12}4.函数f (x )=a x(a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,则a 的值为。
高中数学 第二章 基本初等函数(Ⅰ)本章复习学案设计 新人教A版必修1-新人教A版高一必修1数学学案
第二章基本初等函数(Ⅰ)本章复习学习目标①复习巩固指数、对数的运算性质,进一步熟练地运用指数函数、对数函数及幂函数的性质解决一些问题;②在学生对教材知识掌握的基础上,引导学生利用所学的知识解决问题,提高学生分析问题与解决问题的能力.合作学习一、复习回顾,承上启下1.n次方根的定义:n次方根:如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.2.n次方根的性质(1)当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,记为;(2)当n为偶数时,正数的n次方根有两个,它们互为相反数,记为;(3)负数没有偶次方根,0的任何次方根都是0.3.4.有理数指数幂的运算性质a n=(n∈N*);a0=1(a≠0);a-n=(a≠0,n∈N*).(1)a m·a n=a m+n(m,n∈Q);(2)(a m)n=a mn(m,n∈Q);(3)(ab)n=a n·b n(n∈Q).其中a m÷a n=a m·a-n=a m-n,()n=(a·b-1)n=a n·b-n=.5.对数:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作.其中a 叫做对数的底数,N叫做真数.根据对数的定义,可以得到对数与指数间的关系:当a>0,且a≠1时,a x=N⇔x=log a N(符号功能)——熟练转化; 常用对数:以10为底log10N写成;自然对数:以e为底log e N写成(e=2.71828…). 6.对数的性质(1)在对数式中N=a x>0(负数和零没有对数);(2)log a1=0,log a a=1(1的对数等于0,底数的对数等于1);(3)如果把a b=N中的b写成,则有=N(对数恒等式).7.对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:(1)log a(M·N)=;(2)log a=;(3)log a M n=;(4)log a b=(a>0,且a≠1;c>0,且c≠1;b>0)(换底公式);(5)log a b=;(6)lo b n=.8.指数函数的性质函数名指数函数称定义函数y=a x(a>0且a≠1)叫做指数函数a>1 0<a<1图象定义域值域过定点图象过定点,即x=0时,y=1奇偶性非奇非偶单调性在R上是函数在R上是函数函数值的变化情况y>1(x>0),y=1(x=0),0<y<1(x<0) y>1(x<0),y=1(x=0),0<y<1(x>0)a变化对图象的影响在第一象限内,a越大图象越高,越靠近y轴;在第二象限内,a越大图象越低,越靠近x轴在第二象限内,a越小图象越高,越靠近y轴;在第一象限内,a越小图象越低,越靠近x轴9.对数函数的性质函数名称对数函数定义函数y=log a x(a>0且a≠1)叫做对数函数图象a>1 0<a<1定义域值域过定点图象过定点,即x=1时,y=0奇偶性单调性在(0,+∞)上是函数在(0,+∞)上是函数函数值的变化情log a x>0(x>1)log a x=0(x=1)log a x<0(0<x<1)log a x<0(x>1)log a x=0(x=1)log a x>0(0<x<1)况a变化对图象的影响在第一象限内,a越大图象越低,越靠近x轴,在第四象限内,a越大图象越高,越靠近y轴在第一象限内,a越小图象越低,越靠近y轴,在第四象限内,a越小图象越高,越靠近x轴10.反函数(1)反函数概念函数y=a x(x∈R)与对数函数y=log a x(x∈(0,+∞))互为反函数.即同底的指数函数与对数函数互为反函数.(2)反函数的性质互为反函数的两个函数的图象关于直线对称.11.幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中x是自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限;②过定点:所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);③单调性:如果α>0,则幂函数的图象过原点,并且在[0,+∞)上为增函数.如果α<0,则幂函数的图象在(0,+∞)上为减函数,在第一象限内,图象无限接近x轴与y轴;④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当α=(其中p,q互质,p和q∈Z),若p为奇数q为奇数时,则y=是奇函数,若p为奇数q为偶数时,则y=是偶函数,若p为偶数q为奇数时,则y=是非奇非偶函数;⑤图象特征:幂函数y=xα,x∈(0,+∞),当α>1时,若0<x<1,其图象在直线y=x下方,若x>1,其图象在直线y=x上方;当α<1时,若0<x<1,其图象在直线y=x上方,若x>1,其图象在直线y=x下方.二、典例分析,性质应用1.指数、对数运算熟练掌握指数的定义、运算法则、公式和对数的定义、运算法则.公式是指数、对数函数及其一切运算赖以施行的基础.【例1】计算下列各式的值.(1)(0.027-()-2+(2-(-1)0;(2)lg5(lg8+lg1000)+(lg)2+lg+lg0.06.【例2】设4a=5b=100,求2()的值.【例3】(选讲)已知f(x)=,且0<a<1,(1)求f(a)+f(1-a)的值;(2)求f()+f()+f()+…+f()的值.说明:如果函数f(x)=,则函数f(x)满足f(x)+f(1-x)=1.2.指数函数、对数函数、幂函数的图象熟悉指数函数、对数函数、幂函数的图象与性质是熟练求解指、对、幂问题的关键.【例4】已知c<0,下列不等式中成立的一个是( )A.c>2cB.c>()cC.2c<()cD.2c>()c【例5】方程2x-x2=2x+1的解的个数为.【例6】0.32,log20.3,20.3这三个数之间的大小顺序是( )A.0.32<20.3<log20.3B.0.32<log20.3<20.3C.log20.3<0.32<20.3D.log20.3<20.3<0.32【例7】方程log3x+x=3的解所在的区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)【例8】函数f(x)=1+log2x与g(x)=2-x+1在同一直角坐标系下的图象大致是( )3.指数函数、对数函数的性质【例9】比较下列每组中两个数的大小.(1)2.10.32.10.4;(2)()1.3()1.6;(3)2.10.3()-1.3;(4)log51.9 log52;(5)log0.70.2log0.52;(6)log42log34.【例10】求下列函数的定义域.(1)y=;(2)y=;(3)y=lo(3x-2);(4)y=.【例11】求下列函数的值域.(1)y=1-2x,x∈[1,4];(2)y=3+log2x,x∈[1,+∞).【例12】解下列不等式.(1)<2x-1<4;(2)log0.7(2x)<log0.7(x-1).变式:设函数f(x)=若f(x0)<2,求x0的取值范围.4.指数、对数型复合函数的单调性指数、对数函数的单调性应用十分广泛,可以用来比较数或式的大小,求函数的定义域、值域、最大值、最小值,求字母参数的取值范围等.对复合函数y=f[g(x)],若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在(c,d)上是增函数,那么复合函数在(a,b)上为增函数.可推广为下表(简记为同增异减):【例13】如果函数f(x)=(a2-1)x在R上是减函数,求实数a的取值范围.【例14】求下列函数的单调区间.(1)f(x)=(;(2)y=log5(x2-2x-3).变式:求下列函数的单调区间.(1)y=;(2)y=log0.1(2x2-5x-3).【例15】函数y=log a(x-4)的单调增区间是(4,+∞),求实数a的取值范围.【例16】(选讲)求函数y=4x+2x+1+3在区间[0,1]上的最大值与最小值.【例17】求函数y=2lo x-lo x2+1(≤x≤4)的值域.5.探究问题【例18】课本P75习题2.2B组第5题.(1)试着举几个满足“对定义域内任意实数a,b,都有f(a·b)=f(a)+f(b)”的函数例子,你能说出这些函数具有哪些共同性质吗?(2)试着举几个满足“对定义域内任意实数a,b,都有f(a+b)=f(a)·f(b)”的函数例子,你能说出这些函数具有哪些共同性质吗?三、作业精选,巩固提高1.计算下列各式的值.(1)lo(3+2);(2)lg25+lg2×lg50;(3)log6[log4(log381).2.求下列函数的定义域.(1)y=;(2)y=;(3)y=;(4)y=log a(x-1)2(0<a≠1);(5)y=log(x+1)(16-4x).3.求下列函数的值域:(1)y=()x+2,x∈[-1,2];(2)y=log2(x2-4x-5).4.求函数y=log2·log2(x∈[1,8])的最大值和最小值.5.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,求实数a的值.6.求下列函数的单调区间.(1)f(x)=;(2)f(x)=log4(2x+3-x2);(3)f(x)=(0<a≠1).7.(1)y=lo x是减函数,求实数a的取值范围;(2)若函数f(x)=log0.5(x2-ax+3a)在区间[2,+∞)上是减函数,求实数a的取值范围;(3)已知函数f(x)=log a(2-ax)在区间[0,1]上是减函数,求实数a的取值范围;(4)已知f(x)=是(-∞,+∞)上的减函数,求实数a的取值范围.8.求不等式log a(2x+7)>log a(4x-1)(a>0,且a≠1)中x的取值范围.9.已知f(x6)=log2x,求f(8).10.判断函数f(x)=lg(-x)的奇偶性.11.已知函数f(x)=log a(a>0,且a≠1).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性;(3)求不等式f(x)>0的解集.参考答案一、复习回顾,承上启下2.(1)-(2)±5.x=log a N lg N ln N6.(3)log a N7.(1)log a M+log a N(2)log a M-log a N(3)n log a M(5)(6)log a b8.R(0,+∞) (0,1) 增减9.(0,+∞) R(1,0) 非奇非偶增减10.(2)y=x11.(1)y=xα二、典例分析,性质应用【例1】(1)-45;(2)1.【例2】2.【例3】(1)1;(2)500.【例4】解析:在同一坐标系中分别作出y=x,y=()x,y=2x的图象(如图),显然x<0时,x<2x<()x,即c<0时,c<2c<()c,故选C.答案:C【例5】解析:原方程即2x=x2+2x+1,在同一坐标系中画出y=2x,y=x2+2x+1的图象,由图象可知有3个交点.答案:3【例6】解析:如图,在同一坐标系中作出函数y=2x,y=x2及y=log2x的图象.观察图象知当x=0.3时,log20.3<0.32<20.3.选C.答案:C【例7】解析:直接解方程是无法实现的,而借助数形结合思想作出图象,则问题易于解决.设y1=log3x,y2=-x+3,在同一坐标系中画出它们的图象(如图),观察可排除A,D.其交点P 的横坐标应在(1,3)内.又x=2时,y1=log32<1,而y2=-x+3=1,且知y1是增函数,y2是减函数,所以交点P的横坐标应在(2,3)内,故选C.答案:C【例8】解析:f(x)的图象过点(1,1),g(x)的图象过点(0,2),只有C符合,故选C.答案:C【例9】(1)<;(2)>;(3)<;(4)<;(5)>;(6)<.【例10】(1)(-∞,)∪(,+∞);(2)[0,+∞);(3)(,+∞);(4)(5,6].【例11】(1)[-15,-1];(2)[3,+∞).【例12】(1)(0,3);(2)(1,+∞).变式:(-1,1)【例13】(-,-1)∪(1,)【例14】(1)减区间:(3,+∞),增区间:(-∞,3);(2)增区间:(3,+∞),减区间:(-∞,-1).变式:(1)增区间:(1,+∞),减区间:(-∞,1);(2)减区间:(,3),增区间:(-).【例15】(1,+∞)【例16】最大值为11,最小值为6.【例17】解:令lo x=u,∵≤x≤4,∴-2≤u≤2,函数变为y=2u2-2u+1=2(u-)2+(-2≤u≤2).∴当u=时,y min=;当u=-2时,y max=13.由u=得,x=,由u=-2得,x=4.∴x=时,函数取最小值,x=4时,函数取最大值13,∴函数的值域为[,13].【例18】(1)y=log2x,y=log0.3x;(2)y=3x,y=0.1x.三、作业精选,巩固提高1.(1)2;(2)1;(3)0.2.(1)(-∞,0];(2)(-,-];(3)(1,4)∪(4,+∞);(4)(-∞,1)∪(1,+∞);(5)(-1,0)∪(0,2).3.(1)[,5];(2)R.4.y min=-,y max=2.5.6.(1)减区间:(1,+∞),增区间:(-∞,1);(2)增区间:(-1,1),减区间:(1,3);(3)a>1时,增区间:(-1,+∞),减区间:(-∞,-1);a<1时,增区间:(-∞,-1),减区间:(-1,+∞).7.(1)(-,-1)∪(1,);(2)(-4,4];(3)(1,2);(4)().8.a>1时,x的取值范围为(,4);0<a<1时,x的取值范围为(4,+∞).9.10.奇函数11.(1)(-1,1);(2)奇函数;(3)a>1时,(0,1);0<a<1时,(-∞,0)∪(1,+∞).。
高中数学新学案同步 必修1人教A版 全国通用版 第二章 基本初等函数 2.2 对数函数 2.2.1 第2课时
题型探究
类型一 具体数字的化简求值
例1 计算:(1)log345-log35;
解 45 log345-log35=log3 5 =log39=log332=2log33=2.
(2)log2(23×45);
解 log2(23×45)=log2(23×210)=log2(213)=13log22=13.
解答
反思与感悟
定字母换元.
此类问题的本质是把目标分解为基本 “粒子”,然后用指
跟踪训练3 已知log23=a,log37=b,用a,b表示log4256.
解 1 ∵log23=a,则a=log32,又∵log37=b,
ab+3 log356 log37+3log32 ∴log4256=log 42= = . log37+log32+1 ab+a+1 3
解答
lg 27+lg 8-lg (3) lg 1.2
1 000
;
3 2 3 2 3 2
lg 2 10 3 = 12 =2. lg 10
3 4 3 lg( )2 3 lg( 27 8) lg10 lg(3 2 10 ) 10 解 原式= 12 12 12 lg lg lg 10 10 10 3 12
1 3
(4)log2.56.25+ln e- 0.064 .
解
1 64 1 4 21 原式=log2.5(2.5) +2- =2+2-10=10. 1 000
2
1 3
解答
类型二 代数式的化简
命题角度1 代数式恒等变换
例 2 化简 loga
解
2
x2 y
3
.
z
x y ∵ 3 >0 且 x2>0, y>0, z
【人教A版】高中数学必修一:第2章《基本初等函数(Ⅰ)》导学案设计(含答案)
2.1.1指数与指数幂的运算[学习目标] 1.理解根式的概念及分数指数幂的含义.2.会进行根式与分数指数幂的互化.3.掌握根式的运算性质和有理数指数幂的运算性质.知识点一根式的定义1.n次方根的定义一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.2.n次方根的性质(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次n.正的n次方根与负的n次方根可以合(3)0的任何次方根都是0(4)负数没有偶次方根.3.根式的定义式子na叫做根式,这里n叫做根指数,a叫做被开方数.4.两个等式(1)(na)n=a(n∈N*).(2)na n=⎩⎨⎧a(n为奇数,且n∈N*),|a|=⎩⎪⎨⎪⎧a(a≥0),-a(a<0)(n为偶数,且n∈N*).知识点二 分数指数幂(1)规定正数的正分数指数幂的意义是:m naa >0,m ,n ∈N *,且n >1). (2)规定正数的负分数指数幂的意义是:-m n a=nm a1(a >0,m ,n ∈N *, 且n >1).(3)0的正分数指数幂等于0,0的负分数指数幂没有意义. 思考 (1)分数指数幂m na 能否理解为mn个a 相乘?(2)在分数指数幂与根式的互化公式m na =na m 中,为什么必须规定a >0? 答 (1)不能.m na 不可以理解为mn 个a 相乘,事实上,它是根式的一种新写法.(2)①若a =0,0的正分数指数幂恒等于0,即na m=m na =0,无研究价值.②若a <0,mn a =na m 不一定成立,如(-2)32=2(-2)3无意义,故为了避免上述情况规定了a >0.知识点三 有理数指数幂的运算性质 (1)a r a s =a r +s (a >0,r ,s ∈Q ); (2)(a r )s =a rs (a >0,r ,s ∈Q ); (3)(ab )r =a r b r (a >0,b >0,r ∈Q ). 知识点四 无理数指数幂无理数指数幂a α(a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质对于无理数指数幂同样适用.题型一 根式的运算 例1 求下列各式的值.(1)3(-2)3;(2)4(-3)2;(3)8(3-π)8; (4)x 2-2x +1-x 2+6x +9,x ∈(-3,3). 解 (1)3(-2)3=-2. (2)4(-3)2=432= 3. (3)8(3-π)8=|3-π|=π-3.(4)原式=(x -1)2-(x +3)2=|x -1|-|x +3|, 当-3<x ≤1时,原式=1-x -(x +3)=-2x -2. 当1<x <3时,原式=x -1-(x +3)=-4.因此,原式=⎩⎪⎨⎪⎧-2x -2,-3<x ≤1,-4,1<x <3.反思与感悟 1.解决根式的化简或求值问题,首先要分清根式为奇次根式还是偶次根式,然后运用根式的性质进行化简或求值.2.开偶次方时,先用绝对值表示开方的结果,再去掉绝对值符号化简,化简时要结合条件或分类讨论.跟踪训练1 化简下列各式.(1)5(-2)5;(2)4(-10)4;(3)4(a -b )4. 解 (1)5(-2)5=-2. (2)4(-10)4=|-10|=10. (3)4(a -b )4=|a -b |=⎩⎪⎨⎪⎧a -b (a ≥b ),b -a (a <b ).题型二 根式与分数指数幂的互化 例2 将下列根式化成分数指数幂形式. (1)3a ·4a ; (2)a a a ;(3)3a 2·a 3; (4)(3a )2·ab 3. 解 (1)3a ·4a =a 31·a 41=a 127.(2)原式=a 21·a 41·a 81=a 87. (3)原式=a 23·a 32=a136.(4)原式=(a 31)2·a 21·b 32=a 76b 32.反思与感悟 在解决根式与分数指数幂互化的问题时,关键是熟记根式与分数指数幂的转化式子:mna =na m 和-m na=nm a1=1n a m,其中字母a 要使式子有意义.跟踪训练2 用分数指数幂表示下列各式: (1)3a ·6-a (a <0);(2)3ab 2(ab )3(a ,b >0);(3)23)(b <0); (4)13x (5x 2)2(x ≠0).解 (1)原式=a 31·(-a )61=-(-a )31·(-a )61=-(-a )21(a <0). (2)原式=323232b a ab ⋅=32725b a =157322()⋅a b =5766a b (a ,b >0). (3)原式=212343⨯⨯b =(-b )91(b <0).(4)原式=3154311⨯⋅xx =531x=x35-(x ≠0).题型三 分数指数幂的运算 例3 (1)计算:0.06431--⎝⎛⎭⎫-780+[(-2)3]34-+16-0.75+|-0.01|21;(2)化简:3329-a a÷3a -7·3a 13(a >0).解 (1)原式=(0.43)31--1+(-2)-4+(24)-0.75+(0.12)21=0.4-1-1+116+18+0.1=14380.(2)原式=191317113()()32322323[][]⨯⨯-⨯-⨯⋅÷⋅a aaa=937136666-+-a=a 0=1.反思与感悟 指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质. 跟踪训练3 计算或化简:(1)⎝⎛⎭⎫-33823-+(0.002)21--10(5-2)-1+(2-3)0;.解 (1)原式=(-1)23-⎝⎛⎭⎫33823-+⎝⎛⎭⎫150021--105-2+1 =⎝⎛⎭⎫27823-+(500)21-10(5+2)+1 =49+105-105-20+1=-1679. (2)原式=133111513322222()[()()]----⋅⋅⋅a a a a=1513103222()()-⋅⋅a a a=(a -4)21=a -2.题型四 条件求值 例4 已知a 21+a21-=3,求下列各式的值.(1)a +a -1;(2)a 2+a -2;(3)33221122----a a a a.解 (1)将a 21+a 21-=3两边平方,得a +a -1+2=9,即a +a -1=7.(2)对(1)中的式子平方,得a 2+a -2+2=49, 即a 2+a -2=47.(3)33221122----a a a a=1111122221122()()-----⋅⋅-a a a+a +a a a a=a +a -1+1=8.反思与感悟 1.条件求值是代数式求值中的常见题型,一般要结合已知条件先化简再求值,另外要特别注意条件的应用,如条件中的隐含条件,整体代入等,可以简化解题过程.本题若通过1122-+a a=3(a >0)解出a 的值代入求值则非常复杂.解决此类问题的一般步骤是:2.注意运用平方差公式、立方和公式、立方差公式对代数式进行变形,如: (1)a -b =(a 21)2-(b 21)2=(a 21+b 21)(a 21-b 21).(2)a ±b =(a 31)3±(b 31)3=(a 31±b 31)(a 23∓a 31b 31+b 23). 跟踪训练4 已知a +a -1=5(a >0),求下列各式的值: (1)a 2+a -2;(2)a 21-a21-;(3)a 3+a -3.解 (1)方法一 由a +a -1=5两边平方,得a 2+2aa -1+a -2=25,即a 2+a -2=23. 方法二 a 2+a -2=a 2+2aa -1+a -2-2aa -1=(a +a -1)2-2=25-2=23. (2)∵(a 21-a 21-)2=a +a -1-2=5-2=3,∴|a 21-a21-|=3,∴a 21-a21-=± 3.(3)a 3+a -3=(a +a -1)(a 2-aa -1+a -2) =(a +a -1)(a 2+2aa -1+a -2-3) =(a +a -1)[(a +a -1)2-3] =5×(25-3)=110.因忽略对指数的讨论及被开方数的条件致误例5 化简:(1-a )[(a -1)-2·(-a )21]21. 错解 原式=(1-a )(a -1)-1·(-a )41=-(-a )41. 正解 因为(-a )21存在, 所以-a ≥0,故a -1<0,原式=(1-a )(1-a )-1(-a )41=(-a )41.错误原因 因题中有(-a )21,所以-a ≥0,即a ≤0,则[(a -1)-2]21≠(a -1)-1,错解中忽略了这一条件.跟踪训练5 求[(1-2)2]21-(1+2)-1-1+213÷47的值. 