2017--2018学年上学期九年级数学期末质量检测

合集下载

2017-2018学年九年级数学期末试卷及答案

2017-2018学年九年级数学期末试卷及答案

2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。

全卷共计100分。

考试时间为90分钟。

第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。

2017-2018学年上海市青浦区九年级第一学期期末质量调研数学测试卷

2017-2018学年上海市青浦区九年级第一学期期末质量调研数学测试卷

2017-2018学年上海市青浦区九年级第一学期期末质量调研数学测试卷一、选择题:(本大题共6题,每题4分,满分24分)1. 计算32()x -的结果是( )【A 】5x【B 】5x -【C 】6x【D 】6x -【答案】C【解析】幂的乘方运算2. 如果一次函数y kx b =+的图像经过一、二、三象限,那么k 、b 应满足的条件是( )【A 】0k >,且0b >【B 】0k <,且0b <【C 】0k >,且0b <【D 】0k <,且0b >【答案】A【解析】一次函数图像性质3. 2的有理化因式是( )【A【B【C 2【D 2【答案】C【解析】 有理化因式定义4.如图1,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果BD =4,CD=6,那么:BC AC 是( )【A 】3:2【B 】2:3【C 】【D 】2【答案】B【解析】解直角三角形5. 如图2,在□ABCD 中,点E 在边AD 上,射线CE 、BA 交于点F ,下列等式成立的是( )【A 】AE CE ED EF= 【B 】AE CD ED AF= 【C 】AE FA ED AB= 【D 】AE FE ED FC =【答案】C【解析】三角形相似6. 在梯形ABCD 中,AD //BC ,下列条件中,不能判断梯形ABCD 是等腰梯形的是( )【A 】ABC DCB ∠=∠【B 】DBC ACB ∠=∠【C 】DAC DBC ∠=∠【D 】ACD DAC ∠=∠【答案】D【解析】等腰梯形的判定二、填空题:7.因式分解:23a a += .【答案】()31+a a【解析】提公因式法因式分解8. 函数11y x =+的定义域是 . 【答案】1≠-x 【解析】分母不等于零9. 如果关于的一元二次方程2+20x x a -=没有实数根,那么a 的取值范围是 .【答案】1<-a【解析】根的判别式小于零10. 抛物线24y x =+的对称轴是 .【答案】直线0x =或y 轴 【解析】抛物线的对称轴是ab x 2-= 11. 将抛物线2y x =-平移,使它的顶点移到点P (-2,3),平移后新抛物线的表达式为 .【答案】()223=-++y x【解析】二次函数图像平移的性质12. 如果两个相似三角形周长的比是2:3,那么它们面积的比是 .【答案】4:9【解析】相似三角形的面积比是相似比的平方13. 如图3,传送带和地面所成斜坡AB的坡度为,把物体从地面A 处送到坡顶B 处时,物体所经过的路程是12米,此时物体离地面的高度是 米.【答案】6【解析】解直角三角形 x14. 如图4,在△ABC 中,点D 是边AB 的中点.如果CA a =,CD b =,那么CB = (结果用含a 、b 的式子表示).【答案】2-b a【解析】平面向量的运算15. 已知点D 、E 分别在△ABC 的边BA 、CA 的延长线上,且DE //BC ,如果BC =3DE ,AC =6,那么AE= .【答案】2【解析】相似三角形对应线段成比例16. 在△ABC 中,∠C =90°,AC=4,点G 为△ABC 的重心.如果GC=2,那么sin GCB ∠的值是 .【答案】23【解析】三角形重心是中线的交点17. 将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是 . 【答案】63【解析】相似三角形的周长比等于相似比18. 如图5,在△ABC 中,AB =7,AC=6,45A ∠=,点D 、E 分别在边AB 、BC 上,将△BDE 沿着DE 所在直线翻折,点B 落在点P 处,PD 、PE 分别交边AC 于点M 、N ,如果AD=2,PD ⊥AB ,垂足为点D ,那么MN 的长是 .【答案】187 【解析】∵PD ⊥AB ,∴∠BDP =90∘,∠EDB =∠EDP =∠A =45,∴BABD AC DE =, ∴756=DE ∴730=DE , ∵AD =AM =2,DB =DP =5,∴PM =3,∴PD PM DE MN =,∴5330=MN ,∴MN=718,故答案为718. 三、解答题:19.(本题满分10分)计算:()021--+-.【答案】2【解析】原式=1+22⨯=2 20.(本题满分10分) 解方程:21421242x x x x +-=+--. 【答案】1=x 【解析】方程两边同乘()()22+-x x 得 ()224224-+-+-=x x x x整理,得2320-+=x x解这个方程得11=x ,22=x经检验,22=x 是增根,舍去所以,原方程的根是1=x21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图6,在平面直角坐标系xOy 中,直线)0(≠+=k b kx y 与双曲线xy 6=相交于点A (m ,6)和点B (-3,n ),直线AB 与y 轴交于点C .(1)求直线AB 的表达式;(2)求:AC CB 的值.【答案】(1)24=+y x (2)31=CB AC 【解析】(1)∵点A (m ,6)和点B (-3,n )在双曲线x y 6=,∴m =1,n =-2. ∴点A (1,6),点B (-3,-2).将点A 、B 代入直线=+y kx b ,得=63 2.;+⎧⎨-+=-⎩k b k b 解得 =24.;⎧⎨=⎩k b ∴直线AB 的表达式为:24=+y x .(2)分别过点A 、B 作AM ⊥y 轴,BN ⊥y 轴,垂足分别为点M 、N . 则∠AMO =∠BNO =90°,AM =1,BN =3,∴AM //BN ,∴1=3AC AM CB BN =. 22.(本题满分10分)如图7,小明的家在某住宅楼AB 的最顶层(AB ⊥BC ),他家的后面有一建筑物CD (CD // AB ),他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物CD 的底部C的俯角是43,顶部D 的仰角是25,他又测得两建筑物之间的距离BC 是28米,请你帮助小明求出建筑物CD 的高度(精确到1米).(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)【答案】39米【解析】解:过点A 作AE ⊥CD ,垂足为点E .由题意得,AE = BC =28,∠EAD =25°,∠EAC =43°.在Rt △ADE 中,∵tan ∠=DE EAD AE ,∴tan 25280.472813.2=︒⨯=⨯≈DE . 在Rt △ACE 中,∵tan CE EAC AE∠=,∴tan 43280.932826=︒⨯=⨯≈CE . ∴13.22639=+=+≈DC DE CE (米).答:建筑物CD 的高度约为39米.23.(本题满分12分,第(1)小题4分,第(2)小题8分)如图8,已知点D 、E 分别在△ABC 的边AC 、BC 上,线段BD 与AE 交于点F ,且CD CA CE CB ⋅=⋅.(1)求证:∠CAE =∠CBD ;(2)若BE AB EC AC=,求证:AB AD AF AE ⋅=⋅.【答案】(1)见解析(2)见解析【解析】(1)证明:∵CD CA CE CB ⋅=⋅,∴CE CA CD CB=, ∵∠ECA =∠DCB ,∴△CAE ∽△CBD ,∴∠CAE =∠CBD .(2)证明:过点C 作CG //AB ,交AE 的延长线于点G . ∴BE AB EC CG =,) ∵BE AB EC AC =,∴AB AB CG AC =,∴CG =CA ,∴∠G =∠CAG ,∵∠G =∠BAG ,∴∠CAG =∠BAG .∵∠CAE =∠CBD ,∠AFD =∠BFE ,∴∠ADF =∠BEF .∴△ADF ∽△AEB , ∴AD AF AE AB=,∴AB AD AF AE ⋅=⋅.24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图9,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于点 A (-1,0)和点B ,与y 轴交于点C ,对称轴为直线1x =.(1)求点C 的坐标(用含a 的代数式表示);(2)联结AC 、BC ,若△ABC 的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q 为x 轴正半轴上一点,点G 与点C ,点F 与点A 关于点Q 成中心对称,当△CGF 为直角三角形时,求点Q 的坐标.【答案】(1)C (0,-3a );(2)223=--y x x ;(3)(4,0)或(9,0)【解析】解:(1)∵抛物线()20=++>y ax bx c a 的对称轴为直线1x =, ∴12=-=b x a,得2=-b a . 把点A (-1,0)代入2=++y ax bx c ,得=0-+a b c ,∴3=-c a .∴C (0,-3a ).(2)∵点A 、B 关于直线1x =对称,∴点B 的坐标为(3,0).∴AB =4,OC =3a .∵12ABC S AB OC =⋅,∴14362⨯⨯=a , ∴a =1,∴b =-2,c =-3,∴223=--y x x .(3)设点Q 的坐标为(m ,0).过点G 作GH ⊥x 轴,垂足为点H .∵点G 与点C ,点F 与点A 关于点Q 成中心对称,∴QC =QG ,QA =QF = m +1,QO =QH = m ,OC =GH =3,∴QF = m +1,QO =QH = m ,OC =GH =3,∴OF = 2m +1,HF = 1.Ⅰ.当∠CGF =90°时,可得∠FGH =∠GQH =∠OQC ,∴tan tan FGH OQC ∠=∠,∴HF OC GH OQ =,∴133=m, ∴=9m∴Q 的坐标为(9,0).Ⅱ.当∠CFG =90°时, 可得,tan tan FGH OFC ∠=∠,∴HF OC GH OF =,∴13321=+m , ∴=4m ,Q 的坐标为(4,0).Ⅲ.当∠GCF =90°时,∵∠GCF<∠FCO<90°,∴此种情况不存在.综上所述,点Q 的坐标为(4,0)或(9,0).25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图10,在边长为2的正方形ABCD 中,点P 是边AD 上的动点(点P 不与点A 、点 D 重合),点Q 是边CD 上一点,联结PB 、PQ ,且∠PBC =∠BPQ .(1)当QD =QC 时,求∠ABP 的正切值;(2)设AP =x ,CQ =y ,求y 关于x 的函数解析式;(3)联结BQ ,在△PBQ 中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.【答案】(1)31tan =∠ABP ;(2)422x y x -=+;(3)∠PBQ =45° 【解析】解:(1)延长PQ 交BC 延长线于点E .设PD =x .∵∠PBC =∠BPQ ,∴EB=EP .∵四边形ABCD 是正方形,∴AD //BC ,∴PD ∶CE= QD ∶QC= PQ ∶QE ,∵QD =QC ,∴PD =CE ,PQ =QE .∴BE =EP= x +2,∴QP =()122x +. 在Rt △PDQ 中,∵222PD QD PQ +=,∴2221112x x ⎛⎫+=+ ⎪⎝⎭,解得43x =. ∴23AP AD PD =-=,∴211323tan AP AB ABP =⨯=∠=. (2)过点B 作BH ⊥PQ ,垂足为点H ,联结BQ .∵AD //BC ,∴∠CBP =∠APB ,∵∠PBC =∠BPQ ,∴∠APB =∠HPB ,∵∠A =∠PHB =90°,∴BH = AB =2,∵PB = PB ,∴Rt △P AB ≅ Rt △PHB , ∴AP = PH =x .∵BC = BH=2,BQ = BQ ,∠C =∠BHQ =90°,∴Rt △BHQ ≅ Rt △BCQ ,∴QH = QC= y ,在Rt △PDQ 中,∵222PD QD PQ +=,∴()()()22222x y x y -+-=+, ∴ 422xy x -=+.(3)存在,∠PBQ =45°.由(2)可得,21PBH ABH ∠=∠,21HBQ HBC ∠=∠, ∴()90452211PBQ ABH HBC ∠=∠+∠=⨯︒=︒.。

2017-2018上学期九年级数学期末试卷

2017-2018上学期九年级数学期末试卷

2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。

2017-2018学年九年级(上)期末数学模拟试卷(解析版)

2017-2018学年九年级(上)期末数学模拟试卷(解析版)

2017-2018学年九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+33.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=1084.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.245.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.210.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是(填写正确结论的序号).16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.2017-2018学年九年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形,轴对称图形的定义进行判断.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21= [(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.【点评】此题主要考查了二次函数图象与几何变换,正确配方将原式变形是解题关键.3.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=108【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.5.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.【点评】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.【分析】过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,再求得DE,BC的长,根据三角形的面积公式即可得出△DEF和△ABC的面积.【解答】解:过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,∵∠ODM=∠OBN=30°,∴OB=4,DM=,DE=2,BN=2,BC=4,=×4×6=12,∴S△ABC=×2×3=3,∴S△DEF∴==4.故选:A.【点评】本题考查了正多边形和圆,以及勾股定理、垂径定理,直角三角形的性质,明确边心距半径边长的一半正好组成直角三角形是解题的关键.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°【分析】连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由内角和定理知∠AOB=80°,根据圆周角定理可得答案.【解答】解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.2【分析】首先解方程求得方程的两个解,根据已知条件可以得到:x1*x2的值是两个根中的最大的一个.【解答】解:由方程x2+x﹣2=0得到(x+2)(x﹣1)=0,解得x1=﹣2,x2=1,∵,∴x1*x2=1.故选:A.【点评】本题主要考查了一元二次方程的解法,关键是理解a*b=a(a≥b)或者a*b=b (a<b).10.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】分三段来考虑点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.【解答】解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.【点评】本题主要考查了动点问题的函数图象.注意分段考虑.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=﹣2.【分析】把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,然后解方程后利用一元二次方程的定义确定m的值.【解答】解:把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是40°.【分析】根据旋转前后的两个图形全等,则:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,所以∠A=∠AA'B=70°,根据三角形的内角和定理可得∠ABA'=40°.【解答】解:由旋转得:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,∵AC∥BC',∴∠AA'B=∠A'BC'=70°,∴∠A=∠AA'B=70°,∴∠ABA'=180°﹣70°﹣70°=40°,即旋转角是40°,故答案为:40°.【点评】本题考查了旋转的性质:旋转前后两图形全等,明确对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等腰三角形的性质和三角形内角和定理.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.【分析】分析题干知,贴纸的面积等于大扇形的面积﹣小扇形的面积.【解答】解:∵弧BC的长为20πcm,∴L=αr=20π,解得r=30,∴AB=30cm,贴纸的面积=大扇形的面积﹣小扇形的面积,==cm2.【点评】本题主要考查扇形面积的计算,知道扇形面积计算公式S=.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是①②④(填写正确结论的序号).【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.【解答】解:①由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;②∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2﹣b+c=0,整理得:25a﹣10b+4c=0,故②正确;③直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故③错误;④∵x=﹣1时,函数值最大,∴a﹣b+c≥m2a﹣mb+c,∴a﹣b≥m(am﹣b),所以④正确;⑤∵b=2a,a+b+c<0,∴b+b+c=0,即3b+2c<0,故⑤错误;故答案是:①②④.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,=OD•AB=OA•OB,∵S△ABO∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.【点评】此题主要考查直线与圆的关系,关键是根据待定系数法、勾股定理、直线与圆的位置关系等知识解答.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).【分析】(1)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+4x=1,∴x2+4x+4=1+4,即(x+2)2=5,则x+2=,∴x=﹣2;(2)∵(x﹣1)(x+1)﹣(x+1)=0,∴(x+1)(x﹣2)=0,则x+1=0或x﹣2=0,解得:x=﹣1或x=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)分别作出点A、B绕点C逆时针旋转90°得到其对应点,再顺次连接可得,绕后利用弧长公式计算可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求,A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)如图所示,△A2B2C2即为所求,∵CA==、∠ACA2=90°,∴点A到A2的路径长为=π.【点评】本题主要考查作图﹣轴对称变换、旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义和性质及弧长公式.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x 的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【分析】(1)连接CE和OE,因为BC是直径,所以∠BEC=90°,即CE⊥BE;再根据等腰三角形三线合一性质,即可得出结论;(2)证明OE是△ABC的中位线,得出OE∥AC,再由已知条件得出FE⊥OE,即可得出结论;(3)由切割线定理求出直径,得出半径的长,由平行线得出三角形相似,得出比例式,即可得出结果.【解答】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.【点评】本题考查了切线的判定、等腰三角形的性质、三角形中位线的判定、切割线定理、相似三角形的判定与性质;熟练掌握切线的判定,由三角形中位线定理得出OE ∥AC是解决问题的关键.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值.【解答】解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.【点评】本题考查了函数关系式以及其最大值的求解问题.23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.【分析】(1)先利用勾股定理得出CE,再判断出△CEF∽△CAE,得出比例式即可得出结论;(2)先判断出∠ECA=∠ABF,进而得出△CEA∽△BFA,即可得出结论;(3)由(2)得出△CEA∽△BFA,即可表示出AB,最后利用锐角三角函数建立方程求出x,即可得出结论.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠BAF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.【点评】此题是四边形综合题,主要考查了相似三角形的判定和性质,勾股定理,锐角三角函数,解(1)的关键是判断出△CEF∽△CAE,解(2)(3)的关键是判断出△CEA∽△BFA.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF是解题的关键.。

反比例函数定稿(含答案)选择题和填空题(含答案)

反比例函数定稿(含答案)选择题和填空题(含答案)