解 原式=2-1-(2-1)-1+2-1=-12.1.下列各式正确的是( ) A.(3a )3=aB.(47)4=-7C.(5a )5=|a | D.6a 6=a答案 A解析 (47)4=7,(5a )5=a ,6a 6=|a |. 2.(a -b )2+5(a -b )5的值是( ) A.0B.2(a -b )C.0或2(a -b )D.a -b答案 C解析 当a -b ≥0时, 原式=a -b +a -b =2(a -b ); 当a -b <0时,原式=b -a +a -b =0. 3.化简(1-2x )2(2x >1)的结果是( ) A.1-2x B.0 C.2x -1 D.(1-2x )2答案 C解析 ∵2x >1,∴1-2x <0. ∴(1-2x )2=|1-2x |=2x -1. 4.化简-x 3x 的结果是________.答案 --x5.已知10m =2,10n =3,则103m -n =________. 答案 83解析103m -n =103m 10n =(10m )310n =233=83.1.掌握两个公式:(1)(n a )n =a (n ∈N *);(2)n 为奇数且n ∈N *,na n =a ,n 为偶数且n ∈N *,na n=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).2.根式一般先转化成分数指数幂,然后利用有理数指数幂的运算性质进行运算.在将根式化为分数指数幂的过程中,一般采用由内到外逐层变换的方法,然后运用运算性质准确求解.一、选择题1.下列等式一定成立的是( ) A.a 31·a 32=a B.a31-·a 31=0C.(a m )n=nm aD.a m ÷a n =a m -n答案 D解析 由指数运算的性质可知D 正确. 2.化简3a a 的结果是( )A.aB.aC.a 2D.3a 答案 B 解析3a a =(a ·a 21)31=(a 32)31=a 21=a .3.化简(a 2-2+a -2)÷(a 2-a -2)的结果为( ) A.1 B.-1 C.a 2-1a 2+1 D.a 2+1a 2-1答案 C 解析(a 2-2+a -2)÷(a 2-a -2)=(a -a -1)2÷[(a +a -1)(a -a -1)]=a -a -1a +a -1=aa -a -1aa +a -1=a 2-1a 2+1. 4.若(1-2x )-34有意义,则x 的取值范围是( )A.x ∈RB.x ∈R 且x ≠12C.x >12D.x <12答案 D 解析 ∵(1-2x )43-=14(1-2x )3,∴1-2x >0,得x <12.5.化简a 3b 23ab 2(a 41b 21)4·3ba(a ,b >0)的结果是( )A.b aB.abC.ab D.a 2b 答案 C解析 原式=[a 3b 2(ab 2)13]12÷(a 1b 2b 13a -13)=1121275247(3)(2)3232333333()+⨯+⨯--÷=⨯aba b ab=a b. 6.已知x 21+x21-=5,则x 2+1x的值为( )A.5B.23C.25D.27 答案 B解析 x 2+1x =x +1x=x +x -1=(x 21+x 21-)2-2=52-2=23.故选B.二、填空题 7.221-+(-4)02+12-1-(1-5)0·823=________.答案 22-3 解析 原式=12+12+2+1-22=22-3. 8.计算:(π)0+2-2×(214)21=________.答案118解析 原式=1+14×(94)21=1+14×32=118.9.设α,β是方程5x 2+10x +1=0的两个根,则2α·2β=_______,(2α)β=_______. 答案 14 215解析 利用一元二次方程根与系数的关系,得α+β=-2,αβ=15.则2α·2β=2α+β=2-2=14,(2α)β=2αβ=251.10.设2x =8y +1,9y =3x -9,则x +y =________. 答案 27解析 由2x =8y +1,得2x =23y +3, 所以x =3y +3.①由9y =3x -9,得32y =3x -9, 所以2y =x -9.②由①②联立方程组,解得x =21,y =6, 所以x +y =27.三、解答题11.计算下列各式的值:(1)(0.027)31-⎝⎛⎭⎫61421+25634+(22)23-3-1+π0;(2)733-3324-6319+4333;(3)861552()--⋅a b ·5a 4÷5b 3(a >0,b >0).解(1)原式=[(0.3)3]31-⎣⎡⎦⎤⎝⎛⎭⎫52221+(44)34+(232)23-13+1=0.3-52+43+2-13+1=96715. (2)原式=7×331-3323×3-63⎝⎛⎭⎫132+ 43×331=7×331-6×331-6×323-+331=2×331-2×3×323-=2×331-2×331=0. (3)原式=861431(()())552552⨯--⨯-⋅⋅÷a ba b=43435555-⋅⋅÷a b a b =44335555-+-ab=a 0b 0=1.12.已知a =-827,b =1771,求a 23+33ab +9b 23a 43-27a 13b ÷a313a -33b 的值. 解 原式=a 32+3a 31·b 31+(3b 31)2a 31(a -27b )·a 31-3b31a 31=(a 31)3-(3b 31)3a 32(a -27b )=a 23-=(-827)23-=(-23)-2=94.13.(1)已知2x +2-x =a (常数),求8x +8-x 的值;第11页 共11页 (2)已知x +y =12,xy =9且x <y ,求x 21-y 21x 21+y 21的值. 解 (1)∵4x +4-x =(2x )2+(2-x )2=(2x +2-x )2-2·2x ·2-x =a 2-2,∴8x +8-x =23x +2-3x =(2x )3+(2-x )3=(2x +2-x )·[(2x )2-2x ·2-x +(2-x )2]=(2x +2-x )(4x +4-x -1)=a (a 2-2-1)=a 3-3a .(2)x 21-y 21x 21+y 21=(x 21-y 21)2(x 21+y 21)(x 21-y 21)=(x +y )-2(xy )21x -y.① ∵x +y =12,xy =9,②∴(x -y )2=(x +y )2-4xy =122-4×9=108.又∵x <y ,∴x -y =-6 3.③将②③代入①,得x 21-y 21x 21+y 21=12-2×921-63=-33.。
高中数学新学案同步 必修1人教A版 全国通用版 第二章 基本初等函数 习题课
习题课 对数函数学习目标 1.巩固和深化对数及其运算的理解和运用.2.掌握简单的对数函数的图象变换及其应用.3.会综合应用对数函数性质与其他有关知识解决问题.知识点一 对数概念及其运算1.由指数式对数式互化可得恒等式:⎭⎪⎬⎪⎫a b =Nlog a N =b ⇒log a N a =N (a >0,且a ≠1). 2.对数log a N (a >0,且a ≠1)具有下列性质: (1)0和负数没有对数,即N >0; (2)log a 1=0; (3)log a a =1. 3.运算公式已知a >0,且a ≠1,M ,N >0. (1)log a M +log a N =log a (MN ); (2)log a M -log a N =log a MN ;(3)log n m a M =mnlog a M ;(4)log a M =log c Mlog c a =1log Ma(c >0,且c ≠1,M ≠1).知识点二 对数函数及其图象、性质 函数y =log a x (a >0,且a ≠1)叫做对数函数.(1)对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞);值域为R ; (2)对数函数y =log a x (a >0,且a ≠1)的图象过点(1,0); (3)当a >1时,y =log a x 在(0,+∞)上单调递增; 当0<a <1时,y =log a x 在(0,+∞)上单调递减;(4)直线y =1与函数y =log a x (a >0,且a ≠1)的图象交点为(a,1). (5)y =log a x 与y =a x 的图象关于y =x 对称. y =log a x 与y =1log ax 的图象关于x 轴对称.1.y =x 与y =log a xa是相等函数.( × )2.=12log a b .( × )3.若a x >b ,则x >log a b .( × ) 4.y =log a (x +1)恒过定点(0,0).( √ )类型一 对数式的化简与求值例1 (1)计算:(2log (2;(2)已知2lg x -y2=lg x +lg y ,求(3log .x y- 考点 对数的运算 题点 对数的运算性质解 (1)方法一 利用对数定义求值:设(2log (2x =,则(2+3)x =2-3=12+3=(2+3)-1,∴x =-1.方法二 利用对数的运算性质求解:1(2(2(2log (2log log (2 1.-==+=-(2)由已知得lg ⎝⎛⎭⎪⎫x -y 22=lg xy , ∴⎝⎛⎭⎪⎫x -y 22=xy ,即x 2-6xy +y 2=0. ∴⎝⎛⎭⎫x y 2-6⎝⎛⎭⎫x y +1=0. ∴xy=3±2 2.∵⎩⎪⎨⎪⎧x -y >0,x >0,y >0,∴x y >1,∴xy =3+22,∴(3(3(3log log (3log 1.xy=+==---- 反思与感悟 在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底,指数与对数互化. 跟踪训练1 (1)(lg 3)2-lg 9+1(lg 27+lg 8-lg 1 000)lg 0.3·lg 1.2=________.(2)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________. 考点 对数的运算 题点 指数对数的混合运算 答案 (1)-32 (2)2解析 (1)∵(lg 3)2-lg 9+1=(lg 3)2-2lg 3+1=1-lg 3,lg 27+lg 8-lg 1 000=32lg 3+3lg 2-32=32(lg 3-1)+3lg 2=32(lg 3+2lg 2-1), lg 0.3·lg 1.2=lg310·lg 1210=(lg 3-1)(lg 12-1) =(lg 3-1)(lg 3+2lg 2-1), ∴原式=-32.(2)∵f (ab )=lg(ab )=1,∴f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2. 类型二 对数函数图象的应用例2 已知函数f (x )=⎩⎪⎨⎪⎧|ln x |,0<x ≤e ,2-ln x ,x >e ,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),求abc 的取值范围.考点 对数函数的图象题点 指数、对数函数图象的应用 解 f (x )的图象如图:设f (a )=f (b )=f (c )=m , 不妨设a <b <c ,则直线y =m 与f (x )交点横坐标从左到右依次为a ,b ,c , 由图象易知0<a <1<b <e<c <e 2, ∴f (a )=|ln a |=-ln a ,f (b )=|ln b |=ln b .∴-ln a =ln b ,ln a +ln b =0,ln ab =ln 1,∴ab =1. ∴abc =c ∈(e ,e 2).反思与感悟 函数的图象直观形象地显示了函数的性质,因此涉及方程解的个数及不等式的解集等问题大都可以通过函数的图象解决,即利用数形结合思想,使问题简单化. 跟踪训练2 已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,试求a 的取值范围. 考点 对数函数的图象题点 指数、对数函数图象的应用 解 ∵f (x )=log a x ,则y =|f (x )|的图象如图.由图知,要使x ∈⎣⎡⎦⎤13,2时恒有|f (x )|≤1,只需⎪⎪⎪⎪f ⎝⎛⎭⎫13≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a ,亦当a >1时,得a -1≤13≤a ,即a ≥3;当0<a <1时,a -1≥13≥a ,得0<a ≤13.综上所述,a 的取值范围是⎝⎛⎦⎤0,13∪[3,+∞). 类型三 对数函数的综合应用例3 已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图象上任意一点P 关于原点对称的点Q 在函数f (x )的图象上. (1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围. 考点 对数函数的综合问题题点 与最值有关的对数函数综合问题 解 (1)设P (x ,y )为g (x )图象上任意一点, 则Q (-x ,-y )是点P 关于原点的对称点, ∵Q (-x ,-y )在f (x )的图象上, ∴-y =log a (-x +1), 即y =g (x )=-log a (1-x ). (2)f (x )+g (x )≥m ,即log a x +11-x≥m .设F (x )=log a 1+x 1-x =log a ⎝ ⎛⎭⎪⎫-1+21-x ,x ∈[0,1),由题意知,只要F (x )min ≥m 即可.∵F (x )在[0,1)上是增函数,∴F (x )min =F (0)=0. 故m ≤0即为所求.反思与感悟 指数函数、对数函数图象既是直接考查的对象,又是数形结合求交点,最值,解不等式的工具,所以要能熟练画出这两类函数图象,并会进行平移、伸缩,对称、翻折等变换.跟踪训练3 已知函数f (x )的定义域是(-1,1),对于任意的x ,y ∈(-1,1),有f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy ,且当x <0时,f (x )>0. (1)验证函数g (x )=ln 1-x1+x,x ∈(-1,1)是否满足上述这些条件;(2)你发现这样的函数f (x )还具有其他什么样的性质?试将函数的奇偶性、单调性方面的结论写出来,并加以证明. 考点 对数函数的综合问题题点 与奇偶性有关的对数函数的综合问题 解 (1)因为g (x )+g (y )=ln 1-x 1+x +ln 1-y1+y=ln ⎝ ⎛⎭⎪⎫1-x 1+x ·1-y 1+y =ln 1-x -y +xy1+x +y +xy , g ⎝ ⎛⎭⎪⎫x +y 1+xy =ln 1-x +y1+xy 1+x +y 1+xy=ln 1-x -y +xy1+x +y +xy , 所以g (x )+g (y )=g ⎝ ⎛⎭⎪⎫x +y 1+xy 成立.又当x <0时,1-x >1+x >0,所以1-x1+x >1,所以g (x )=ln 1-x1+x >0成立,综上g (x )=ln 1-x1+x满足这些条件.(2)发现这样的函数f (x )在(-1,1)上是奇函数. 将x =y =0代入条件,得f (0)+f (0)=f (0), 所以f (0)=0.将y =-x 代入条件得f (x )+f (-x )=f (0)=0⇒f (-x )=-f (x ), 所以函数f (x )在(-1,1)上是奇函数. 又发现这样的函数f (x )在(-1,1)上是减函数.因为f (x )-f (y )=f (x )+f (-y )=f ⎝ ⎛⎭⎪⎫x -y 1-xy ,当-1<x <y <1时,x -y1-xy <0,由条件知f ⎝ ⎛⎭⎪⎫x -y 1-xy >0,即f (x )-f (y )>0⇒f (x )>f (y ), 所以函数f (x )在(-1,1)上是减函数.1.若log x 7y =z ,则( ) A .y 7=x z B .y =x 7z C .y =7x zD .y =z 7x考点 对数式与指数式的互化 题点 对数式化为指数式 答案 B解析 由log x 7y =z ,得x z =7y ,∴⎝⎛⎭⎫7y 7=(x z )7,即y =x 7z .2.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2) 考点 对数函数的图象题点 同一坐标系下的指数函数与对数函数的图象 答案 B解析 当a >1,0<x ≤12时,log a x <0,不合题意.当0<a <1时,只需1214log 2a<,即log a a 2<log a 12,解得a >22,又a ∈(0,1),∴a ∈⎝⎛⎭⎫22,1.3.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( ) A .[-1,1] B.⎣⎡⎦⎤12,2 C .[1,2] D .[2,4] 考点 对数函数的定义域题点 与对数函数有关的抽象函数的定义域 答案 D解析 ∵-1≤x ≤1,∴2-1≤2x ≤2,即12≤2x ≤2.∴y =f (x )的定义域为⎣⎡⎦⎤12,2,即12≤log 2x ≤2, ∴2≤x ≤4.4.设函数f (x )=⎩⎪⎨⎪⎧log 2(x -1),x ≥2,⎝⎛⎭⎫12x -1,x <2,若f (x 0)>1,则x 0的取值范围是________.考点 对数不等式 题点 解对数不等式答案 (-∞,-1)∪(3,+∞)解析 当x 0≥2时,由log 2(x 0-1)>1,得log 2(x 0-1)>log 22,所以x 0-1>2,得x 0>3;当x 0<2时,由01112x ⎛⎫> ⎪⎝⎭-,得011122x -⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以x 0<-1,所以x 0的取值范围是(-∞,-1)∪ (3,+∞). 5.已知()2340,9a a >=则23log a =________. 考点 对数式与指数式的互化 题点 对数式与指数式的互化 答案 3解析 设23log a x =,则a =⎝⎛⎭⎫23x,又22233422,,933xa ⎡⎤⎛⎫⎛⎫∴=⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦即22322,33x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∴23x =2,解得x =3.1.指数式a b =N 与对数式log a N =b 的关系以及这两种形式的互化是对数运算法则的关键. 2.指数运算的实质是指数式的积、商、幂的运算,对于指数式的和、差应充分运用恒等变形和乘法公式;对数运算的实质是把积、商、幂的对数转化为对数的和、差、积.3.注意对数恒等式、对数换底公式及等式log m n a b =n m ·log a b ,log a b =1log b a 在解题中的灵活应用.4.在运用性质log a M n =n log a M 时,要特别注意条件,在无M >0的条件下应为log a M n =n log a |M |(n ∈N *,且n 为偶数).5.同底的指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.6.明确函数图象的位置和形状要通过研究函数的性质,要记忆函数的性质可借助于函数的图象.因此要掌握指数函数和对数函数的性质首先要熟记指数函数和对数函数的图象.一、选择题1.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a 考点 对数值大小比较 题点 指数、对数值大小比较 答案 B解析 ∵y =log 0.6x 在(0,+∞)上为减函数, ∴log 0.60.6<log 0.60.5,即a >1. 同理,ln 0.5<ln 1=0,即b <0.∵0<0.60.5<0.60,即0<c <1, ∴a >c >b .2.函数f (x )=ln(x 2+1)的图象大致是( )考点 对数函数的图象题点 同一坐标系下的对数函数与其他函数图象 答案 A解析 由函数解析式可知f (x )=f (-x ),即函数为偶函数,排除C ;由函数过(0,0)点,排除B ,D.3.已知a >0,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0 D .(b -1)(b -a )>0考点 对数不等式 题点 解对数不等式 答案 D解析 由a >0,b >0且a ≠1,b ≠1,及log a b >1=log a a 可得: 当a >1时,b >a >1,当0<a <1时,0<b <a <1, 代入验证只有D 满足题意.4.已知x ,y ,z 都是大于1的正数,m >0,且log x m =24,log y m =40,log xyz m =12,则log z m 的值为( )A.160 B .60 C.2003 D.3200 考点 对数的运算 题点 用代数式表示对数 答案 B解析 由已知得log m (xyz )=log m x +log m y +log m z =112,而log m x =124,log m y =140,故log m z =112-log m x -log m y =112-124-140=160,即log z m =60.5.函数f (x )=log a [(a -1)x +1]在定义域上( ) A .是增函数B .是减函数C .先增后减D .先减后增考点 对数函数的单调性题点 对数型复合函数的单调区间答案 A 解析 ∵当a >1时,y =log a u ,u =(a -1)x +1都是增函数,当0<a <1时,y =log a u ,u =(a -1)x +1都是减函数,∴f (x )在定义域上为增函数.6.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( ) A .[-1,2] B .[0,2] C .[1,+∞) D .[0,+∞)考点 对数不等式题点 解对数不等式答案 D解析 f (x )≤2等价于⎩⎪⎨⎪⎧ x ≤1,21-x ≤2或⎩⎪⎨⎪⎧x >1,1-log 2x ≤2,解得0≤x ≤1或x >1.∴x 的取值范围是[0,+∞).7.(2017·西安模拟)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( )A .0<a -1<b <1 B .0<b <a -1<1 C .0<b -1<a <1 D .0<a -1<b -1<1 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围答案 A解析 由函数图象可知,f (x )在R 上单调递增,故a >1.函数图象与y 轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0,解得1a <b <1.综上有0<1a<b <1.8.两个函数的图象经过平移后能够重合,称这两个函数为“同形”函数,给出下列四个函数: f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 2(2x ),则是“同形”函数的是( )A .f 2(x )与f 4(x )B .f 1(x )与f 3(x )C .f 1(x )与f 4(x )D .f 3(x )与f 4(x )考点 对数函数的图象题点 对数函数的图象答案 A解析 因为f 4(x )=log 2(2x )=1+log 2x ,所以f 2(x )=log 2(x +2),沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )=log 2(2x )=1+log 2x ,根据“同形”函数的定义,f 2(x )与f 4(x )为“同形”函数.f 3(x )=log 2x 2=2log 2|x |与f 1(x )=2log 2(x +1)不“同形”,故选A.二、填空题9.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________. 考点 对数函数的图象题点 指数、对数函数图象的应用答案 23解析 由题意可知求b -a 的最小值即求区间[a ,b ]的长度的最小值,当f (x )=0时,x =1,当f (x )=1时,x =3或13,所以区间[a ,b ]的最短长度为1-13=23, 所以b -a 的最小值为23. 10.已知实数a ,b 满足log 12a =log 13b ,下列五个关系式:①a >b >1;②0<b <a <1;③b >a >1;④0<a <b <1;⑤a =b .其中可能成立的关系式序号为________.考点 对数函数的图象题点 指数、对数函数图象的应用答案 ②③⑤解析 由图易知,log 12a =log 13b 有且仅有3种情形:0<b <a <1或1<a <b 或a =b =1.11.已知0<a <1,0<b <1,若alog (3)b x -<1,则x 的取值范围是__________. 考点 对数不等式题点 解对数不等式答案 (3,4)解析 ∵0<a <1,∴a log (3)b x -<1=a 0等价于log b (x -3)>0=log b 1.∵0<b <1,∴⎩⎪⎨⎪⎧x -3>0,x -3<1,解得3<x <4. 三、解答题12.已知函数f (x )=2+log 2x ,x ∈[1,4].(1)求函数f (x )的值域;(2)设g (x )=[f (x )]2-f (x 2),求g (x )的最值及相应的x 的值.考点 对数函数的综合问题题点 与定义域、值域有关的对数函数综合问题解 (1)∵f (x )=2+log 2x 在[1,4]上是增函数,又f (1)=2+log 21=2,f (4)=2+log 24=2+2=4,∴函数f (x )的值域是[2,4].(2)g (x )=[f (x )]2-f (x 2)=4+4log 2x +(log 2x )2-(2+log 2x 2)=(log 2x )2+2log 2x +2=(log 2x +1)2+1. 由⎩⎪⎨⎪⎧1≤x ≤4,1≤x 2≤4,得1≤x ≤2, ∴g (x )的定义域是[1,2].∴0≤log 2x ≤1.∴当log 2x =0,即x =1时,g (x )有最小值g (1)=2;当log 2x =1,即x =2时,g (x )有最大值g (2)=5.13.已知函数f (x )=lg(a x -b x )(a >1>b >0).(1)求y =f (x )的定义域;(2)在函数y =f (x )的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴;(3)当a ,b 满足什么条件时,f (x )在(1,+∞)上恒取正值.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题解 (1)由a x -b x >0,得⎝⎛⎭⎫a b x >1,且a >1>b >0,得a b>1,所以x >0, 即f (x )的定义域为(0,+∞).(2)任取x 1>x 2>0,a >1>b >0,则a 1x >a2x >1,0<b 1x <b 2x <1, 所以a 1x -b 1x >a2x -b 2x >0, 即lg(a 1x -b 1x )>lg(a2x -b 2x ).故f (x 1)>f (x 2). 所以f (x )在(0,+∞)上为增函数.假设函数y =f (x )的图象上存在不同的两点A (x 1,y 1),B (x 2,y 2),使直线平行于x 轴,则x 1≠x 2,y 1=y 2,这与f (x )是增函数矛盾.故函数y =f (x )的图象上不存在不同的两点使过两点的直线平行于x 轴.(3)因为f (x )是增函数,所以当x ∈(1,+∞)时,f (x )>f (1),这样只需f (1)=lg(a -b )≥0,即当a ≥b +1时,f (x )在(1,+∞)上恒取正值.四、探究与拓展14.已知定义在R 上的偶函数f (x )在区间[0,+∞)上是单调减函数,若f (1)>f ⎝⎛⎭⎫lg 1x ,求x 的取值范围.考点 对数不等式题点 解对数不等式解 因为f (x )是定义在R 上的偶函数且在区间[0,+∞)上是单调减函数, 所以f (x )在区间(-∞,0)上是单调增函数,所以不等式f (1)>f ⎝⎛⎭⎫lg 1x 可化为 lg 1x >1或lg 1x<-1, 所以lg 1x >lg 10或lg 1x <lg 110, 所以1x >10或0<1x <110, 所以0<x <110或x >10. 所以x 的取值范围为⎝⎛⎭⎫0,110∪(10,+∞). 15.已知函数f (x )=log 2(2x +1).(1)求证:函数f (x )在(-∞,+∞)内单调递增;(2)若g (x )=log 2(2x -1)(x >0),且关于x 的方程g (x )=m +f (x )在[1,2]上有解,求m 的取值范围. 考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题(1)证明 因为函数f (x )=log 2(2x +1),任取x 1<x 2,则f (x 1)-f (x 2)=log 2(21x +1)-log 2(22x +1) =log 221x +122x +1, 因为x 1<x 2,所以0<21x +122x +1<1, 所以log 221x +122x +1<0, 所以f (x 1)<f (x 2),所以函数f (x )在(-∞,+∞)内单调递增.(2)解 g (x )=m +f (x ),即g (x )-f (x )=m .设h (x )=g (x )-f (x )=log 2(2x -1)-log 2(2x +1)=log 22x -12x +1=log 2⎝ ⎛⎭⎪⎫1-22x +1. 设1≤x 1<x 2≤2,则3≤21x +1<22x +1≤5, 13≥121x +1>122x +1≥15, -23≤-221x +1<-222x +1≤-25, 所以13≤1-221x +1<1-222x +1≤35, 所以log 213≤h (x 1)<h (x 2)≤log 235, 即h (x )在[1,2]上为增函数且值域为⎣⎡⎦⎤log 213,log 235. 要使g (x )-f (x )=m 有解,需m ∈⎣⎡⎦⎤log 213,log 235.。
高中数学新学案同步 必修1人教A版 全国通用版 第二章 基本初等函数 2.3 幂函数
§2.3 幂函数学习目标 1.了解幂函数的概念.2.掌握y =x α⎝⎛⎭⎫α=-1,12,1,2,3的图象与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念思考 y =1x ,y =x ,y =x 2三个函数有什么共同特征?答案 底数为x ,指数为常数.梳理 一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 知识点二 五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y =x ;(2)12y x =;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质知识点三 一般幂函数的图象特征一般幂函数特征:(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1); (2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸; (3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数;(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称;(5)在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.1.y =-1x 是幂函数.( × )2.当x ∈(0,1)时,x 2>x 3.( √ )3.32y x =与64y x =定义域相同.( × )4.若y =x α在(0,+∞)上为增函数,则α>0.( √ )类型一 幂函数的概念例1 已知222(22)23m y m m x n -=+-+-是幂函数,求m ,n 的值. 考点 幂函数的概念 题点 由幂函数定义求参数值解 由题意得⎩⎪⎨⎪⎧m 2+2m -2=1,2n -3=0,解得⎩⎪⎨⎪⎧ m =-3,n =32或⎩⎪⎨⎪⎧m =1,n =32.所以m =-3或1,n =32.反思与感悟 幂函数与指数函数、对数函数的定义类似,只有满足函数解析式右边的系数为1,底数为自变量x ,指数为常数这三个条件,才是幂函数.如:y =3x 2,y =(2x )3,y =⎝⎛⎭⎫x 24都不是幂函数.跟踪训练1 在函数y =1x 2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为( )A .0B .1C .2D .3 考点 幂函数的概念 题点 判断函数是否为幂函数 答案 B解析 因为y =1x 2=x -2,所以是幂函数;y =2x 2由于出现系数2,因此不是幂函数;y =x 2+x 是两项和的形式,不是幂函数;y =1=x 0(x ≠0),可以看出,常数函数y =1的图象比幂函数y =x 0的图象多了一个点(0,1), 所以常数函数y =1不是幂函数. 类型二 幂函数的图象及应用例2 若点(2,2)在幂函数f (x )的图象上,点⎝⎛⎭⎫-2,14在幂函数g (x )的图象上,问当x 为何值时,(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ). 考点 幂函数的图象 题点 幂函数的图象与性质解 设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以,将点(2,2)代入f (x )=x α中,得2=(2)α,解得α=2,则f (x )=x 2.同理可求得g (x )=x -2.在同一坐标系里作出函数f (x )=x 2和g (x )=x -2的图象(如图所示),观察图象可得:(1)当x >1或x <-1时,f (x )>g (x ); (2)当x =1或x =-1时,f (x )=g (x ); (3)当-1<x <1且x ≠0时,f (x )<g (x ). 引申探究若对于本例中的f (x ),g (x ),定义h (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤g (x ),g (x ),f (x )>g (x ),试画出h (x )的图象.解 h (x )的图象如图所示:反思与感悟 由幂函数的定义确定函数解析式,掌握幂函数的图象特点,数形结合可求解关于幂函数的不等式与方程.跟踪训练2 幂函数y =x α(α≠0),当α取不同的正数时,在区间[0,1]上它们的图象是一簇美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图象三等分,即有BM =MN =NA ,则αβ等于( )A .1B .2C .3D .无法确定考点 幂函数的图象 题点 幂函数的图象与性质 答案 A解析 由条件知,M ⎝⎛⎭⎫13,23,N ⎝⎛⎭⎫23,13, ∴23=⎝⎛⎭⎫13β,13=⎝⎛⎭⎫23α, ∴⎝⎛⎭⎫13αβ=⎣⎡⎦⎤⎝⎛⎭⎫13βα=⎝⎛⎭⎫23α=13, ∴αβ=1.故选A.类型三 幂函数性质的应用 命题角度1 比较大小 例3 设212333222,,,335a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .b >c >aD .c >b >a考点 比较幂值的大小 题点 利用单调性比较大小答案 B解析 ∵y =⎝⎛⎭⎫23x 在R 上为减函数,∴21332233⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即a <b ;()23f x x =∵在(0,+∞)上为增函数,∴223322,35⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭即a >c .∴b >a >c .故选B. 反思与感悟 此类题在构建函数模型时要注意幂函数的特点:指数不变.比较大小的问题主要是利用函数的单调性,特别是要善于应用“搭桥”法进行分组,常数0和1是常用的中间量.跟踪训练3 比较下列各组数中两个数的大小: (1)⎝⎛⎭⎫250.3与⎝⎛⎭⎫130.3; (2)⎝⎛⎭⎫-23-1与⎝⎛⎭⎫-35-1; (3)⎝⎛⎭⎫250.3与25(0.3). 考点 比较幂值的大小 题点 利用中间值比较大小 解 (1)∵0<0.3<1,∴y =x 0.3在(0,+∞)上为增函数. 又25>13,∴⎝⎛⎭⎫250.3>⎝⎛⎭⎫130.3. (2)∵y =x -1在(-∞,0)上是减函数, 又-23<-35,∴⎝⎛⎭⎫-23-1>⎝⎛⎭⎫-35-1. (3)∵y =x 0.3在(0,+∞)上为增函数, ∴由25>0.3,可得⎝⎛⎭⎫250.3>0.30.3.① 又y =0.3x 在(-∞,+∞)上为减函数,20.350.30.3.∴>②由①②知0.32520.3.5⎛⎫> ⎪⎝⎭命题角度2 幂函数性质的综合应用例4 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称且在(0,+∞)上单调递减,求满足33(1)(32)mm a a <--+-的a 的取值范围.考点 幂函数的性质题点 利用幂函数的性质解不等式解 因为函数在(0,+∞)上单调递减,所以3m -9<0, 解得m <3.又因为m ∈N *,所以m =1,2. 因为函数的图象关于y 轴对称, 所以3m -9为偶数,故m =1. 则原不等式可化为1133(1)(32).a a <--+-因为13y x-=在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a , 解得23<a <32或a <-1.故a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a <-1或23<a <32. 反思与感悟 幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值.跟踪训练4 已知幂函数()21*()mmf x x m +∈N =.(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数还经过(2,2),试确定m 的值,并求满足f (2-a )>f (a -1)的实数a 的取值范围. 考点 幂函数的性质题点 利用幂函数的性质解不等式 解 (1)∵m ∈N *,∴m 2+m =m ×(m +1)为偶数. 令m 2+m =2k ,k ∈N *,则f (x )=2k x ,∴定义域为[0,+∞),在[0,+∞)上f (x )为增函数. (2)112222,mm+==∴m 2+m =2,解得m =1或m =-2(舍去), ()12f x x ∴=,由(1)知f (x )在定义域[0,+∞)上为增函数, ∴f (2-a )>f (a -1)等价于2-a >a -1≥0, 解得1≤a <32.1.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α等于( )A.12 B .1 C.32 D .2 考点 幂函数的概念 题点 由幂函数定义求参数值 答案 C解析 由幂函数的定义知k =1.又f ⎝⎛⎭⎫12=22, 所以⎝⎛⎭⎫12α=22,解得α=12,从而k +α=32. 2.以下结论正确的是( )A .当α=0时,函数y =x α的图象是一条直线B .幂函数的图象都经过(0,0),(1,1)两点C .若幂函数y =x α的图象关于原点对称,则y =x α在定义域内y 随x 的增大而增大D .幂函数的图象不可能在第四象限,但可能在第二象限 考点 幂函数的综合问题 题点 幂函数的综合问题 答案 D3.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 的所有α的值为( )A .1,3B .-1,1C .-1,3D .-1,1,3 考点 幂函数的定义域和值域 题点 幂函数的定义域 答案 A4.若a <0,则0.5a,5a,5-a的大小关系是( )A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a答案 B解析 5-a =⎝⎛⎭⎫15a ,因为a <0时,函数y =x a在(0,+∞)上单调递减,且15<0.5<5,所以5a <0.5a <5-a . 5.先分析函数23y x =的性质,再画出其图象. 考点 幂函数的图象 题点 幂函数的图象与性质解 23y x ==3x 2,定义域为R ,在[0,+∞)上是上凸的增函数,且是偶函数,故其图象如下:1.幂函数y =x α(α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数,这是判断一个函数是不是幂函数的重要依据和唯一标准.2.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查:(1)当α>0时,图象过点(0,0),(1,1),在第一象限的图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立.(2)曲线在第一象限的凹凸性,当α>1时,曲线下凸;当0<α<1时,曲线上凸;当α<0时,曲线下凸.3.在具体应用时,不一定是y =x α,α=-1,12,1,2,3这五个已研究熟的幂函数,这时可根据需要构造幂函数,并针对性地研究某一方面的性质.一、选择题1.下列函数中是幂函数的是( ) A .y =x 4+x 2 B .y =10x C .y =1x3D .y =x +1考点 幂函数的概念 题点 判断函数是否为幂函数 答案 C解析 根据幂函数的定义知,y =1x 3是幂函数,y =x 4+x 2,y =10x ,y =x +1都不是幂函数.2.已知y =(m 2+m -5)x m 是幂函数,且在第一象限内是单调递减的,则m 的值为( ) A .-3B .2C .-3或2D .3考点 幂函数的性质 题点 幂函数的单调性 答案 A解析 由y =(m 2+m -5)x m 是幂函数,知m 2+m -5=1,解得m =2或m =-3.∵该函数在第一象限内是单调递减的,∴m <0.故m =-3.3.已知幂函数()223(22)n nf x n n x -=+- (n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( ) A .-3 B .1 C .2D .1或2考点 幂函数的性质 题点 幂函数的单调性 答案 B解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意,故选B.4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图象可能是( )考点 幂函数的图象题点 幂函数有关的知图选式问题 答案 C解析 选项A 中,幂函数的指数a <0,则直线y =ax -1a 应为减函数,A 错误;选项B 中,幂函数的指数a >1,则直线y =ax -1a应为增函数,B 错误;选项D 中,幂函数的指数a <0,则-1a >0,直线y =ax -1a 在y 轴上的截距为正,D 错误.5.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1bB .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1aD .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b ) 考点 比较幂值的大小 题点 利用单调性比较大小 答案 C解析 因为函数()12f x x =在(0,+∞)上是增函数, 又0<a <b <1b <1a,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a ,故选C. 6.设232555322555a b c ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=,=,=,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >bD .b >c >a考点 比较幂值的大小 题点 利用单调性比较大小 答案 A解析 根据幂函数与指数函数的单调性直接可以判断出来,25y x =在x >0时是增函数,所以a >c ,y =⎝⎛⎭⎫25x在x >0时是减函数,所以c >b ,所以a >c >b .7.如图,图中曲线是幂函数y =x α在第一象限的大致图象,已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12考点 幂函数的图象 题点 幂指数大小关系问题 答案 B解析 令x =2,由图知C 1,C 2,C 3,C 4对应纵坐标依次减小,而1122222222->>>-,故选B.8.对于幂函数f (x )=x 45,若0<x 1<x 2,则f ⎝⎛⎭⎫x 1+x 22,f (x 1)+f (x 2)2的大小关系是( ) A .f ⎝⎛⎭⎫x 1+x 22>f (x 1)+f (x 2)2 B .f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2 C .f ⎝⎛⎭⎫x 1+x 22=f (x 1)+f (x 2)2 D .无法确定 考点 幂函数的图象 题点 幂函数的图象与性质 答案 A解析 幂函数f (x )=x 45在(0,+∞)是增函数,大致图象如图所示.设A (x 1,0),C (x 2,0),其中0<x 1<x 2,则AC 的中点E 的坐标为⎝⎛⎭⎪⎫x 1+x 22,0,|AB |=f (x 1),|CD |=f (x 2),|EF |=f ⎝ ⎛⎭⎪⎫x 1+x 22.∵|EF |>12(|AB |+|CD |),∴f ⎝ ⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2,故选A. 二、填空题9.判断大小:5.25-1________5.26-2.(填“>”或“<”)考点 比较幂值的大小 题点 利用中间值比较大小 答案 >解析 ∵y =x -1在(0,+∞)上是减函数,5.25<5.26, ∴5.25-1>5.26-1;∵y =5.26x 是增函数,-1>-2,∴5.26-1>5.26-2. 综上,5.25-1>5.26-1>5.26-2. 10.函数f (x )=(x +3)-2的单调增区间是________.考点 幂函数的性质 题点 幂函数的单调性 答案 (-∞,-3)解析 y =x -2=1x2的单调增区间为(-∞,0),单调减区间为(0,+∞),y =(x +3)-2是由y =x-2向左平移3个单位得到的.∴y =(x +3)-2的单调增区间为(-∞,-3).11.已知幂函数f (x )=x 21m -(m ∈Z )的图象与x 轴、y 轴都无交点,且关于原点对称,则函数f (x )的解析式是________. 考点 求幂函数的解析式 题点 求幂函数的解析式 答案 f (x )=x -1解析 ∵函数的图象与x 轴、y 轴都无交点, ∴m 2-1<0,解得-1<m <1. ∵图象关于原点对称,且m ∈Z , ∴m =0,∴f (x )=x -1. 三、解答题12.已知幂函数f (x )=x 223m m --(m ∈Z )在(0,+∞)上单调递减,且为偶函数. (1)求f (x )的解析式;(2)讨论F (x )=af (x )+(a -2)x 5·f (x )的奇偶性,并说明理由. 考点 幂函数的综合问题 题点 幂函数的综合问题解 (1)由于幂函数f (x )=x 223m m --在(0,+∞)上单调递减,所以m 2-2m -3<0,求得-1<m <3, 因为m ∈Z ,所以m =0,1,2.因为f (x )是偶函数,所以m =1,故f (x )=x -4. (2)F (x )=af (x )+(a -2)x 5·f (x ) =a ·x -4+(a -2)x .当a =0时,F (x )=-2x ,对于任意的x ∈(-∞,0)∪(0,+∞)都有F (x )=-F (-x ), 所以F (x )=-2x 是奇函数;当a =2时,F (x )=2x 4,对于任意的x ∈(-∞,0)∪(0,+∞)都有F (x )=F (-x ),所以F (x )=2x4是偶函数;当a ≠0且a ≠2时,F (1)=2a -2,F (-1)=2, 因为F (1)≠F (-1),F (1)≠-F (-1), 所以F (x )=ax 4+(a -2)x 是非奇非偶函数.13.已知幂函数f (x )的图象过点(25,5). (1)求f (x )的解析式;(2)若函数g (x )=f (2-lg x ),求g (x )的定义域、值域. 考点 幂函数的综合问题 题点 幂函数的综合问题解 (1)设f (x )=x α,则由题意可知25α=5, ∴α=12,∴f (x )=x 12.(2)∵g (x )=f (2-lg x )=2-lg x ,∴要使g (x )有意义,只需2-lg x ≥0, 即lg x ≤2,解得0<x ≤100. ∴g (x )的定义域为(0,100],又2-lg x ≥0,∴g (x )的值域为[0,+∞). 四、探究与拓展14.(2017·黄冈检测)为了保证信息的安全传输需使用加密方式,有一种方式其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y =x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.考点 求幂函数的解析式 题点 求幂函数的解析式后再求值 答案 9解析 依题意有2=4α,∴α=12.∴当y =3时,x 12=3,得x =9.15.已知函数f (x )=⎩⎪⎨⎪⎧a x,x ≤0,3a -x 12,x >0(a >0,且a ≠1)是R 上的减函数,则实数a 的取值范围是________. 考点 幂函数的性质 题点 幂函数的单调性 答案 ⎝⎛⎦⎤0,13 解析 当x ≤0时,由f (x )=a x为减函数,知0<a <1;当x >0时,由f (x )=3a -x 12为减函数,知a ∈R ,且要满足a 0≥3a ,解得a ≤13.综上可知,实数a 的取值范围为⎝⎛⎦⎤0,13.。