2019福建近三年一检试题分类汇编—专题7—反比例函数 林国章-已将2016-2019福建九地市一检整理2019-3-1选择题微专题一:反比例函数定义1、(2017—2018学年上学期仙游期末)2、下列函数中,y 是x 的反比例函数的是( B )A.3x y =B.3y x= C.y =3x D.y =x 22、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)2.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( C )A .B .C .D .8.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .3、(2017—2018学年度莆田秀屿区上学期九年级期末考试)2.若一个反比例函数的图象经过点(-4,6),则它的图象一定也经过点( B ) A .(3,8) B .(3,-8) C .(-8,-3) D .(-4,-6)4、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)2.下列函数中y 是x 的反比例函数是( B )A.y=3xB.y =x3C.y=x 23D.y =3x+35、(2016-2017学年福州市鼓楼区延安中学九年级(上)期末)1.若反比例函数y=﹣的图象经过点A (3,m ),则m 的值是( C ) A .﹣3 B .3C .﹣D .4. 已知反比例函数8y x=-,则下列各点在此函数图象上的是( D )A .(2,4)B .(-1,-8)C .(-2,-4)D .(4,-2)7、(2016-2017学年福建省南平市九年级(上)期末)4.下列四个关系式中,y 是x 的反比例函数的是( B ) A .y=4xB .y=C .y=D .y=8、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)2.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( C )A .B .C .D .8.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .微专题二:反比例函数的性质1、(三明市2018-2019学年上学期期末)7.对于反比例函数y =x2-,下列说法不正确的是( D ) A .图象分布在第二、四象限B .当x >0时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 2..2、(南平市2018-2019学年第一学期九年级期末质量检测)8. 如果点A ),3(1y -,B ),2(2y -,C ),2(3y 都在反比例函数)0(>=k xky 的图象上,那么 1y ,2y ,3y 的大小关系正确的是( B )A. 3y <2y <1yB. 2y <1y <3yC. 1y <2y <3yD .1y <3y <2y3、(漳州市2018-2019学年上学期教学质量抽测)9. 若点A (2m ,1y ),B (22+m ,2y )在反比例函数xy 4=的图象上,则1y ,2y 的大小关系是( A )A .21y y >B .21y y =C .21y y <D .不能确定4、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)4.函数y=2x 与函数y=﹣在同一坐标系中的大致图象是( B )A .B .C .D .5.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在反比例函数y=的图象上,当x 1>x 2>0时,下列结论正确的是( C ) A .y 2<y 1<0B .y 1<y 2<0C .0<y 2<y 1D .0<y 1<y 25、(福州市 2017-2018 学年第一学期九年级期末考试)7、已知反比例函数y =kx (k <0)的图象经过点A (-1,y 1),B (2,y 2),C (3,y 3), 则 y 1,y 2,y 3的大小关系是( A )(A )y 2<y 3<y 1 (B )y 3<y 2<y 1 (C )y 1<y 3<y 2 (D )y 1<y 2<y 36、(宁德市2017-2018学年九年级上学期期末考试)2.已知反比例函数xky =,当x >0时,y 随x 的增大而增大.则函数xk y =的图象在(C )A .第一、三象限B .第一、四象限C .第二、四象限D .第二、三象限7、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)10. 已知P (x 1,1),Q (x 2,2)是一个函数图象上的两个点,其中x 1<x 2<0,则这个函数图象可能是( A )A .B .C .D .8、(南平市2017-2018学年第一学期九年级期末质量检测)8.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xy 1-=的图象上的两点,若x 1<0<x 2,则下列结论正确的是( B )A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)1.若双曲线y=的图象经过第二、四象限,则k 的取值范围是( B ) A .k >0B .k <0C .k ≠0D .不存在4.函数y=2x 与函数y=﹣在同一坐标系中的大致图象是( B )A .B .C .D .5.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在反比例函数y=的图象上,当x 1>x 2>0时,下列结论正确的是( C ) A .y 2<y 1<0B .y 1<y 2<0C .0<y 2<y 1D .0<y 1<y 210、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))6.在函数的图象上有三点A (﹣2,y 1)B (﹣1,y 2)C (2,y 3),则( B )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 3>y 2>y 111、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)6.已知A (2,y 1),B (﹣3,y 2),C (﹣5,y 3)三个点都在反比例函数y=﹣的图象上,比较y 1,y 2,y 3的大小,则下列各式正确的是( B )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 2<y 1微专题三:反比例函数的应用1、(2018-2019学年度福州市九年级第一学期质量调研)9.如图,矩形ABCD 的对角线BD 过原点O ,各边分别平行于坐标轴,点C 在反比例函数31k y x+=的图象上.若点A 的坐标是(2-,2-),则k 的值是( C ) A .-1 B .0C .1D .42、(漳州市2018-2019学年上学期教学质量抽测)6. 如图,过反比例函数xky =(x <0)图象上的一点A 作AB ⊥x 轴于点B , 连接AO ,若2=∆AOB S ,则k 的值是 ( D ) A .2 B .-2 C .4 D .-48.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .3、(2016-2017学年福州市鼓楼区延安中学九年级(上)期末)4.如图,直线y=kx 与双曲线y=﹣交于A (x 1,y 1),B (x 2,y 2)两点,D A OBC xyxyOB A则2x 1y 2﹣8x 2y 1的值为( B ) A .﹣6 B .﹣12C .6D .124、(宁德市2016-2017学年度第一学期期末九年级质量检测)10.如图,已知动点A ,B 分别在x 轴,y 轴正半轴上,动点P 在反比例函数6(0)y x x =>图象上,PA ⊥x 轴,△PAB 是以PA 为底边的等腰三角形.当点A 的横坐标逐渐增大时,△PAB 的面积将会( C ) A .越来越小 B .越来越大 C .不变D .先变大后变小5、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))9、如图,双曲线()0>x xky =经过Rt △OAB 斜边OB 的中点D ,与直角边AB 相交于点C .过作DE ⊥OA 交OA 于点E ,若△OBC 的面积为3,则k 的值是( B ). A.1 B.2 C.3 D.46、(2016-2017学年三明市梅列区九上期末考试)6.反比例函数y =(k >0)在第一象限内的图象如图,点M 是图象上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( B )A .1B .2C .4D .7、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)10.如图,反比例函数的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC相交于点D 、E .若四边形ODBE 的面积为6,则k 的值为( B ) A .1B .2C .3D .4解:由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =,S △OAD =,第10题图B Axxyy OOA P C B过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S □ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO=4S □ONMG =4|k |,由于函数图象在第一象限,k >0,则++6=4k ,k=2. 故选B .填空题微专题一:反比例函数的定义1、(宁德市2018-2019学年度第一学期期末)2、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)12.函数y=(m +2)x是反比例函数,则m 的值为 2 .3、(福州市 2017-2018 学年第一学期九年级期末考试)4、反比例函数的图像经过点(2,3)则该函数的解析式为 y =6x5、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)14.反比例函数y =1−k x的图像经过点(2,3)则k= -56、(上杭县2016-2017学年第一学期期末教学质量监测)12.请写出一个图象在第二、四象限的反比例函数解析式 答案不唯一,如y =−1X .14.反比例函数x k y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中120x x <<且21y y >,则k的范围是 1k <- .7、(2016-2017学年福建省南平市九年级(上)期末)11k y x=22k y x=AxyOBCDC A B Oyx(第11题图)11.若反比例函数y=的图象的两个分支在第二、四象限内,请写出一个满足条件的m 的值. 1(答案不唯一,小于2的任何一个数) .微专题二:反比例函数的性质1、(2017—2018学年度莆田秀屿区上学期九年级期末考试)12.已知函数xm y 32+=,当x <0 时,y 随x 的增大而增大,则m 的取值范围是 m =−32 .2、(上杭县2016-2017学年第一学期期末教学质量监测)14.反比例函数xk y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中120x x <<且21y y >,则k 的范围是 1k <- .3、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))12.若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是 m<14、(2016-2017学年三明市梅列区九上期末考试)13.已知P 1(x 1,y 1),P 2(x 2,y 2)两点都在反比例函数y =的图象上,且x 1<x 2<0,则y 1 > y 2(填“>”或“<”).微专题三:反比例函数应用1、(宁德市2018-2019学年度第一学期期末)16.如图,已知直线l :103y x b b =-+ (<)与x ,y 轴分别交于A ,B两点,以AB 为边在直线l 的上方作正方形ABCD ,反比例函数11k y x =和22ky x=的图象分别过点C 和点D .若13k =,则2k 的值为 -9 .2、(三明市2018-2019学年上学期期末)14.如图,在平面直角坐标系中,点A 是函数xky =(x <0)图象上的点, A B ⊥x 轴,垂足为B ,若△ABO 的面积为3,则k 的值为____-6___.3、(南平市2018-2019学年第一学期九年级期末质量检测)15.已知反比例函数xky =(0≠k ),当1≤x ≤2时,函数的 最大值与最小值之差是1,则k 的值为 2± .4、(漳州市2018-2019学年上学期教学质量抽测)16. 如图,Rt △ABC 的直角边BC 在x 轴负半轴上,斜边AC 上的中线BD 的反向延长线交y 轴负半轴于点E ,反比例函数xy 2-=(x <0)的图象过点A ,则△BEC 的面积是 1 .5、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)16.如图,过点O 作直线与双曲线y=(k ≠0)交于A ,B 两点,过点B 作BC ⊥x 轴于点C ,作BD ⊥y 轴于点D .在x 轴、y 轴上分别取点E ,F ,使点A ,E ,F 在同一条直线上,且AE=AF .设图中矩形ODBC 的面积为S 1,△EOF 的面积为S 2,则S 1,S 2的数学量关系是 2S 1=S 2. .(第14题)xyED CBO A解:过点A 作AM ⊥x 轴于点M ,如图所示. ∵AM ⊥x 轴,BC ⊥x 轴,BD ⊥y 轴, ∴S 矩形ODBC =﹣k ,S △AOM =﹣k . ∵AE=AF .OF ⊥x 轴,AM ⊥x 轴, ∴AM=OF ,ME=OM=OE , ∴S △EOF =OE•OF=4S △AOM =﹣2k , ∴2S 矩形ODBC =S △EOF , 即2S 1=S 2.故答案为:2S 1=S 2.6、(2017—2018学年度莆田秀屿区上学期九年级期末考试)16.如图,在平面直角坐标系中,点A 是函数y =kx (k<0,x<0) 图象上的点,过点A 与y 轴垂直的直线交y 轴于点B ,点C 、D 在x 轴上, 且BC ∥AD .若四边形ABCD 的面积为3,则k 值为 3 .7、(宁德市2017-2018学年九年级上学期期末考试)16.如图,点A ,B 在反比例函数xky =图象上,且直线AB 经过原点,点C 在y 轴正半轴上,直线CA 交x 轴于点E ,直线CB 交x 轴于点F ,若3=AE AC ,则=CFBF 14 .8、(南平市2017-2018学年第一学期九年级期末质量检测)第16题图B Axxyy OOA P CB FE11.如图,在平面直角坐标系xoy 中,矩形OABC ,OA =2, OC =1,写出一个函数()0≠=k xk y ,使它的图象与矩形OABC 的边有两个公共点,这个函数的表达式可以为 如:x y 1=(答案不唯一,0<k <2的任何一个数) (答案不唯一). 9、(2016-2017学年福州市九年级(上)期末)15.已知▱ABCD 的面积为4,对角线AC 在y 轴上,点D 在第一象限内,且AD ∥x 轴,当双曲线y=经过B 、D 两点时,则k= 2 .解:由题意可画出图形,设点D 的坐标为(x ,y ),∴AD=x ,OA=y ,∵▱ABCD 的面积为4,∴AD•AC=2AD•OA=4,∴2xy=4,∴xy=2,∴k=xy=2,故答案为:210、(2016—2017南平市建阳外国语学校科技班九上期末数学试卷)9.如图,一次函数y=x+1的图象交x 轴于点E 、交反比例函数x y 2=的图象于点F (点F 在第一象限),过线段EF 上异于E 、F 的动点A 作x 轴的平行线交xy 2=的图象于点B ,过点A 、B 作x 轴的垂线段,垂足分别是点D 、C ,则矩形ABCD 的面积最大值为 4911、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)yx FE CD BA O16.如图,过点O作直线与双曲线y=(k≠0)交于A,B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1,S2的数学量关系是2S1=S2.12、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A))15.如下图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1= S2.(填“>”或“<”或“=”)13、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)16.已知正比例函数y1=x,反比例函数y2=,由y1,y2构成一个新函数y=x+,其图象如图所示,(因其图象似双钩,我们称之为“双钩函数”)给出下列几个命题:①y的值不可能为1;②该函数的图象是中心对称图形;③当x>0时,该函数在x=1时取得最小值2;④在每个象限内,函数值y随自变量x的增大而增大.其中正确的命题是①②③(填所有正确命题的序号)。

2017-2018学年唐山市乐亭县九年级上期末数学试卷(含答案解析)

2017-2018学年唐山市乐亭县九年级上期末数学试卷(含答案解析)