人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习
新教材】人教统编版高中数学必修一A 版第二章教案教学设计2.1 《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义. 同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。
数学学科素养1. 数学抽象:不等式的基本性质;2. 逻辑推理:不等式的证明;3. 数学运算:比较多项式的大小及重要不等式的应用;4. 数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘. (将减法转化为加法,将除法转化为乘法);5. 数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等. 举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察. 研探.二、预习课本,引入新课阅读课本37-42 页,思考并完成以下问题1. 不等式的基本性质是?2. 比较两个多项式(实数)大小的方法有哪些?3. 重要不等式是?4. 等式的基本性质?5. 类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题三、新知探究1、两个实数比较大小的方法??-??>0???>??作差法{??-??=0???=?? ??-??<0???<?? ??>1???>????作商法????=1???=?? ??{ ??<1???<??2. 不等式的基本性质3. 重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例 1 判断下列命题是否正确解题技巧:(不等式性质应用) 可用特殊值代入验证,也可用不等式的性质推证 跟踪训练一1、用不等号“ >”或“ <”填空:1)如果 a>b , c<d ,那么 a-c ___ b-d ; 2)如果 a>b>0, c<d<0,那么 ac __ bd ; 13)如果 a>b>0,那么 a 12ac4)如果 a>b>c>0,那么 ca题型二 比较大小 例 2 (1). 比较 (x+2)(x+3) 和(x+1)(x+4) 的大小cc(2). 已知a> b > 0,c> 0,求c> c 。
【人教A版】高中数学必修一:第2章《基本初等函数(Ⅰ)》导学案设计(含答案) 2.2.2 第1课时
2.2.2对数函数及其性质第1课时对数函数的图象及性质[学习目标] 1.理解对数函数的概念.2.初步掌握对数函数的图象及性质.3.会类比指数函数,研究对数函数的性质.知识点一对数函数的概念一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).思考根据对数函数的定义,你能总结出对数函数具有哪些特点吗?答(1)底数a>0,且a≠1.(2)自变量x在真数位置上,且x>0.(3)在解析式y=log a x中,log a x的系数必须为1,真数必须是x.知识点二对数函数的图象与性质(0,+∞)知识点三反函数对数函数y=log a x(a>0,且a≠1)与指数函数y=a x(a>0,且a≠1)互为反函数.题型一对数函数的概念例1指出下列函数哪些是对数函数?(1)y =3log 2x ;(2)y =log 6x ; (3)y =log x 3;(4)y =log 2x +1.解 (1)log 2x 的系数是3,不是1,不是对数函数. (2)符合对数函数的结构形式,是对数函数. (3)自变量在底数位置上,不是对数函数. (4)对数式log 2x 后又加1,不是对数函数.反思与感悟 判断一个函数是对数函数必须是形如y =log a x (a >0且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0且不等于1的常数. (3)对数的真数仅有自变量x .跟踪训练1 下列函数为对数函数的是( ) A.y =log 1x B.y =3log 2x C.y =log 2(x +1) D.y =log 2x答案 D题型二 对数函数的图象例2 如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110,则相应于c 1,c 2,c 3,c 4的a 值依次为( ) A.3,43,35,110B.3,43,110,35C.43,3,35,110D.43,3,110,35答案 A解析 在第一象限内各图象对应的对数函数的底数顺时针增大,∴c 4<c 3<c 2<c 1,故c 1,c 2,c 3,c 4各值依次为3,43,35,110,故选A.反思与感悟 对数函数图象特点:(1)底数大于1,图象呈上升趋势;底数大于0小于1,图象呈下降趋势.(2)在第一象限,各图象对应的对数函数底数顺时针增大.底数越小,在第一象限图象越靠近y 轴;底数越大,在第一象限图象越靠近x 轴.跟踪训练2 如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1 D.b >a >1答案 B解析 两图象均呈下降趋势,所以a ,b 均小于1.结合第一象限图象特征得b <a ,所以0<b <a <1. 例3 函数y =log a (x +2)+1的图象过定点( ) A.(1,2) B.(2,1) C.(-2,1) D.(-1,1) 答案 D解析 令x +2=1,即x =-1,得y =log a 1+1=1,故函数y =log a (x +2)+1的图象过定点(-1,1).反思与感悟 求解对数型函数过定点问题,一般先令真数等于1,求出横坐标x ,再求出纵坐标值y ,即可得定点坐标.跟踪训练3 函数f (x )=log a (2x +1)+2(a >0,a ≠1)的图象必过定点的坐标为_______. 答案 (0,2)解析 当x =0时,f (x )=2,所以函数f (x )的图象必过定点(0,2). 题型三 对数函数的定义域例4 (1)函数f (x )=11-x +lg(1+x )的定义域是( )A.(-∞,-1)B.(1,+∞)C.(-1,1)∪(1,+∞)D.(-∞,+∞)(2)若f (x )=121log (21)+x ,则f (x )的定义域为( )A.⎝⎛⎭⎫-12,0 B.⎝⎛⎭⎫-12,+∞ C.⎝⎛⎭⎫-12,0∪(0,+∞) D.⎝⎛⎭⎫-12,2 答案 (1)C (2)C解析 (1)由题意知⎩⎪⎨⎪⎧1+x >0,1-x ≠0解得x >-1且x ≠1.(2)由题意有⎩⎪⎨⎪⎧2x +1>0,2x +1≠1解得x >-12且x ≠0.反思与感悟 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性地解不等式. 跟踪训练4 求下列函数的定义域: (1)f (x )=lg(x -2)+1x -3;(2)f (x )=log (x +1)(16-4x ).解 (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -2>0,x -3≠0,解得x >2且x ≠3.∴函数的定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,解得-1<x <0或0<x <4. ∴函数的定义域为(-1,0)∪(0,4). 题型四 对数函数与指数函数的反函数 例5 (1)y =(12)x 的反函数为________.(2)y =log 7x 的反函数为________.(3)点(4,16)在函数y =log a x (a >0,a ≠1)的反函数的图象上,则a =________. 答案 (1)y =log 21x (2)y =7x (3)2解析 (1)∵指数函数y =(12)x 的底数为12,∴它的反函数为对数函数y =log 21x .(2)∵对数函数y =log 7x 的底数为7. ∴它的反函数为指数函数y =7x .(3)∵函数y =log a x (a >0,且a ≠1)的反函数是y =a x (a >0,且a ≠1), 又∵点(4,16)在函数y =a x (a >0,且a ≠1)的图象上. ∴16=a 4,∴a =2.反思与感悟 1.同底的对数函数与指数函数互为反函数. 2.互为反函数的两个函数图象关于直线y =x 对称.跟踪训练5 点(2,4)在函数f (x )=log a x 的反函数的图象上,则f (12)等于( )A.-2B.2C.-1D.1 答案 C解析 因为点(2,4)在函数f (x )=log a x 的反函数图象上,所以点(4,2)在函数f (x )=log a x 的图象上,所以2=log a 4,即a 2=4,得a =2,所以f (12)=log 212=-1.求解对数函数定义域考虑不全致误例6 求函数y =log (x +1)(16-4x )的定义域. 错解 由16-4x >0,解得x <2, ∴函数定义域为(-∞,2). 正解 由⎩⎪⎨⎪⎧16-4x>0,x +1>0,x +1≠1,得⎩⎪⎨⎪⎧x <2,x >-1,x ≠0,∴⎩⎪⎨⎪⎧-1<x <2,x ≠0. ∴函数的定义域为(-1,0)∪(0,2).纠错心得 求对数函数的定义域,要满足:(1)真数大于零;(2)底数大于零且不等于1.注意要同时满足这两个条件,不能漏掉其中一个. 跟踪训练6 求函数f (x )=log (2x -4)(10-2x )的定义域. 解 由已知,得⎩⎪⎨⎪⎧10-2x >0,2x -4>0,2x -4≠1,解得2<x <52或52<x <5,∴函数f (x )的定义域为(2,52)∪(52,5).1.下列函数是对数函数的是( ) A.y =log a (2x ) B.y =log 22x C.y =log 2x +1 D.y =lg x答案 D解析 选项A 、B 、C 中的函数都不具有“y =log a x (a >0且a ≠1)”的形式,只有D 选项符合. 2.函数f (x )=11-x+lg(3x +1)的定义域是( ) A.(-13,+∞)B.(-∞,-13)C.(-13,13)D.(-13,1)答案 D解析 由⎩⎪⎨⎪⎧1-x >0,3x +1>0,可得-13<x <1.3.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象形状可能是( )答案A解析函数y=-log a x恒过定点(1,0),排除B项;当a>1时,y=a x是增函数,y=-log a x 是减函数,当0<a<1时,y=a x是减函数,y=-log a x是增函数,排除C项和D项,A项正确.4.若a>0且a≠1,则函数y=log a(x-1)+1的图象恒过定点________.答案(2,1)解析函数图象过定点,则与a无关,故log a(x-1)=0,∴x-1=1,x=2,y=1,所以y=log a(x-1)+1过定点(2,1).5.若函数f(x)=a x-1的反函数的图象过点(4,2),则a=________.答案4解析∵f(x)的反函数图象过(4,2),∴f(x)的图象过(2,4),∴a2-1=4,∴a=4.1.判断一个函数是不是对数函数,关键是分析所给函数是否具有y=log a x(a>0,且a≠1)这种形式.2.在对数函数y=log a x中,底数a对其图象直接产生影响,学会以分类的观点认识和掌握对数函数的图象和性质.3.涉及对数函数定义域的问题,常从真数和底数两个角度分析.一、选择题1.函数f(x)=lg(x-1)+4-x的定义域为()A.(1,4]B.(1,4)C.[1,4]D.[1,4)答案A解析 由⎩⎪⎨⎪⎧x -1>0,4-x ≥0,解得1<x ≤4.2.如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A.a >b >cB.c >b >aC.c >a >bD.a >c >b答案 D解析 y =log a x 的图象在(0,+∞)上是上升的,所以底数a >1,函数y =log b x ,y =log c x 的图象在(0,+∞)上都是下降的,因此b ,c ∈(0,1),又易知c >b ,故a >c >b . 3.函数y =log a (2x -3)+1的图象恒过定点P ,则点P 的坐标是( ) A.(2,1) B.(2,0) C.(2,-1) D.(1,1) 答案 A解析 当2x -3=1,即x =2时,y =1,故点P 的坐标是(2,1). 4.函数y =x ln(1-x )的定义域为( ) A.(0,1) B.[0,1) C.(0,1] D.[0,1] 答案 B解析 由⎩⎪⎨⎪⎧1-x >0x ≥0得,函数定义域为[0,1).5.函数y =|lg(x +1)|的图象是( )答案 A6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f [f (14)]等于( )A.-19B.19 C.-9 D.9答案 B解析 ∵14>0,∴f (14)=log 214=-2,∴f [f (14)]=f (-2)=3-2=19.7.已知f (x )为对数函数,f (12)=-2,则f (34)=________.答案 43解析 设f (x )=log a x (a >0,且a ≠1), 则log a 12=-2,∴1a 2=12,即a =2, ∴f (x )=, ∴f (34)=34=log 2(34)2=log 2243=43.8.函数y =log (2x -1)(3-4x )的定义域是________. 答案 {x |12<x <34}解析 要使函数有意义,必有⎩⎪⎨⎪⎧2x -1>0,2x -1≠1,3-4x >0,即⎩⎪⎨⎪⎧x >12,x ≠1,x <34,解得12<x <34.所以函数的定义域为{x |12<x <34}.9.函数y =log 2(x +k )的图象恒过(0,0)点,则函数y =log 21 (x -k )的图象恒过定点的坐标为________. 答案 (2,0)10.设函数f (x )=log a x (a >0且a ≠1),若f (x 1x 2…x 2 013)=8,则f (x 21)+f (x 22)+…+f (x 22 013)的值等于______. 答案 16解析 ∵f (x 21)+f (x 22)+f (x 23)+…+f (x 22 013) =log a x 21+log a x 22+log a x 23+…+log a x 22 013=log a (x 1x 2x 3…x 2 013)2 =2log a (x 1x 2x 3…x 2 013) =2f (x 1x 2x 3…x 2 013), ∴原式=2×8=16.11.若函数f (x )为定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的表达式,并画出大致图象.解 ∵f (x )为R 上的奇函数,∴f (0)=0. 又当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=lg(1-x ).又f (-x )=-f (x ),∴f (x )=-lg(1-x ), ∴f (x )的解析式为f (x )=⎩⎪⎨⎪⎧lg (x +1),x >0,0,x =0,-lg (1-x ),x <0,f (x )的大致图象如图所示:12.已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出a 的值;如果不存在,请说明理由.解 (1)当x ∈[0,2]时,f (x )恒有意义,必须3-2a >0,a <32.又a 是底数,∴a ∈(0,1)∪(1,32).(2)令t =3-ax ,则t 在[1,2]上递减,要使f (x )在[1,2]上为减函数,必须a >1, 而t 在x ∈[1,2]上必须恒大于0.∴⎩⎪⎨⎪⎧3-a >0,3-2a >0.∴1<a <32.∵f (1)=log a (3-a )=1,∴3-a =a . ∴a =32.∴不存在这样的a ,使得f (x )在[1,2]上为减函数且最大值为1. 13.已知函数f (x )=log 21(x 2-2ax +3).(1)若函数f (x )的定义域为(-∞,1)∪(3,+∞),求实数a 的值; (2)若函数f (x )的定义域为R ,值域为(-∞,-1],求实数a 的值; (3)若函数f (x )在(-∞,1]上为增函数,求实数a 的取值范围.解 (1)由x 2-2ax +3>0的解集为(-∞,1)∪(3,+∞), 得2a =1+3,所以a =2,即实数a 的值为2. (2)因为函数f (x )的值域为(-∞,-1], 则f (x )max =-1,所以y =x 2-2ax +3的最小值为y min =2, 由y =x 2-2ax +3=(x -a )2+3-a 2, 得3-a 2=2,所以a 2=1,所以a =±1.(3)f (x )在(-∞,1]上为增函数,则y =x 2-2ax +3在(-∞,1]上为减函数,且y >0,所以⎩⎪⎨⎪⎧ a ≥1,1-2a +3>0,即⎩⎪⎨⎪⎧a ≥1,a <2,故1≤a <2. 所以实数a 的取值范围是[1,2).。
新人教A版必修1高中数学学案教案:第二章 基本初等函数(Ⅰ)
第二章基本初等函数(Ⅰ)一、课标要求:教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题.1.了解指数函数模型的实际背景.2.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点).4.通过应用实例的教学,体会指数函数是一种重要的函数模型.5.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.6.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点).7.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0,a≠1),初步了解反函数的概念和f- -1(x)的意义.8.通过实例,了解幂函数的概念,结合五种具体函数1312,,,y x y x y x y x-====的图象,了解它们的变化情况.二、编写意图与教学建议:1.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.2.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容做了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想. 建议教学中重视知识间的迁移与互逆作用.3、教材对反函数的学习要求仅限于初步知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.4.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生学习的负担.5.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能 ..6. 教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.三、教学内容与课时安排的建议本章教学时间约为14课时.2.1指数函数: 6课时2.2对数函数: 6课时2.3幂函数: 1课时小结: 1课时§2.1.1 指数(第1—2课时)一.教学目标:1.知识与技能:(1)理解分数指数幂和根式的概念;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力.2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质.3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.二.重点、难点1.教学重点:(1)分数指数幂和根式概念的理解;(2)掌握并运用分数指数幂的运算性质;2.教学难点:分数指数幂及根式概念的理解三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体四、教学设想:第一课时一、 复习提问:什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零.二、新课讲解类比平方根、立方根的概念,归纳出n 次方根的概念.n 次方根:一般地,若n x a =,则x 叫做a 的n 次方根(throot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n.n 为奇数时,a 的nn 称为根指数,a 为被开方数.类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?n a n a n a n ⎧⎪⎨±⎪⎩为奇数, 的次方根有一个,为正数:为偶数, 的次方根有两个,为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.零的n0=举例:16的次方根为2±,275-的27-的4次方根不存在.小结:一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数和偶数两种情况.根据n 次方根的意义,可得:n a =n a =a n 的n a =一定成立吗?如果不一定成立,那么让学生注意讨论,n 为奇偶数和a 的符号,充分让学生分组讨论.通过探究得到:n a =n 为偶数,0||,0a a a a a ≥⎧==⎨-<⎩|8|8==-=-=小结:当n 再在绝对值算具体的值,这样就避免出现错误: 例题:求下列各式的值(1)(1)(2)(3) (4)分析:当n ||a =,然后再去绝对值.n =是否成立,举例说明.课堂练习:1. 求出下列各式的值1)a ≤21,a a =-求的取值范围.3三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n x a x 是的次方根,n 为奇数时,n 为偶数时,x =2.掌握两个公式:(0),||(0)n a a n n a a a ≥⎧==⎨-<⎩为奇数时为偶数时 3.作业:P 59习题2.1 A 组 第1题。
高中数学新学案同步 必修1人教A版 全国通用版 第二章 基本初等函数 2.1 指数函数 2.1.2(二)
2.1.2 指数函数及其性质(二)学习目标 1.掌握指数函数与其他函数复合所得的函数单调区间的求法及单调性的判断.2.能借助指数函数的性质比较大小.3.会解简单的指数方程、不等式.知识点一 不同底指数函数图象的相对位置思考 y =2x 与y =3x 都是增函数,都过点(0,1),在同一坐标系内如何确定它们两个的相对位置?答案 经描点观察,在y 轴右侧,2x <3x ,即y =3x 图象在y =2x 上方,经(0,1)点交叉,位置在y 轴左侧反转,y =2x 在y =3x 图象上方.梳理 一般地,在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:(1)在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.(2)指数函数y =a x 与y =⎝⎛⎭⎫1a x(a >0且a ≠1)的图象关于y 轴对称. 知识点二 比较幂的大小思考 若x 1<x 2,则1x a 与2xa (a >0且a ≠1)的大小关系如何? 答案 当a >1时,y =a x 在R 上为增函数,所以12,x xa a < 当0<a <1时,y =a x 在R 上为减函数,所以12.xxa a > 梳理 一般地,比较幂大小的方法有:(1)对于同底数不同指数的两个幂的大小,利用指数函数的单调性来判断;(2)对于底数不同指数相同的两个幂的大小,利用指数函数的图象的变化规律来判断;(3)对于底数不同指数也不同的两个幂的大小,则通过中间值来判断. 知识点三 解指数方程、不等式 简单指数不等式的解法(1)形如a f (x )>a g (x )的不等式,可借助y =a x 的单调性求解;(2)形如a f (x )>b 的不等式,可将b 化为以a 为底数的指数幂的形式,再借助y =a x 的单调性求解;(3)形如a x >b x 的不等式,可借助两函数y =a x ,y =b x 的图象求解. 知识点四 与指数函数复合的函数单调性思考 112xy ⎛⎫= ⎪⎝⎭的定义域与y =1x 的定义域是什么关系?112xy ⎛⎫= ⎪⎝⎭的单调性与y =1x的单调性有什么关系?答案 由于y =a x (a >0且a ≠1)的定义域为R ,故112xy ⎛⎫= ⎪⎝⎭的定义域与y =1x的定义域相同,故研究112xy ⎛⎫= ⎪⎝⎭的单调性,只需在y =1x 的定义域内研究.若设0<x 1<x 2,则1x 1>1x 2,121111,22x x ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭不等号方向的改变与y =⎝⎛⎭⎫12x ,y =1x 的单调性均有关. 梳理 一般地,有形如y =a f (x )(a >0,且a ≠1)函数的性质 (1)函数y =a f (x )与函数y =f (x )有相同的定义域.(2)当a >1时,函数y =a f (x )与y =f (x )具有相同的单调性;当0<a <1时,函数y =a f (x )与函数y =f (x )的单调性相反.1.y =21-x 是R 上的增函数.( × )2.若0.1a >0.1b ,则a >b .( × )3.a ,b 均大于0且不等于1,若a x =b x ,则x =0.( × )4.由于y =a x (a >0且a ≠1)既非奇函数,也非偶函数,所以指数函数与其他函数也组不成具有奇偶性的函数.( × )类型一 解指数方程例1 解下列方程. (1)81×32x =⎝⎛⎭⎫19x +2; (2)22x +2+3×2x -1=0.考点 指数方程的解法 题点 指数方程的解法 解 (1)∵81×32x =⎝⎛⎭⎫19x +2, ∴32x +4=3-2(x +2), ∴2x +4=-2(x +2), ∴x =-2.(2)∵22x +2+3×2x -1=0, ∴4×(2x )2+3×2x -1=0.令t =2x (t >0),则方程可化为4t 2+3t -1=0, 解得t =14或t =-1(舍去).∴2x =14,解得x =-2.反思与感悟 (1)a f (x )=b 型通常化为同底来解.(2)解指数方程时常用换元法,用换元法时要特别注意“元”的范围.转化为解二次方程,用二次方程求解时,要注意二次方程根的取舍. 跟踪训练1 解下列方程. (1)33x -2=81;(2)5x =325; (3)52x -6×5x +5=0. 考点 指数方程的解法 题点 指数方程的解法解 (1)∵81=34,∴33x -2=34,∴3x -2=4,解得x =2. (2)∵5x =325,23255,x ∴=∴x 2=23,解得x =43. (3)令t =5x ,则t >0,原方程可化为t 2-6t +5=0, 解得t =5或t =1,即5x =5或5x =1, ∴x =1或x =0.类型二 指数函数单调性的应用 命题角度1 比较大小例2 比较下列各题中两个值的大小. (1)1.7-2.5,1.7-3;(2)1.70.3,1.50.3;(3)1.70.3,0.83.1.考点 指数幂的大小比较 题点 比较指数幂大小解 (1)∵1.7>1,∴y =1.7x 在(-∞,+∞)上是增函数. ∵-2.5>-3,∴1.7-2.5>1.7-3.(2)方法一 ∵1.7>1.5,∴在(0,+∞)上,y =1.7x 的图象位于y =1.5x 的图象的上方. 而0.3>0,∴1.70.3>1.50.3.方法二 ∵1.50.3>0,且1.70.31.50.3=⎝⎛⎭⎫1.71.50.3,又1.71.5>1,0.3>0,∴⎝⎛⎭⎫1.71.50.3>1,∴1.70.3>1.50.3. (3)∵1.70.3>1.70=1,0.83.1<0.80=1, ∴1.70.3>0.83.1.反思与感悟 当两个数不能利用同一函数的单调性作比较时,可考虑引入中间量,常用的中间量有0和±1.跟踪训练2 比较下列各题中的两个值的大小. (1)0.8-0.1,1.250.2;(2)⎝⎛⎭⎫1π-π,1; (3)0.2-3,(-3)0.2.考点 指数幂的大小比较 题点 比较指数幂大小解 (1)∵0<0.8<1,∴y =0.8x 在R 上是减函数. ∵-0.2<-0.1,∴0.8-0.2>0.8-0.1, 即0.8-0.1<1.250.2.(2)∵0<1π<1,∴函数y =⎝⎛⎭⎫1x 在R 上是减函数. 又∵-π<0,∴⎝⎛⎭⎫1π-π>⎝⎛⎭⎫1π0=1,即⎝⎛⎭⎫1π-π>1. (3)0.2-3=⎝⎛⎭⎫210-3=⎝⎛⎭⎫15-3=53,210.2105(3)(3)3,-=-=113533,5125 3.∴<==> 1330.2535,(3).-∴<>-即0.2命题角度2 解指数不等式例3 解关于x 的不等式:a 2x +1≤a x -5(a >0,且a ≠1).考点 指数不等式的解法 题点 指数不等式的解法解 ①当0<a <1时,∵a 2x +1≤a x -5, ∴2x +1≥x -5,解得x ≥-6. ②当a >1时,∵a 2x +1≤a x -5, ∴2x +1≤x -5,解得x ≤-6.综上所述,当0<a <1时,不等式的解集为{x |x ≥-6};当a >1时,不等式的解集为{x |x ≤-6}. 反思与感悟 解指数不等式的基本方法是先化为同底指数式,再利用指数函数单调性化为常规的不等式来解,注意底数对不等号方向的影响.跟踪训练3 已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是________.考点 指数不等式的解法 题点 指数不等式的解法 答案 ⎝⎛⎭⎫12,+∞解析 ∵a 2+a +2=⎝⎛⎭⎫a +122+74>1, ∴(a 2+a +2)x >(a 2+a +2)1-x ⇔x >1-x ⇔x >12.∴x ∈⎝⎛⎭⎫12,+∞. 类型三 求与指数函数复合的函数的单调区间 例4 (1)求函数261712x x y ⎛⎫⎪⎝⎭-+=的单调区间;(2)求函数y =⎝⎛⎭⎫122x -8·⎝⎛⎭⎫12x +17的单调区间. 考点 指数函数的单调性 题点 指数型复合函数的单调区间 解 (1)函数261712x x y ⎛⎫ ⎪⎝⎭-+=的定义域为R .在(-∞,3]上,y =x 2-6x +17是减函数, ∴261712x x y ⎛⎫ ⎪⎝⎭-+=在(-∞,3]上是增函数.在[3,+∞)上,y =x 2-6x +17是增函数, ∴261712x x y ⎛⎫ ⎪⎝⎭-+=在[3,+∞)上是减函数.∴261712x x y ⎛⎫ ⎪⎝⎭-+=的增区间是(-∞,3],减区间是[3,+∞).(2)函数y =⎝⎛⎭⎫122x-8·⎝⎛⎭⎫12x +17的定义域为R . 设t =⎝⎛⎭⎫12x >0,又y =t 2-8t +17在(0,4]上单调递减,在[4,+∞)上单调递增, 令⎝⎛⎭⎫12x ≤4,得x ≥-2,∴当-2≤x 1<x 2时,12114,22x x⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭≥即4≥t 1>t 2,∴t 21-8t 1+17<t 22-8t 2+17.∴y =⎝⎛⎭⎫122x-8·⎝⎛⎭⎫12x +17的单调增区间是[-2,+∞).同理可得减区间是(-∞,-2].反思与感悟 复合函数单调性问题归根结底是由x 1<x 2到f (x 1)与f (x 2)的大小,再到g (f (x 1))与g (f (x 2))的大小关系问题.跟踪训练4 求下列函数的单调区间.223(1);x x y a+-=(2)y =10.2x -1.考点 指数函数的单调性 题点 指数型复合函数的单调区间 解 (1)设y =a u ,u =x 2+2x -3,由u =x 2+2x -3=(x +1)2-4,得u 在(-∞,-1]上为减函数,在[-1,+∞)上为增函数. 当a >1时,y 关于u 为增函数; 当0<a <1时,y 关于u 为减函数,∴当a >1时,原函数的增区间为[-1,+∞),减区间为(-∞,-1]; 当0<a <1时,原函数的增区间为(-∞,-1],减区间为[-1,+∞). (2)已知函数的定义域为{x |x ≠0}. 设y =1u -1,u =0.2x ,易知u =0.2x 为减函数. 而根据y =1u -1的图象可知在区间(-∞,1)和(1,+∞)上,y 是关于u 的减函数, ∴原函数的增区间为(-∞,0)和(0,+∞).1.下列大小关系正确的是( ) A .0.43<30.4<π0 B .0.43<π0<30.4 C .30.4<0.43<π0 D .π0<30.4<0.43考点 指数幂的大小比较 题点 比较指数幂大小 答案 B解析 0.43<0.40=π0=30<30.4. 2.方程42x -1=16的解是( )A .x =-32B .x =32 C .x =1 D .x =2考点 指数方程的解法 题点 指数方程的解法 答案 B解析 ∵42x -1=42,∴2x -1=2,x =32.3.函数211()2x f x -⎛⎫= ⎪⎝⎭的单调递增区间为( )A .(-∞,0]B .[0,+∞)C .(-1,+∞)D .(-∞,-1)考点 指数函数的单调性 题点 指数型复合函数的单调区间 答案 A解析 ∵211()2x f x -⎛⎫= ⎪⎝⎭,0<12<1,∴f (x )的单调递增区间为u (x )=x 2-1的单调递减区间,即(-∞,0].4.设0<a <1,则关于x 的不等式22232223x x x x a a -++->的解集为________.考点 指数不等式的解法 题点 指数不等式的解法 答案 (1,+∞)解析 ∵0<a <1,∴y =a x 在R 上是减函数, 又∵22232223x x x x aa-++->,∴2x 2-3x +2<2x 2+2x -3,解得x >1. 5.f (x )=2x +2-x 的奇偶性是________.考点 与指数函数相关的函数的奇偶性 题点 与指数函数相关的函数的奇偶性 答案 偶函数解析 f (x )的定义域为R .f (-x )=2-x +2-(-x )=2x +2-x =f (x ),∴f (x )为偶函数.1.比较两个指数式值的大小的主要方法(1)比较形如a m 与a n 的大小,可运用指数函数y =a x 的单调性.(2)比较形如a m 与b n 的大小,一般找一个“中间值c ”,若a m <c 且c <b n ,则a m <b n ;若a m >c 且c >b n ,则a m >b n .2.解简单指数不等式问题的注意点(1)形如a x >a y 的不等式,可借助y =a x 的单调性求解.如果a 的值不确定,需分0<a <1和a >1两种情况进行讨论.(2)形如a x >b 的不等式,注意将b 化为以a 为底的指数幂的形式,再借助y =a x 的单调性求解. (3)形如a x >b x 的不等式,可借助图象求解.3.(1)研究y =a f (x )型单调区间时,要注意a >1还是0<a <1. 当a >1时,y =a f (x )与f (x )单调性相同. 当0<a <1时,y =a f (x )与f (x )单调性相反.(2)研究y =f (a x )型单调区间时,要注意a x 属于f (u )的增区间还是减区间.一、选择题1.设x <0,且1<b x <a x ,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b考点 指数不等式的解法 题点 指数不等式的解法 答案 B解析 ∵1<b x <a x ,x <0,∴0<a <1,0<b <1. 当x =-1时,1b <1a,即b >a ,∴0<a <b <1.2.函数y =a x 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( )A .6B .1C .3 D.32考点 指数函数的最值题点 根据指数函数的最值求底数 答案 C解析 函数y =a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3. 3.已知a =5-12,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的关系为( ) A .m +n <0 B .m +n >0 C .m >nD .m <n考点 指数不等式的解法 题点 指数不等式的解法 答案 D解析 ∵0<5-12<1,∴f (x )=a x =⎝ ⎛⎭⎪⎫5-12x在R 上单调递减, 又∵f (m )>f (n ),∴m <n ,故选D.4.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]考点 指数函数的单调性 题点 指数型复合函数的单调区间 答案 B解析 由f (1)=19得a 2=19,所以a =13(a =-13舍去),即f (x )=⎝⎛⎭⎫13|2x -4|. 由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增, 所以f (x )在(-∞,2]上递增,在[2,+∞)上递减. 故选B.5.设y 1=40.9,y 2=80.48,y 3=⎝⎛⎭⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2考点 指数幂的大小比较题点 比较指数幂大小答案 D解析 40.9=21.8,80.48=21.44,⎝⎛⎭⎫12-1.5=21.5, 根据y =2x 在R 上是增函数,得21.8>21.5>21.44,即y 1>y 3>y 2,故选D.6.设f (x )=|3x -1|,c <b <a 且f (c )>f (a )>f (b ),则下列关系式中一定成立的是( )A .3c ≤3bB .3c >3bC .3c +3a >2D .3c +3a <2 考点 指数函数性质的综合应用题点 指数函数的综合问题答案 D解析 f (x )=|3x -1|的图象如下.由c <b <a 且f (c )>f (a )>f (b )可知c ,b ,a 不在同一个单调区间上.故有c <0,a >0.∴f (c )=1-3c ,f (a )=3a -1.∴f (c )>f (a ),即1-3c >3a -1,3c +3a <2.7.已知函数f (x )=x (e x +a e -x )(x ∈R ),若f (x )是偶函数,记a =m ,若f (x )是奇函数,记a =n ,则m +2n 的值为( )A .0B .1C .2D .-1考点 与指数函数相关的函数的奇偶性题点 与指数函数相关的函数的奇偶性答案 B解析 当f (x )是偶函数时,f (x )=f (-x ),即x (e x +a e -x )=-x (e -x +a e x ),即(1+a )(e x +e -x )x =0,因为上式对任意实数x 都成立,所以a =-1,即m =-1.当f (x )是奇函数时,f (x )=-f (-x ),即x (e x +a e -x )=x (e -x +a e x ),即(1-a )(e x -e -x )x =0, 因为上式对任意实数x 都成立,所以a =1,即n =1,所以m +2n =1.8.若存在正实数x 使2x (x -a )<1,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)考点 指数函数的单调性题点 根据指数函数的单调性求参数的取值范围答案 D解析 由2x (x -a )<1,得a >x -12x (x >0), 令f (x )=x -12x ,即a >f (x )有解,则a >f (x )min ,又 f (x )在(0,+∞)上是增函数, ∴f (x )>f (0)=-1,∴a >-1.故选D.二、填空题9.函数f (x )=⎝⎛⎭⎫13245x x --的单调递减区间是________.考点 指数函数的单调性题点 指数型复合函数的单调区间答案 (2,+∞)解析 函数由f (t )=⎝⎛⎭⎫13t ,t (x )=x 2-4x -5复合而成,其中f (t )=⎝⎛⎭⎫13t 是减函数,t (x )=x 2-4x -5在(-∞,2)上是减函数,在(2,+∞)上是增函数.由复合函数的单调性可知,函数的单调递减区间为(2,+∞).10.某驾驶员喝酒后血液中的酒精含量f (x )(mg/mL)随时间x (h)变化的规律近似满足解析式f (x )=⎩⎪⎨⎪⎧5x -2,0≤x ≤1,35·⎝⎛⎭⎫13x ,x >1.规定驾驶员血液中的酒精含量不得超过0.02 mg/mL ,据此可知,此驾驶员至少要过______ h 后才能开车.(精确到1 h)考点 指数函数的实际应用题点 指数函数的实际应用答案 4解析 当0≤x ≤1时,125≤5x -2≤15,此时不宜开车;由35·⎝⎛⎭⎫13x ≤0.02,可得x ≥3.10.故至少要过4 h 后才能开车.11.若4x +2x +1+m >1对一切实数x 成立,则实数m 的取值范围是__________. 考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题答案 [1,+∞)解析 4x +2x +1+m >1等价于(2x )2+2·2x +1>2-m ,即(2x +1)2>2-m .∵2x ∈(0,+∞), ∴2x +1∈(1,+∞),∴2-m ≤1,解得m ≥1.三、解答题12.已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,解不等式f (x )>0;(2)当a =12,x ∈[0,2]时,求f (x )的值域. 考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题解 (1)当a =1时,f (x )=2·4x -2x -1.f (x )>0,即2·(2x )2-2x -1>0,解得2x >1或2x <-12(舍去), ∴x >0,∴不等式f (x )>0的解集为{x |x >0}.(2)当a =12时,f (x )=4x -2x -1,x ∈[0,2].设t =2x ,∵x ∈[0,2],∴t ∈[1,4].令y =g (t )=t 2-t -1(1≤t ≤4),画出g (t )=t 2-t -1(1≤t ≤4)的图象(如图),可知g (t )min =g (1)=-1,g (t )max =g (4)=11,∴f (x )的值域为[-1,11].13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x , (1)写出f (x )的单调区间;(2)求不等式f (x )<-12的解集. 考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题解 (1)∵f (x )是定义在R 上的奇函数,∴f (0)=0.f (x )在[0,+∞)上是增函数,∴f (x )在(-∞,+∞)上是增函数.(2)f (x )<-12=-f (1)=f (-1), 由(1)知f (x )在R 上是增函数,∴x <-1.即f (x )<-12的解集为(-∞,-1). 四、探究与拓展14.设f (x )满足f (x )=f (4-x ),且当x >2时,f (x )是增函数,则a =f (1.10.9),b =f (0.91.1),c =f (2)的大小关系是________.(按由大到小排列)考点 指数幂的大小比较题点 比较指数幂大小答案 b >a >c解析 ∵f (x )=f (4-x ),∴f (x )关于x =2对称.又∵f (x )在(2,+∞)上是增函数,∴f (x )在(-∞,2)上是减函数.又∵1.10.9>1,0<0.91.1<1,∴0.91.1<1.10.9<2,∴f (0.91.1)>f (1.10.9)>f (2),即b >a >c .15.已知函数f (x )=3x +k ·3-x 为奇函数. (1)求实数k 的值;(2)若关于x 的不等式f (9221ax x --)+f (1-3ax -2)<0只有一个整数解,求实数a 的取值范围. 考点 指数函数性质的综合应用题点 指数函数的综合问题解 (1)显然f (x )的定义域为R .∵f (x )是奇函数,∴f (x )+f (-x )=3x +k ·3-x +3-x +k ·3x=(k +1)(3x +3-x )=0对一切实数x 都成立,∴k =-1.(2)由(1)可知f (x )为R 上的增函数,又f (x )是奇函数,∴f (9221ax x --)+f (1-3ax -2)<0⇒9221ax x --<3ax -2-1⇒3224ax x -<3ax -2⇒2ax 2-4x <ax -2 ⇒(ax -2)(2x -1)<0.当a ≤0时,显然不符合题意;当a >0时,由不等式只有一个整数解,可知不等式的解集为⎝⎛⎭⎫12,2a ,且1<2a≤2⇒1≤a <2, ∴实数a 的取值范围是[1,2).。
高中数学新学案同步 必修1人教A版 全国通用版 第二章 基本初等函数 2.2 对数函数 2.2.2(一)
知识点二
对数函数的图象与性质
对数函数y=logax(a>0,且a≠1)的图象和性质如下表: 定义 底数 a>1 y=logax (a>0,且a≠1) 0<
(0,+∞) _________ R ___
单调性 共点性 函数值 特点
在(0,+∞)上是增函数
在(0,+∞)上是减函数
图象过定点 (1,0) ,即x=1时,y=0
x∈(0,1)时,y∈ (-∞,0) ;
x∈[1,+∞)时,
x∈(0,1)时,y∈ (0,+∞) ; (-∞,0] x∈[1,+∞)时,y∈_________
[0,+∞) y∈__________
对称性
函数y=logax与y= log 1 x 的图象关于 x轴 对称
a
[思考辨析 判断正误] 1.由y=logax,得x=ay,所以x>0.( √ ) 2.y=2log2x是对数函数.( × ) 3.y=ax与y=logax的单调区间相同.( × ) 4.由loga1=0,可得y=logax恒过定点(1,0).( √ )
题型探究
类型一 对数函数的定义域的应用
例1 求下列函数的定义域. (1)y=loga(3-x)+loga(3+x);
第二章 §2.2
对数函数
2.2.2 对数函数及其性质(一)
学习目标
1.理解对数函数的概念.