2017-2018学年河北省唐山市乐亭县九年级(上)期末数学试卷一、选择题(每小题3分共48分,每个小题给出的四个选项中只有一个选项符合题意)1.若反比例函数y=的图象经过点(2,3),则它的图象也一定经过的点是()A.(﹣3,﹣2)B.(2,﹣3)C.(3,﹣2)D.(﹣2,3)2.如图,某河堤迎水坡AB的坡比i=1:,堤高BC=5m,则坡面AB的长是()A.5 m B.10m C.15 m D.5 m3.某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12B.13C.13.5D.144.在平面直角坐标系xOy中,⊙O的半径为4,点P的坐标为(3,4),则点P的位置为()A.在⊙O外B.在⊙O上C.在⊙O内D.不确定5.在Rt△ABC中,∠C=90°,AB=10,sin∠B=,则BC=()A.15B.6C.9D.86.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≤4且k≠3B.k<4且k≠3C.k<4D.k≤47.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A.48°B.42°C.45°D.24°8.定义一种新运算:a♣b=a(a﹣b),例如,4♣3=4×(4﹣3)=4,若x♣2=3,则x的值是()A.x=3B.x=﹣1C.x1=3,x2=1D.x1=3,x2=﹣19.如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A的坐标为()A.(2,4)B.(2,6)C.(3,6)D.(3,4)10.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.11.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y312.如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为()s时,BP与⊙O相切.A.1B.5C.1或5D.以上答案都不正确13.如图,在△ABC中,D,E分别是边AB,BC上的点,且DE∥AC,若S△BDE=4,S△CDE=16,则△ACD的面积为()A.64B.72C.80D.9614.如图,将半径为4cm的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A.2B.4cm C.D.15.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O 上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD 是菱形;(3)PO=CD;(4)弧AC=弧AD.其中正确的个数为()A.1个B.2个C.3个D.4个16.如图,⊙O的一条弦AB垂直平分半径OC,且AB=2,则这个圆的内接正十二边形的面积为()A.6B.6C.12D.12二、填空(每小题3分共12分)17.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.18.已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为.19.如图,在△ABC中,AB=AC=13,BC=10,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.20.如图,Rt△ABC中,AB⊥BC,AB=12,BC=8,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为.三、(本题满分8分)21.(8分)每年的3月22日为“世界水日”,为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.(1)小强共调查了户家庭.(2)所调查家庭3月份用水量的众数为吨;平均数为吨;(3)若该小区有500户居民,请你估计这个小区3月份的用水量.四、(本题满分10分)22.(10分)已知函数图象如图所示,根据图象可得:(1)抛物线顶点坐标;(2)对称轴为;(3)当x=时,y有最大值是;(4)当时,y随着x得增大而增大.(5)当时,y>0.五、(本题满分10分)23.(10分)如图,已知圆锥的底面半径是2,母线长是6.(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.六、(本题满分10分)24.(10分)如图,四边形ABCD内接于⊙O,AC是⊙O的直径,过点B作BE⊥AD,垂足为点E,AB平分∠CAE.(1)判断BE与⊙O的位置关系,并说明理由;(2)若∠ACB=30°,⊙O的半径为2,请求出图中阴影部分的面积.七、(本题满分10分)25.(10分)如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2=(c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.八、(本题满分12分)26.(12分)如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用刻画.(1)求二次函数解析式;(2)若小球的落点是A,求点A的坐标;(3)求小球飞行过程中离坡面的最大高度.2017-2018学年河北省唐山市乐亭县九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分共48分,每个小题给出的四个选项中只有一个选项符合题意)1.若反比例函数y=的图象经过点(2,3),则它的图象也一定经过的点是()A.(﹣3,﹣2)B.(2,﹣3)C.(3,﹣2)D.(﹣2,3)【分析】根据反比例函数图象上点的坐标特征得到点的横纵坐标之积为6的点在反比例函数图象上,由此分别对各点进行判断.【解答】解:根据题意得k=2×3=6,所以反比例函数解析式为y=,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y=的图象上.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2.如图,某河堤迎水坡AB的坡比i=1:,堤高BC=5m,则坡面AB的长是()A.5 m B.10m C.15 m D.5 m【分析】由河堤横断面迎水坡AB的坡比是1:,可得到∠BAC=30°,所以求得AB=2BC,得出答案.【解答】解:河堤横断面迎水坡AB的坡比是1:,即tan∠BAC===,∴∠BAC=30°,∴AB=2BC=2×5=10m,∴坡面AB的长是,故选:B.【点评】此题考查的是解直角三角形的应用,关键是先由已知得出∠BAC=30°,再求出AB.3.某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12B.13C.13.5D.14【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:10个数,处于中间位置的是13和13,因而中位数是:(13+13)÷2=13.故选:B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.4.在平面直角坐标系xOy中,⊙O的半径为4,点P的坐标为(3,4),则点P的位置为()A.在⊙O外B.在⊙O上C.在⊙O内D.不确定【分析】由勾股定理等性质算出点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:由勾股定理,得OP==5>4,即d>r,点P在⊙O外,故选:A.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5.在Rt△ABC中,∠C=90°,AB=10,sin∠B=,则BC=()A.15B.6C.9D.8【分析】首先根据正弦函数的定义求得AC的长,然后利用勾股定理求得BC的长.【解答】解:∵sinB==,∴AC=AB×=6,∴直角△ABC中,BC===8.故选:D.【点评】本题主要考查了解直角三角形、正弦函数的定义;熟练掌握正弦函数的定义是解决问题的关键.6.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≤4且k≠3B.k<4且k≠3C.k<4D.k≤4【分析】由于不知道函数是一次函数还是二次函数,需对k进行讨论.当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3,函数y=(k﹣3)x2+2x+1是二次函数,当△≥0时,二次函数与x轴都有交点,解△≥0,求出k的范围.【解答】解:当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3,函数y=(k﹣3)x2+2x+1是二次函数,当22﹣4(k﹣3)≥0,k≤4即k≤4时,函数的图象与x轴有交点.综上k的取值范围是k≤4.故选:D.【点评】本题考察了二次函数、一次函数的图象与x轴的交点、一次不等式的解法.解决本题的关键是对k的值分类讨论.7.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A.48°B.42°C.45°D.24°【分析】连接BD,则可得∠ADB=90°,在△ABD中求出∠ABD,再由圆周角定理可得出∠DCA.【解答】解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=42°,∴∠DCA=∠ABD=42°.故选:B.【点评】本题考查了圆周角定理的知识,解答本题的关键是熟练记忆圆周角定理及其推论,并能灵活运用.8.定义一种新运算:a♣b=a(a﹣b),例如,4♣3=4×(4﹣3)=4,若x♣2=3,则x的值是()A.x=3B.x=﹣1C.x1=3,x2=1D.x1=3,x2=﹣1【分析】先根据新定义得到x(x﹣2)=3,再把方程化为一般式,然后利用因式分解法解方程.【解答】解:∵x♣2=3,∴x(x﹣2)=3,整理得x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.故选:D.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.9.如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A的坐标为()A.(2,4)B.(2,6)C.(3,6)D.(3,4)【分析】根据位似变换的性质计算即可.【解答】解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点A的坐标为(1×3,2×3),即(3,6),故选:C.【点评】本题考查的是位似变换的性质,掌握在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.10.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【分析】根据正比例函数图象的性质确定m<0,则二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.【解答】解:∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第二、四象限,且m<0.∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.综上所述,符合题意的只有A选项.故选:A.【点评】本题考查了二次函数图象、正比例函数图象.利用正比例函数的性质,推知m <0是解题的突破口.11.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3【分析】根据反比例函数的性质判断即可.【解答】解:∵k=﹣3<0,∴在第四象限,y随x的增大而增大,∴y2<y3<0,∵y1>0,∴y2<y3<y1,故选:B.【点评】本题考查的是反比例函数的性质,掌握反比例函数的增减性是解题的关键.12.如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为()s时,BP与⊙O相切.A.1B.5C.1或5D.以上答案都不正确【分析】根据切线的判定与性质进行分析即可.若BP与⊙O相切,则∠OPB=90°,又因为OB=2OP,可得∠B=30°,则∠BOP=60°;根据弧长公式求得弧AP长,除以速度,即可求得时间.【解答】解:连接OP;∵当OP⊥PB时,BP与⊙O相切,∵AB=OA,OA=OP,∴OB=2OP,∠OPB=90°;∴∠B=30°;∴∠O=60°;∵OA=3cm,弧AP==π,∵圆的周长为:6π,∴点P运动的距离为π或6π﹣π=5π;∴当t=1或5时,有BP与⊙O相切.故选:C.【点评】本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解.13.如图,在△ABC中,D,E分别是边AB,BC上的点,且DE∥AC,若S△BDE=4,S△CDE=16,则△ACD的面积为()A.64B.72C.80D.96=4,S△CDE=16,得到S△BDE:S△CDE=1:4,根据等高的三角形的面积的比【分析】由S△BDE等于底边的比求出=,然后求出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后求出△ACD的面积.【解答】解:∵S△BDE=4,S△CDE=16,∴S△BDE :S△CDE=1:4,∵△BDE和△CDE的点D到BC的距离相等,∴=,∴=,∵DE∥AC,∴△DBE∽△ABC,∴S△DBE :S△ABC=1:25,∴S△ACD=80.故选:C.【点评】本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.14.如图,将半径为4cm的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A.2B.4cm C.D.【分析】连接AO,过O作OD⊥AB,交于点D,交弦AB于点E,根据折叠的性质可知OE=DE,再根据垂径定理可知AE=BE,在Rt△AOE中利用勾股定理即可求出AE的长,进而可求出AB的长.【解答】解:如图所示,连接AO,过O作OD⊥AB,交于点D,交弦AB于点E,∵折叠后恰好经过圆心,∴OE=DE,∵⊙O的半径为4,∴OE=OD=×4=2,∵OD ⊥AB ,∴AE=AB ,在Rt △AOE 中,AE===2.∴AB=2AE=4. 故选:B .【点评】本题考查的是垂径定理在实际生活中的运用及翻折变换的性质,根据题意画出图形,作出辅助线利用数形结合解答.15.如图,P 为⊙O 的直径BA 延长线上的一点,PC 与⊙O 相切,切点为C ,点D 是⊙O 上一点,连接PD .已知PC=PD=BC .下列结论:(1)PD 与⊙O 相切;(2)四边形PCBD 是菱形;(3)PO=CD ;(4)弧AC=弧AD .其中正确的个数为( )A .1个B .2个C .3个D .4个【分析】(1)利用切线的性质得出∠PCO=90°,进而得出△PCO ≌△PDO (SSS ),即可得出∠PCO=∠PDO=90°,得出答案即可;(2)利用(1)所求得出:∠CPB=∠BPD ,进而求出△CPB ≌△DPB (SAS ),即可得出答案;(3)利用全等三角形的判定得出△PCO ≌△BCA (ASA ),进而得出CO=PO=AB ; (4)利用四边形PCBD 是菱形,即可得到∠ABC=∠ABD ,弧AC=弧AD .【解答】解:(1)连接CO ,DO ,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,∵AB是⊙O的直径,CD不是直径,∴AB≠CD,∴PO≠DC,故(3)错误;(4)由(2)证得四边形PCBD是菱形,∴∠ABC=∠ABD,∴弧AC=弧AD,故(4)正确;故选:C.【点评】此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.16.如图,⊙O的一条弦AB垂直平分半径OC,且AB=2,则这个圆的内接正十二边形的面积为()A.6B.6C.12D.12【分析】如图,作辅助线;首先求出该正多边形的中心角;运用勾股定理求出半径R;求出△OCD的面积,即可解决问题.【解答】解:如图,连接OA;取的中点D,连接AD、CD、OD;过点D作DE⊥OC于点E;∵OF=OA,且∠OFA=90°,∴∠OAF=30°,∠AOC=60°,∠AOD=∠COD=30°;∵圆的内接正十二边形的中心角==30°,∴AD、DC为该圆的内接正十二边形的两边;∵OC⊥AB,且AB=2,∴AF=;在△AOF中,由勾股定理得:,解得:R=2;在△ODE中,∵∠EOD=30°,∴DE=OD=1,=1,∴这个圆的内接正十二边形的面积为12.故选:C.【点评】该题主要考查了正多边形和圆的关系及其应用问题;解题的关键是作辅助线,求出该正多边形的半径、中心角.二、填空(每小题3分共12分)17.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为24m.【分析】根据同时同地的物高与影长成正比列式计算即可得解.【解答】解:设这栋建筑物的高度为xm,由题意得,=,解得x=24,即这栋建筑物的高度为24m.故答案为:24.【点评】本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.18.已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为1.【分析】由x=1是一元二次方程x2+ax+b=0的一个根,可得1+a+b=0,推出a+b=﹣1,可得a2+2ab+b2=(a+b)2=1.【解答】解:∵x=1是一元二次方程x2+ax+b=0的一个根,∴1+a+b=0,∴a+b=﹣1,∴a2+2ab+b2=(a+b)2=1.故答案为1.【点评】本题考查一元二次方程的解,完全平方公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.如图,在△ABC中,AB=AC=13,BC=10,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.【分析】作AD⊥BC于D,如图,利用等腰三角形的性质得BD=CD=5,则利用勾股定理可计算出AD=12,由于AD垂直平分BC,则△ABC的外心O在AD上,连接OB,设△ABC的外接圆⊙O的半径为r,则OB=OA=r,OD=12﹣r,利用勾股定理可得52+(12﹣r)2=r2,解得r=,于是可确定能够完全覆盖这个三角形的最小圆面的半径为.【解答】解:作AD⊥BC于D,如图,∵AB=AC,∴BD=CD=BC=5,∴AD==12,∵AD垂直平分BC,∴△ABC的外心O在AD上,连接OB,设△ABC的外接圆⊙O的半径为r,则OB=OA=r,OD=12﹣r,在Rt△OBD中,52+(12﹣r)2=r2,解得r=,∵能够完全覆盖这个三角形的最小圆为△ABC的外接圆,∴能够完全覆盖这个三角形的最小圆面的半径为.故答案为.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点.也考查了等腰三角形的性质和勾股定理.20.如图,Rt△ABC中,AB⊥BC,AB=12,BC=8,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为4.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在Rt△BCO中,∵∠OBC=90°,BC=8,OB=6,∴OC==10,∴PC=OC﹣OP=10﹣6=4.∴PC最小值为4.故答案为:4.【点评】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.三、(本题满分8分)21.(8分)每年的3月22日为“世界水日”,为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.(1)小强共调查了20户家庭.(2)所调查家庭3月份用水量的众数为4吨;平均数为 4.5吨;(3)若该小区有500户居民,请你估计这个小区3月份的用水量.【分析】(1)根据条形统计图求出调查的家庭总户数即可;(2)根据条形统计图求出6月份用水量的平均数,找出众数即可;(3)根据统计图求出平均每户的用水量,乘以500即可得到结果.【解答】解:(1)根据题意得:1+1+3+6+4+2+2+1=20(户),则小强一共调查了20户家庭;故答案为:20;(2)根据统计图得:3月份用水量的众数为4吨;平均数为=4.5.(吨),则所调查家庭3月份用水量的众数为4吨、平均数为4.5吨;故答案为:4,4.5;(3)根据题意得:500×4.5=2250(吨),则这个小区3月份的用水量为2250吨.【点评】此题考查了条形统计图,加权平均数,众数,以及用样本估计总体,弄清题意是解本题的关键.四、(本题满分10分)22.(10分)已知函数图象如图所示,根据图象可得:(1)抛物线顶点坐标(﹣3,2);(2)对称轴为x=﹣3;(3)当x=﹣3时,y有最大值是2;(4)当x<﹣3时,y随着x得增大而增大.(5)当﹣5<x<﹣1时,y>0.【分析】(1)由抛物线与x轴两个交点的坐标,根据二次函数的对称性可得顶点坐标;(2)根据二次函数的性质可得对称轴;(3)根据抛物线的顶点坐标即可求解;(4)根据二次函数的性质即可求解;(5)抛物线在x轴上方的部分对应的x的取值即为所求.【解答】解:(1)∵抛物线与x轴交于点(﹣5,0),(﹣1,0),∴顶点横坐标为=﹣3,由图可知顶点纵坐标为2,∴顶点坐标为(﹣3,2);(2)对称轴为x=﹣3;(3)当x=﹣3时,y有最大值是2;(4)当x<﹣3时,y随着x得增大而增大;(5)当﹣5<x<﹣1时,y>0.故答案为(1)(﹣3,2);(2)x=﹣3;(3)﹣3,2;(4)x<﹣3;(5)﹣5<x<﹣1.【点评】本题考查了二次函数的图象与性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.五、(本题满分10分)23.(10分)如图,已知圆锥的底面半径是2,母线长是6.(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.【分析】(1)根据勾股定理直接求出圆锥的高,再利用圆锥侧面展开图弧长与其底面周长的长度关系,求出侧面展开图中∠ABC的度数即可;(2)首先求出BD的长,再利用勾股定理求出AD以及AC的长即可.【解答】解:(1)圆锥的高=,底面圆的周长等于:2π×2=,解得:n=120°;(2)连结AC,过B作BD⊥AC于D,则∠ABD=60°.由AB=6,可求得BD=3,∴AD═3,AC=2AD=6,即这根绳子的最短长度是6.【点评】此题考查了圆锥的计算;得到圆锥的底面圆的周长和扇形弧长相等是解决本题的突破点.六、(本题满分10分)24.(10分)如图,四边形ABCD内接于⊙O,AC是⊙O的直径,过点B作BE⊥AD,垂足为点E,AB平分∠CAE.(1)判断BE与⊙O的位置关系,并说明理由;(2)若∠ACB=30°,⊙O的半径为2,请求出图中阴影部分的面积.【分析】(1)连接BO,根据等腰三角形的性质得到∠1=∠2,根据角平分线的定义得到∠1=∠BAE,等量代换得到∠2=∠BAE,根据余角的性质得到∠EBO=90°,于是得到结论;(2)根据已知条件得到△ABO是等边三角形,得到∠2=60°,解直角三角形得到BE=,于是得到结论.【解答】解:(1)BE与⊙O相切,理由:连接BO,∵OA=OB,∴∠1=∠2,∵AB平分∠CAE,∴∠1=∠BAE,∴∠2=∠BAE ,∵BE ⊥AD ,∴∠AEB=90°,∴∠ABE +∠BAE=90°,∴∠ABE +∠2=90°,即∠EBO=90°,∴BE ⊥OB ,∴BE 与⊙O 相切;(2)∵∠ACB=30°,∴∠AOB=60°,∵OA=OB ,∴△ABO 是等边三角形,∴∠2=60°,OA=OB=AB=2,∴∠ABE=30°,在Rt △ABE 中,cos ∠ABE=,∴BE=, ∴AE=1,∴S 阴影=S 四边形AEBO ﹣S 扇形AOB =.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形的计算.七、(本题满分10分)25.(10分)如图,在平面直角坐标系中,一次函数y 1=ax +b (a ≠0)的图象与y 轴相交于点A,与反比例函数y2=(c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.【解答】解:(1)把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【点评】此题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,直角三角形的性质,勾股定理,锐角三角函数,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论.八、(本题满分12分)26.(12分)如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用刻画.(1)求二次函数解析式;(2)若小球的落点是A,求点A的坐标;(3)求小球飞行过程中离坡面的最大高度.【分析】(1)由抛物线的顶点坐标为(4,8)可建立过于a,b的二元一次方程组,求出a,b的值即可;(2)联立两解析式,可求出交点A的坐标;(3)设小球飞行过程中离坡面距离为z,由(1)中的解析式可得到z和x的函数关系,利用函数性质解答即可.【解答】解:(1)∵抛物线顶点坐标为(4,8),∴,解得:,∴二次函数解析式为:y=﹣x2+4x;(2)联立两解析式可得:,解得:或,∴点A的坐标是(7,);(3)设小球离斜坡的铅垂高度为z,则z=﹣x2+4x﹣x=﹣(x﹣3.5)2+,故当小球离点O的水平距离为3.5时,小球离斜坡的铅垂高度最大,最大值是.【点评】本题考查了二次函数的应用,解答本题的关键是仔细审题,理解坡面的高度是解题关键,注意掌握配方法求二次函数最值得应用,难度一般.。

四川省成都市金堂县2017-2018学年度上期期末质量监测-九年级数学

四川省成都市金堂县2017-2018学年度上期期末质量监测-九年级数学

金堂县2017-2018学年度上期期末质量监测九年级数学本试卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

A 卷分第I 卷和第II 卷,第I 卷为选择题,第II 卷为其他类型的题。

第Ⅰ卷1至2页, 第Ⅱ卷和B 卷3至6页。

考试结束时,监考人将答题卡收回。

A 卷(共100分)注意事项:1.答卷前,考生务必将密封线内的内容填写清楚,将自己的姓名、准考证号、考试科目等涂写在答题卡上.2.第Ⅰ卷各题均有四个选项,只有一项符合题目要求.答第Ⅰ卷时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后再选涂其它答案.3.其它试题直接答在答题卡上相应的位置处.第I 卷(选择题,共30分)一、选择题:(本题共10小题,每小题3分,共30分) 1.在实数0、3-、045tan 、1-中,最大的是( ) A .0B .3-C .045tanD .-12.一个几何体的三视图如图所示,这个几何体是() A .棱柱 B .圆柱 C .圆锥 D .球3.据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学计数法表示为( )A .61065⨯ B .510650⨯ C .91065.0⨯ D .7105.6⨯ 4.下列计算正确的是( ) A . 123=-x x B .752x x x =+ C .642x x x =∙ D . 44)(xy xy =5.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长(第5题图)(第2题图)为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD.若CD=AC ,∠A=58°,则∠ABC 的度数为( )A. 29°B.30°C. 31°D. 32°6.实数在数轴上的对应点的位置如图所示,则错误..的结论是( )A .4-<a B.c b c b --=+ C. c d b c -<- D .0>ac 7.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间..的中位数是( )小时. A .9 B .10 C .11 D .128.关于x 的一元二次方程mx 2+3x+1=0有两个不相等的实数根,则m 的取值范围为( ) A .m<94 B .m<94且m ≠0 C .m ≤49D .m ≤49且m ≠0 9.将抛物线y=﹣3x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( ) A . 1)1(32-+-=x y B . 3)1(32++-=x y C . 1)1(32+--=x y D .3)1(32+--=x y10.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕C 点逆时针方向旋转090后,A 点的坐标为( ).A . (2,-1)B .(2,0)C . (1,-1)D . (-1,0)第Ⅱ卷(非选择题,共70分)二、填空题(本题共4小题,每小题4分,共16分) 11. 因式分解: 34x x -=12.如图,将三角尺的直角顶点放在直尺的一边上,∠1=25°,∠2=55°,则∠3的度数等,,,a b c d于____________.13.函数x m y 12+=(m 为常数)的图像上三点(—1,1y )、(14-,2y )、(12,3y ),则函数值1y 、2y 、3y 的大小关系是__________________.14.正方形的边长为3,如图将正方形点沿对角线BD 折叠使点C 与点A 重合,在BD 上取一点E ,过E 作EF ⊥AD 于F.继续将△EFD 沿EF 折叠使D 与AF 上点M 重合,M 恰好为AF 的中点,设BE 的中点为,连接PF ,则PF 的长为 .三、解答下列各题(本题满分54分. 15题每小题6分,16题6分,17题8分,18题8分,19题10分,20题10分)15.(1) 计算:12-2cos300+(1-3)0-2-21⎪⎭⎫ ⎝⎛-(2)解不等式组:⎪⎩⎪⎨⎧-≤-+<+2323116)1(2x x x x16.化简:)111(11222+-+-÷-+-a a a a a a 17.如图,小红在A 处用测量仪测得某矩形广告牌顶端 C 的仰角为30°,然后前进10m 到达B 点,此时 测得D 处的仰角为60°,已知小红的身高AE=1.5m , 广告牌CD 的高度为2m,请你根据以上数据计算GH 的长.18.今年4月某小学五年级一班同学积极参加了植树活动,临走时同学们都对自己植树区域做了标记。

2017—2018学年(上)厦门市九年级质量检测数学试题

2017—2018学年(上)厦门市九年级质量检测数学试题

2017—2018学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.下列算式中,计算结果是负数的是A .(-2)+7B .-1C .3×(-2)D .(-1)2 2.对于一元二次方程x 2-2x +1=0,根的判别式b 2-4ac 中的b 表示的数是 A .-2 B .2 C .-1 D .1 3.如图1,四边形ABCD 的对角线AC ,BD 交于点O ,E 是BC 边上的一点,连接AE ,OE ,则下列角中是△AEO 的外角的是 A .∠AEB B .∠AOD C .∠OEC D .∠EOC4.已知⊙O 的半径是3,A ,B ,C 三点在⊙O 上,∠ACB =60°, 则︵AB 的长是A .2πB .πC .32πD .12π5.某区25位学生参加魔方速拧比赛,比赛成绩如图2所示, 则这25个成绩的中位数是A .11B .10.5C .10D .66.随着生产技术的进步,某厂生产一件产品的成本从两年前的100元下降到现在的64元,求年平均下降率.设年平均下降率为x ,通过解方程得到一个根为1.8,则正确的解释是 A .年平均下降率为80% ,符合题意 B .年平均下降率为18% ,符合题意 C .年平均下降率为1.8% ,不符合题意 D.年平均下降率为180% ,不符合题意7.已知某二次函数,当x <1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大,则该二次函数的解析式可以是 A .y =2(x +1)2 B .y =2(x -1)2 C .y =-2(x +1)2 D .y =-2(x -1)28.如图3,已知A ,B ,C ,D 是圆上的点,︵AD =︵BC ,AC ,BD 交于点E ,ABDCE E O DCB A 图1图2学生数正确速拧个数则下列结论正确的是A .AB =AD B .BE =CDC .AC =BD D .BE =AD 9.我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576 边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先一千多年.依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是A .2.9B .3C .3.1D .3.1410.点M (n ,-n )在第二象限,过点M 的直线y =kx +b (0<k <1)分别交x 轴,y 轴于点A ,B .过点M 作MN ⊥x 轴于点N ,则下列点在线段AN 上的是 A .((k -1)n ,0) B . ((k +32)n ,0) C . ((k +2)n k ,0) D .((k +1)n ,0)二、填空题(本大题有6小题,每小题4分,共24分)11.已知x =1是方程x 2-a =0的根,则a = .12.一个不透明盒子里装有4个除颜色外无其他任何差别的球,从盒子中随机摸出一个球,若 P (摸出红球)=14,则盒子里有 个红球.13.如图4,已知AB =3,AC =1,∠D =90°,△DEC 与△ABC关于点C 成中心对称,则AE 的长是 .14.某二次函数的几组对应值如下表所示.若x 1<x 2<x 3<x 4<x 5, 则该函数图象的开口方向是 .15.P 是直线l 上的任意一点,点A 在⊙O 上.设OP 的最小值为m ,若直线l 过点A ,则m 与OA 的大小关系是 .16.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元.演出票虽未售完,但售票收入达22080元.设成人票售出x 张,则x 的取值范围是 .三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-4x =1.图4 A B CD E图318.(本题满分8分)如图5,已知△ABC 和△DEF 的边AC ,DF 在一条直线上,AB ∥DE ,AB =DE ,AD =CF ,证明BC ∥EF .19.(本题满分8分)如图6,已知二次函数图象的顶点为P ,且与y 轴交于点A .(1)在图中再确定该函数图象上的一个点B 并画出;(2)若P (1,3),A (0,2),求该函数的解析式.20.(本题满分8分)如图7,在四边形ABCD 中,AB =BC ,∠ABC =60°,E 是CD 边上一点,连接BE ,以BE 为一边作等边三角形BEF .请用直尺在图中连接一条线段,使图中存在经过旋转可完全重合的两个三角形,并说明这两个三角形经过什么样的旋转可重合.21.(本题满分8分)某市一家园林公司培育出新品种树苗,为考察这种树苗的移植成活率,公司进行了统计, 结果如下表所示.现该市实施绿化工程,需移植一批这种树苗,若这批树苗移植后要有28.5万棵成活,则需一次性移植多少棵树苗较为合适?请说明理由.F A B C D E 图5A B C D E A · ·P图6 图722.(本题满分10分)已知直线l 1:y =kx +b 经过点A (-12,0)与点B (2,5).(1)求直线l 1与y 轴的交点坐标;(2)若点C (a ,a +2)与点D 在直线l 1上,过点D 的直线l 2与x 轴的正半轴交于点E ,当AC =CD =CE 时,求DE 的长.23.(本题满分11分)阅读下列材料:我们可以通过下列步骤估计方程2x 2+x -2=0的根所在的范围.第一步:画出函数y =2x 2+x -2的图象,发现函数图象是一条连续不断的曲线,且与x轴的一个交点的横坐标在0,1之间.第二步:因为当x =0时,y =-2<0;当x =1时,y =1>0,所以可确定方程2x 2+x -2=0的一个根x 1所在的范围是0<x 1<1.第三步:通过取0和1的平均数缩小x 1所在的范围:取x =0+12=12,因为当x =12时,y <0,又因为当x =1时,y >0,所以12<x 1<1.(1)请仿照第二步,通过运算,验证方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1;(2)在-2<x 2<-1的基础上,重复应用第三步中取平均数的方法,将x 2所在的范围缩小至m <x 2<n ,使得n -m ≤14.24.(本题满分11分)已知AB 是半圆O 的直径,M ,N 是半圆上不与A ,B 重合的两点,且点N 在︵MB 上. (1)如图8,MA =6,MB =8,∠NOB =60°,求NB 的长;(2)如图9,过点M 作MC ⊥AB 于点C ,P 是MN 的中点,连接MB ,NA ,PC ,试探究∠MCP ,∠NAB ,∠MBA 之间的数量关系,并证明.25.(本题满分14分)在平面直角坐标系xOy 中,已知点A 在抛物线y =x 2+bx +c (b >0)上,且A (1,-1),(1)若b -c =4,求b ,c 的值;(2)若该抛物线与y 轴交于点B ,其对称轴与x 轴交于点C ,则命题“对于任意的一个k (0<k <1),都存在b ,使得OC =k ·OB .”是否正确?若正确,请证明;若不正确,请举反例;(3)将该抛物线平移,平移后的抛物线仍经过(1,-1),点A 的对应点A 1为(1-m ,2b -1).当m ≥-32时,求平移后抛物线的顶点所能达到的最高点的坐标。

2017-2018学年上海市松江区九年级第一学期期末质量调研数学测试卷

2017-2018学年上海市松江区九年级第一学期期末质量调研数学测试卷

2017-2018学年上海市松江区九年级第一学期期末质量调研数学测试卷一、选择题(本大题共6题,每题4分,满分24分)1、已知13a b =,那么a a b +的值为( ) 【A 】13【B 】23【C 】14【D 】34【答案】C【解析】令k b k a 3.==代入2、下列函数中,属于二次函数的是( )【A 】3y x =-【B 】()221y x x =-+【C 】()11y x x =-- 【D 】21y x=【答案】C 【解析】二次函数定义3、已知飞机离水平地面的高度为5千米,在飞机上测得该水平地面上某观测目标A 的俯角为α,那么这时飞机与目标A 的距离为( )【A 】5sin α【B 】5sin α【C 】5cos α【D 】5cos α【答案】A 【解析】三角比4、已知非零向量a ,b ,c ,在下列条件中,不能判定a ∥b 的是( )【A 】a ∥c ,b ∥c【B 】a =2c ,b =3c【C 】a =5b -【D 】a =2b【答案】D【解析】向量5、在△ABC 中,边BC =6,高AD =4,正方形EFGH 的顶点E 、F 在边BC 上,顶点H 、G 分别在边AB 和AC 上,那么这个正方形的边长等于( )【A 】3【B 】2.5【C 】2.4【D 】2 【答案】C【解析】证ABC AEH ∆∆∽6、如图,已知在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,:AD BD =2:1,点F 在AC 上,:AF FC =1:2,联结BF ,交DE 于点G ,那么:DG GE 等于( )【A 】1:2【B 】1:3【C 】2:3【D 】2:5【答案】B【解析】三角形一边的平行线二、填空题(本大题共12题,每题4分,满分48分)7、已知线段14==b a ,,如果线段c 是线段b a 、的比例中项,那么c = .【答案】2【解析】0,2>c b a c ⋅=8、在比例尺是15000000:1的地图上,测得甲乙两地的距离是2厘米,那么甲乙两地的实际距离 是 千米.【答案】300【解析】注意单位换算9、如果抛物线1)2(2-++=x x a y 的开口向下,那么a 的取值范围是 . 【答案】2-<a【解析】开口向下,02<+a10、如果一个斜坡的坡度3:1=i ,那么该斜坡的坡角为 度。

哈尔滨市十七中学2017-2018年11月份 九年级阶段教学质量检测数学试卷(word无答案)

哈尔滨市十七中学2017-2018年11月份 九年级阶段教学质量检测数学试卷(word无答案)

哈尔滨市十七中学2017-2018年11月份九年级阶段教学质量检测数学试卷(word无答案)十七中学九年级教学质量检测数学试卷出题教师:尹超审题教师:张静2017.11一、选择题(每小题3 分,共计30 分)1. 6 的相反数是( ).A.-6B.16 C.16- D. 62. 下列计算正确的是()A. a3 +a3 =a6B. 3a -a =3C. (a3 ) 2 =a5D. a ⋅a2 =a33. ( ).A. C. D.4. 如图是由四个相同的小正方体组成的几何体,则这个几何体的主视图是( ).5. 在函数y=12x图象上的点是( )A. (-2,6)B. (2,6)C. (3,-4)D. (-3,4)6. 如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处,热气球A 120m,则这栋楼的高度为( ).A.B.m C.300m D.m7. 如图,已知三角形ABC,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线,DE 交AB 于D,连接CD,CD=( ).A. 3B. 4C. 4.8D. 58. 关于□ABCD 的叙述,正确的是( ).A.若AB⊥BC,则□ABCD 是菱形B.若AC⊥BD,则□ABCD 是正方形C.若AC=BD,则□ABCD 是矩形D.若AB=AD,则□ABCD 是正方形9. 如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在哈尔滨市十七中学2017-2018年11月份九年级阶段教学质量检测数学试卷(word无答案)矩形内点F 处,连接CF,则CF 的长为( ).A.95B.125 C.165 D.18510. 甲、乙沿同条路同时从学校出发去科技馆,甲骑自行车,乙步行,当甲以原速从原路回到学校时, 乙刚好到达科技馆,图中折线 O →A →B→C 和线段 OD 分别表示他们离学校的路程 S (米)与时间 t (分)间的函数关系,则下列结论中:(1)学校与科技馆的路程是 600 米;(2)甲在科技馆查阅资料 的时间为 5 分钟;(3)甲骑车的速度为 120 米/分钟;(4)甲与乙迎面相遇时乙离学校 500 米; (5)甲到达科技馆时乙才走了 200 米,正确的个数有( )个 A.1 B.2 C.3 D.49 题图二、填空题(每小题 3 分,共计 30 分)10 题图11.地球的平均半径约为 6 371 000 米,该数字用科学记数法可表示为 _. 12.在函数 y =33x -中,自变量 x 的取值范围是 . 13.分解因式:x 3﹣4x=. 14.不等式组2112x x -≥-⎧⎨+-⎩f 的解集为.15.已知扇形的圆心角为 60°,弧长为 2π,则此扇形的半径为 .16.某加工厂九月份加工了 20 吨干果,十一月份加工了 45 吨干果.设该厂加工干果重量的月平均增 长率为 .17.已知△ABC 中,AB =AC ,AB 的垂直平分线与 AC 所在的直线相交成 50°的角,则△ABC 底角的 度数为 .18.如图,△ABC 中,AB =AC ,AD ⊥BC 于 D ,CE ⊥AB 于 E ,且 AE =CE ,若 CD=3,则 AF 长度为. 19.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是. 20.如图,Rt △ ABC 中,∠ACB=90°,D 为∠ABC 平分线上一点,BD 交 AC 于点 E ,分别连接 AD 、CD ,且∠ACD=45°,若 AD= 2,CE=3,则BD 的长为.三、解答题(其中21-22 题各7 分,23-24 题各8 分,25-27 题各10 分,共计60 分)21. 先化简,再求值:2121(1)22x xx x++-÷++,其中x =2c os 30︒ - tan45︒22. 图①、图②是两张相同的每个小正方形的边长均为1 的方格纸,点A、B、C、D 均在小正方形的顶点上;(1)在图①中画出以线段AB 为一条边的菱形ABEF,且菱形ABEF 的面积为20(E、F 点都必须在小正方形顶点上);(2)在图②中画出以CD 为对角线的矩形CGDH,且矩形CGDH 的面积为10,并直接写出矩形CGDH 的周长为. (G、H 点都必须在小正方形顶点上)。

河南省洛阳市2017-2018学年九年级上期末数学试卷(含答案解析)

河南省洛阳市2017-2018学年九年级上期末数学试卷(含答案解析)

2017-2018学年河南省洛阳市九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017-2018学年河南省洛阳市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;.(3)过点B作BC⊥x轴,垂足为C,求S△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,∴S=×2×5=5.△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C ,D 的坐标,进而可得出0<m <4,由点P 的横坐标为m 可得出点P ,E 的坐标,进而可得出PE =﹣m 2+m +2,再利用二次函数的性质即可解决最值问题;(3)分PE 为对角线、PC 为对角线、CD 为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P ,C ,D 的坐标可求出点Q 的坐标,此题得解. 【解答】解:(1)将A (﹣1,0),B (5,0)代入y =﹣x 2+bx +c ,得:,解得:,∴抛物线的解析式为y =﹣x 2+4x +5.(2)∵直线y =﹣x +3与y 轴交于点C ,与x 轴交于点D , ∴点C 的坐标为(0,3),点D 的坐标为(4,0), ∴0<m <4.∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+4m +5),点E 的坐标为(m ,﹣ m +3),∴PE =﹣m 2+4m +5﹣(﹣m +3)=﹣m 2+m +2=﹣(m ﹣)2+.∵﹣1<0,0<<4,∴当m =时,PE 最长.(3)由(2)可知,点P 的坐标为(,).以P 、Q 、C 、D 为顶点的四边形是平行四边形分三种情况(如图所示):①以PD 为对角线,∵点P 的坐标为(,),点D 的坐标为(4,0),点C 的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。

2017-2018学年深圳市宝安区九年级(上)期末数学试卷(答案版)

2017-2018学年深圳市宝安区九年级(上)期末数学试卷(答案版)