2.掌握对数函数的性质.
3.了解对数函数在生产实际中的简单应用.
内容索引
问题导学
题型探究
达标检测
问题导学
知识点一
对数函数的概念
思考 已知函数y=2x,那么反过来,x是否为关于y的函数? 答案 由于y=2x是单调函数,所以对于任意y∈(0,+∞)都有唯一确定
人教A版高中数学必修一第二章基本初等函数 学案
第1讲 §2.1.1 指数与指数幂运算※知识要点 1.n 次方根(1)定义:若x n =a (n >1且n ∈N *),则x 叫做 ,式子n a 叫做________,这里n 叫做________,a 叫做____________. (2)几个规定①当n 为奇数时,正数的n 次方根是一个 ,负数的n 次方根是一个 ,这时,a 的n 次方根用符号________表示. ②当n 为偶数时,正数的n 次方根有 个,它们互为相反数,这时,这个数的n 次方根可以合写成________(a >0). ③ 没有偶次方根,零的任何次方根都是 . 2.根式的性质(1)(na )n = (n ∈N *,且n >1); (2)(na n )= (n 为大于1的奇数);(3)(na n )= = (n 为大于1的偶数). 3.分数指数幂一般的,我们规定:(1) =________(a >0,m ,n ∈N *,n >1); (2) =________(a >0,m ,n ∈N *,n >1). (3)有理指数幂的运算(m ,n ∈Q )①a m a n =________; ②(a m )n =________;③(ab )m =________; ④a m ÷a n =________( ); ⑤a 0=______( ); ⑥a -p =________( );※题型讲练【例1】(1)81的4次方根是 ,-32的5次方根是 ; (2)2017的6次方根是 ,2018的7次方根是 .变式训练1:1.求下列各式的值:(4)()88b a - (a b <)2.化简:(a -1)2+(1-a )2+3(1-a )3【例2】把下列根式化为分数指数幂,分数指数幂化为根式: (1)35=________;(2)322=________;(3)1523=________;(4) =________;(5) =________;(6) =________.变式训练2:1.把下列根式化为分数指数幂: (1)3·a a (2)【例3】化简与计算下列各式:(1)(2)变式训练3:1.化简:=________. 2.计算:【例4】已知11223a a--=,求下列各式的值:(1)1-+a a ; (2)1122a a -+;变式训练4: 1.已知1x x -+=3,求 的值.12113321()4(0.1)()a b ---⋅⋅m na nm a -86a 53-m2333·1aa 3421413223)(a b b a ab b a ()21103227()0.0022).8----+-+1103437()()826-⨯-+222121--++x x x x※课堂反馈1.以下说法正确的是(其中n >1且n ∈N *)( )A .正数的n 次方根是正数;B .负数的n 次方根是负数;C .0的n 次方根是0D .a 的n 次方根是n a . 2.下列各式正确的是( ) A .(-3)2=-3 B .4a 4=a C .22=2 D .3(-2)3=2 3.把根式32m m 化成分数指数幂是________.4.计算: =________.5.已知3a =2,3b =15,则32a -b=________.6.计算:※基础夯实 1.下列运算结果中,正确的是( ) A .a 2a 3=a 5 B .(-a 2)3=(-a 3)2C .(a -1)0=1D .(-a 2)3=a 6 2.若2<a <3,化简(2-a )2+4(3-a )4的结果是( ) A.5-2a B .2a -5 C .1D .-13.下列根式中,分数指数幂的互化,正确的是( ) A .12()(0)x x -> B 13(0)y y < C .340)xx -=> D .130)xx -=≠4.若()4321--x 有意义,则x 的取值范围是( ) A .x ∈R B .x >0.5 C .x ≠0.5 D .x <0.55.化简()()615312233··ab b a b a -的结果是( ) A .a B .(ab )-1 C .ab -1 D .a -16.将分数指数幂34m 化成根式形式是________.7.若n 是偶数,n(x -1)n =x -1,则x 的取值范围为______. 8.若代数式2x -1+2-x 有意义,化简下列式子: 4x 2-4x +1+24(x -2)4.9.化简与计算: (1)(2)(3)※能力提升 1.设 =m ,则a 2+1a =( )A .m 2-2B .2-m 2C .m 2+2D .m 22.设a x =3,a y=5,则22yx a +=________.3.设a 2=b 4=m (a >0,b >0),且a +b =6,则m =______. 4.计算:23×31.5×6125.已知1122a a -+=5,求下列各式的值: (1)a 2+a -2; (2)a 2-a -2.()()[]75.0525031161287064.0⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛----32833-⎪⎭⎫ ⎝⎛2110332464()( 5.6)()0.125927--+--+=()662132313ba ab b a -∙442121--a a第2讲 §2.1.2 指数函数图像及性质※知识要点1.指数函数的概念一般的,形如函数 ( )叫做指数函数,其中自变量是 ,定义域是 ; 2.指数函数的图像及性质※题型讲练【例1】下列函数中,是指数函数的为________.(填序号)(1)y =2x +2; (2)y =(-2)x ; (3)y =-2x ; (4)y =πx ;(5)y =x 2; (6)y =(a -1)x (a >1,且a ≠2).变式训练1:1.若f (x )=(a 2-7a +7)a x 是指数函数,则实数a 的值为 . 2.已知f (x )=(2a -1)x 是指数函数,则a 的取值范围是_____.3.若函数f (x )是指数函数,且f (2)=16,则f (-32)=_____.【例2】(1)已知0<a <1,b <-1,则函数y =a x +b 的图象必定不经过第________象限.(2)函数f (x )=2a x +1-3(a >0且a ≠1)的图象恒过定点________.变式训练2:1.函数f (x )=a x -12(a >1)的图象必过定点________,其图象必不过第_____象限.【例3】解下列不等式:(1)2x +2-1≤0; (2)4x -1>22; (3)(13)x <39.变式训练3:1.分别求下列函数的定义域:(1)f (x )=110x -1; (2)f (x )=4-12x .【例4】分别求下列函数的值域:(1)f (x )=10x-1; (2)f (x )=(23)x -1,x ∈[0,+∞);(3)f (x )=4-12x ; (4)y =4x +2x +1+2.变式训练4:1.函数y =8-23-x在区间x ∈[0,+∞)上的值域是________.2.若f (x )=a x-1(a >0,且a ≠1)的定义域、值域都是[0,2],则实数a 的值为 .3.已知0≤x ≤2,求f (x )=9x -2·3x+5的最大值.※课堂反馈1.若函数f(x)是指数函数,且f(2)=2,则f(x)=()A.(2)x B.2x C.(12)x D.(22)x2.当x∈[-2,2)时,y=3-x-1的值域是()A.(-89,8] B.[-89,8] C.(19,9] D.[19,9]3.函数y=a x-5+1(a≠0)的图象必经过点________.4.若f(x)=(a2-1)a x是指数函数,则实数a的值为.5.已知指数函数y=(2-a)x在定义域内是减函数,则a的取值范围是________.6.已知函数f(x)=4-2x,求f(x)的定义域和值域.※基础夯实1.函数y=(a2-4a+4)a x是指数函数,则a的值是() A.4 B.1或3 C.3 D.12.下列各函数中,是指数函数的是()A.y=(-3)x B.y=-3x C.y=3x-1D.y=13x 3.函数f(x)=2|x|-1在区间[-1,2]上的值域是()A.[1,4] B .[12,2] C.[1,2] D.[12,1] 4.函数y=a|x|(a>1)的图象是()5.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系是()A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c6.指数函数f(x)=5+a x+1的图象恒过定点________.7.若f(x)=a x(a>0,且a≠1)在[0,1]上最大值与最小值和为3,则实数a的值为.8.函数y=8-24-x(x≥0)的值域是________.9.已知函数f(x)=a x2-2x(a>0且a≠1)的图象经过点(1,2),(1)求a的值;(2)求函数y=f(x)在R上的值域.10.已知f(x)=9x-2×3x+4,x∈[-1,2].(1)设t=3x,x∈[-1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.※能力提升1.若a>1,-1<b<0,则函数y=a x+b的图象一定在() A.第一、二、三象限B.第一、三、四象限C.第二、三、四象限D.第一、二、四象限2.函数y=xa x|x|(0<a<1)的图象的大致形状是()3.已知函数f (x)是定义在R上的奇函数,当x>0时,f (x)=1-2-x,则不等式f (x)<-12的解集是________.4.定义运算a※b=⎩⎨⎧b(a≥b),a(a<b),则函数f (x)=3-x※3x的值域为________.5.用清水漂洗衣服,若每次能洗去污垢的34,要使存留污垢不超过原来的1%,则至少要漂洗________次.6.若函数f(x)=2ax2-a x+1-1的定义域为R,求实数a的取值范围.第3讲 §2.1.3 指数函数性质及应用※知识要点1.复合函数单调性一般的,在某一区间D 上,若内外函数单调性 ,则复合函数在区间D 上单调递增;若内外函数单调性 ,则复合函数在区间D 上单调递减.注:复合函数单调性结论可简记为: . 2.指数幂大小比较(1)同底数幂比较: ; (2)同指数幂比较: ; (3)不同底不同指幂比较: .※题型讲练【例1】比较下列各组数的大小.(1)2.30.6和2.31.2; (2)(35)0..5和(35)0..8;(3)1.9+1.5和3+1.5; (4)3.10.6和0.63.1;变式训练1:1.比较大小:a =1.50.6,b =0.60.2,c =0.61.5.2.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则y 1,y 2,y 3的大小关系为________.【例2】已知函数f (x )=(12)x 2-2x,求f (x )的值域和单调区间.变式训练2:1.已知函数y =2-x 2+4x -1,求其单调区间及值域.2.若函数f (x )=(13)ax 2-(a +2)x +3在区间[-1,+∞)上单调递增,则a 的取值范围是____________.3.函数f (x )=⎩⎨⎧-x +3a ,x <0,a x , x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是________.【例3】已知函数f (x )=2x-b2x +a是定义在R 上的奇函数.(1)求a 、b 的值;(2)判断并证明函数f (x )的单调性; (3)求函数f (x )在R 上的值域.变式训练3:1.已知函数f (x )=12x +1+a 是奇函数,则a =_____.2.已知函数f (x )=2x -12x .(1)判断函数f (x )的奇偶性; (2)证明:f (x )为R 上的增函数;(3)若对于任意m ∈[-2,2],不等式f (m 2-3m )+f (m -k )<0恒成立,求k 的取值范围.※课堂反馈 1.若2x +1<1,则x 的取值范围是( ) A .(-1,1) B .(-1,+∞) C .(0,1)∪(1,+∞) D .(-∞,-1) 2.下列判断正确的是( ) A .1.72.5>1.73 B .0.82<0.83C .0.9-0.3<1D .1.90.3>0.92.53.函数y =2x 2+4x +2的值域为 ,增区间为 .4.已知函数f (x )=13x +1+a 为奇函数,则常数a =______.5.已知函数指数f (x )=(2a -1)x 是R 上的减函数,则实数a的取值范围是 .6.设函数f (x )=1-22x +1, (1)证明:f (x )为奇函数. (2)求f (x )的值域.※基础夯实1.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域是( )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)2.函数y =(12)1-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.若函数f (x )=12x +1,则该函数在(-∞,+∞)上( )A .单调递减且无最小值B .单调递减且有最小值C .单调递增且无最大值D .单调递增且有最大值4.若1>n >m >0,则指数函数①y =m x ,②y =n x的图象为()5.已知函数f (x )=⎩⎨⎧a x,(x <0)(a -3)x +4a ,(x ≥0),满足对任意的x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( )A .(0,14]B .(0,1)C . [14,1) D .(0,3)6.已知a =20.2,b =0.40.2,c =0.40.6,则a ,b ,c 的大小关系是____________.7.不等式0.52x>4x -1的解集为____________.(用区间表示)8.求函数f (x )=4-2x2+2x -2的值域和单调区间.9.已知函数f (x )=3x,f (a +2)=81,g (x )=1-a x 1+a x . (1)求g (x )的解析式并判断g (x )的奇偶性; (2)用定义证明:函数g (x )在R 上是单调递减函数; (3)求函数g (x )的值域.※能力提升1.函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称2.已知函数f (x )=(a -2)a x(a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,则a 的取值范围是______________.3.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x+2(a >0,且a ≠1).若g (2)=a ,则f (2)=________. 4.已知函数f (x )=(13)ax 2-4x +3..(1)若f (x )有最大值3,求a 的值;(2)若f (x )在(-∞,1)上单调递增,求a 的取值范围.5.已知函数y =a 2x +2a x-1(a >0且a ≠1)在[-1,1]上有最大值14,试求a 的值.第4讲 §2.2.1 对数及对数运算※知识要点 1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么就称b 是以 为底 的对数,记作: =b ,其中a 叫做对数的 ,N 叫做 . 注:常用对数log 10N = ;自然对数log e N = (e 是无理数,e ≈ ).2.对数的性质与运算法则 (1)对数的性质(a >0且a ≠1)①特殊对数值:log a 1= ,log a a = ; ②对数恒等式:a log a N = ;③ 没有对数;(2)对数的运算法则(a >0且a ≠1,M >0,N >0)①log a (MN )= ;②log a MN = ;③log a M n= ; 3.换底公式(1)内容:log a N = ,(其中a >0,a ≠1,N >0,c >0,c ≠1); (2)推广:①log a b ·log b a = (a ,b >0且a ,b ≠1); ②n a b g m lo = (a ,b >0且a ,b ≠1,m ≠0).③log a b ·log b c ·log c d = .※题型讲练【例1】将下列的对数式化为指数式或将指数式化为对数式:(1) (12)-1=2 (2)log 381=4 (3)e 0=1(4)ln a =b (5)lg0.001=-3 (6)3-3=127变式训练1:1.求解下列各式中x 的值:(1)log 8x =-23 (2)log 422 =x (3)log x 25=-22.设log a 2=m ,log a 3=n ,则a 2m +n= .3.若log 2(log 3x )=log 3(log 4y )=0,则x +y = .【例2】求下列对数式中x 的取值范围:(1)lg(2x -1); (2)log (x -2)(x +2).变式训练2:1.使log a (3a -2)有意义的a 的取值范围是________.2.解方程:log (x +1)(x +3)-2=0【例3】计算下列各题:(1)2ln e -52log 52+12log 3 3 3 (2)12lg 3249-43lg 8+lg 245(3)lg 25+23lg 8+lg 5·lg 20+(lg 2)2变式训练3:1.计算下列各题:(1)2log 3 2-log 3 329+log 3 8-π 2log π3 (2)lg 25+lg 2·lg 50【例4】(1)计算:log 29·log 34=________;(2)设3a =5b =c ,且1a +1b=2,则c 的值为 .变式训练4:1.求值:log 225·log 3116·log 519=________.2.已知log 147=a ,log 145=b ,试用a 、b 表示log 3528.※课堂反馈1.已知log x 8=3,则x 的值为( )A .12B .2C .3D .42.化简lg 2516-2lg 59+lg 3281=( )A .lg 2B .lg 3C .lg 4D .lg 53.对数式log (10-b )(b -2)中,实数b 的取值范围是________.4.已知log a 2=m ,log a 3=n ,则a 2m -n=_______,用m ,n 表示对数log a 18=________.5.已知2m =5n =10,则1m +1n=________.6.计算:12lg16+lg 25-2log 23-log 2 27·log 3 4※基础夯实1.方程2log 3x =14的解是( )A .9B .33C . 3D .192.若log 5(log 3(log 2x ))=0,则x 等于( )A.36 B .39 C .24 D .233.计算21+log 25=( )A .7B .10C .6D .924.已知a =log 32,则log 38-2log 36=( )A .a -2B .5a -2C .3a -(1+a )2D .3a -a 2-1 5.使log (x -1)(x +2)有意义的x 的取值范围是________.6.设g(x )=⎩⎨⎧e x,x ≤0ln x ,x >0,则g (g (12))=________.7.设7a =8b =k ,且1a +1b=1,则k =________.8.有以下四个结论:①lg(lg 10)=0; ②ln(ln e)=0; ③若10=lg x ,则x =10;④若e =ln x ,则x =e 2, 其中正确的是________.(填序号) 9.计算下列各式. (1) (lg 2)2+lg 2·lg 50+lg 25 (2) log 4 9·log 3 10·lg 8(3) log 5 35+2log 122-log 5 150-log 5 14;10.已知2x=3,log 483=y ,求x +2y 的值.※能力提升1.设a ,b ,c 均为不等于1的正实数, 则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c2.若log 5 14·log 4 6·log 6 x =2,则x =________.3.若lg 2=a ,lg 3=b ,则用a ,b 的表示log 5 12=_______. 4.计算下列各式:(1)100(lg 3-lg 2)-log 98·log 433+(2+3)lg 1(2)lg 27+lg 8-lg 1 000lg 1.2;5.已知x ,y ,z 为正数,3x =4y =6z ,2x =py .(1)求p ; (2)证明:1z -1x =12y.第5讲 §2.2.2 对数函数图像及性质21-※知识要点1.对数函数我们把函数( )叫做对数函数,其中是自变量,函数的定义域为.2.对数函数的图像及性质3.反函数(1)指数函数与对数函数y=log a x互为反函数;(2)互为反函数的两个函数的图象关于直线____对称.※题型讲练【例1】下列函数表达式中,是对数函数的个数有()①y=log x2;②y=log a x(a∈R);③y=log8x;④y=l n x;⑤y=log x(x+2);⑥y=2log4x;⑦y=log2(x+1).A.1个B.2个C.3个D.4个变式训练1:1.若f(x)=log(a+1)x+(a2-2a-8)是对数函数,则a=______. 2.若对数函数f(x)的图象过点(4,-2),则f(8)=________. 【例2】已知函数f(x)=log a(x-1)+1(a>0,且a≠1).(1)函数f(x)图像恒过定点________;(2)若a>1,则函数f(x)图像经过________象限.变式训练2:1.函数y=3log a(x+2)-1(a>0且a≠1)的图像恒过定点.2.若g(x)与函数f(x)=e x互为反函数,则g(x)=________.【例3】解下列对数不等各式:(1)log2(2x-1)<1 (2)log9(x+2)≥log3x变式训练3:1.分别求下列函数的定义域:(1) f(x)=ln(x+1)2-x(2) f(x)=2-log2(x-1)(3)f(x)=4-xlg(x-1)(4)f(x)=log(2x-1)(-4x+8)【例4】分别求下列函数的值域:(1) f(x)=log12(x-1),x∈[2,5] (2) f(x)=log2(x2-2x)(3) f(x)=log2(-x2-2x+3)变式训练4:1.设函数f(x)=log12(-x2+4x),则f(x)的定义域为,值域为.2.已知函数f(x)=lg(ax2+2x+1)的值域为R,求a的取值范围.※课堂反馈1.已知函数f (x )=11-x的定义域为M ,g(x )=ln(1+x )的定义域为N ,则M ∩N =( ) A .{x |x >-1} B .{x |x <1} C .{x |-1<x <1} D .∅2.同一坐标系中,y =a -x与y =log a x 的图象可能是( )3.若f (x )是对数函数,且f (2)=2,则f (12)=________.4.函数y =log a (2x +1)+2(a >0且a ≠1)必过定点________. 5.已知f (x )与g (x )=log 3x (x >0)互为反函数,则f (-2)=____. 6.求函数f (x )=log 12(x 2-2x +5)的定义域和值域.※基础夯实1.已知下列函数:①y =log 12(-x )(x <0);②y =2log 4(x -1)(x >1);③y =ln x (x >0);④y =log a x (x >0,a 是常数). 其中为对数函数的个数是( )A .1B .2C .3D .4 2.函数y =1+log 12(x -1)的图象一定经过点( )A .(1,1)B .(1,0)C .(2,1)D .(2,0)3.函数y =1log 2(x -2)的定义域为( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞) 4.函数f (x )=log a (x +2)(0<a <1)的图象必不过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2xB .12xC .log 12x D .2x -26.函数y =(a 2-4a +4)log a x 是对数函数,则a =________.7.函数y =lg (x +1)2x -1的定义域为____________.8.已知函数y =log a (2x -3)+1的图象恒过定点P ,则点P 的坐标是________.9.