2021-2021学年广东省深圳市宝安区九年级〔上〕 、选择题〔此题共有12小题,每题3分,共36分, 其中只有一个是正确的〕〔3分〕方程x 2=3x 的解为〔〕个,黑球有n 个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从 中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在 值约为〔7. 〔3分〕今年,某公司推出一款的新 深受消费者推崇,但价格不菲.为此,某电子商之间的函数关系式是〔2. 3. 4. A. x=3 B. x=0C. x i =0, X 2= - 3D. x i =0, X 2=3〔3分〕下面左侧几何体的左视图是〔〔3分〕如果 A. 3C.B. - 3D.C.〔3分〕不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有 20期末数学试卷每题有四个选项,0.4附近,那么A. 20B. 30C. 40D. 505. 〔3分〕关于x 的 二次方程ax 2+3x - 2=0有两个不相等的实数根,那么a 的值可以是〔 A. 0B.一 1C. - 2D. - 36.〔3分〕中国 〜带一路〞战略给沿线国家和地区带来很大的经济效益, 沿线某地区居民 2021 年人均年收入300美元,预计2021年人均年收入将到达 950美元,设2021年到2021年该地区居民人均年收入平均增长率为 x,可列方程为〔A. 300 (1+x%) 2=950B. 300 (1+x 2) =950C. 300 (1+2x) =950D. 300 (1+x) 2=950城推出分期付款购置新 的活动,一部售价为 9688元的新 ,前期付款 2000元, 后期每个月分别付相同的数额,那么每个月的付款额y 〔元〕与付款月数 x 〔x 为正整数〕“ 7688 0iA. y= +2000-9688 0iB. y= ---------- 2000C. 7688y=8. 〔3分〕如图,延长矩形ABCD的边BC至点E,使CE=BD连接AE,如果/ ADB=38°,那么/E的值是〔A. 19°B, 18° C. 20°D, 21 °9. 〔3分〕以下说法正确的选项是〔〕A,二次函数y= 〔x+1〕2-3的顶点坐标是〔1, 3〕B,将二次函数y=x2的图象向上平移2个单位,得到二次函数y= 〔x+2〕2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10. 〔3分〕如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A-H 的方向行走至点G,假设AD=6m, DG=4m,那么小红在点G处的影长相对于点D处的影长变化是〔〕BA.变长1m B,变长1.2m C.变长1.5m D,变长1.8m11. 〔3分〕一次函数y=ax+c的图象如下图,那么二次函数y=ax2+x+c的图象可能大致是〔〕12. 〔3分〕如图,点P是边长为近的正方形ABCD的对角线BD上的动点,过点P分别作P已BC于点E, PH DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M, 连接EF交AH于点G,当点P在BD上运动时〔不包括B、D两点〕,以下结论中:①MF=MC;②AH^EF;③AP2=PM?PH;④EF的最小值是亚.其中正确结论是〔〕2A.①③B.②③C.②③④D.②④二、填空题〔此题共有4小题,每题3分,共12分〕13. 〔3分〕有三张外观完全相同的卡片,在卡片的正面分别标上数字- 1, 0, -2,将正面朝下放在桌面上.现随机翻开一张卡片,那么卡片上的数字为负数的概率为 .14. 〔3分〕二次函数y=- 〔x- 1〕〔x+2〕的对称轴方程是 .315. 〔3分〕如图,点A在曲线y一〔x>0〕上,过点A作AB,x轴,垂足为B, OA的垂直平分线交OB、OA于点 C D,当AB=1时,△ ABC的周长为 .16. 〔3分〕如图,正方形ABCD中,对角线AC BD交于点O,点E是OB上一点,且OB=3OE 连接AE,过点D作DG, AE于点F,交AB边于点G,连接GE,假设AD=6&,那么GE的长是 _______8三、解做题〔本大题共7小题,共52分〕17. 〔5 分〕计算:〔—1〕2021 -〔工〕1+2X〔V2021〕%历.318. 〔5 分〕x2-8x+12=0.19. 〔8分〕在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.〔1〕从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;〔2〕假设在布袋中再添加a个红球,充分搅匀,从中摸出一个球,使摸到红球的概率为-4试求a的值.20. (8分)如图,△ ABC中,/ ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCN菱形;(2)假设/ ABC=60 , /ACB=45, BD=2,试求BF 的长.21 . 〔8分〕今年深圳读书月〞期间,某书店将每本本钱为30元的一批图书,以40元的单价出售时,每天的销售量是300本.在每本涨价幅度不超过10元的情况下,假设每本涨价1元,那么每天就会少售出10本,设每本书上涨了x元.请解答以下问题:〔1〕填空:每天可售出书本〔用含x的代数式表示〕;〔2〕假设书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22. (8分)如图1,在平面直角坐标系中,?OABC的一个顶点与坐标原点重合, OA边落在x轴上,且OA=4, OC=2/2, /COA=45.反比例函数C,与AB交于点D,连接AC, CD.(1)试求反比例函数的解析式;(2)求证:CD平分/ ACB;(3)如图2,连接OD,在反比例函数图象上是否存在一点在,请直接写出点P的坐标.如果不存在,请说明理由.y工(k>0, x>0)的图象经过点P,使得S\POC= ' S^ COD?如果存223. (10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c (a<0)与x轴交于A (-2,0)、B (4, 0)两点,与y轴交于点C,且OC=2OA(1)试求抛物线的解析式;(2)直线y=kx+1 (k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=^■,试求m的最大值及此时点P的坐标;DM(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N 的坐标;如果不存在,请说明理由.2021-2021学年广东省深圳市宝安区九年级〔上〕期末数学试卷参考答案与试题解析一、选择题〔此题共有12小题,每题其中只有一个是正确的〕1. 〔3分〕方程x2=3x的解为〔〕A. x=3 B, x=0【解答】解:.•.>―3x=0,x 〔x - 3〕 =0,那么x=0或x- 3=0,解得:x=0或x=3,应选:D.2. 〔3分〕下面左侧几何体的左视图是〔A. 3B. -3【解答】解:-^=2, ba=2b,.a+b 2b+b 0 ==3.a-b 2b-b 3分,共36分,每题有四个选项, C. x i=0, x2= - 3 D. x i=0, x2=3D.应选:C.3. 〔3分〕如果且=2,那么卑■的值是〔 b a-b应选:A.4. 〔3分〕不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,那么n的值约为〔〕A. 20B. 30C. 40D. 50【解答】解:根据题意得①=0.4,20+n解得:n=30,应选:B.5. 〔3分〕关于x的一元二次方程ax2+3x-2=0有两个不相等的实数根,那么a的值可以是〔〕A. 0B. - 1C. - 2D. - 3【解答】解:,•・关于x的一元二次方程ax2+3x-2=0有两个不相等的实数根,「.△>0 且aw 0,即32-4ax 〔-2〕 >0 且a*0,解得a> - 12且aw0, 8应选:B.6. 〔3分〕中国乙带一路〞战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2021年人均年收入300美元,预计2021年人均年收入将到达950 美元,设2021年到2021年该地区居民人均年收入平均增长率为x,可列方程为〔〕A. 300 〔1+x%〕 2=950B. 300 〔1+x2〕 =950C. 300 〔1+2x〕 =950D. 300 〔1+x〕2=950【解答】解:设2021年到2021年该地区居民年人均收入平均增长率为x,那么根据题意得2021年年收入为:300 〔1 +x〕2,列出方程为:300 〔1+x〕2=950.应选:D.7. 〔3分〕今年,某公司推出一款的新深受消费者推崇, 但价格不菲.为此,某电子商城推出分期付款购置新的活动,一部售价为9688元的新 ,第10页〔共26页〕前期付款2000元,后期每个月分别付相同的数额,那么每个月的付款额y 〔元〕与付款月数x 〔x为正整数〕之间的函数关系式是〔〕A. y=76SS +2000B. y=96SS- 2000x xC. y="—D, y=X A【解答】解:由题意可得:y=36A—2000』^跄. M X应选:C.8. 〔3分〕如图,延长矩形ABCD的边BC至点E,使CE=BD连接AE,如果/ADB=38, WJ/E的值是〔〕A. 19°B, 18°C, 200 D. 21二.四边形ABC皿矩形,AD// BE, AC=BD 且/ADB=/ CAD=38,「• / E=/ DAE,又= BD=CE• . CE=CA「• / E=/ CAE,v Z CAD=Z CAEnZDAE,E+/E=38°,即/ E=19°.应选:A.9. 〔3分〕以下说法正确的选项是〔〕A.二次函数y= 〔x+1〕2-3的顶点坐标是〔1,3〕B,将二次函数y=x2的图象向上平移2个单位,得到二次函数y= 〔x+2〕2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y= 〔x+1〕 2-3的顶点坐标是〔-1, -3〕,错误;B、将二次函数y=x2的图象向上平移2个单位,得到二次函数y=x2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;应选:D.10. 〔3分〕如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D 出发,沿A-H的方向行走至点G,假设AD=6m, DG=4m,那么小红在点G处的影长相对于点D处的影长变化是〔〕BA.变长1mB.变长1.2mC.变长1.5mD.变长1.8m【解答】解:由CD// AB// FG可得△CDE^AABE △ HFSAHAB, .•理应、堡①.即工3、_J^=L£.AE AB HA AE ' DE+6 7 HG+4+6 7 '解得:DE=1.5 HG=2.5,v HG- DE=2.5- 1.5=1,•••影长边长1m.应选:A.11. 〔3分〕一次函数y=ax+c的图象如下图,那么二次函数y=aX+x+c的图象可能大致是〔〕【解答】解:二,一次函数y=ax+c的图象经过一三四象限,a> 0, c<0,故二次函数y=a/+x+c的图象开口向上,对称轴在y轴左边,交y轴于负半轴, 应选:C.12. 〔3分〕如图,点P是边长为&的正方形ABCD的对角线BD上的动点,过点P分别作P已BC于点E, PF, DC于点F,连接AP并延长,交射线BC于点H, 交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时〔不包括B、D两点〕,以下结论中:① MF=MC;②AHLEF;③AP2=PM?PH;④EF的最小值是返.其中正确结论是〔〕2B ECA.①③B.②③C.②③④D.②④A 口【解答】解:①错误.由于当点P与BD中点重合时,CM=0,显然FMw CM;②正确.连接PC交EF于O.根据对称性可知/ DAP=/ DCP.•・四边形PECF1矩形,OF=OC・./ OCFW OFC丁• / OFCW DAP,・♦ / DA\/AMD=90 ,・・•/ GFM+/AMD=90 ,丁. / FGM=90 ,・.AH,EF.③正确.v AD// BH,・•/ DAP之H,vZ DAP之PCM,・./ PCM=/ H,・. / CPM=/ HPC,・.△CPM^ AHPQ厂.「HP PC'・. P G=PM?PH,根据对称性可知:PA=PC・•• P的PM?PH.④错误. •四边形PECF1矩形,EF=PC・•・当CP,BD时,PC的值最小,止匕时A、P、C共线, •. AC=Z「•PC的最小值为1,「•EF的最小值为1;应选:B.二、填空题(此题共有4小题,每题3分,共12分)13. (3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字- 1, 0, -2,将正面朝下放在桌面上.现随机翻开一张卡片,那么卡片上的数字为负数 的概率为 2 .—3_—【解答】解:二•共有3张卡片,卡片的正面分别标上数字-1, 0, -2,卡片上 的数字为负数的有2张,卡片上的数字为负数的概率为 —;3故答案为:2.314. (3分)二次函数y=- (x-1) (x+2)的对称轴方程是 x=-^ .二【解答】解:y=- (x-1) (x+2)=-(x+x - 2)・•・二次函数y=- (x-1) (x+2)的对称轴为x=—,2 故答案为:x=-l. 215. (3分)如图,点A 在曲线y=± (x>0)上,过点A 作AB,x 轴,垂足为B, x 【解答】解:;点A 在曲线y=2 〔x>0〕上,AB ,x 轴,AB=1, x「• ABX OB=3,• .OB=3OA 的垂直平分线交OB 、OA 于点C 、 D,当AB=1时,4ABC 的周长为Dv CD垂直平分AO,OC=AC△ ABC 的周长=AB^BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16. 〔3分〕如图,正方形ABCD中,对角线AG BD交于点O,点E是OB上一点,且OB=3OE连接AE,过点D作DG±AE于点F,交AB边于点G,连接GE,假设AD=6v r2,贝U GE的长是—运【解答】解:作EHLAB于H.二.四边形ABC皿正方形,AB=AD=6<2,OA=OB=6v OB=3OE• .OE=2 EB=4・•/ EBH玄BEH=45,EH=BH=2<2,AH=AB- BH=4 二,vZ ADO/ DAF=90 , / DAF+Z EAH=90,丁• / ADG之EAHI, vZ DAG之AHE,・ .△DAS AAHE,,知二AGAH EH'. .里旦.二’• . AG=3 二,GH=AH- AG=二,在Rtz\EGH中,EG=/EH2+GH2=V IO.故答案为而.三、解做题〔本大题共7小题,共52分〕17. 〔5 分〕计算:〔-1〕2021 -.〕1+2X 〔V2021〕°雨.3【解答】解:原式=1 - 3+2+3、0=3日.18. 〔5 分〕x2- 8x+12=0.【解答】解:x2- 8x+12=0,分解因式得〔x- 6〕〔x- 2〕 =0,x- 6=0, x- 2=0,解方程得:x1=6, x?=2,「•方程的解是x〔=6, x2=2.19. 〔8分〕在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.〔1〕从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;〔2〕假设在布袋中再添加a个红球,充分搅匀,从中摸出一个球,使摸到红球的概率为3,试求a的值.4【解答】解:〔1〕画树状图得:开始红白白八八/\白白红白红白•••共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,・•.随机从袋中摸出两个球,都是白色的概率是:2」.6 3(2)根据题意,得:也=老,3+a 4解得:a=5,经检验a=5是原方程的根,故a=5.20. (8分)如图,△ ABC中,/ACB的平分线交AB于点D,作CD的垂直平分线,分别交AG DC BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE>菱形;(2)假设 / ABC=60, /ACB=45, BD=2,试求BF 的长.【解答】(1)证实:: EF是DC的垂直平分线,DE=EC DF=CF /EGCW FGC=90, DG=CG . CD平分/ ACB, ・ ./ ECG= FCG VCG=CG. .△CG陷AFCC3 (ASA),GE=GF一•四边形DFC式平行四边形,v DE=CE一•四边形DFCEg菱形;(2)解:过D 作DHL BC于H,贝(J/DHF=/ DHB=90,・•/ABC=60,・ ./ BDH=30,BH= BD=1, 2在DHB中,DH=Gqi=/5,二.四边形DFC式菱形,DF// AC,・・/ DFB之ACB=45,・•.△DHF是等腰直角三角形,DH=FH夷,BF=BH+FH=1+行.21. (8分)今年深圳馍书月〞期间,某书店将每本本钱为30元的一批图书,以40元的单价出售时,每天的销售量是300本.在每本涨价幅度不超过10 元的情况下,假设每本涨价1元,那么每天就会少售出10本,设每本书上涨了x 元.请解答以下问题:(1)填空:每天可售出书(300- 10x) 本(用含x的代数式表示);(2)假设书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)二.每本书上涨了x元,「•每天可售出书(300- 10x)本.故答案为:(300- 10x).(2)设每本书上涨了x元(x< 10),根据题意得:(40 - 30+x) (300- 10x) =3750,整理,得:x2 - 20x+75=0,解得:x1二5, x?=15 (不合题意,舍去).答:假设书店想每天获得3750元的利润,每本书应涨价5元.22. (8分)如图1,在平面直角坐标系中,?OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4, OC=2/2, / COA=45.反比例函数y*(k>0,x>0)的图象经过点C,与AB交于点D,连接AC, CD.(1)试求反比例函数的解析式;(2)求证:CD平分/ACB(3)如图2,连接OD,在反比例函数图象上是否存在一点P,使得&POC^S XCOD?2如果存在,请直接写出点P的坐标.如果不存在,请说明理由.图1 图2【解答】解:(1)如图1,过点C作C已x轴于E,丁. / CEO=90,・•/ COA=45,丁. / OCE=45,・ OC=2 三,OE=CE=2••C (2, 2),•・•点C在反比例函数图象上,k=2X 2=4,•♦•反比例函数解析式为v=;x(2)如图2,过点D作DG,x轴于G,交BC于F,V CB// x轴,GF± CB,V OA=4,由(1)知,OC=CE=2• . AE=EC=2• ./ECA=45, /OCA=90,•OC// AB,••/ BAC玄OCA=90,• .AD,AC, ,. A (4, 0), AB// OC,;直线AB的解析式为y=x— 4①,•••反比例函数解析式为 Q②,Kfx=2V2+2 .fx=2-2V2联立①②解得, (舍),L 或. LL y=2V2 -2 [y=-2 -2V2. D (2V2+2, 2V2-2),• . AG=DG=2 二-2,• . AD==DG=4- 2 工,. DF=2- (2加-2) =4- 2%,• . AD=DF. AD,AC, DF± CB,•••点D是/ ACB的角平分线上,即:CD平分/ACB(3)存在,二.点C (2, 2),••・直线OC的解析式为y=x, OC=2/2,. D (2V2+2, 272-2),• .CD=2日-2I、如图3,当点P在点C右侧时,即:点P的横坐标大于2,S\PO(=—S\COD, 2•••设CD的中点为M,M (V2+2, V2),过点M作MP// OC交双曲线于P,「•直线PM 的解析式为y=x- 2③,• ••反比例函数解析式为y=1④,联立③④解得,日不五〔舍八{y=V5-l [y=-i-V5P 〔加+1, V5-1〕;H 、当点P'在点C 左侧时,即:点P'的横坐标大于0而小于2,设点M 关于OC 的对称点为M', M' (m, n), ,12「二=2, 2 2• ・m=2一 :, n=4一 :,••M' (2-72, 4-^2), v P'M' // OC,・•・直线P'M'的解析式为y=x+2⑤,K =-1-V5 〔舍〕,•.P' 〔V5-1, V5+1〕.即:点P 的坐标为〔逐-1 ,加+1〕或P 〔加+1,泥-1〕.联立④⑤解得,T 或 「 +1 一El23. (10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c (a<0)与x轴交于A (-2,0)、B (4, 0)两点,与y轴交于点C,且OC=2OA(1)试求抛物线的解析式;(2)直线y=kx+1 (k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=—,试求m的最大值及此时点P的坐标;DM(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点, 是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如【解答】解:(1)由于抛物线y=ax2+bx+c经过A (-2, 0)、B (4, 0)两点, 所以可以假设y=a (x+2) (x-4),v OC=2OA OA=2,•,• C (0, 4),代入抛物线的解析式得到a=-,y=- —(x+2) (x-4) 或y=——x2+x+4 y= - —(x-1) 2+A.2 2 2 4(2)如图1中,作Pnx轴于E,交BC于F.v CD// PE,・•.△CMDs AFMP,... m=FM _PF DM DC•••直线y=kx+1 (k>0)与y轴交于点D,那么D (0, 1),BC的解析式为y=- x+4,设P (n, - -i-n2+n+4),贝U F (n, — n+4),PF=->+n+4- (-n+4) = -1- (n-2) 2+2S= i(n-2) 2+T- -<0,6・•・当n=2时,m有最大值,最大值为此时P (2, 4).L-1(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2-1中,四边形DQNP是矩形时,yF A512 -i有(2)可知P (2, 4),代入y=kx+1中,得到k=l,2「•直线DP的解析式为yTLx+1,可得D (0, 1), E (-2, 0),2 3由^ DOa△ QOD可得坦=述,OQ ODOD2=OE?OQ• . 1= ?OQ,3• .OQ32, Q (3 0).至根据矩形的性质,将点P向右平移,个单位,向下平移1个单位得到点N, N (2+S, 4— 1),即N (工,3)2 2.•.直线PD 的解析式为y=Jlx+1, PCU PD, 2「•直线PQ 的解析式为y= - -x+—, 3 3, Q (8, 0),根据矩形的性质可知,将点D 向右平移6个单位,向下平移4个单位得到点N, N (0+6, 1-4), IP N (6, - 3).②当 DP 是对角线时,设 Q (x, 0),那么 QD 2=x 2+1, QP 2= (x-2) 2+42, PC ?=13, .「Q 是直角顶点,QC 2+QP 2=PD 2,.•.x 2+1+ (x- 2) 2+16=13,整理得x 2 - 2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N 坐标为(工,3)或(6, -3). b 、如图2-2事,四边形PDNQ 是矩形时, ?。

新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷

新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷

新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。

若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。

人教版2017-2018学年九年级(上)期中考试数学试卷(含答案)

人教版2017-2018学年九年级(上)期中考试数学试卷(含答案)

2017-2018学年上学期期中考试九年级数学试卷(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;一、选择题 (本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑。

1、在﹣5,0,﹣2,1这四个数中,最小的数是( )A .﹣5B .﹣2C .0D .12、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3、下列计算正确的是( )A .532x x x =+B .2x ·63x x =C .()532x x =D .235x x x =÷4、下列调査中,适合采用全面调査(普査)方式的是 ( )A .对嘉陵江水质情况的调査B .对端午节期间市场上粽子质量情况的调査C .对某班50名同学体重情况的调査D .对某类烟花爆竹燃放安全情况的调査5、对于二次函数2(1)2y x =-+的图象,下列说法正确的是( ).A .开口向下B .对称轴是1x =-C .顶点坐标是(1,2)D .与x 轴有两个交点 6、若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )A.1-B.1C.21-D.21 7、将抛物线y =(x -4)2+2向右平移1个单位,再向下平移3个单位,则平移后抛物线的 表达式为( )A .y =(x -3)2+5B .y =(x -3)2-1C .y =(x -5)2+5D .y =(x -5)2-18、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+9、在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )A B C D10、下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为( )A .50B .60C .64D .7211、如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连结BM ,则BM 的长是( )A.4B. 13+C. 23+D. 712、在﹣2、﹣1、0、1、2、3这六个数中,随机取出一个数,记为a ,若数 a 使关于x 的分式方程3233ax x x+=---的解是正实数,且使得二次函数y =﹣x 2+(2 a ﹣1)x +1的图象,在x >2时,y 随x 的增大而减小,则满足条件的所有a 之和是( )A .﹣2B .﹣1C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13、据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用。

[试卷合集3套]上海市杨浦区2018年九年级上学期期末质量检测数学试题

[试卷合集3套]上海市杨浦区2018年九年级上学期期末质量检测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.圆心角为140°的扇形的半径为3cm,则这个扇形的面积是()cm1.A.πB.3πC.9πD.6π【答案】D【解析】试题分析:扇形面积的计算公式为:2π2409S6π360360n rπ⨯⨯===,故选择D.2.为了解我县目前九年级学生对中考体育的重视程度,从全县5千多名九年级的学生中抽取200名学生作为样本,对其进行中考体育项目的测试,200名学生的体育平均成绩为40分则我县目前九年级学生中考体育水平大概在()A.40分B.200分C.5000 D.以上都有可能【答案】A【分析】平均数可以反映一组数据的一般情况、和平均水平,样本的平均数即可估算出总体的平均水平.【详解】∵200名学生的体育平均成绩为40分,∴我县目前九年级学生中考体育水平大概在40分,故选:A.【点睛】本题考查用样本平均数估计总体的平均数,平均数是描述数据集中位置的一个统计量,既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别.3.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:则关于这20户家庭的月用水量,下列说法正确的是()A.中位数是5 B.平均数是5 C.众数是6 D.方差是6【答案】C【分析】根据中位数的定义、平均数的公式、众数的定义和方差公式计算即可.【详解】解:A、按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误;B、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误;C、6出现了7次,出现的次数最多,则众数是6,故本选项正确;D、方差是:S2=120[4×(4﹣6)2+5×(5﹣6)2+7×(6﹣6)2+3×(8﹣6)2+(13﹣6)2]=4.1,故本【点睛】此题考查的是中位数、平均数、众数和方差的算法,掌握中位数的定义、平均数的公式、众数的定义和方差公式是解决此题的关键.4.三角形的两边分别2和6,第三边是方程x 2-10x+21=0的解,则三角形周长为( )A .11B .15C .11或15D .不能确定 【答案】B【详解】解:方程x 2-10x+21=0,变形得:(x-3)(x-7)=0,解得:x 1=3,x 2=7,若x=3,三角形三边为2,3,6,不合题意,舍去,则三角形的周长为2+6+7=1.故选:B .5.若23a b =,那么a a b+的值是( ) A .25 B .35 C .32 D .52【答案】A 【分析】根据23a b =,可设a =2k ,则b =3k ,代入所求的式子即可求解. 【详解】∵23a b =, ∴设a =2k ,则b =3k , 则原式=223k k k +=25. 故选:A .【点睛】 本题考查了比例的性质,根据23a b =,正确设出未知数是本题的关键. 6.若关于x 的一元二次方程2690kx x -+=有实数根,则k 的取值范围( )A .1k ≤-B .1kC .1k 且0k ≠D .1k ≤且0k ≠【答案】D【分析】根据一元二次方程的定义和根的判别式得出0k ≠且0≥,求出即可.【详解】∵关于x 的一元二次方程2690kx x -+=有实数根,∴0k ≠且()2246490b ac k =-=--⨯≥⊿,解得:k ≤1且0k ≠,本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键.7.下列说法正确的是( )A .三角形的外心一定在三角形的外部B .三角形的内心到三个顶点的距离相等C .外心和内心重合的三角形一定是等边三角形D .直角三角形内心到两锐角顶点连线的夹角为125° 【答案】C【分析】分别利用三角形内心以及三角形外心的性质判断得出即可.【详解】A. 因为只有钝角三角形的外心才在三角形的外部,锐角三角形的外心在三角形内部,直角三角形的外心在斜边上,该选项错误;B. 三角形的内心到三角形的三边距离相等,该选项错误;C. 若三角形的外心与内心重合,则这个三角形一定是等边三角形,该选项正确;D. 如图,∠C=90︒,∠BAC+∠ABC 18090=︒-︒,AD BE 、分别是角∠BAC 、∠ABC 的平分线,∴∠OAB+∠OBA 190452=⨯︒=︒, ∴∠AOB ()180********OAB OBA ∠∠=︒-+=︒-︒=︒,该选项错误.故选:C【点睛】本题考查三角形的外接圆和外心及三角形的内切圆与内心,正确把握它们的区别是解题的关键.8.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③420a b c -+>;④930a b c ++<.其中,正确结论的个数是( )A .1B .2C .3D .4【答案】D 【解析】由题意根据函数图象和二次函数的性质可以判断题目中的各个小题的结论是否正确,从而可以解【详解】解:函数图象与x轴有两个交点,故b2-4ac>0,所以①正确,由图象可得,a>0,b<0,c<0,故abc>0,所以②正确,当x=-2时,y=4a-2b+c>0,故③正确,∵该函数的对称轴为x=1,当x=-1时,y<0,∴当x=3时的函数值与x=-1时的函数值相等,∴当x=3时,y=9a+3b+c<0,故④正确,故答案为:①②③④.故选D.【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质解答.9.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.35【答案】B【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中球的总数为:2+3=5,有2个黄球,∴从袋子中随机摸出一个球,它是黄球的概率为:25.故选B.10.平行四边形四个内角的角平分线所围成的四边形是()A.平行四边形B.矩形C.菱形D.正方形【答案】B【解析】分析:作出图形,根据平行四边形的邻角互补以及角平分线的定义求出∠AEB=90°,同理可求∠F、∠FGH、∠H都是90°,再根据四个角都是直角的四边形是矩形解答.详解:∵四边形ABCD是平行四边形,∴∠BAD+∠ABC=180°,∵AE、BE分别是∠BAD、∠ABC的平分线,∴∠BAE+∠ABE=12∠BAD+12∠ABC=90°, ∴∠FEH=90°, 同理可求∠F=90°,∠FGH=90°,∠H=90°,∴四边形EFGH 是矩形.故选B.点睛:本题考查了矩形的判定,平行四边形的邻角互补,角平分线的定义,注意整体思想的利用.11.如图,在平面直角坐标系中,将OAB ∆绕着旋转中心顺时针旋转90︒,得到CDE ∆,则旋转中心的坐标为( )A .()1,4B .()1,2C .()1,1D .()1,1-【答案】C 【分析】根据旋转的性质:对应点到旋转中心的距离相等,可知旋转中心一定在任何一对对应点所连线段的垂直平分线上,由图形可知,线段OC 与BE 的垂直平分线的交点即为所求.【详解】∵OAB ∆绕旋转中心顺时针旋转90°后得到CDE ∆,∴O 、B 的对应点分别是C 、E ,又∵线段OC 的垂直平分线为y=1,线段BE 是边长为2的正方形的对角线,其垂直平分线是另一条对角线所在的直线,由图形可知,线段OC 与BE 的垂直平分线的交点为(1,1).故选C .【点睛】本题考查了旋转的性质及垂直平分线的判定.12.已知1x =是一元二次方程()21210m x x --+=的一个根,则m 等于( ) A .1-B .1C .2-D .2【答案】D 【分析】直接把x=1代入方程得到关于m 的方程,然后解关于m 的方程即可.【详解】解:把x=1代入()21210m x x --+= 得m-1-1+1=0,解得m=1.故选:D .【点睛】本题考查一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题(本题包括8个小题)13.已知73a b a b +=-,则a b=__________. 【答案】52【分析】根据比例的性质,化简求值即可. 【详解】73a b a b +=- ∴()()37a b a b +=-3377a b a b ∴+=-410a b ∴=52a b ∴= 故答案为:52. 【点睛】本题主要考察比例的性质,解题关键是根据比例的性质化简求值.14.试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式为________.【答案】答案不唯一,如y=x 2﹣4x+2,即y=(x ﹣2)2﹣1.【分析】由题意得,设2(2)y a x k =-+,此时可令0a > 的数,然后再由与y 轴的交点坐标为(0,2)求出k 的值,进而可得到二次函数的解析式.【详解】解:设2(2)y x k =-+,将(0,2)代入34k =+,解得1k =-,故2(2)1y x =--或y=x 2﹣4x+2.故答案为:答案不唯一,如y=x 2﹣4x+2,即y=(x ﹣2)2﹣1.考点:1.二次函数的图象及其性质;2.开放思维.15.若点()3,A n -、(),B m n 在二次函数()232y x k =++的图象上,则m 的值为________. 【答案】-1【分析】利用抛物线的对称性得到点A 和点B 为抛物线上的对称点,根据二次函数的性质得到抛物线的对称轴为直线x =−2,从而得到m−(−2)=−2−(−3),然后解方程即可.【详解】∵点A (−3,n )、B (m ,n ),∴点A 和点B 为抛物线上的对称点,∵二次函数()232y x k =++的图象的对称轴为直线x =−2,∴m−(−2)=−2−(−3),∴m =−1.故答案为:−1.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.16.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ,A’B’交AC 于点D ,若∠A’DC=90°,则∠A= °.【答案】55.【详解】试题分析:∵把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系. 17.若13a b =,则a b a b +=-______. 【答案】-1【分析】由13a b =可得,3b a =,再代入代数式计算即可. 【详解】∵ 13a b =, ∴ 3b a =,∴ 原式=342-3-2a a a a a a+==-, 故填:-1.【点睛】本题考查比例的基本性质,属于基础题型.18.现有5张正面分别标有数字0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的一元二次方程2220x x a-+-=有实数根,且关于x的分式方程11222axx x-+=--有整数解的概率为.【答案】2 5【详解】首先根据一元二次方程有实数解可得:4-4(a-2)≥0可得:a≤3,则符合条件的a有0,1,2,3四个;解分式方程可得:x=22a -,∵x≠2,则a≠1,a≠2,综上所述,则满足条件的a为0和3,则P=2 5 .考点:(1)、概率;(2)、分式方程的解.三、解答题(本题包括8个小题)19.如图,抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0).(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x轴于点B,求△ABC的面积.【答案】(1)y1=﹣(x﹣1)2+4;(2)9 2 .【分析】(1)解答时先根据已知条件求出二次函数的表达式,(2)根据一次函数与抛物线相交的关系算出交点坐标,就可以算出三角形的面积【详解】(1)∵抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0),∴0=a(﹣1﹣1)2+4,得a=﹣1,∴y1=﹣(x﹣1)2+4,即该抛物线所表示的二次函数的表达式是y1=﹣(x﹣1)2+4;(2)由2y=-14y=x 1x ⎧+⎨+⎩(﹣) 得x=1y=0-⎧⎨⎩或x=2y=3⎧⎨⎩ ∵一次函数y 2=x+1的图象与抛物线相交于A ,C 两点,点A (﹣1,0),∴点C 的坐标为(2,3),∵过点C 作CB 垂直于x 轴于点B ,∴点B 的坐标为(2,0),∵点A (﹣1,0),点C (2,3),∴AB =2﹣(﹣1)=3,BC =3,∴△ABC 的面积是·2AB BC =332⨯=92【点睛】此题重点考察学生对二次函数的理解,一次函数与二次函数的性质是解题的关键20.已知:△ABC 内接于⊙O ,过点A 作直线EF .(1)如图甲,AB 为直径,要使EF 为⊙O 的切线,还需添加的条件是(写出两种情况,不需要证明):① 或② ;(2)如图乙,AB 是非直径的弦,若∠CAF=∠B ,求证:EF 是⊙O 的切线.(3)如图乙,若EF 是⊙O 的切线,CA 平分∠BAF ,求证:OC ⊥AB .【答案】(1)①OA ⊥EF ;②∠FAC=∠B ;(2)见解析;(3)见解析.【分析】(1) 添加条件是:①OA ⊥EF 或∠FAC=∠B 根据切线的判定和圆周角定理推出即可.(2) 作直径AM,连接CM ,推出∠M=∠B=∠EAC ,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB ,所以点O 在AB 的垂直平分线上,根据∠FAC=∠B ,∠BAC=∠FAC ,等量代换得到∠BAC=∠B ,所以点C 在AB 的垂直平分线上,得到OC 垂直平分AB .【详解】(1)①OA ⊥EF ②∠FAC=∠B ,理由是:①∵OA ⊥EF ,OA 是半径,∴EF 是⊙O 切线,②∵AB 是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B ,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.(3)∵OA=OB,∴点O在AB的垂直平分线上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴点C在AB的垂直平分线上,∴OC垂直平分AB,∴OC⊥AB.【点睛】本题考查了切线的判定,圆周角定理,三角形的内角和定理等知识点,注意:经过半径的外端且垂直于半径的直线是圆的切线,直径所对的圆周角是直角.21.“辑里湖丝”是世界闻名最好的蚕丝,是浙江省的传统丝织品,属于南浔特产,南浔某公司用辑丝为原料生产的新产品丝巾,其生产成本为20元/条.此产品在网上的月销售量y(万件)与售价x(元/件)之间的函数关系为y=﹣0.2x+10(由于受产能限制,月销售量无法超过4万件).(1)若该产品某月售价为30元/件时,则该月的利润为多少万元?(2)若该产品第一个月的利润为25万元,那么该产品第一个月的售价是多少?(3)第二个月,该公司将第一个月的利润25万元(25万元只计入第二个月成本)投入研发,使产品的生产成本降为18元/件.为保持市场占有率,公司规定第二个月产品售价不超过第一个月的售价.请计算该公司第二个月通过销售产品所获的利润w为多少万元?【答案】(1)该月的利润为40万元;(1)该产品第一个月的售价是45元;(3)该公司第二个月通过销售产品所获的利润w至少为13万元,最多获利润16.1万元.【分析】(1)根据题意销售量与售价的关系式代入值即可求解;(1)根据月利润等于销售量乘以单件利润即可求解;(3)根据根据(1)中的关系利用二次函数的性质即可求解.【详解】(1)根据题意,得:当x=30时,y=﹣0.1×30+10=4,4×10=40,答:该月的利润为40万元.(1)15=(x﹣10)(﹣0.1x+10),解得x1=45,x1=15(月销售量无法超过4万件,舍去).答:该产品第一个月的售价是45元.(3)∵由于受产能限制,月销售量无法超过4万件,且公司规定第二个月产品售价不超过第一个月的售价.∴30≤x≤45,w=y(x﹣18)﹣15=(﹣0.1x+10)(x﹣18)﹣15=﹣0.1x1+13.6x﹣105=﹣0.1(x﹣34)1+16.1.当30≤x≤45时,13≤w≤16.1.答:该公司第二个月通过销售产品所获的利润w至少为13万元,最多获利润16.1万元.【点睛】本题主要考查了二次函数的应用,解决本题的关键是掌握销售问题各个量之间的关系并熟练运用二次函数. 22.一次知识竞赛中,有甲、乙、丙三名同学名次并列,但奖品只有两份,谁应该得到奖品呢?他们决定用抽签的方式来决定:取3张大小、质地相同,分别标有数字1?23,,的卡片,充分混匀后倒扣在桌子上,按甲、乙、丙的顺序,每人从中任意抽取一张,取后不放回.规定抽到1号或2号卡片的人得到奖品.求甲、乙两人同时得到奖品的概率.【答案】1 3【分析】根据题意画树状图求概率. 【详解】解:根据题意,画树状图为:三人抽签共有6种结果,且得到每种结果的可能性相同,其中甲和乙都抽到1号或2号卡片的结果有两种。

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。

2017-2018学年四川省成都市青羊区九年级上期末数学试卷(含答案解析)

2017-2018学年四川省成都市青羊区九年级上期末数学试卷(含答案解析)