函数y =x +a 与y =log a x 的示意图在同一坐标系中正确的是下列图象中的________.(填序号)10.已知对数函数f (x )的图象过点(8,-3),(1)求f (22); (2)设g (x )=f (-x 2-x ),求g (x )的值域.※能力提升1.满足“对定义域内任意实数x ,y ,f (x ·y )=f (x )+f (y )”的函数可以是( )A .f (x )=x 2B .f (x )=2xC .f (x )=log 2xD .f (x )=e l n x2.已知lg a +lg b =0,则函数f (x )=ax与函数g(x )=-log b x 的图象可能是( )3.设f (x )=log 2 x 的反函数为g (x ),且g (a )=14,则a =_____.4.若f (ln x )=3x +4,则f (x )的解析式为____________.5.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2017)=8,则f (x 21)+f (x 22)+…+f (x 22017)的值等于________. 6.已知函数f (x )=lg(ax 2-ax +1),(1)若该函数的定义域是R ,求a 的取值范围; (2)若该函数的值域是R ,求a 的取值范围.第6讲 §2.2.3 对数函数性质及应用※知识要点1.对数大小比较(1)同底对数比较: ; (2)同真对数比较: ; (3)不同底不同真对数比较: .※题型讲练【例1】比较下列各组对数的大小:(1) log12π与log12e;(2)log2 2.7与log1.8 2.7;(3) log3 23与log565;(4) log3π与logπ3;变式训练1:1.设a=log3 2,b=log5 2,c=log2 3,则a,b,c的大小关系为________.2.已知a=log2 0.6,b=log0.5 0.8,c=0.3-0.2,则a,b,c的大小关系为________.【例2】求函数f (x)=log2(x2-4x)的单调区间.变式训练2:1.求函数f (x)=log12(-x2-4x+12)的值域和单调递增区间.2.已知函数f(x)=ln(ax2+2x+3)在区间[-1,+∞)单调递增,则实数a的取值范围是____________.【例3】已知函数f(x)=log a(x+1)-log a(1-x),a>0且a≠1.(1)求f(x)定义域;(2)判断f(x)奇偶性;(3)解不等式f(x)>0.变式训练3:1.已知f(x)=lg(x2+1+x),且f(a)=3,则f(-a)=_____.2.已知函数f (x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f (log2a)+f (log12a)≤2f (1),则a 的取值范围是________.【例4】当x∈[3,27]时,求函数f (x)=log3x3·log3x9的值域.变式训练4:1.若函数f (x)=a x+log a(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为________.2.当0<x≤12时,4x<logax,则a的取值范围是___________.※课堂反馈1.设a=log3π,b=log23,c=log32,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a 2.函数f(x)=2+log2x (x≥1)的值域为( )A.(2,+∞) B.(-∞,2)C.[2,+∞) D.[3,+∞)3.函数f (x)=log12(2x+1)的单调减区间是________.4.已知函数f (x )=lg1-x1+x,若f (a )=4,则f (-a )=________. 5.函数f (x )=log 13(9-x 2)的单调增区间为________________,值域为______________.6.已知f (x )=log a (x -1),g(x )=log a (6-2x )(a >0,且a ≠1). (1)求函数φ(x )=f (x )+g(x )的定义域;(2)试确定不等式f (x )≤g(x )中x 的取值范围.※基础夯实1.若lg(2x -4)≤1,则x 的取值范围是( )A .(-∞,7]B .(2,7]C .[7,+∞)D .(2,+∞)2.已知log a 13>log b 13>0,则下列关系正确的是( )A .0<b <a <1B .0<a <b <1C .1<b <aD .1<a <b3.若a =20.2,b =log 4(3.2),c =log 2(0.5),则( ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a4.已知函数f (x )=a x +log a x (a >0,a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( )A .12B .14C .2D .45.已知函数y =log a (2-ax )是[0,1]上的减函数,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞) 6.函数f (x )=log 12(x 2+2x +3)的单调减区间为____________,值域为___________.7.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是________.8.已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4恒成立,则实数m 的取值范围是________.9.若log a 23<1,求实数a 的取值范围.10.已知函数y =(log 2x -2)(log 4 x -12),2≤x ≤8.(1)令t =log 2x ,求y 关于t 的函数关系式,并写出t 的范围; (2)求该函数的值域.※能力提升1.函数f (x )=⎩⎨⎧2x 2-8ax +3(x <1)log a x (x ≥1)在x ∈R 内单调递减,则a的范围是( )A .(0,12]B .[12,58]C .[12,1)D .[58,1)2.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________.3.已知f (2x)的定义域为[-1,2],则函数f (log 2 x )的定义域为________.4.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (12)=0,则不等式f (log 4 x )<0的解集是________. 5.已知函数f (x )=log 121-axx -1的图象关于原点对称,其中a 为常数.(1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+log 12(x -1)<m 恒成立,求实数m 的取值范围.5.已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1. (1)求函数f (x )的定义域及单调区间;(2)若函数f (x )的最小值为-4,求a 的值.第7讲 §2.3.1 幂函数的图像及性质※知识要点1.幂函数及其图像性质(1)定义:形如 (α∈R )的函数称为幂函数,其中, 是自变量, 是常数. 注:如图,牢记常见五大幂函数图像与性质; (2)幂函数的图象及性质①位置:幂函数图像必过第 象限,必不过第 象限,当幂函数为偶函 数时,图像过第 象限;当幂函数 为奇函数时,图像过第 象限.②定点:α>0时,幂函数图像过定 点 ,α<0时,幂函数图像过定点 ;③第一象限单调性:α>0时,幂函数在(0,+∞)上单调 ,α<0时,幂函数在(0,+∞)上单调 ; ④凹凸性:第一象限内,当α<0或 时,幂函数图像是 的;当0<α<1时,幂函数图像是 的;注:从x 轴正方向按逆时针,幂指数α由 变 .※题型讲练 【例1】(1)下列函数:①y =x 3;②y =2x ;③y =4x 2;④y =x5+1;⑤y =(x -1)2;⑥y =x ;⑦y =a x (a >1).其中幂函数有( )A .1个B .2个C .3个D .4个(2)已知幂函数y =f (x )的图象过点(4, 8),①求f (x )的解析式; ②画出f (x )的草图.变式训练1:1.若函数f (x )是幂函数,且满足f (4)=3f (2),则f (12)=________. 2.请把相应的幂函数图象代号填入表格. ① 23y x =; ② 2y x -=; ③ 12y x =; ④ 1y x -=; ⑤ 13y x =; ⑥ 43y x =; ⑦ 12y x -=; ⑧ 53y x =.3.函数f (x )=(m 2-m -1)x m m 23+-是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.【例2】(1)如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( ) A .-1<n <0<m <1 B .n <-1,0<m <1 C .-1<n <0,m >1 D .n <-1,m >1(2)比较下列各组中幂值的大小: (1)30.8和30.7; (2)(2)0.60.3和1.20.3; (3) 和 ;变式训练2: 1.如图是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于C 1,C 2,C 3,C 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2 C .-12,-2,2,12 D .2,12,-2,-12 2.比较幂的大小:a =1.30.7,b =0.71.3,c =0.81.3;【例3】已知幂函数y =x 23--2m m (-1<m <3,m ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数, (1)求函数f (x )的关系式; (2)若(a +1)-3m <(3-2a )-3m,求a 的取值范围.变式训练3:1.解下列不等式:(1)()()2121231x x -<+; (2)()()323231--->+x x ;※课堂反馈 1.已知幂函数y =f (x )的图象过点(2,2),则f (log 216)=( )A .2B .22C . 2D .122.下列函数中,其定义域和值域不同的函数是( ) A .13y x = B .y =C .y =D .y = 3.函数f (x )=(m 2-m +1)223+-m m x 是幂函数,且在x ∈(0,+∞)时是减函数,则实数m =________.212318.121-x 35x 32x4.若(3-2m )12>(m +1)12,则实数m 的取值范围为________. 5.比较下列各题中两个幂的值的大小:(1) 和 ; (2) 和 ; (3) 和 ;※基础夯实一、选择题1.已知幂函数y =f (x )的图象过点(12,22),则log 2f (2)=( )A .12B .-12C .2D .-22.已知幂函数f (x )=x a,当x >1时,恒有f (x )<x ,则a 的取值范围是( )A .0<a <1B .a <1C .a >0D .a <0 3.如图所示,给出4个幂函数的图象,则图象与函数的大致对应是()A .①y =x 13,②y =x 2,③y =x 12,④y =x -1B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1D .①y =x 3,②y =x 12,③y =x 2,④y =x -14.已知幂函数f (x )的图象经过点(4,2),则f (x )的增区间为( ) A .(-∞,+∞) B .(-∞,0) C .[0,+∞) D .(1,+∞)5.设 , 则a ,b ,c 的大小关系是( )A .a <b <cB .b <a <cC .c <a <bD .b <c <a 二、填空题6.若幂函数y =(m 2-2m -2)x-4m -2在x ∈(0,+∞)上为减函数,则实数m 的值是________.7.从小到大依次是________. 8.已知n ∈{-2,-1,0,1,2,3},若(-12)n >(-13)n ,则n =_____.三、解答题9.比较下列各组数的大小:10.已知幂函数y =f (x )经过点(2,18).(1)试求函数解析式;(2)判断函数的奇偶性并写出函数的单调区间.[能力提升] 1.如图,函数y = 的图象是( )2.三个数60.7,0.76,log 0.76的大小顺序是( ) A .0.76<60.7<log 0.76 B .0.76<log 0.76<60.7 C .log 0.76<60.7<0.76 D .log 0.76<0.76<60.73.解不等式:()()5353231---<+x x4.已知幂函数f (x )=x 21m +m(m ∈N *).(1)求该函数的定义域,并指明该函数在其定义域上的单调性; (2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.521.1525352)53()52()52(===c b a ,,41412125.625.016.0,,--529.01.1)52(9.0)52(9.01.11.19.032x。
【人教A版】高中数学必修一:第2章《基本初等函数(Ⅰ)》导学案设计(含答案) 2.2.1 第2课时
第2课时 对数的运算[学习目标] 1.掌握对数的运算性质,能运用运算性质进行对数的有关计算.2.了解换底公式,能用换底公式将一般对数化为自然对数或常用对数.知识点一 对数的运算性质如果a >0,且a ≠1,M >0,N >0.那么: (1)log a (M ·N )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ).思考 当M >0,N >0时,log a (M +N )=log a M +log a N ,log a (MN )=log a M ·log a N 是否成立? 答 不一定成立. 知识点二 换底公式log a b =log c blog c a (a >0,且a ≠1;c >0,且c ≠1;b >0).知识点三 常用结论由换底公式可以得到以下常用结论: (1)log a b =1log b a ;(2)log a b ·log b c ·log c a =1; (3)log n a b n =log a b ; (4)log n a b m =mn log a b ;(5)log 1ab =-log a b .题型一 利用对数的运算性质化简、求值 例1 计算下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)lg 25+23lg 8+lg 5×lg 20+(lg 2)2.解 (1)方法一 原式=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5)=12lg 10=12. 方法二 原式=lg 427-lg 4+lg 75=lg 42×757×4=lg(2·5)=lg 10=12.(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2 =2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3. 反思与感悟 1.对于同底的对数的化简,常用方法是 (1)“收”,将同底的两对数的和(差)收成积(商)的对数. (2)“拆”,将积(商)的对数拆成对数的和(差).2.对数式的化简,求值一般是正用或逆用公式.要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式. 跟踪训练1 计算下列各式的值: (1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27.解 (1)原式=(lg 5)2+lg 2(2-lg 2) =(lg 5)2+(1+lg 5)lg 2 =(lg 5)2+lg 2·lg 5+lg 2 =(lg 5+lg 2)·lg 5+lg 2 =lg 5+lg 2=1.(2)原式=lg 3+45lg 3+910lg 3-12lg 34lg 3-3lg 3=⎝⎛⎭⎫1+45+910-12lg 3(4-3)lg 3=115.题型二 利用换底公式化简、求值 例2 计算: (1)lg 20+log 10025;(2)(log 2125+log 425+log 85)·(log 1258+log 254+log 52). 解 (1)lg 20+log 10025=1+lg 2+lg 25lg 100=1+lg 2+lg 5=2.(2)(log 2125+log 425+log 85)·(log 1258+log 254+log 52) =(log 253+log 2252+log 325)·(log 3523+log 2522+log 52) =(3+1+13)log 25·(1+1+1)log 52=133·3=13.反思与感悟 1.在化简带有对数的表达式时,若对数的底不同,需利用换底公式. 2.常用的公式有:log a b ·log b a =1,log n a b m =m n log a b ,log a b =1log b a 等.跟踪训练2 (1)(log 29)·(log 34)等于( ) A.14 B.12C.2D.4 (2)log 2125·log 318·log 519=________.答案 (1)D (2)-12解析 (1)(log 29)·(log 34)=(log 232)·(log 322) =2log 23·(2log 32)=4log 23·log 32=4.(2)原式=lg 125lg 2·lg 18lg 3·lg19lg 5=(-2lg 5)·(-3lg 2)·(-2lg 3)lg 2lg 3lg 5=-12.题型三 换底公式、对数运算性质的综合运用 例3 已知log 189=a,18b =5,求log 3645. 解 方法一 ∵log 189=a,18b =5,∴log 185=b . 于是log 3645=log 1845log 1836=log 18(5×9)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b2-a.方法二 ∵log 189=a,18b =5,∴log 185=b . 于是log 3645=log 18(9×5)log 181829=log 189+log 1852log 1818-log 189=a +b2-a .方法三 ∵log 189=a,18b =5,∴lg 9=a lg 18,lg 5=b lg 18, ∴log 3645=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9=a lg 18+b lg 182lg 18-a lg 18=a +b2-a .反思与感悟 1.这类问题一般利用换底公式、对数的运算性质求解.2.解题时应观察要求值与已知式子中底数与真数的关系,如log 182=log 18189=1-log 189.跟踪训练3 已知log 147=a ,log 145=b ,则log 3528=________.答案2-aa +b解析 log 3528=log 1428log 1435=log 147+log 144log 147+log 145=a +2log 142a +b=a +2log 14147a +b =a +2(1-log 147)a +b =a +2(1-a )a +b =2-aa +b .题型四 利用对数式与指数式的互化解题 例4 (1)设3a =4b =36,求2a +1b 的值;(2)已知2x =3y =5z ,且1x +1y +1z =1,求x ,y ,z .解 (1)方法一 由3a =4b =36, 得a =log 336,b =log 436,由换底公式得1a =log 363,1b =log 364,∴2a +1b =2log 363+log 364=log 3636=1. 方法二 由3a =4b =36, 两边取以6为底数的对数,得 a log 63=b log 64=log 636=2, ∴2a =log 63,1b =12log 64=log 62, ∴2a +1b =log 63+log 62=log 66=1. (2)令2x =3y =5z =k (k >0), ∴x =log 2k ,y =log 3k ,z =log 5k , ∴1x =log k 2,1y =log k 3,1z=log k 5, 由1x +1y +1z =1,得log k 2+log k 3+log k 5=log k 30=1, ∴k =30,∴x =log 230=1+log 215,y =log 330=1+log 310,z =log 530=1+log 56.反思与感悟 1.在对数式、指数式的互化运算中,要注意灵活运用定义、性质和运算法则,尤其要注意条件和结论之间的关系,进行正确的相互转化.2.对于这类连等式可令其等于k (k >0),然后将指数式用对数式表示,再由换底公式就可将指数的倒数化为同底的对数,从而使问题得解.跟踪训练4 已知3a =5b =M ,且1a +1b=2,则M =____.答案 15解析 由3a =5b =M ,得a =log 3M ,b =log 5M , 故1a +1b =log M 3+log M 5=log M 15=2, ∴M =15.忽视对数的限制条件致误例5 若lg(x -y )+lg(x +2y )=lg 2+lg x +lg y ,求xy 的值.错解 因为lg(x -y )+lg(x +2y )=lg [(x -y )(x +2y )]=lg(2xy ), 所以(x -y )(x +2y )=2xy , 即x 2-xy -2y 2=0, 所以(x -2y )(x +y )=0, 所以x y =2或xy=-1.正解 前同错解,得x y =2或xy =-1.因为x >0,y >0,所以x y >0,故舍去xy =-1,所以xy =2.易错警示错误原因纠错心得对数等式中,若含字母参数,要注意隐含条件,此题应有x -y >0,x +2y >0,x >0,y >0,由此可得x >y >0,得x y >0,故xy=-1应舍去.多个变量出现在同一个关系式中时,变量的取值范围会受到相互限制,因此应特别注意变量之间的相关性.跟踪训练5 已知lg x +lg y =2lg(x -2y ),求2y的值. 解 由lg x +lg y =2lg(x -2y ),得xy =(x -2y )2, 即x 2-5xy +4y 2=0,化为(x y )2-5xy +4=0,解得x y =1或xy=4.又x >0,y >0,x -2y >0,∴x y >2,∴xy=4,∴xy=4=log 216=4.1.若a >0,a ≠1,x >0,y >0,x >y ,下列式子正确的个数为( )①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a xy =log a x ÷log a y ;④log a (xy )=log a x ·log a y .A.0B.1C.2D.3 答案 A解析 根据对数的运算性质知,这四个式子都不正确.故选A. 2.lg 8+3lg 5的值为( ) A.-3 B.-1 C.1 D.3 答案 D解析 lg 8+3lg 5=lg 8+lg 53=lg 8+lg 125 =lg (8×125)=lg 1 000=3.3.已知lg a ,lg b 是方程2x 2-4x +1=0的两根,则(lg ab )2的值是( )A.4B.3C.2D.1 答案 C解析 lg a +lg b =2,lg a ·lg b =12,(lg a b )2=(lg a -lg b )2=(lg a +lg b )2-4lg a ·lg b =22-4×12=2.4.若log a b ·log 3a =4,则b 的值为________. 答案 81解析 log a b ·log 3a =lg b lg a ·lg a lg 3=lg blg 3=4,所以lg b =4lg 3=lg 34,所以b =34=81. 5.已知2m =5n =10,则1m +1n =________.答案 1解析 因为m =log 210,n =log 510, 所以1m +1n=log 102+log 105=lg 10=1.1.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简. 2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误:①log a N n =(log a N )n ,②log a (MN )=log a M ·log a N , ③log a M ±log a N =log a (M ±N ).