2017-2018学年四川省成都市青羊区九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.cos30°=()A.B.C.D.2.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.3.下列说法正确的是()A.对角线相等的四边形是矩形B.有两边及一角对应相等的两个三角形全等C.对角线互相垂直的矩形是正方形D.平分弦的直径垂直于弦4.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120D.50(1+x)+50(1+x)2=1205.函数y=自变量x的取值范围是()A.x≥3B.x≤3C.x>3D.x<36.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°7.对于抛物线y=(x﹣1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大8.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y 轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4B.﹣4C.8D.﹣89.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁10.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“小于3”的概率为12.如图,已知斜坡AB的坡度为1:3.若坡长AB=10m,则坡高BC=m.13.如图,在▱ABCD中,∠C=43°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.14.如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB在阳光下的投影BC =3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(﹣1)2017﹣()﹣2•sin60°+|3﹣|(2)解方程:2(x﹣2)2=x2﹣416.(6分)如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论.(2)连接BE,若∠BAC=30°,CE=1,求BE的长.17.(8分)据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;(2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率.18.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)19.(10分)如图,在平面直角坐标系中,直线l与x轴相交于点M(3,0),与y轴相交于点N(0,4),点A为MN的中点,反比例函数y=(x>0)的图象过点A.(1)求直线l和反比例函数的解析式;(2)在函数y=(k>0)的图象上取异于点A的一点C,作CB⊥x轴于点B,连接OC交直线l于点P,若△ONP的面积是△OBC面积的3倍,求点P的坐标.20.(10分)如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是的中点.(1)求证:AC是⊙O的切线;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;(3)在(2)的条件下,连接CD,若tan∠HDC=,CG=4,求OP的长.一、填空题(每小题4分,共20分)21.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=22.如图,由点P(14,1),A(a,0),B(0,a)(0<a<14)确定的△PAB的面积为18,则a的值为.23.如图,在直角坐标系中,⊙A的圆心的坐标为(﹣2,0),半径为2,点P为直线y=﹣x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是.24.如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.25.如图,已知正方形纸片ABCD的边是⊙O半径的4倍,点O是正方形ABCD的中心,将纸片保持图示方式折叠,使EA1恰好与⊙O相切于点A1,则tan∠A1EF的值为.二、解答题(共30分)26.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.27.(10分)如图,已知一个三角形纸片ACB ,其中∠ACB =90°,AC =8,BC =6,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图1,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =4S △EDF ,求ED 的长;(2)如图2,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图3,若FE 的延长线与BC 的延长线交于点N ,CN =2,CE =,求的值.28.(12分)如图,直线y =﹣2x +3与x 轴交于点C ,与y 轴交于点B ,抛物线y =ax 2+x +c 经过B 、C 两点. (1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当△BEC 面积最大时,请求出点E 的坐标和△BEC 面积的最大值?(3)在(2)的结论下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.2017-2018学年四川省成都市青羊区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.cos30°=()A.B.C.D.【分析】直接根据cos30°=解答即可.【解答】解:由特殊角的三角函数值可知,cos30°=.故选:B.【点评】本题考查的是特殊角的三角函数,只要熟记cos30°=便可轻松解答.2.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.下列说法正确的是()A.对角线相等的四边形是矩形B.有两边及一角对应相等的两个三角形全等C.对角线互相垂直的矩形是正方形D.平分弦的直径垂直于弦【分析】根据各知识点利用排除法求解.【解答】解:A、对角线相等的平行四边形是矩形,错误;B、有两边及夹角对应相等的两个三角形全等,错误;C、对角线互相垂直的矩形是正方形,正确;D、两条直径一定互相平分,但是不一定垂直,错误;故选:C.【点评】此题主要考查全等三角形的判定、正方形的判定、矩形的判定、垂径定理,关键是根据知识点进行判断.4.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120D.50(1+x)+50(1+x)2=120【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产120台”,即可列出方程.【解答】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:50(1+x),三月份生产机器为:50(1+x)2;又知二、三月份共生产120台;所以,可列方程:50(1+x)+50(1+x)2=120.故选:D.【点评】本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.5.函数y=自变量x的取值范围是()A.x≥3B.x≤3C.x>3D.x<3【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.【解答】解:根据题意得:3﹣x>0,解得x<3.故选D.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°【分析】根据切线的性质可判断∠OBA=90°,再由∠BAO=40°可得出∠O=50°,在等腰△OBC中求出∠OCB即可.【解答】解:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC(都是半径),∴∠OCB=(180°﹣∠O)=65°.故选:C.【点评】本题考查了切线的性质,解答本题的关键在判断出∠OBA为直角,△OBC是等腰三角形,难度一般.7.对于抛物线y=(x﹣1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大【分析】根据二次函数的性质,二次函数的顶点式即可判断;【解答】解:∵a=1>0,∴抛物线开口向上,∵二次函数为y=a(x﹣h)2+k顶点坐标是(h,k),∴二次函数y=(x﹣1)2+2的图象的顶点坐标是(1,2),∵抛物线顶点(1,2),开口向上,∴抛物线与x轴没有交点,故A、B、C正确故选:D.【点评】此题考查了二次函数的性质,二次函数为y=a(x﹣h)2+k顶点坐标是(h,k),解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y 轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4B.﹣4C.8D.﹣8【分析】连结OA,如图,利用三角形面积公式得到S△OAB =S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB =S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故选:D.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.10.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F【分析】位似是特殊的相似,相似图形对应边的比相等.【解答】解:∵正五边形FGHMN和正五边形ABCDE位似,∴DE:MN=AB:FG=2:3,∴3DE=2MN.故选:B.【点评】本题考查的是位似变换.位似变换的两个图形相似.根据相似多边形对应边成比例得DE:MN=2:3.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“小于3”的概率为【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于3有1,2,两个球,共3个球,从中随机摸出一个小球,其标号小于3的概率为是:.故答案为:.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.12.如图,已知斜坡AB的坡度为1:3.若坡长AB=10m,则坡高BC=m.【分析】设BC=xm,根据坡度的概念求出AC,根据勾股定理计算即可.【解答】解:设BC=xm,∵斜坡AB的坡度为1:3,∴AC=3x,由勾股定理得,x2+(3x)2=102,解得,x=,故答案为:.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度的概念、灵活运用勾股定理是解题的关键.13.如图,在▱ABCD中,∠C=43°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为47°.【分析】由平行四边形的对角相等可得∠A=43°,根据直角三角形的两个锐角互余得到∠AED =47°,再利用对顶角相等即可求解.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=43°.∵DF⊥AD,∴∠ADE=90°,∴∠AED=90°﹣43°=47°,∴∠BEF=∠AED=47°.故答案是:47°.【点评】本题考查了平行四边形的性质,直角三角形两锐角互余的性质,对顶角相等的性质,利用平行四边形的对角相等得出∠A=43°是解题的关键.14.如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB在阳光下的投影BC =3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为10m.【分析】根据平行的性质可知△ABC∽△DEF,利用相似三角形对应边成比例即可求出DE的长.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,∵△ABC∽△DEF,AB=5m,BC=3m,EF=6m∴=∴∴DE=10(m)故答案为10m.【点评】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(﹣1)2017﹣()﹣2•sin60°+|3﹣|(2)解方程:2(x﹣2)2=x2﹣4【分析】(1)根据实数的运算解答即可;(2)根据因式分解法解答即可.【解答】解:(1)原式==﹣4;(2)2(x﹣2)2=x2﹣4(x﹣2)(2x﹣4﹣x﹣2)=0(x﹣2)(x﹣6)=0解得:x1=2,x2=6.【点评】(1)考查了特殊三角函数值;(2)本题考查了解一元二次方程的方法,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.16.(6分)如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论.(2)连接BE,若∠BAC=30°,CE=1,求BE的长.【分析】(1)先证明四边形ADCE是平行四边形,再由直角三角形斜边上的中线性质,得出CD=AB=AD,即可得出四边形ADCE为菱形;(2)依据∠ABC=60°,DB=DC,可得△BCD是等边三角形,依据∠BAE=60°,∠ABE=30°,可得△ABE是直角三角形,最后根据CE=1=AE,即可得到BE的长.【解答】解:(1)∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,∵∠ACB=90°,D为AB的中点,∴CD=AB=AD,∴四边形ADCE为菱形;(2)∵∠BAC=30°,四边形ADCE为菱形,∴∠BAE=60°=∠DCE,又∵∠ACB=90°,∴∠DBC=60°,而DB=DC,∴△BCD是等边三角形,∴∠DCB=60°,∴∠BCE=120°,又∵BC=CD=CE,∴∠CBE=30°,∴∠ABE=30°,∴△ABE中,∠AEB=90°,又∵AE=CE=1,∴AB=2,∴BE==.【点评】本题主要考查了菱形的判定与性质、平行四边形的判定、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质,证明四边形ADCE是菱形是解决问题的关键.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.17.(8分)据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;(2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率.【分析】(1)根据单位“1”,求出反腐占的百分比,得到x的值;根据环保人数除以占的百分比得到总人数,求出教育与反腐及其他的人数,补全条形统计图即可;(2)画出树状图列出所有等可能结果,找到一次所选代表恰好是甲和乙的结果数,再利用概率公式求解可得.【解答】解:(1)1﹣15%﹣30%﹣25%﹣10%=20%,所以x=20,总人数为:140÷10%=1400(人)关注教育问题网民的人数1400×25%=350(人),关注反腐问题网民的人数1400×20%=280(人),关注其它问题网民的人数1400×15%=210(人),如图2,补全条形统计图,(2)画树状图如下:由树状图可知共有20种等可能结果,其中一次所选代表恰好是甲和乙的有2种结果,所以一次所选代表恰好是甲和乙的概率为=.【点评】本题主要考查了条形统计图,扇形统计图及列表法与树状图法,解题的关键是读懂题意,从统计图上获得信息数据来解决问题.18.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)【分析】本题要求的实际是BC和DF的长度,已知了AB、BD都是200米,可在Rt△ABC和Rt△BFD中用α、β的正切函数求出BC、DF的长.【解答】解:Rt△ABC中,斜边AB=200米,∠α=16°,BC=AB•sinα=200×sin16°≈54(m),Rt△BDF中,斜边BD=200米,∠β=42°,DF=BD•sinβ=200×sin42°≈132,因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.19.(10分)如图,在平面直角坐标系中,直线l 与x 轴相交于点M (3,0),与y 轴相交于点N (0,4),点A 为MN 的中点,反比例函数y =(x >0)的图象过点A . (1)求直线l 和反比例函数的解析式;(2)在函数y =(k >0)的图象上取异于点A 的一点C ,作CB ⊥x 轴于点B ,连接OC 交直线l 于点P ,若△ONP 的面积是△OBC 面积的3倍,求点P 的坐标.【分析】(1)根据点M 、N 的坐标利用待定系数法可求出直线l 的解析式,根据点A 为线段MN 的中点可得出点A 的坐标,根据点A 的坐标利用待定系数法可求出反比例函数解析式;(2)根据反比例函数系数k 的几何意义可求出S △OBC 的面积,设点P 的坐标为(a ,﹣ a +4),根据三角形的面积公式结合S △ONP 的面积即可求出a 值,进而即可得出点P 的坐标. 【解答】解:(1)设直线l 的解析式为y =mx +n (m ≠0), 将(3,0)、(0,4)代入y =mx +n ,得,解得:,∴直线l 的解析式为y =﹣x +4. ∵点A 为线段MN 的中点,∴点A 的坐标为(,2).将A (,2)代入y =,得k =×2=3,∴反比例函数解析式为y =;(2)∵S △OBC =|k |=,∴S △ONP =3S △OBC =.∵点N(0,4),∴ON=4.设点P的坐标为(a,﹣a+4),则a>0,=ON•a=2a,∴S△ONP∴a=,则﹣a+4=﹣×+4=1,∴点P的坐标为(,1).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及一次函数图象上点的坐标特征,根据点的坐标利用待定系数法求出函数解析式是解题的关键.20.(10分)如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是的中点.(1)求证:AC是⊙O的切线;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;(3)在(2)的条件下,连接CD,若tan∠HDC=,CG=4,求OP的长.【分析】(1)如图1中,先判断出∠A+∠BOF=90°,再判断出∠COD=∠EOD=∠BOF,即可得出∠A+∠COD=90°;(2)如图2中,连接OC,首先证明FC=FH,再证明点K在以F为圆心FC为半径的圆上即可解决问题;(3)先求出CH=2CG=8,进而用tan∠CMH==tan∠HDC=,得出,求出MH=,进而CM=,即可得出OD=OF=,再求出OG=MH=,进而得出FG=OF ﹣OG=3,再根据勾股定理得,CF=5,借助(2)的结论即可得出结论.【解答】(1)证明:如图1中,连接OC.∵OF⊥BC,∴∠B+∠BOF=90°,∵AC=BC,∴∠A+∠B=90°,∴∠A+∠BOF=90°,∵点D是的中点,∴,∴∠COD=∠EOD=∠BOF,∴∠A+∠COD=90°,∴∠ACO=9°,∴OC⊥AC,∴AC是⊙O的切线,(2)证明:如图2中,连接OC,∵EF⊥HC,∴CG=GH,∴EF垂直平分HC,∴FC=FH,∵∠CFP=∠COE,∵∠COD=∠DOE,∴∠CFP=∠COD,∵∠CHP=∠COD,∴∠CHP=∠CFP,∴点P在以F为圆心FC为半径的圆上,∴FC=FP=FH,∵DO=OF,∴DO+OP=OF+OP=FP=CF,即CF=OP+DO;(3)解:如图3,连接CO并延长交⊙O于M,连接MH,∴∠∠CMH=∠CDH,∠CHM=90°,∵OF⊥CH于G,∴CH=2CG=8,在Rt△CHM中,tan∠CMH==tan∠HDC=,∴,∴MH=,∴CM==,∴OD=OF=∵∠CGO=∠CHM=90°,∴OG∥MH,∵OC=OM,∴OG=MH=,∴FG=OF﹣OG=3,在Rt△CGF中,根据勾股定理得,CF==5,由(2)知,OP=CF﹣OD=5﹣=.【点评】本题考查了圆的综合知识及勾股定理的应用、相似三角形的判定和性质的应用等知识,综合性强,难度较大,能够正确的作出辅助线是解答本题的关键.一、填空题(每小题4分,共20分)21.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=﹣2【分析】由根与系数的关系可用m表示出x1+x2和x1x2的值,利用条件可得到关于m的方程,则可求得m的值,再代入方程进行判断求解.【解答】解:∵关于x的一元二次方程x2﹣mx+2m﹣1=0的两根是x1、x2,∴x1+x2=m,x1x2=2m﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=m2﹣2(2m﹣1),∵x12+x22=14,∴m2﹣2(2m﹣1)=14,解得m=6或m=﹣2,当m=6时,方程为x2﹣6x+11=0,此时△=(﹣6)2﹣4×11=36﹣44=﹣8<0,不合题意,舍去,∴m=﹣2,故答案为:﹣2.【点评】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.22.如图,由点P(14,1),A(a,0),B(0,a)(0<a<14)确定的△PAB的面积为18,则a 的值为 3或12 .【分析】当0<a <14时,作PD ⊥x 轴于点D ,由P (14,1),A (a ,0),B (0,a )就可以表示出△ABP 的面积,建立关于a 的方程求出其解即可. 【解答】解:当0<a <14时, 如图,作PD ⊥x 轴于点D ,∵P (14,1),A (a ,0),B (0,a ), ∴PD =1,OD =14,OA =a ,OB =a ,∴S △PAB =S 梯形OBPD ﹣S △OAB ﹣S △ADP =×14(a +1)﹣a 2﹣×1×(14﹣a )=18, 解得:a 1=3,a 2=12; 故答案为:3或12【点评】本题考查了坐标与图形的性质,三角形的面积公式的运用,梯形的面积公式的运用,点的坐标的运用,解答时运用三角形和梯形的面积建立方程求解是关键.23.如图,在直角坐标系中,⊙A 的圆心的坐标为(﹣2,0),半径为2,点P 为直线y =﹣x +6上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是 4.【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+6时,PQ最小,根据全等三角形的性质得到AP=6,根据勾股定理即可得到结论.【解答】解:如图,作AP⊥直线y=﹣x+6,垂足为P,作⊙A的切线PQ,切点为Q,此时切线长PQ最小,∵A的坐标为(﹣2,0),设直线与x轴,y轴分别交于B,C,∴B(0,6),C(8,0),∴OB=6,AC=,10,∴BC==10,∴AC=BC,在△APC与△BOC中,,∴△APC≌△BOC,∴AP=OB=6,∴PQ==4.故答案为4【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.24.如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.【分析】由题意得出BC=1,BI=4,则=,再由∠ABI=∠ABC,得△ABI∽△CBA,根据相似三角形的性质得=,求出AI,根据全等三角形性质得到∠ACB=∠FGE,于是得到AC∥FG,得到比例式==,即可得到结果.【解答】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4,∴==,=,∴=,∵∠ABI=∠ABC,∴△ABI∽△CBA;∴=,∵AB=AC,∴AI=BI=4;∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故答案为:.【点评】本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.25.如图,已知正方形纸片ABCD的边是⊙O半径的4倍,点O是正方形ABCD的中心,将纸片保持图示方式折叠,使EA1恰好与⊙O相切于点A1,则tan∠A1EF的值为.【分析】在RT△FMO中利用勾股定理得出AF与r的关系,设r=6a,则x=7a,AM=MO=12a,FM=5a,AF=FA1=7a,利用A1N∥OM得到求出AN,NA1,再证明∠1=∠2即可解决问题.【解答】解:如图,连接AA1,EO,作OM⊥AB,A1N⊥AB,垂足分别为M、N.设⊙O的半径为r,则AM=MO=2r,设AF=FA1=x,在RT△FMO中,∵FO2=FM2+MO2,∴(r+x)2=(2r﹣x)2+(2r)2,∴7r=6x,设r=6a则x=7a,AM=MO=12a,FM=5a,AF=FA1=7a,∵A1N∥OM,∴,∴,∴A1N=a,FN=a,AN=a,∵∠1+∠4=90°,∠4+∠3=90°,∠2=∠3,∴∠1=∠3=∠2,∴tan∠2=tan∠1==.故答案为.【点评】本题考查正方形的性质、圆的有关知识、勾股定理,平行线分线段成比例定理等知识,用设未知数列方程的数学思想是解决问题的关键. 二、解答题(共30分)26.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由. 【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W =1350时x 的值,再根据二次函数的性质求得W ≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案. 【解答】解:(1)设y =kx +b , 将(50,100)、(60,80)代入,得:,解得:, ∴y =﹣2x +200 (40≤x ≤80);(2)W =(x ﹣40)(﹣2x +200) =﹣2x 2+280x ﹣8000 =﹣2(x ﹣70)2+1800,∴当x =70时,W 取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W =1350时,得:﹣2x 2+280x ﹣8000=1350, 解得:x =55或x =85, ∵该抛物线的开口向下,所以当55≤x ≤85时,W ≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x ≤80, ∴该商品每千克售价的取值范围是55≤x ≤80.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.27.(10分)如图,已知一个三角形纸片ACB ,其中∠ACB =90°,AC =8,BC =6,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图1,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =4S △EDF ,求ED 的长;(2)如图2,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图3,若FE 的延长线与BC 的延长线交于点N ,CN =2,CE =,求的值.【分析】(1)先利用折叠的性质得到EF ⊥AB ,△AEF ≌△DEF ,则S △AEF =S △DEF ,则易得S △ABC =5S △AEF ,再证明Rt △AEF ∽Rt △ABC ,然后根据相似三角形的性质得到两个三角形面积比和AB ,AE 的关系,再利用勾股定理求出AB 即可得到AE 的长;(2)首先判断四边形AEMF 为菱形;再连结AM 交EF 于点O ,设AE =x ,则EM =x ,CE =8﹣x ,先证明△CME ∽△CBA 得到关于x 的比例式,解出x 后计算出CM 的值,再利用勾股定理计算出AM ,然后根据菱形的面积公式计算EF ;(3)作FH ⊥BC 于H ,先证明△NCE ∽△NFH ,利用相似比得到,设FH =4x ,NH =7x ,则CH =7x ﹣2,BH =6﹣(7x ﹣2)=8﹣7x ,再证明△BFH ∽△BAC ,利用相似比可计算出x。