一、选择题 1.log 2716log 34的值为( ) A.2 B.32 C.1 D.23答案 D解析 原式=3233log 4log 4=23log 34log 34=23,故选D.2.化简12log 612-2log 62的结果为( )A.6 2B.12 2C.log 6 3D.12答案 C解析 原式=log 612-log 62=log 6122=log 6 3. 3.11451111log log 93等于( )A.lg 3B.-lg 3C.1lg 3D.-1lg 3答案 C解析 原式=log 9114+log 3115=log 94+log 35=log 32+log 35=log 310=1lg 3,故选C.4.已知lg 2=a ,lg 3=b ,则log 312等于( ) A.2a +b b B.2a +b a C.a 2a +b D.b2a +b答案 A解析 log 312=lg 12lg 3=2lg 2+lg 3lg 3=2a +bb .5.已知x ,y 为正实数,则( ) A.2lg x+lg y=2lg x +2lg y B.2lg(x+y )=2lg x ·2lg yC.2lg x ·lg y =2lg x +2lg yD.2lg(xy )=2lg x ·2lg y答案 D解析 2lg x ·2lg y =2lg x +lg y=2lg(xy ).故选D.6.如果方程(lg x )2-(lg 2+lg 3)lg x +lg 2lg 3=0的两根为x 1,x 2,那么x 1x 2的值为( ) A.5 B.6 C.lg 2lg 3 D.lg 2+lg 3答案 B解析 由题意得lg x 1+lg x 2=lg 2+lg 3=lg 6, ∴x 1x 2=6. 二、填空题7.lg 5+lg 20的值是________. 答案 1解析 lg 5+lg 20=lg 100=lg 10=1. 8.化简(log 43+log 83)(log 32+log 92)=________. 答案 54解析 原式=(log 23log 24+log 23log 28)(1log 23+1log 232)=56log 23·32log 23=54. 9.若lg 2=a ,lg 3=b ,则log 512等于________. 答案b +2a1-a解析 log 512=lg 12lg 5=lg 3+2lg 21-lg 2=b +2a1-a.10.已知函数f (x )=a log 2x +b log 3x +2,且f (12 016)=4,则f (2 016)=________.答案 0解析 由f (12 016)=a log 212 016+b log 312 016+2=4,得-a log 22 016-b log 32 016=2. ∴a log 22 016+b log 32 016=-2.∴f (2 016)=a log 22 016+b log 32 016+2=-2+2=0. 三、解答题11.计算下列各式的值: (1)lg 2+lg 5-lg 8lg 5-lg 4;(2)lg 5(lg 8+lg 1 000)+(lg 2 3)2+lg 16+lg 0.06.解 (1)原式=1-3lg 2lg 5-2lg 2=1-3lg 21-3lg 2=1.(2)原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6-2 =3·lg 5·lg 2+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3lg 2+3lg 5-2 =3(lg 2+lg 5)-2=3-2=1.12.(1)求2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1的值; (2)若log 2[log 3(log 4x )]=0,log 3[log 4(log 2y )]=0, 求x +y 的值.解 (1)原式=lg 2(2lg 2+lg 5)+(lg 2-1)2 =lg 2(lg 2+lg 5)+1-lg 2 =lg 2+1-lg 2=1. (2)因为log 2[log 3(log 4x )]=0, 所以log 3(log 4x )=1,所以log 4x =3, 所以x =43=64.又因为log 3[l og 4(log 2y )]=0, 所以log 4(log 2y )=1,所以log 2y =4, 所以y =24=16, 所以x +y =80.13.已知x ,y ,z 为正数,3x =4y =6z ,且2x =py . (1)求p ; (2)求证1z -1x =12y.(1)解 设3x =4y =6z =k (显然k >0,且k ≠1), 则x =log 3k ,y =log 4k ,z =log 6k . 由2x =py ,得2log 3k =p log 4k =p ·log 3klog 34.∵log 3k ≠0,∴p =2log 34.(2)证明 1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2,又12y =12log k 4=log k 2, ∴1z -1x =12y .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 指数与指数运算疑点透析1.如何理解n 次方根的概念若一个数x 的n 次方等于a ,那么x 怎么用a 来表示呢?是x =n a 吗?这个回答是不完整的.正确表示应如下:x =⎩⎪⎨⎪⎧n a ,n 为奇数±na ,n 为偶数,a >0不存在,n 为偶数,a <00,a =0主要性质:①当n 为奇数时,n a n =a ;②当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.2.如何理解分数指数幂的意义分数指数幂m na 不可以理解为mn 个a 相乘,它是根式的一种新的写法.规定mn a =n a m (a >0,m ,n ∈N *,且n >1),m na-=1m na=1na m(a >0,m ,n ∈N *,且n >1),在这样的规定下,根式与分数指数幂表示相同意义的量,它们只是形式上不同而已.0的正分数指数幂为0,0的负分数指数幂无意义,负数的分数指数幂是否有意义,应视m ,n 的具体数而定. 3.分数指数幂和整数指数幂有什么异同相同:分数指数幂与整数指数幂都是有理数指数幂,都可以利用有理数指数幂的运算性质进行运算.其运算形式为a r ·a s =a r +s ;(a r )s =a rs ;(ab )r =a r ·b r ,式中a >0,b >0,r ,s ∈Q ,对于这三条性质,不要求证明,但需记准.不同:整数指数幂表示的是相同因式的连乘积,而分数指数幂是根式的一种新的写法,它表示的是根式.4.指数幂的运算在这里要注意的是,对于计算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.例1÷3a-73a 13.解 原式=1111912337133322()()()a a a a --⎡⎤⎡⎤÷⎢⎥⎢⎥⎣⎦⎣⎦971316662()()a a a a --=÷97313066661.aa +--==例2解 原式=14144323(3)⎡⎤⨯⎢⎥⎣⎦214171433464(3)33+⨯====例1、例2两道例题都既含有分数指数幂又有根式,应该把根式统一化成分数指数幂的形式,便于计算.2 解读指数函数的四个难点在学习了指数函数的性质后,下面来分析突破指数函数的几大难点,供同学们学习掌握. 难点之一:概 念指数函数y =a x 有三个特征:①指数:指数只能是自变量x ,而不能是x 的函数;②底数:底数为常数,大于0且不等于1;③系数:系数只能是1. 例1给出五个函数:①y =2×6x ;②y =(-6)x ;③y =πx ; ④y =x x ;⑤y =22x +1.以上函数中指数函数的个数是________.分析 根据所给的函数对系数、底数、指数三个方面进行考察,是否满足指数函数的定义. 解析 对于①,系数不是1;对于②,底数小于0;对于④,底数x 不是常数;对于⑤,指数是x 的一次函数,故①、②、④、⑤都不是指数函数.正确的是③,只有③符合指数函数的定义. 答案 1难点之二:讨 论指数函数y =a x (a >0,且a ≠1),当a >1时,是增函数;当0<a <1时,是减函数. 例2函数y =a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,求a 的值.分析 遇到底数是参数时,应优先分类讨论,此题应先对a 进行分类讨论,再列出方程并求出a .解 当a >1时,函数y =a x 在[1,2]上的最大值是a 2,最小值是a ,依题意得a 2-a =a2,即a 2=3a 2,所以a =32;当0<a <1时,函数y =a x 在[1,2]上的最大值是a ,最小值是a 2,依题意得a -a 2=a 2,即a 2=a 2,所以a =12.综上可知,a =32或a =12.难点之三:复 合指数函数y =a x (a >0,且a ≠1)与一次函数、反比例函数及二次函数等进行复合时,特别是研究单调性时,应掌握好“同增异减”法则.例3求函数13y ⎛ ⎪⎝⎭=的单调递减区间.分析 指数函数与指数型复合函数的区别在于,指数自变量是x 还是x 的函数.此题先求出函数的定义域,再利用复合函数的“同增异减”法则求解.解 由-x 2+x +2≥0知,函数的定义域是[-1,2].令u =-x 2+x +2=-⎝⎛⎭⎫x -122+94,则y =⎝⎛⎭⎫13u ,当x ∈⎣⎡⎦⎤-1,12时,随x 的增大,u 增大,y 减小,故函数的递减区间为⎣⎡⎦⎤-1,12.难点之四:图象指数函数y =a x (a >0,且a ≠1)的图象特征是:当a >1时,在y 轴的右侧,a 越大,图象越往上排;在y 轴左侧,a 越大,图象越往下排. 例4利用指数函数的图象比较0.7-0.3与0.4-0.3的大小.分析 可在同一坐标系中作出y =0.7x 及y =0.4x 的图象,从图象中得出结果. 解 如图所示,作出y =0.7x 、y =0.4x 及x =-0.3的图象,易知0.7-0.3<0.4-0.3.评注 图象应记忆准确,在第二象限中靠近y 轴的函数应是y =0.4x ,而不是y =0.7x ,这一点应注意.3 对数与对数运算学习讲解1.对数的定义一般地,如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记做x =log a N ,其中a 叫做对数的底数,N 叫做真数.解读:(1)由对数定义可以知道,当a >0,且a ≠1时,a x =N ⇔x =log a N ,也就是说指数式与对数式实际上是表示a ,N 之间的同一种关系的两种形式,因此可以互相转化;(2)根据对数定义可以知道,log a Na N =,即a 的log a N 次方等于N ,对数恒等式也是化简或计算的重要公式.2.对数的性质(1)零和负数没有对数,由于在实数范围内,正数的任何次幂都是正数,所以a x =N (a >0,且a ≠1)中N 总是正数;(2)1的对数为0,由于任何非零实数的零次幂都等于1,所以log a 1=0;(3)底数的对数等于1,由于a 1=a 对于任何非零实数都成立,所以log a a =1. 3.对数的运算性质若a >0,且a ≠1,M >0,N >0,那么:(1)log a (MN )=log a M +log a N ,即正数积的对数,等于同一底数的各个数的对数和; (2)log a MN =log a M -log a N ,即两个正数商的对数,等于被除数的对数减去除数的对数;(3)log a M n =n log a M ,正数的幂的对数等于幂的底数的对数乘以幂指数.这些性质一般运用于对数的计算、化简或证明中.例1将下列对数式化成指数式、指数式化成对数式: (1)log 3127=-3;(2)log 232=5; (3)63=216;(4)10-3=0.001.解 (1)3-3=127;(2)25=32;(3)log 6216=3;(4)log 100.001=-3,也可写成lg0.001=-3.评注 本题考查了对数式与指数式的互化.解题所用知识都是依据对数的定义,要注意对数的真数是指数的幂,对数的值是指数式中的指数. 例2求下列各式的值: (1)3log 72-log 79+2log 7322;(2)lg25+23lg8+lg5·lg20+(lg2)2.解 (1)原式=log 723-log 79+log 7⎝⎛⎭⎫3222=log 723×⎝⎛⎭⎫32229=log 71=0; (2)原式=2lg5+2lg2+lg5·(lg5+2lg2)+(lg2)2 =2(lg5+lg2)+(lg5)2+2lg5·lg2+(lg2)2 =2+(lg5+lg2)2=3.评注 利用对数的运算性质求值和化简,是对数运算常见的题型,对数运算性质的正向运用可以把真数的乘、除、乘方、开方运算转化为对数的加、减、乘、除运算,这样就简化了计算,体现了利用对数运算的优越性.4 换底公式的证明及其应用换底公式是对数运算、证明中重要的公式,但有些同学对其理解不深,应用不好,故下面加以补充,希望对同学们的学习能有所帮助. 一、换底公式及证明 换底公式:log b N =log a N log a b.证明 设log b N =x ,则b x =N .两边均取以a 为底的对数,得log a b x =log a N ,∴x log a b =log a N . ∴x =log a N log a b ,即log b N =log a N log a b .二、换底公式的应用举例 1.乘积型例1 (1)计算:log 89·log 2732; (2)求证:log a b ·log b c ·log c d =log a d .分析 先化为以10为底的常用对数,通过约分即可解决. (1)解 换为常用对数,得 log 89·log 2732=lg9lg8·lg32lg27=2lg33lg2·5lg23lg3=23×53=109. (2)证明 由换底公式,得log a b ·log b c ·log c d =lg b lg a ·lg c lg b ·lg dlg c=log a d .评注 此类型题通常换成以10为底的常用对数,再通过约分及逆用换底公式,即可解决. 2.知值求值型例2已知log 1227=a ,求log 616的值. 分析 本题可选择以3为底进行求解. 解 log 1227=log 327log 312=a ,解得log 32=3-a 2a .故log 616=log 316log 36=4log 321+log 32=4×3-a2a 1+3-a 2a=4(3-a )3+a.评注 这类问题通常要选择适当的底数,结合方程思想加以解决. 3.综合型例3设A =1log 519+2log 319+3log 219,B =1log 2π+1log 5π,试比较A 与B 的大小.分析 本题可选择以19及π为底进行解题. 解 A 换成以19为底,B 换成以π为底, 则有A =log 195+2log 193+3log 192=log 19360<2, B =log π2+log π5=log π10>log ππ2=2.故A <B .评注 一般也有倒数关系式成立,即log a b ·log b a =1,log a b =1log b a .5 精析对数函数一、对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域为(0,+∞). 由对数的定义容易知道对数函数y =log a x (a >0,且a ≠1)是指数函数y =a x (a >0,且a ≠1)的反函数.在对数函数中自变量是对数式中的真数,函数值为对数,这一点在运用对数时要谨记.若对数式中的底数为自变量时,此函数不是对数函数. 二、对数函数的图象和性质1.对数函数性质的记忆与运用的注意事项(1)数形结合——利用图象记忆性质.x =1是“分水岭”; (2)函数的单调性决定于底数a 大于1还是大于0小于1;(3)指数函数y =a x 与对数函数y =log a x (其中a >0,且a ≠1)互为反函数,它们的概念、图象、性质,既有密切的联系又有本质的区别. 2.对数函数图象分布规律如图所示,在同一坐标系中多个对数函数底数的变化规律是:在直线x =1的右边区域,在x 轴上方,对数函数的图象越靠近x 轴,底数越大,且底数均大于1;在x 轴下方,对数函数的图象越靠近x 轴,底数越小,且底数均在(0,1)之间.图中的对数函数的底数a ,b ,c ,d 的大小关系是0<a <b <1<c <d .在具体解题时,还可利用特殊值法.例1函数y =log (x -1)(4-x )的定义域是________. 解析 由⎩⎪⎨⎪⎧ x -1>0x -1≠14-x >0可得⎩⎪⎨⎪⎧x >1x ≠2x <4,所以函数的定义域是{x |1<x <4,且x ≠2}. 答案 {x |1<x <4,且x ≠2}评注 函数定义域就是使函数解析式有意义的自变量x 的集合,若出现对数,要使其真数大于0,底数大于0且不等于1.例2函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象如图所示,则a ,b ,c ,d 与正整数1的大小顺序是( )A .1<d <c <a <bB .c <d <1<a <bC .c <d <1<b <aD .d <c <1<a <b解析 作出直线y =1,可知其与对数函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的交点的横坐标分别就是该对数函数的底数a ,b ,c ,d ,于是c <d <1<a <b . 答案 B评注 利用特殊值的办法解决有关对数函数的图象问题,可减轻记忆的负担,使问题得到迅速的解决.6 三类抽象函数问题的解法大量的抽象函数都是以中学阶段所学的基本初等函数为背景抽象而得.解题时,若能从研究抽象函数的背景入手,通过类比、猜想出它们可能为某种基本初等函数,常可找到解题的切入点,进而加以解决.一、以正比例函数为模型的抽象函数例1已知f(x)的定义域为实数集R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2,求f(x)在区间[-3,3]上的最大值和最小值.分析由条件f(x+y)=f(x)+f(y)联想正比例函数f(x)=kx,其中k<0,满足已知条件.由此猜想函数f(x)是区间[-3,3]上的减函数且又为奇函数,这样问题的解决就有了方向.解因为对任意x,y∈R,都有f(x+y)=f(x)+f(y),于是取x=0,可得f(0)=0,同时设y=-x,得f(x-x)=f(x)+f(-x),所以f(x)+f(-x)=0,即f(-x)=-f(x),知函数f(x)为奇函数.下面证明它是减函数:任取-3≤x1<x2≤3,则x2-x1>0,又x>0时,f(x)<0,即f(x2-x1)<0,f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)<0.所以函数f(x)在区间[-3,3]上是减函数.当x=-3时,函数f(x)取最大值;当x=3时,函数f(x)取最小值.f(x)max=f(-3)=-f(3)=-f(1+2)=-[f(1)+f(2)]=-[f(1)+f(1)+f(1)]=-3f(1)=6;f(x)min=f(3)=3f(1)=-6.评注本题求解有两个特点:一是赋值;二是在求最值时,反复运用条件.这是求解抽象函数问题时常用的方法.二、以指数函数为模型的抽象函数例2设函数f(x)的定义域为实数集R,满足条件:存在x1≠x2,使得f(x1)≠f(x2),对任意x和y,有f(x+y)=f(x)·f(y).(1)求f(0);(2)对任意x∈R,判断f(x)值的正负.分析由已知猜想f(x)是指数函数y=a x(a>0,且a≠1)的抽象函数,从而猜想f(0)=1且f(x)>0. 解(1)将y=0代入f(x+y)=f(x)·f(y),得f(x)=f(x)·f(0),于是有f(x)[1-f(0)]=0.若f(x)=0,则对任意x1≠x2,有f(x1)=f(x2)=0,这与已知题设矛盾,所以f(x)≠0,从而f(0)=1.(2)设x=y≠0,则f(2x)=f(x)·f(x)=[f(x)]2≥0,又由(1)知f(x)≠0,所以f(2x)>0,由x为任意实数,知f(x)>0.故对任意x∈R,都有f(x)>0.评注从已知条件联想到指数函数模型,为问题的解决指出了方向.但在推导过程中,说理的严密性是很重要的,如不能由f (x )[1-f (0)]=0,直接得出f (0)=1,这是求解有关抽象函数问题时必须注意的地方. 三、以对数函数为模型的抽象函数例3设函数f (x )是定义域(0,+∞)上的增函数,且f ⎝⎛⎭⎫x y =f (x )-f (y ). (1)求f (1)的值;(2)若f (6)=1,求不等式f (x +3)+f ⎝⎛⎭⎫1x ≤2的解集.分析 由已知猜想f (x )是对数函数y =log a x (a >0,且a ≠1)的抽象函数. 解 (1)将x =y =1代入f ⎝⎛⎭⎫x y =f (x )-f (y ), 得f (1)=f (1)-f (1),所以f (1)=0. (2)因为f (6)=1,所以2=f (6)+f (6),于是f (x +3)+f ⎝⎛⎭⎫1x ≤2等价于f (x +3)-f (6)≤f (6)-f ⎝⎛⎭⎫1x ,即f ⎝⎛⎭⎫x +36≤f (6x ), 而函数f (x )是定义域(0,+∞)上的增函数,所以⎩⎨⎧x +36≤6x ,x +36>0,解得x ≥335,因此满足已知条件的不等式解集为⎣⎡⎭⎫335,+∞. 评注 (1)对不等式右端的“2”进行变形是本题求解的关键之处;(2)本题是增函数概念“若x 1<x 2,则f (x 1)<f (x 2)”的逆用.利用这个性质可以去掉函数的符号“f ”,从而使问题得以解决.7 巧解指数、对数函数综合题指数函数y =a x 和对数函数y =log a x 互为反函数,它们有共同的底数,且底数起了核心作用,其变化规律是:当a >1时,它们在各自的定义域内都是增函数;当0<a <1时,它们在各自的定义域内都是减函数,因此在解决指数、对数函数型问题时,以底数为突破口,往往能够快速解题. 1.共享底数对数式与指数式互化,其底数一致,即log a N =b ,a b =N .利用它可以解决指数、对数方程及互化等问题.例1方程log 3(1-2·3x )=2x +1的解x =________. 解析 将对数式化为指数式,得32x +1=1-2·3x ,即3·(3x )2+2·3x -1=0,得3x =13,故x =-1.答案 -1 2.亮出底数在有些指数、对数函数问题,特别是图象问题中,只要突出底数作用,即亮出底数,根据函数的单调性,就可解决.例2当a >1时,在同一坐标系中,能表示函数y =a -x 与y =log a x 的图象的是( )解析 由a >1时,有0<1a <1,则指数函数y =a -x =⎝⎛⎭⎫1a x 在R 上是减函数,对数函数y =log a x 在(0,+∞)上是增函数,故排除B ,C ,D. 答案 A 3.变换底数对数或指数运算最怕是不同底,这时可利用换底公式等手段变换底数. 例3若log a 2<log b 2<0,则( ) A .0<a <b <1 B .0<b <a <1 C .a >b >1D .b >a >1解析 化为同底,有1log 2a <1log 2b <0,从而log 2b <log 2a <0,即log 2b <log 2a <log 21. ∵对数函数y =log 2x 在(0,+∞)上是增函数. ∴0<b <a <1. 答案 B 4.讨论底数当底数不定时,常分0<a <1与a >1两种情况进行讨论.例4函数y =a x 在[0,1]上的最大值与最小值的差为5,则a =________.解析 由题意知,a >0,且a ≠1.①当a >1时,有a 1-a 0=5,即a =6;②当0<a <1时,有a 0-a 1=5,即a =-4(舍去).综上知,a =6. 答案 6 5.消去底数有时候指数及对数问题的底数存在,会给解题带来一定的麻烦,我们还可利用转化的思想(如用同底法、换底法等)消去底数,使问题简化.例5设0<x <1,a >0且a ≠1,试比较|log a (1-x )|与|log a (1+x )|的大小. 解 作商⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=|log (1+x )(1-x )|, ∵0<x <1,∴0<1-x <1,1<1+x <2,0<1-x 2<1, ∴|log (1+x )(1-x )|=-log (1+x )(1-x )=log (1+x )11-x=log (1+x )1+x 1-x 2>log (1+x )(1+x )=1. ∴|log a (1-x )|>|log a (1+x )|.。