2017–2018学年度第一学期期末初三数学模拟试卷二(含答案)

2017–2018学年度第一学期期末初三数学模拟试卷二(含答案)

= .故选 B.
二、填空题 (每小题 2 分,共 20 分) 11.x ≤2;12.5;13.8;14.3π;15.解:函数与 x 轴的另一交点的坐标是:(-3,0),
则一元二次方程的根是:x1=1,x=-3.故答案是:x1=1,x2=-3.;16.解:设 A 点坐标
为(0,a),(a>0),则 x2=a,解得 x= ,∴点 B( ,a), =a,则 x= ,
DE
AB=
.
17.现定义运算“★”,对于任意实数 a、b,都有 a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,
若 x★2=6,则实数 x 的值是

版权所有@蔡老师数学
- 2 - / 12
18.如图,AB 是⊙O 的弦,AB=4,点 C 是⊙O 上的一个动点,且∠ACB=45°.若点 M,N 分 别是 AB,BC 的中点,则 MN 长的最大值是 .
(2)设点 D 是线段 AB 上的动点,过点 D 作 y 轴的平行线交抛物线于点 E,求线段 DE
长度的最大值.
y
版权所有@蔡老师数学
CO B
Ax
- 4 - / 12
„„„„„„„„„„„„„„„„„„„„„„„装„„„„„订„„„„„线„„„„„„„„„„„„„„„„„„„„„„
.
学号
26.(8 分)如图,AP 是∠MAN 的平分线,B 是射线 AN 上的一点,以 AB 为直径作⊙O 交
19.解:原式=(4 3- 3)× 6…………………………………………………………2 分
=3 3× 6……………………………………………………………………4 分
= 9 2 ……………………………………………………………………6 分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017--2018学年上学期九年级数学期末质量检测姓名:_______________班级:_______________考号:_______________一、选择题二、1、方程的左边配成完全平方后,得到的方程为().A. B. C.D.以上都不对2、在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为,则满足的方程是()A. B.C. D.3、如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE可以由△ABC绕点 A顺时针旋转900得到,点D 与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是( )(A)45°(B)30°(C)25°(D)15°4、下列图形中,是中心对称图形的是()5、如图,A,B,C是⊙O上三个点,∠AOB=2∠BOC,则下列说法中正确的是A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC.. AB=2BCD. ∠OBA+∠BOC=90°6、在平面直角坐标系中,以点(3,2)为圆心,2为半径的圆与坐标轴的位置关系为()7、某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( )A.3 B.4 C.5 D.68、.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有()A. 1个B. 2个C. 3个D. 4个9、如图,已知AB=12,点C,D在AB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有()①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.A.1个 B.2个 C.3个 D.4个10、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④其中正确的有( )A.1个 B.2个 C.3个 D.4个二、填空题11、方程有两个不等的实数根,则a的取值范围是________。

12、如图,⊙O中,弦AB=3,半径BO=,C是AB上一点且AC=1,点P是⊙O上一动点,连PC,则PC长的最小值是13、将一批数据分成5组,列出频率分布表,其中第一组与第五组的概率之和是0.2,第二与第四组的概率之和是0.25,那么第三组的概率是.15、在平面直角坐标系中,二次函数与一次函数的图像交于A、B两点,已知B点的横坐标为2,当时,自变量的取值范围是.16、在平面直角坐标系中,将抛物线C1:y=x2绕点(1,0)旋转180°后,得到抛物线C2,定义抛物线C1和C2上位于﹣2≤x≤2范围内的部分为图象C3.若一次函数y=kx+k﹣1(k>0)的图象与图象C3有两个交点,则k的范围是:.三、计算题17、18、如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到.(1)在正方形网格中,作出;(不要求写作法)(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留)四、综合题19、预警方案确定:设W=,如果当月W<6,则下个月要采取措施防止“猪贱伤农”.【数据收集】今年2月~5月玉米、猪肉价格统计表【问题解决】(1)若今年3月的猪肉价格比上月下降的百分数与5月的猪肉价格比上月下降的百分数相等,求3月的猪肉价格m;(2)若今年6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测7月时是否要采取措施防止“猪贱伤农”:(3)若今年6月及以后月份,每月玉米价格增长率是当月猪肉价格增长率的2倍,而每月的猪肉价格增长率都为a,则到7月时只用5.5元就可以买到500克猪肉和500克玉米,请你预测8月时是否要采取措施防止“猪贱伤农”.20、课前预习是学习的重要缓解,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A.优秀,B.良好,C.一般,D.较差,并将调查结果绘制成以下两幅不完整的统计图.(1)本次调查的样本容量是;其中A类女生有名,D类学生有名;(2)将条形统计图和扇形统计图补充完整;(3)若从被调查的A类和D类学生中各随机选取一位学生进行“一帮一”辅导学习,即A类学生辅导D类学生,请用列表法或画树状图的方法求出所选两位同学中恰好是一位女同学辅导一位男同学的概率.21、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.22、如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.(1)求证:FD是⊙O的一条切线;(2)若AB=10,AC=8,求DF的长.23、如图1在平面直角坐标系中.等腰Rt△OAB的斜边OA在x轴上.P为线段OB上﹣动点(不与O,B重合).过P点向x轴作垂线.垂足为C.以PC为边在PC的右侧作正方形PCDM.OP=t、OA=3.设过O,M两点的抛物线为y=ax2+bx.其顶点N(m,n)(1)写出t的取值范围,写出M的坐标:(,);(2)用含a,t的代数式表示b;(3)当抛物线开向下,且点M恰好运动到AB边上时(如图2)①求t的值;②若N在△OAB的内部及边上,试求a及m的取值范围.24、.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,点P在优弧上.(1)求出A,B两点的坐标;(2)试确定经过A、B且以点P为顶点的抛物线解析式;(3)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.2017--2018学年上学期九年级数学期末质量检测参考答案一、选择题1、A、2、.B3、D4、C5、D6、C.7、B8、D9、B【考点】MR:圆的综合题.【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可确定③正确;又由G为EF的中点,∠EPF=90°,可知②错误.根据直角三角形两直角边的差越大,直角三角形的面积越小,可求得答案.【解答】解:如图,分别延长AE、BF交于点H.∵等腰Rt△APE和等腰Rt△PBF,∴∠A=∠FPB=45°,∠B=∠EPA=45°,∴AH∥PF,BH∥PE,∠EPF=180°﹣∠EPA﹣∠FPB=90°,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∴G也为PH中点,即在P的运动过程中,G始终为PH的中点,∴G的运行轨迹为△HCD的中位线MN.∵CD=12﹣2﹣2=8,∴MN=4,即G的移动路径长为4.故③EF的中点G移动的路径长为4,正确;∵G为EF的中点,∠EPF=90°,∴①△EFP的外接圆的圆心为点G,正确.∴①③正确.∵点P从点C沿线段CD向点D运动(运动到点D停止),易证∠EPF=90°,所以四边形面积便是三个直角三角形的面积和,设cp=x,则四边形面积S=∴AP不断增大,∴四边形的面积S也会随之变化,故②错误.④等腰Rt△APE和等腰Rt△PBF,∠EPF=90°,AP=PE,BP=PF,当AP=AC=2时,即PE=,PF=5,S△PEF最小=PE•PF=5,故④错误;故选:B.【点评】本题考查了等腰直角三角形的性质,平行四边形的判定与性质,三角形外接圆的知识以及三角形中位线的性质等知识.此题综合性很强,图形也很复杂,解题时要注意数形结合思想的应用.此题属于动点问题,是中考的热点.10、D二、填空题11、且a≠012、13、0.55 .【考点】利用频率估计概率.【专题】推理填空题.【分析】根据一组数据总的概率是1,可以得到第三组的概率是多少.【解答】解:由题意可得,第三组的概率是:1﹣0.2﹣0.25=0.55,故答案为:0.55.【点评】本题考查利用频率估计概率,解题的关键是明确题意,知道一组数据总的概率是1.14、15πcm.【考点】弧长的计算.【分析】先求出经过45分钟分针的针尖转过的圆心角的度数,再根据弧长公式l=,求得弧长.【解答】解:∵分针经过60分钟,转过360°,∴经过45分钟转过270°,则分针的针尖转过的弧长是l===15π(cm).故答案为:15π.【点评】本题考查弧长的计算,属于基础题,解题关键是要掌握弧长公式l=,难度一般.15、【答案】16、﹣2+2<k≤或≤k﹣4+6或k≥15 .【分析】如图,由题意图象C2的解析式为y=﹣(x﹣2)2,图象C3是图中两根红线之间的C1、C2上的部分图象,分五种情形讨论即可.【解答】解:如图,由题意图象C2的解析式为y=﹣(x﹣2)2,图象C3是图中两根红线之间的C1、C2上的部分图象.由﹣2x≤2,则A(2,4),B(﹣2,﹣16),D(2,0).因为一次函数y=kx+k﹣1(k>0)的图象与图象C3有两个交点①当直线经过点A时,满足条件,4=2k+k﹣1,解得k=,②当直线与抛物线C1切时,由消去y得到x2﹣kx﹣k+1=0,∵△=0,∴k2+4k﹣4=0,解得k=或﹣2﹣2(舍弃),观察图象可知当﹣2+2<k≤时,直线与图象C3有两个交点.③当直线与抛物线C2相切时,由,消去y,得到x2﹣(4﹣k)x+3+k=0,∵△=0,∴(4﹣k)2﹣4(3+k)=0,解得k=6﹣4或6+4(舍弃),④当直线经过点D(2,0)时,0=2k+k﹣1,解得k=,⑤当直线经过点B(﹣2,﹣16)时,﹣16=﹣2k+k﹣1,解得k=15,观察图象可知,k≥15时,直线与图象C3有两个交点.综上所述,当﹣2+2<k≤或≤k﹣4+6或k≥15时,直线与图象C3有两个交点.故答案为﹣2+2<k≤或≤k﹣4+6或k≥15三、计算题17、解:………….…….………….……(2分)………….…….………(4分)………….…….………………(6分)………….…….…….……………(8分)18、解:(1)作图如下:(2)线段BC所扫过的图形如图所示.根据网格图知:,所以线段BC所扫过的图形的面积=()四、综合题19、20、【考点】列表法与树状图法;总体、个体、样本、样本容量;扇形统计图;条形统计图.【分析】(1)根据B类有6+4=10人,所占的比例是50%,据此即可求得总人数,再求得A类总人数可得A类女生人数,由各类别人数之和为总人数可得D类人数;(2)利用(1)中求得的结果及对应人数除以总人数即为其百分比,补全图形即可得;(3)利用列举法即可表示出各种情况,然后利用概率公式即可求解.【解答】解:(1)本次调查的学生数=(6+4)÷50%=20(名),则A类女生有:20×15%﹣1=2(名),D类学生有20﹣(3+10+5)=2(名),故答案为:20、2、2;(2)C类百分比为×100%=25%,D类别百分比为×100%=10%,补全图形如下:(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选一位女同学辅导一位男同学的结果共有2种.所以P(一位女同学辅导一位男同学)==.21、【考点】旋转的性质;含30度角的直角三角形;直角三角形斜边上的中线;菱形的判定.【分析】(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.【点评】此题主要考查了菱形的判定以及旋转的性质和直角三角形斜边上的中线等于斜边的一半等知识,得出△DFC 是等边三角形是解题关键.22、【考点】MD:切线的判定;M2:垂径定理;S9:相似三角形的判定与性质.【分析】(1)利用圆周角定理以及平行线的判定得出∠FDO=90°,进而得出答案;(2)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.【解答】(1)证明:∵∠CDB=∠CAB,∠CDB=∠BFD,∴∠CAB=∠BFD,∴FD∥AC(同位角相等,两直线平行),∵∠AEO=90°,∴∠FDO=90°,∴FD是⊙O的一条切线;(2)解:∵AB=10,AC=8,DO⊥AC,∴AE=EC=4,AO=5,∴EO=3,∵AE∥FD,∴△AEO∽△FDO,∴=,∴=,解得:FD=.23、解:(1)如图1,∵△OAB 为等腰直角三角形,OA=3,∴OB=AB==,∵P 为线段OB 上﹣动点(不与O ,B 重合),∴0<t <,∴0<t <,∵四边形PCDM 为正方形,∴∠PCO=90°,∵∠POC=45°,∴△POC 为等腰直角三角形,∵OP=t ,∴PC=OC=t ,∴OD=t+t=2t ,∴M (2t ,t );(2)把M (2t ,t )代入到y=ax 2+bx 中得:t=4at 2+2tb ,1=4at+2b ,b=;(3)①如图2,∵OB=,OP=t ,∴PB=﹣t ,∵PM ∥OA ,∴,∴=,∴t=1;②由(2)得:b==﹣2a ,即4a=1﹣2b ,顶点N (﹣,﹣)(a <0,b >0),i )当0≤﹣≤时,即a ≤﹣时,﹣≥﹣,解得a ≥﹣,∴﹣≤a ≤﹣,ii)当<﹣≤3时,即﹣<a≤﹣,3﹣(﹣)≥﹣,b2﹣4b+3≤0,1≤b≤3,1≤﹣2a≤3,﹣≤a≤﹣,则﹣<a≤﹣,综上所述:a的取值为:﹣≤a≤﹣,m=﹣=1﹣,得:4am=4a﹣1,a=﹣=,﹣≤≤﹣,∴≤m≤2.【点评】本题是二次函数的综合题,考查了等腰直角三角形、正方形的性质,与二次函数相结合,根据点的坐标的特点,表示边的长及求点的坐标;对于动点P,要明确其运动的路径、速度、时间,根据路程OP的长和速度表示出时间的范围;根据45°的特殊三角函数值,计算出OC和PC的长;本题还利用了平行线分线段成比例定理列比例式,得方程,求出方程的解即可得到t的值;对于最后一个问题,利用了对称轴和顶点坐标分情况进行讨论,得出取值.24、【考点】圆的综合题.【分析】(1)根据垂径定理可得出AH=BH,然后在直角三角形ACH中可求出AH的长,再根据C点的坐标即可得出A、B两点的坐标.(2)根据抛物线和圆的对称性,即可得出圆心C和P点必在抛物线的对称轴上,因此可得出P点的坐标为(1,3).然后可用顶点式二次函数通式来设抛物线的解析式.根据A或B的坐标即可确定抛物线的解析式.(3)如果OP、CD互相平分,那么四边形OCPD是平行四边形.因此PC平行且相等于OD,那么D点在y轴上,且坐标为(0,2).然后将D点坐标代入抛物线的解析式中即可判定出是否存在这样的点.【解答】解:(1)如图,作CH⊥AB于点H,连接OA,OB,∵CH=1,半径CB=2∴HB=,故A(1﹣,0),B(1+,0).(2)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3),设抛物线解析式y=a(x﹣1)2+3,把点B(1+,0)代入上式,解得a=﹣1;∴y=﹣x2+2x+2.(3)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形∴PC∥OD且PC=OD.∵PC∥y轴,∴点D在y轴上.又∵PC=2,∴OD=2,即D(0,2).又D(0,2)满足y=﹣x2+2x+2,∴点D在抛物线上∴存在D(0,2)使线段OP与CD互相平分.【点评】本题是综合性较强的题型,所给的信息比较多,解决问题所需的知识点也较多,解题时必须抓住问题的关键点.二次函数和圆的综合,要求对圆和二次函数的性质在掌握的基础上灵活讨论运动变化,对解题技巧和解题能力的要求上升到一个更高的台阶.要求学生解题具有条理,挖出题中所隐含的条件,会分析问题,找出解决问题的突破口.。

相关文档
最新文档